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Causality is necessary for retarded Green’s functions to remain retarded in all inertial frames in relativity,
which ensures that dissipation of fluctuations is a Lorentz invariant concept. For first-order Bemfica,
Disconzi, Noronha, and Kovtun theories with stochastic fluctuations, introduced via the Schwinger-
Keldysh formalism, we show that imposing causality and stability leads to correlation functions of
hydrodynamic fluctuations that only display the expected physical properties at small frequencies and wave
number, i.e., within the expected regime of validity of the first-order approach. For second-order theories
of the Israel and Stewart type, constructed using the information current such that entropy production is
always non-negative, a stochastic formulation is presented using the Martin-Siggia-Rose approach where
imposing causality and stability leads to correlators with the desired properties. We also show how Green’s
functions can be determined from such an action. We identify a Z2 symmetry, analogous to the Kubo-
Martin-Schwinger symmetry, under which this Martin-Siggia-Rose action is invariant. This modified
Kubo-Martin-Schwinger symmetry provides a new guide for the effective action formulation of hydro-
dynamic systems with dynamics not solely governed by conservation laws. Furthermore, this symmetry
ensures that the principle of detailed balance is valid in a covariant manner. We employ the new symmetry
to further clarify the connection between the Schwinger-Keldysh and Martin-Siggia-Rose approaches,
establishing a precise link between these descriptions in second-order theories of relativistic hydro-
dynamics. Finally, the modified Kubo-Martin-Schwinger symmetry is used to determine the corresponding
action describing diffusion in Israel-Stewart theories in a general hydrodynamic frame.
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I. INTRODUCTION

Much of modern theoretical physics is constructed from
the framework of effective field theory (EFT); the idea that
physical models can be systematically built, order-by-order
in some expansion parameter, using effective degrees of
freedom and symmetries [1,2]. A classic example of this
approach is fluid dynamics, which describes the late-time,
long-wavelength evolution of some set of conserved quan-
tities, such as energy, momentum, and particle (baryon)
number [3]. In the nonrelativistic limit, viscous fluids are
traditionally studied using the famous Navier-Stokes

equations [3], which are known to describe a wide range
of physical phenomena [4,5].
One key feature present in fluids is the existence

of irreversible processes and, hence, dissipation. The
fluctuation-dissipation theorem [6,7] dictates that a thermal
system with dissipation will also experience fluctuations
in its thermodynamic quantities. Therefore, a complete EFT
approach for hydrodynamics requires the proper inclusion of
these fluctuations. Typically, thermal fluctuations are mod-
eled by including stochastic sources in the hydrodynamic
theory, resulting in stochastic partial differential equations
[8]. While in principle such equations can be solved directly,
much progress has been made by recasting the stochastic
dynamics in a path integral form. Using this approach, the
fluctuating hydrodynamic system is mathematically similar
to a quantum field theory, allowing for powerful field theory
techniques to be employed [9–13]. In fact, these techniques
have been widely applied to study nonrelativistic fluctuating
systems [14]. However, fundamental challenges still abound
when it comes to relativistic fluids.
Early attempts to generalize the Navier-Stokes equations

to relativity were made by Eckart [15] and Landau and

*nickim2@illinois.edu
†hippert@illinois.edu
‡lorenzo.gavassino@vanderbilt.edu
§jn0508@illinois.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 116019 (2023)

2470-0010=2023=108(11)=116019(22) 116019-1 Published by the American Physical Society

https://orcid.org/0000-0002-6420-2184
https://orcid.org/0000-0001-5802-3908
https://orcid.org/0000-0002-6603-9253
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.116019&domain=pdf&date_stamp=2023-12-22
https://doi.org/10.1103/PhysRevD.108.116019
https://doi.org/10.1103/PhysRevD.108.116019
https://doi.org/10.1103/PhysRevD.108.116019
https://doi.org/10.1103/PhysRevD.108.116019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Lifshitz [3]. While the EFT construction of these theories is
in principle similar to that of the Navier-Stokes equations,
namely a first-order derivative expansion, they were later
found to possess unphysical behavior signaled by causality
violation [16]. Furthermore, such theories predicted that
the number of collective modes in the shear and sound
channels depends on the Lorentz frame, signaling that the
global equilibrium state is unstable with respect to small
perturbations [17]. This is especially problematic for the
study of thermal fluctuations in this relativistic system, as it
indicates that there can be fluctuations that will rapidly take
the system away from equilibrium, never to return.
Historically, these issues of causality and stability were

first repaired through the construction of the so-called
second-order theories [18–20]. The latter, which we will
refer to here as the Israel-Stewart theory, is qualitatively
different from the first-order theories of Eckart, and Landau
and Lifshitz. In fact, in second-order theories, dissipative
contributions to the energy-momentum tensor and con-
served currents obey their own dynamical equations of
motion, which can be derived from a number of different
approaches [20–25]. Therefore, when compared to first-
order approaches, Israel-Stewart theory is said to possess
an extended set of variables as it treats dissipative fluxes
as legitimate new degrees of freedom in addition to the
standard hydrodynamic variables. Israel-Stewart theory is
currently the prevalent approach used in numerical studies
of relativistic fluids; see e.g. [26].
Recently, it has become clear that first-order theories can

also be causal and stable if one uses hydrodynamic fields
defined in a way different from that done by Eckart and
Landau-Lifshitz. This recent development, due to Bemfica,
Disconzi, Noronha, and Kovtun (BDNK) [27–31], relies
on the fact [19,20] that hydrodynamic quantities such as
temperature, chemical potential, and fluid velocity are not
uniquely defined out of equilibrium. A choice to define
these variables always has to be made when writing the
constitutive relations in a derivative expansion, and each
choice is called a hydrodynamic frame [32]. This concept is
systematically explored in BDNK theory via the introduc-
tion of a new set of transport parameters that parametrizes
the choice of hydrodynamic frame. The resulting general
equations of motion can be causal, strongly hyperbolic, and
stable for a subset of these transport parameters [27–31,33].
This implies that relativistic viscous phenomena can, in
principle, be sensibly described using these generalized
first-order theories.
Over the past several decades, there has been significant

effort to include stochastic fluctuations in relativistic
systems, including work on hydrokinetics [34–38], critical
point phenomenology [39–49], heavy-ion collisions
[50–56], and more [32,57–72]. These works have used a
number of approaches, but much of the recent focus has
been on the field theory techniques earlier used to study
nonrelativistic fluids. While some of this work has used the

Martin-Siggia-Rose (MSR) approach [73,74], many of the
developments have focused on the Schwinger-Keldysh
(SK) action on the closed time path [75–79]. In the latter,
actions are constructed as an EFT from the underlying
quantum mechanical system using the dynamical Kubo-
Martin-Schwinger (KMS) symmetry [7,75,80], though
some works in this formalism precede the formal develop-
ment of this symmetry [81–83]. This symmetry ensures that
the nonlinear generalization of the fluctuation-dissipation
theorem holds [84], providing the benefit that actions can
be constructed to account for nonlinear fluctuations. These
works employing the Schwinger-Keldysh formalism have
included applications to holography [85–88], nonrelativ-
istic systems [89,90], Nambu-Goldstone modes [91], and
many works on relativistic fluids [92–97].
In a previous paper [98], some of us developed a

framework for studying thermal fluctuations that incorpo-
rated the recent developments concerning causality, stabil-
ity, and dissipation in the relativistic regime described
above. This work provided a generalization of the non-
relativistic results of Fox and Uhlenbeck [99], using the so-
called information current [100]. The framework was then
used to study the inclusion of thermal fluctuations in a
number of hydrodynamic models, including the case of the
Israel-Stewart theory in a general hydrodynamic frame
[101] at zero chemical potential.
In this paper, we show how the work of [98] can be

applied to construct effective actions for stochastic rela-
tivistic hydrodynamic models. Using the standard closed
time path formulation, we show that in first-order theories,
imposing causality and stability leads to unwanted behavior
of correlation functions and noise correlators. This appears
because these effective theories are only hydrodynamically
stable on shell (i.e., at the level of the equations of motion),
and entropy production is only guaranteed to be non-
negative in the regime of validity of the first-order
derivative expansion. Using the MSR approach, we then
construct an effective action in terms of the information
current, such that the underlying dynamics are guaranteed
to be stable off shell due to the Gibbs stability criterion
[102]. By understanding how this new effective action
transforms under the relevant discrete symmetries (time
reversal, parity, charge conjugation), we identify a new Z2

symmetry, analogous to a KMS transformation, that leaves
the action invariant. This is the covariant manifestation of
the symmetry identified in [103], which is used here to
formulate effective actions for hydrodynamic systems in
the presence of nonconserved currents.
This paper is organized as follows. In Sec. II, stochastic

fluctuations of a conserved current are studied in first-order
BDNK theory using the Schwinger-Keldysh formulation.
Motivated by several subtleties that appear in first-order
theories, a new formalism for describing hydrodynamic
fluctuations in Israel-Stewart, built using the information
current, is presented in Sec. III. The effective action for this
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new approach is derived in Sec. III A, while the application
of this approach to diffusion is presented in Secs. III B and
III C. In Sec. IV, a modified KMS symmetry involving time
reversal and parity is derived explicitly from the effective
action. This symmetry is also obtained from microscopic
approaches in Sec. IV B. Examples of this symmetry are
applied to the problem of diffusion in Sec. IV D. Finally,
for the sake of completeness, in Appendix, we provide a
review of the Schwinger-Keldysh theory for effective
actions on the closed time path.
Notation: We use natural units ℏ ¼ c ¼ kB ¼ 1 and a

four-dimensional Minkowski spacetime metric gμν with a
mostly plus signature. Greek indices run from 0 to 3,
lowercase Latin indices run from 1 to 3, and uppercase
Latin indices run across the space of thermodynamic
variables. The four-momentum is written as kμ ¼ ðω;kÞ.
To simplify the notation, we shall denote jkj ¼ k when
convenient. Matrices in the space of thermodynamic
variables are denoted in script, for instance E, while vectors
in this space are written in bold, ϕ.

II. EFFECTIVE ACTION FOR FIRST-ORDER
THEORIES: RELATIVISTIC DIFFUSION

In order to illustrate the interplay between causality,
stability, and the stochastic formulation of first-order
hydrodynamic theories, in this section we consider a simple
example involving the dynamics of a conserved current
associated with a globalUð1Þ symmetry. For simplicity, we
assume that the conserved current Jμ is embedded in a
medium with a constant background temperature T > 0
and constant flow velocity given by a timelike future-
pointing 4-vector uμ (normalized such that uμuμ ¼ −1). We
shall first discuss the case without noise and later imple-
ment stochastic fluctuations using the Schwinger-Keldysh
approach.
The conserved current Jμ can always be decomposed as

Jμ ¼ N uμ þ J μ; ð1Þ

where J μuμ ¼ 0. At first order in derivatives, assuming a
constant temperature and flow velocity, the constitutive
relations at first order in derivatives are given by

N ¼ nþ λTuα∂αðμ=TÞ
J α ¼ −TκΔαν

∂νðμ=TÞ; ð2Þ

where μ is the chemical potential, n ¼ nðT; μÞ is the
equilibrium density, κ is the conductivity, Δμν ¼ gμν þ
uμuν is the rank-two projector transverse to uμ, and λ is, in
this case where T and uμ are constant, the single BDNK
coefficient that parametrizes the hydrodynamic frame [28].
At first order, this coefficient can be shifted by a hydro-
dynamic frame transformation involving the chemical
potential [28], i.e, by a field redefinition of the form

μ → μþ αuλ∂λðμ=TÞ, so that λ → λþ χα where χ ¼
ð∂n=∂μÞT > 0 is the susceptibility and α is some coeffi-
cient. Within a first-order approach, κ is invariant under
hydrodynamic frame transformations. Finally, we note that
the dissipative corrections to the current vanish in global
equilibrium.
The equation of motion for the chemical potential μ is

simply given by the conservation of the current

∂μJμ ¼ 0 ⇒ Tuνuα∂νðλ∂αðμ=TÞÞ þ Tχuν∂νðμ=TÞ
− TΔνα

∂νðκ∂αðμ=TÞÞ ¼ 0: ð3Þ

It is straightforward to determine the conditions under
which the equation of motion above is causal. This is done
by recognizing that the principal part of the second-
order differential operator acting on μ=T is given by
Tðλuμuν − κΔμνÞ∂μ∂ν [104]. The corresponding character-
istic polynomial is

Tðλuμuν − κΔμνÞϕμϕν; ð4Þ

where ϕμ is the covector normal to the characteristic
surface. Causality requires that the roots ϕμ ¼
ðϕ0ðϕiÞ;ϕiÞ of the polynomial are real and ϕμϕ

μ ≥ 0

[31]. This occurs when

0 ≤
λ

κ
≤ 1: ð5Þ

Thus, one can see that causality imposes that λ cannot
vanish and, in particular, assuming κ > 0, λ also cannot be
negative. This result is in agreement with Refs. [30,33].
Furthermore, if (5) is satisfied, the retarded Green’s
function associated with this differential operator is guar-
anteed to vanish outside the future “lightcone” defined by
the characteristic speed κ=λ [104,105], and linearized
disturbances around the constant μ state can decay toward
equilibrium, regardless of the Lorentz reference frame used.
This is what hydrodynamic stability means in a relativistic
system. In other words, causality ensures that a subluminal
disturbance cannot be Lorentz transformed in a growing
one, guaranteeing that the thermodynamic arrow of time
points to the future in all Lorentz frames, not only in the rest
frame [106].
A standard Fourier analysis [17] of the equation of

motion reveals that this system has a stable nonhydrody-
namic mode with dispersion relation ωðk → 0Þ ¼ −iχ=λ in
the local rest frame of the system where uμ ¼ ð1; 0; 0; 0Þ.
Then, we see that the BDNK coefficient regulates the
dynamics by adding a stable nonhydrodynamic mode to the
system that parametrizes our freedom to define the hydro-
dynamic variables out of equilibrium. Causality places an
upper bound on the frequency of this nonhydrodynamic
mode, which cannot exceed 1=D, where the diffusion
constant is D ¼ κ=χ.
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It is instructive at this point to remind the reader of the
role played by BDNK coefficients in the second law of
thermodynamics. Using the canonical construction for the
entropy current [32], one can use (3) to find

∂αsα ¼ TðκΔαβ − λuαuβÞ∂αðμ=TÞ∂βðμ=TÞ: ð6Þ
At this point, one would be tempted to say that the validity
of the second law of thermodynamics requires that κ ≥ 0
and λ ≤ 0, which would be at odds with causality and
stability. However, this reasoning is not correct, as
explained in detail in [28]. The entropy current is frame
invariant in first-order hydrodynamics, and, thus, one
cannot use it to place constraints on the frame-dependent
coefficient λ. In fact, the only physical requirement that
∂μsμ must obey is that it is non-negative in the regime of
validity of the first-order theory [107]. By implementing
the derivative expansion for the on shell quantities in (6),
one can see that the term with λ actually represents a third-
order contribution to the entropy production, which cannot
be accurately determined in the first-order approach. Thus,
non-negative entropy production only implies that κ ≥ 0, as
expected. The coefficient λ parametrizes our ignorance
about the UV and, as such, in the first-order theory, it can
be freely chosen to satisfy the causality and stability
constraints. This choice should not affect predictions made
using this theory (in the causal regime) if one stays in the
regime of validity of first-order hydrodynamics. However,
it should be noted that, since ∂αsα can become negative at
large gradients, the total entropy does not play the role of a
rigorous Lyapunov functional [102]. Hence, we cannot use
thermodynamic techniques to construct a standard infor-
mation current [108]. Indeed, at present, there seems to be
no way of associating a meaningful information current to
first-order hydrodynamics [69,107].
Let us now investigate the stochastic formulation of this

problem using the Schwinger-Keldysh framework [79] (see
Appendix for a brief review). In particular, we follow the
discussion and notation presented in [97], considering here a
general hydrodynamic frame for the conserved current
parametrized by λ [30]. The effective field theory is described
using a phase fieldφr and an associated stochastic noise field
φa [78], and background gauge fields Arμ and Aaμ. The
effective theory is constructed using the gauge invariant
Stueckelberg-like combination Br;aμ ¼ Ar;aμ þ ∂μφr;a. Up
to leading order in derivatives, the SK effective action S ¼R
d4xLSK is defined by the Lagrangian density given by

LSK ¼ nuνBaν þ iTðκΔρν − λuρuνÞBaρ

× ½Baν þ iβαFrαν þ i∂νðμ=TÞ�; ð7Þ

where the chemical potential and temperature are defined
using βα¼ uα=T and μ=T¼ βαBrα, and Frαν ¼ ∂αArν−
∂νAr;α. This action satisfies S½Br;Ba¼ 0� ¼ 0, S½Br;−Ba� ¼
−S�½Br; Ba�, and the classical limit of KMS symmetry [97].

The classical equation of motion in Eq. (3), where Jμ is given
by (1) and (2), is obtained by varying this action with respect
to φa, and setting φa ¼ 0, Aaμ ¼ 0, and βαFrαν ¼ 0.
It is convenient to write the Lagrangian density as

follows:

LSK ¼ JμBaμ þ iTðκΔμν − λuμuνÞBaμBaν: ð8Þ

This form makes it clear that the usual constraint employed
in Schwinger-Keldysh approaches, ImS½Br; Ba� ≥ 0,
implies that κ ≥ 0 and λ ≤ 0. Since KMS symmetry
dictates that these parameters are the same as the ones
that appear in the classical equations of motion, requiring
ImS½Br; Ba� ≥ 0 implies that the corresponding classical
dynamics, taken at face value, would be acausal and
unstable. Now, one may argue that, since λ can be changed
via a field redefinition (i.e., by changing the hydrodynamic
frame), its value does not have an intrinsic meaning to first
order in gradients. Hence, it may seem natural that the
inequality ImS½Br; Ba� ≥ 0 should only constrain the frame
invariant coefficient κ, leaving λ unconstrained. However,
now we shall show that, just like λ > 0 is required to
guarantee that the classical dynamics is covariantly stable,
λ ≤ 0 is required for the stochastic fluctuations to be stable.
The complementarity of the above conditions will lead us
to the striking conclusion that first-order fluctuating hydro-
dynamics cannot be covariantly stable, at least within the
present approach.
In order to show this, let us consider the Gaussian part of

the effective Lagrangian, expanding around the equilibrium
state with a constant chemical potential μ0 [90]. For
simplicity, let us also ignore the background gauge fields.
Then, we can write the path integral weights explicitly:

jeiSj ¼ exp

�
T
Z

d4xð−κΔνρþλuνuρÞ∂νφa∂ρφa

�
ð9Þ

¼ exp

�
T
Z

d4k
ð2πÞ4 ð−κΔ

νρ þ λuνuρÞkνkρjφaðkμÞj2
�
;

ð10Þ

where in the second line we have expressed the integral
in momentum space. Now, it is evident that, if λ ≤ 0, the
quantity ð−κΔνρ þ λuνuρÞkνkρ is always negative, and
the path integral weight is a regular Gaussian, where the
equilibrium state φa ¼ 0 is the absolute maximum.
However, if we force the dynamics to be causal (so that
λ > 0), then the Gaussian undergoes an inversion of
convexity whenever jωj > ffiffiffiffiffiffiffi

κ=λ
p jkj, i.e. for fluctuations

outside the cone defined by the characteristic velocity. This
implies that excitations of this kind, which are forbidden
along classical solutions of the equations of motion,
become favored when we turn on stochastic fluctuations
since ð−κΔνρ þ λuνuρÞkνkρ > 0. When this happens, the
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equilibrium state ceases to be the most probable state, and it
becomes unstable.1 This is a manifestation of the break-
down of the maximum entropy principle in first-order
hydrodynamics, which makes off shell fluctuations entropi-
cally favored over the equilibrium state [107]. Note that this
is a problem also from a purely mathematical perspective
because the path integral no longer converges since the
weight grows like ∼eþð…Þφ2

a .
Let us now compute the field-field correlators (for

λ ≤ 0). Under the assumptions mentioned above (i.e.
expansion around an equilibrium state with constant
chemical potential, and vanishing gauge fields), the free
part of the effective action reads as

LSK ¼ −φa

�
λ

χ
uνuρ∂ν∂ρδn −DΔνρ

∂ν∂ρδnþ uν∂νδn

�

þ iTðκΔνρ − λuνuρÞ∂νφa∂ρφa; ð11Þ

where we used δn ¼ χδμ, with the coefficients evaluated in
equilibrium. This leads to the following tree-level propa-
gators, written in the local rest frame of the fluid for the
sake of simplicity:

hδnðkμÞφað−kμÞi ¼
1

ωþ iðDk2 − λ
χ ω

2Þ

hφaðkμÞδnð−kμÞi ¼
−1

ω− iðDk2 − λ
χ ω

2Þ

hδnðkμÞδnð−kμÞi ¼ 2TðDχk2 − λω2Þ
ω2 þ ðλχ ω2 −Dk2Þ2

¼ iTχ

ωþ iðDk2 − λ
χ ω

2Þ−
iTχ

ω− iðDk2 − λ
χ ω

2Þ
hφaðkμÞφað−kμÞi ¼ 0: ð12Þ

In this formalism, the propagator hδnðkμÞφað−kμÞi
should be retarded, hφaðkμÞδnð−kμÞi should be a purely
advanced propagator, and hδnðkμÞδnð−kμÞi should be a
sum of retarded and advanced parts. However, this would
be simultaneously true in all inertial frames only if the
equation of motion were causal (which would require
λ > 0). Furthermore, only in causal systems, all inertial
observers can agree on whether a disturbance caused by the
noise is observed to cease and return the system to the
equilibrium state or not [106]. If, instead, we modify a
causal theory by performing some approximation in
momentum space, then the propagators exit the lightcone
[109], and one can always find two inertial observers who
disagree on the chronological sequence of events within the
disturbance. This leads to instability since, as pointed out in
[106], if the chronology of events is not the same for all
observers, the cause of a given signal can be delayed and

the system can spontaneously create a disturbance by
taking entropy from the equilibrium state and reversing
the corresponding dissipative processes that would other-
wise damp this perturbation.
Furthermore, we note that when λ ¼ 0 the standard

arguments from Hiscock and Lindblom [17] hold and the
number of modes obtained from the poles of the propagator
changes from one, in the local rest frame, to two in the case
of a general uμ with nonzero 3-velocity, with the new mode
being an unstable nonhydrodynamic mode. Similar argu-
ments hold for hφaðpμÞδnð−kμÞi, with the new mode
appearing on the wrong part of the complex ω plane, so
that the function is not an advanced propagator anymore.
On the other hand, let us imagine that we could continue

(12) to positive λ, thereby enforcing causal propagation; see
Eq. (5). Then, the average hδnðkμÞδnð−kμÞi ¼ hjδnðkμÞj2i,
which should be non-negative by construction, becomes
negative for jωj > ffiffiffiffiffiffiffi

κ=λ
p jkj. This is the kind of mathemati-

cal inconsistency that we always meet when we try to
extend a Gaussian average

hx2i ¼
R
R e−ax

2

x2dxR
R e−ax

2

dx
¼ 1

2a
ð13Þ

to negative a, signaling that the integral is indeed not
converging. This again shows that stochastic fluctuations
are well defined (in the rest frame) only for acausal frames.
Therefore, we have reached an impasse: whether we choose
a causal hydrodynamic frame or not, the fluctuations are
always ill behaved according to some inertial observers.
Of course, the pathological modes are of high frequency,
and they formally fall outside the regime of applicability
of the theory. Hence, one must be careful when using the
propagators in Eq. (12), especially when performing loops,
to only remain in the regime of validity of the theory. The
frame-dependent coefficient λ defines the corresponding
cutoff energy scale χ=λ, defining the regime of applicability
of the calculations.
This subtlety concerning the physical domain of propa-

gators has interesting consequences for the noise correlator,
as we show below. Let us first assume that λ ¼ 0. This is the
case where the propagator hδnφai is not retarded in all
Lorentz frames, but hδnδni is positive semidefinite for all ω
and k, even outside of the regime of validity of the theory.
In this case, one can go from the Schwinger-Keldysh path
integral to another path integral with noise as follows [79].
First, assume that one is in the local rest frame of the fluid
and perform a Hubbard-Stratonovich transformation to a
new variable ξi such that the following term in the action
can be written as

iTκ∂jφa∂jφa ¼
i

4κT
ξjξj − ξj∂jφa: ð14Þ

After this transformation, the path integral then becomes1We thank A. Jain for discussions about this point.
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Z ∼
Z

DφrDφaDξj exp

×

�
i
Z

d4x

�
i

4κT
ξjξj − ξj∂iφa þ Jμ∂μφa

��
: ð15Þ

The auxiliary variable φa now takes the role of a Lagrange
multiplier, so it can be integrated out to obtain

Z ∼
Z

DφrDξμδ
ð4Þð∂μJμ − ∂iξ

iÞ exp
�
−

1

4κT

Z
d4xξjξj

�
:

ð16Þ

This describes our conserved current with a stochastic
source,

∂0J0 þ ∂iðJi − ξiÞ ¼ 0; ð17Þ

where the stochastic vector ξi is sampled from a Gaussian
distribution with zero mean and two-point correlator
given by

hξiðxÞξjðx0Þi ¼ 2Tκδijδð4Þðx − x0Þ: ð18Þ

Note that this correlator is positive semidefinite.
Now, imagine that one wants to perform the same

calculation with λ ¼ 0 but not in the local rest frame of
the fluid, but with some arbitrary constant uμ. In this case,
one can decompose ξμ ¼−uμðuνξνÞþξμ⊥, where ξ

μ
⊥¼Δμ

νξν,
and the calculations proceed in the same way, leading to the
noise correlator

hξμ⊥ðxÞξν⊥ðx0Þi ¼ 2TκΔμνδð4Þðx − x0Þ: ð19Þ

When λ ≠ 0, we perform the Hubbard-Stratonovich
transformation to find

iTðκΔμν − λuμuνÞ∂μφa∂νφa

¼ i
4

�
1

κT
Δμν −

1

λT
uμuν

�
ξμξν − ξμ∂μφa: ð20Þ

The path integral then becomes

Z ∼
Z

DφrDφaDξμ exp

�Z
d4x

�
−
1

4

�
1

κT
Δμν −

1

λT
uμuν

�
ξμξν − iξμ∂μφa þ iJμ∂μφa

��
: ð21Þ

Clearly, this only makes sense when λ < 0; otherwise the path integral does not converge. Assuming λ < 0 one can integrate
out φa to find

Z ∼
Z

DφrDξμδ
ð4Þð∂μJμ − ∂μξ

μÞ exp
�
−
1

4

Z
d4xξμ

�
1

κT
Δμν þ 1

jλTj u
μuν

�
ξν

�
; ð22Þ

which describes our conserved current with a covariant
stochastic source,

∂μJμ ¼ ∂μξ
μ; ð23Þ

where the noise vector ξμ is sampled from a Gaussian
distribution with zero mean and two-point correlator
given by

hξμðxÞξνðx0Þi ¼ 2TðκΔμν þ jλjuμuνÞδð4Þðx − x0Þ: ð24Þ

In this case, the noise correlator is positive semidefinite.
However, this occurs only when λ ≤ 0, which precisely
excludes the causal and stable region, so the propagator
hδnφai is not retarded for all inertial observers.
The discussion above can be easily generalized to

consider the full BDNK equations [27–31] including both
the contributions coming from the energy-momentum
tensor and the conserved current, and the same result will
take place: (i) in hydrodynamic frames where the dynamics
is causal and stable, correlation functions computed using

the Schwinger-Keldysh approach will only display the
correct basic properties (e.g. hδnδni being positive semi-
definite) for ω and k in the domain of validity of the theory,
and (ii) in the causal and stable regime, one cannot rewrite
the Schwinger-Keldysh path integral in terms of a simpler
path integral describing the conservation law in the
presence of noise; this can only be done in the acausal
(hence, unstable [106]) regime.
In the following sections, we change gears to consider the

inclusion of stochastic fluctuations in second-order, Israel-
Stewart-type hydrodynamic theories where causality and
stability in the linear regime can be demonstrated by properly
defining a Lyapunov functional, which obeys the Gibbs
stability criterion proposed in [102], and ensures off shell
stability in all inertial reference frames. This leads to the
definition of the so-called information current [100], which
we use to determine the probability distribution of sponta-
neous fluctuations in the equilibrium state in a consistent
manner, independently of the inertial reference frame. These
elements are used to construct a theory for describing
stochastic fluctuations in Israel-Stewart relativistic fluids.
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III. EFFECTIVE ACTION FOR ISRAEL-STEWART
THEORIES

In [98], a means of determining the noise correlators of
Israel-Stewart-like relativistic hydrodynamic systems was
presented. This approach relies on the so-called informa-
tion current [100], defined as

Eμ ¼ −δsμ − α�IδJ
Iμ; ð25Þ

where sμ is the entropy current of the fluid, α�I are
equilibrium constants (which refer to the environment),
JIμ are the different conserved currents associated with
chargesQI, and “δ” is an arbitrary finite perturbation of the
equilibrium state. The information current tracks the net
flow of information carried by perturbations around the
equilibrium state. It is naturally related to the free energy,
Ω, of a relativistic system by

δΩ
T

¼
Z

dΣnμEμ; ð26Þ

where Σ is an arbitrary spacelike hypersurface, and nμ is the
past-directed timelike unit normal to this hypersurface. This
implies that the probability distribution for thermal fluc-
tuations around equilibrium is given by

w½δϕ� ∼ e−
R

dΣnμEμ

; ð27Þ

where δϕ is a vector containing the perturbations of each
thermodynamic variable around the equilibrium state.
The information current in Gibbs stable systems has the

following properties [100]:
(i) Eμnμ ≥ 0 for any past-directed, timelike unit vec-

tor nμ.
(ii) Eμnμ ¼ 0 if and only if the perturbation of each

hydrodynamic variable, δϕ, is equal to zero.
(iii) ∂μEμ ≤ 0.

Under these conditions, δΩ=T behaves as the Lyapunov
functional used in the Gibbs stability analysis [102]. From
the thermodynamic point of view, the Gibbs stability
criterion ensures that any perturbation around equilibrium
increases our knowledge about the microstates of the
system. Furthermore, as shown in [100], the conditions
above also guarantee causality in the linear regime. Finally,
they also imply that the information current is unique [100].
As mentioned in Sec. II, working from Eq. (25) for first-

order theories such as BDNK theory will yield an

information current that does not have the properties
mentioned above. This issue arises due to the fact that
for such theories the equilibrium state will not be a
maximum of the entropy [107]. This does not affect the
on shell properties of such theories but introduces new
subtleties to the off shell formulation.
The approach we will use to determine the noise

correlators is constructed entirely from the information
current. It has been shown in [108] that the equations of
motion of any Gibbs stable relativistic linear system, as
defined in [100], can be written in the form

ðEμ
∂μ þ σσþ V asymÞδϕ ¼ Ξ; ð28Þ

where σ ¼ δϕTσσδϕ is the entropy production, and Vasym is
the antisymmetric part of V . The noise correlators in this
approach take the form

hΞðxÞΞðx0Þi ¼ 2σσδð4Þðx − x0Þ: ð29Þ

This shows that the noise correlator scales with the entropy
production, providing a very natural manifestation of the
fluctuation-dissipation theorem. We will now determine the
appropriate effective action to describe fluctuations in this
system.

A. Martin-Siggia-Rose action

It has been shown by MSR in [12] how stochastic
differential equations can be written in terms of a path
integral over an effective action. This path integral then
defines a generating functional for correlation functions in
the stochastic system. This approach has been used recently
to study relativistic hydrodynamic fluctuations from kinetic
theory in Ref. [73]. We will now show that the results
presented in [98] can be formulated in the same way.
Consider a system described by the equation of motion

shown in Eq. (28). The average of any observable O that
depends on the thermodynamic state of the system δϕ, can
be written as the expectation value of a path integral

hOi¼
	Z

DδϕOδð4Þ½ðEμ
∂μþσσþVasymÞδϕ−Ξ�



: ð30Þ

The delta function can also be written as a path integral by
introducing a new set of auxiliary variables, δϕ̄, such that

hOi ¼
	Z

DδϕDδϕ̄O exp

�
−i

Z
d4xδϕ̄T ½ðEμ

∂μ þ σσþ VasymÞδϕ − Ξ�
�


: ð31Þ

Since the noise is Gaussian, this expression can be written as
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hOi ¼
Z

DδϕDδϕ̄O exp

�
− i

Z
d4xδϕ̄TðxÞðEμ

∂μ þ σσþ VasymÞδϕðxÞ−
1

2

Z
d4xd4x0δϕ̄TðxÞhΞðxÞΞTðx0Þiδϕ̄ðx0Þ

�
: ð32Þ

The expectation value of a quantity constructed using
thermodynamic fields can thus be written as a path integral
of the form

hOi ¼
Z

DδϕDδϕ̄OeiSeff ½δϕ;δϕ̄�; ð33Þ

where the effective action is given by

Seff ½δϕ; δϕ̄� ¼ −
Z

d4xδϕ̄TðEμ
∂μ þ σσþ ṼasymÞδϕ

þ i
Z

d4xδϕ̄Tσσδϕ̄: ð34Þ

Here, we have inserted the noise correlator found in [98].
We note that this action was constructed in [110] in the
absence of stochastic fluctuations. A similar result can be
obtained using other equivalent approaches to determine
the fluctuations. For systems with no asymmetric term,
Ṽasym ¼ 0, as is the case for most hydrodynamic models,
the action is determined solely from thermodynamics.
The action in (34) describes the fluctuations of a

multitude of relativistic systems. While here we will
exclusively focus on applications in the context of
Israel-Stewart theory, our results can be used to determine
the properties of fluctuations in all of the different univer-
sality classes discussed in [108,111], which categorize a
myriad of physical systems ranging from heat conducting
materials to relativistic superfluids and supersolids.

B. Israel-Stewart diffusion

In Sec. II, the thermodynamic fluctuations of a conserved
current associated with a global Uð1Þ symmetry were
discussed using first-order BDNK theory [27–31]. Using
the effective action constructed from the Schwinger-
Keldysh framework [79], it was found that, if one imposes
causality and stability, the correlation functions only display
the expected physical properties for ω and k in the hydro-
dynamic regime. We now discuss how the new approach
presented here can be used to determine the stochastic
fluctuations in a hydrodynamic theory of a Uð1Þ conserved
current, in a general hydrodynamic frame that is Gibbs stable
according to the Gibbs stability criterion [102].
To construct this type of Gibbs stable hydrodynamic

description of a conserved current, we follow the formu-
lation of Israel-Stewart theory [20] in a general hydro-
dynamic frame worked out in [101]. We again consider a
conserved current of the form

Jμ ¼ ðnþN Þuμ þ J μ; ð35Þ

where now not only n, but also N and J μ are dynamical
variables of the theory. The entropy current can be written
up to second order in the degrees of freedom as

sμ¼
�
s−

μ

T
N
�
uμ−

μ

T
J μ−

uμ

2T
ðβNN 2þβJJ λJ λÞ; ð36Þ

where βN , βJ are new second-order transport coefficients.
The second law of thermodynamics implies that the entropy
production, σ ¼ ∂μsμ, is non-negative, indicating that it
should be written as a quadratic form,

σ ¼ 1

T

�
N 2

λ
þ J αJ α

κ

�
; ð37Þ

where κ is the conductivity coefficient and λ is a new
transport coefficient. The three new transport coefficients
βN; βJ; λ parametrize the hydrodynamic frame. This
entropy production is non-negative if λ, κ > 0. Ensuring
that the entropy production has this form requires the
introduction of the relaxation equations,

N
λT

¼ −
βN
T

uα∂αN − uα∂α

�
μ

T

�
; ð38Þ

J μ

κT
¼ −

βJ
T
Δμ

νuλ∂λJ ν − Δμν
∂ν

�
μ

T

�
: ð39Þ

Following [100], the information current of this theory is
then given by

Eμ ¼ −δsμ −
μ

T
δJμ

¼ uμ

χT

�
1

2
δn2 þ δnδN

�
þ 1

χT
δnδJ μ

þ uμ

2T
ðβNδN 2 þ βJδJ λδJ λÞ: ð40Þ

We must now determine the conditions for this theory to be
Gibbs stable following the criterion [102] so that the new
theory of fluctuations developed in Sec. III can be applied.
To find the conditions, one needs to fulfill the three

criteria mentioned before. Property ∂μEμ ≤ 0 is simple to
obtain in this Israel-Stewart formulation since ∂μEμ ¼ −σ,
which implies that λ, κ > 0, precisely the condition for the
entropy production to be non-negative mentioned above.
The other two necessary conditions are restrictions on
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nμEμ, where nμ is an arbitrary past-directed, timelike
4-vector. Any nμ with these properties can be decomposed
up to an arbitrary positive constant as

nμ ¼ γð−1; vinÞ; ð41Þ
where γ ¼ ð1 − v2nÞ−1=2 is the Lorentz factor, and
v2n ≡ vinvni < 1. Leaving nμ in this general form, the local
rest frame of the fluid can be taken so uμ ¼ ð1; 0; 0; 0Þ.
Then,

2χT
γ

nμEμ ¼ χβN

�
1

χβN
δnþ δN

�
2

þ χβJ

�
vin
χβJ

δnþ δJ i

�
2

þ
�
1−

1

χβN
−

v2n
χβJ

�
δn2: ð42Þ

The first two terms are non-negative when βJ; βN ≥ 0;
however, it is possible for them to be zero in a nonequilibrium
state (for example χβJδJ i ¼ −vinδn). The last term must
therefore be nonzero for the second Gibbs stability condition
to hold. Finally, the last term must be non-negative to
guarantee that the first condition holds. Hence, the system
satisfies the Gibbs stability conditions for

1

χβN
þ 1

χβJ
< 1: ð43Þ

It is thus possible to construct a stable system according to the
Gibbs stability criterion using a Uð1Þ conserved current in

this approach, so the new theory for fluctuations presented
in [98] can be used. Note that this reduces to the theory of
Sec. II in the limit where βN; βJ → 0.
The equations of motion of this theory are written in the

form

ðEμ
∂μ þ σσÞδϕ ¼ ξ; ð44Þ

where ξ is a stochastic vector, δϕ ¼ fδn; δN ; δJ μg, and

Eμ ¼ 1

χT

0
B@

uμ uμ Δμν

uμ βNχuμ 0

Δμ
ρ 0 βJχuμΔν

ρ

1
CA; ð45Þ

σσ ¼ 1

T

0
B@

0 0 0

0 1
λ 0

0 0 1
κΔ

μ
ν

1
CA: ð46Þ

The noise correlator is then fixed by Eq. (29) to be

hξðxÞξTðx0Þi ¼ 2σσδð4Þðx − x0Þ: ð47Þ

This noise correlator is now positive semidefinite in the
Gibbs stable, and hence causal, regime. Using the MSR
approach, an action for this theory can be determined from
Eq. (34). Substituting the information current and entropy
production above, one finds

LMSR ¼ −
δn̄
χT

ðuμ∂μδnþ uμ∂μδN þ ∂μδJ μÞ − δN̄
χT

�
uμ∂μδnþ βNχuμ∂μδN þ χ

λ
δN

�

−
δJ̄ μ

χT

�
∂μδnþ βJχuν∂νδJ μ þ

χ

κ
δJ μ

�
þ i
λT

δN̄ 2 þ i
κT

δJ̄ 2: ð48Þ

The properties of this action will be discussed in Sec. IV D, including how it behaves under the KMS symmetry described in
Appendix A 3.
We can now determine the form of the symmetrized correlators from the equations of motion as follows. In momentum

space, the equation of motion takes the form

D−1
J ðω; kÞδϕðω; kÞ ¼ ξ; ð49Þ

with

D−1
J ðω; kÞ ¼ −iE0ωþ iEiki þ σσ: ð50Þ

The correlator of δϕ is then given by

hδϕðkμÞδϕTð−kμÞi ¼ DðkμÞσσD†ðkμÞ; ð51Þ

where we have substituted the correlator of ξ. The nonzero correlators of hydrodynamic variables thus take the form

hδnðkμÞδnð−kμÞi ¼ χ2T½κλω2ðλβ2Nk2 þ β2Jκω
2Þ þ ðκk2 þ λω2Þ�

jiλω2 þ ðiþ λβNωÞðκk2 − iχωÞ þ κβJω
2ð−iχ þ λω − χλβNωÞj2

; ð52Þ
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hδN ðkμÞδN ð−kμÞi ¼ Tλ½κ2k4 þ ðχ2 þ κλk2Þω2 þ χβJκ
2ω2ð−k2 þ χβJω

2Þ�
jiλω2 þ ðiþ λβNωÞðκk2 − iχωÞ þ κβJω

2ð−iχ þ λω − χλβNωÞj2
ð53Þ

hδJ μðkαÞδJ νð−kαÞi ¼ κTω2Δμν
αβ½χ2 þ λðκk2 þ λω2Þ þ χβNλ

2ω2ðχβN − 2Þ�
jiλω2 þ ðiþ λβNωÞðκk2 − iχωÞ þ κβJω

2ð−iχ þ λω − χλβNωÞj2
þ κT
1þ β2Jκ

2ω2
Δμν

ðkÞ ð54Þ

hδnðkμÞδN ð−kμÞi ¼ −
χTλω2½χ þ κð−κβJk2 þ χκβ2Jω

2 þ λβNk2Þ�
jiλω2 þ ðiþ λβNωÞðκk2 − iχωÞ þ κβJω

2ð−iχ þ λω − χλβNωÞj2
ð55Þ

hδnðkνÞδJ μð−kνÞi ¼ κχTω½χ þ λω2ðκβJ þ λβNðχβN − 1ÞÞ�Δμ
νkν

jiλω2 þ ðiþ λβNωÞðκk2 − iχωÞ þ κβJω
2ð−iχ þ λω − χλβNωÞj2

; ð56Þ

where Δμν
ðkÞ ¼ Δμν − Δμ

αΔν
βk

αkβ=kλkλ is the projector

orthogonal to kμ and uμ. These are the symmetrized
correlators, but we would also like to obtain the retarded
and advanced correlators.

C. Green’s functions from the MSR action

A key benefit of the Schwinger-Keldysh approach is that
it allows for the determination of Green’s functions, as
described in Appendix. To determine how the Green’s
functions can be obtained from the MSR action presented
here, we must relate the sources to those that appear in
Schwinger-Keldysh theory. We will work in the Eckart
frame, for which there is no out-of-equilibrium scalar
(N ¼ 0), for simplicity.
Generally, we expect that the sources should enter the

effective action through a term of the form

Ssource ¼
Z

d4xðĀμJμ − BμJ̄μÞ; ð57Þ

where Āμ is the Schwinger-Keldysh source that couples to
the physical current, while J̄μ is some unknown auxiliary
current and Bμ is its source. With these sources included,
the equations of motion obtained by taking variations of the
effective action with respect to δϕ̄ are given by

∂μJμ − χTuμBμ ¼ 0; ð58Þ

∂
μδnþβJχ

2
uλ∂λδJ μþ2χ

κ
δJ μþ iχ

κ
δJ̄ μ−χTBμ ¼ 0; ð59Þ

where we have defined δJ̄μ ¼ δn̄uμ þ δJ̄ μ. These couple
to the field tensor in the correct way if

Bμ ¼ βνFνμ; ð60Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field tensor. Inserting this
in the source part of the effective action,

Ssource ¼
Z

d4xðĀμJμ − βνFν
μJ̄μÞ

¼
Z

d4xðĀμJμ þ βνAμ∂
νJ̄μÞ: ð61Þ

In Schwinger-Keldysh theory, this last part of the action
should have the form −AμJ

μ
a, so we can identify

Jμa ¼ LβJ̄μ: ð62Þ

A similar relation will be found in Sec. IV using the KMS
symmetry. Here, however, we have found that the total
action takes the form

S ¼ SMSR þ
Z

d4xðĀμJμ þ AμLβJ̄μÞ; ð63Þ

from which the various Green’s functions can be obtained
by taking suitable variations.
We now explicitly calculate the retarded Green’s function

for the Israel-Stewart theory in the Eckart frame. This is
simplest to do in matrix form, introducing ψ ¼ fδϕ; δϕ̄g,
and defining A; Ā by

ATδϕ̄ ¼ AμJ̄μ; ĀTδϕ ¼ ĀμJμ: ð64Þ

Working in Fourier space, the Lagrangian takes the form

L¼−
1

2
ψT

�
0 iEμkμþσσ

−iEμkμþσσ 2iQ

�
ψ−

�
Ā

iωA=T

�T

ψ:

ð65Þ

The resulting path integral is a Gaussian with a source, sowe
can complete the squares and integrate over the fields δϕ; δϕ̄
to find that the generating functional is given by

MULLINS, HIPPERT, GAVASSINO, and NORONHA PHYS. REV. D 108, 116019 (2023)

116019-10



W½Aμ;Āμ�∼i

�
Ā

iω
T A

�†� 0 iEμkμþσσ
−iEμkμþσσ 2iQ

�−1� Ā
iω
T A

�
:

ð66Þ

The Green’s functions can then be identified from compo-
nents of the inverse matrix, with suitable factors of iω=T
included. Note that this factor of ω=T is precisely the factor
necessary for the fluctuation-dissipation theorem to hold.
Here it appears due to the Lie derivative of Eq. (62).
Making the suitable variations, we find that the retarded

correlators of the variables δn; δJ μ take the form

GR¼hδϕTδϕ̄i¼

0
B@

χ2ωðκβJωþiÞ
κk2−iχω−κβJχω2

κχωΔμ
νkν

κk2−iχω−κβJχω2

κχωΔμ
νkμ

κk2−iχω−κβJχω2

κχω2ΔμαΔβ
νkαkβ=k2

κk2−iχω−κβJχω2 −
κωΔμ

ðkÞν
iþκβJω

;

1
CA;

ð67Þ

where Δμν
ðkÞ is the projector orthogonal to kμ and uμ. Using

these retarded correlators, the retarded Green’s function for
the current is found to be

Gμν
R ¼ χ2ωðκβJωþ iÞuμuν þ κχωðΔμ

αkαuν þ Δν
αkαuμÞ þ κχω2ΔμαΔνβkαkβ=k2

κk2 − iχω − κβJω
2

−
κω

iþ κβJω
Δμν

ðkÞ: ð68Þ

The advanced and symmetrized Green’s functions can be
obtained similarly, and the fluctuation-dissipation theorem
is verified through a comparison of the retarded and
symmetrized Green’s functions. The approach used to
obtain this Green’s function can be employed to study
systems with other conserved quantities by determining the
appropriate source term in the action.
In the first-order limit, our calculations reduce to the

standard result up to a contact term. To see this, consider
the retarded δn − δn correlator,

Gnn
R ¼ χ2ωðκβJωþ iÞ

κk2 − iχω − κβJχω
2
: ð69Þ

This can equivalently be written as

Gnn
R ¼ χκk2

κk2 − iχω − κβJχω
2
− χ: ð70Þ

A contact term, as appears here, is expected when deter-
mining Green’s functions by variational techniques [32].

Taking the first-order limit requires taking βJ → 0, so we
are left with

Gnn
R →

χκk2

κk2 − iχω
¼ χDk2

Dk2 − iω
; ð71Þ

where D ¼ κ=χ and the contact term has been disregarded.
This is now the standard result for the retarded Green’s
function of nonrelativistic diffusion [32].
This contact term must be accounted for when using the

retarded Green’s function. For example, conservation of the
current should imply that kμG

μν
R ¼ 0. However, performing

this calculation with Eq. (68) we find that

kμG
μν
R ¼ −χkμuμuν: ð72Þ

This apparent violation of the conservation law is solely
due to the contact term found in Eq. (70). Such terms
frequently appear in momentum-space conservation laws
for correlation functions for relativistic fluids [32]. By
simply ignoring the contact term, the retarded Green’s
function can be written as

Gμν
R ¼ χκk2uμuν þ κχωðΔμ

αkαuν þ Δν
αkαuμÞ þ κχω2ΔμαΔνβkαkβ=k2

κk2 − iχω − κβJω
2

−
κω

iþ κβJω
Δμν

ðkÞ: ð73Þ

This retarded Green’s function will obey the standard
conservation law-induced Ward identity.

IV. DISCRETE SYMMETRIES FOR
ISRAEL-STEWART THEORY

The observant readermight find thederivation inSec. III A
familiar. It is precisely equivalent to the discussion involving
Hubbard-Stratonovich transformations in Sec. II, except in
reverse. One might therefore expect that the action, Eq. (34),

is equivalent to the Schwinger-Keldysh action. However,
there are two key differences.
The first difference is that the Schwinger-Keldysh action

is constructed to describe the dynamics of conserved
quantities. For example, the action of Sec. II describes
the evolution of a conserved current Jμ. For the MSR action
constructed in this section, the dynamics can be written as

∂μðEμδϕÞ ¼ −σσ − Ṽasym: ð74Þ
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The quantity Eμδϕ can thus be thought of as a non-
conserved current. To understand the interpretation of this
current, recall

1

2
δϕTEμδϕ ¼ Eμ ¼ −δsμ − α�IδJ

Iμ : ð75Þ

Upon taking a derivative of Eμδϕ, there will be a nonzero
term from the entropy current, assuming the system is
dissipative, and potentially an antisymmetric term from
δJIμ , depending on the theory. Assuming no antisymmetric
term for simplicity, the nonconserved dynamics comes
from the entropy production.
The results of this section can thus be thought of as an

application of the Schwinger-Keldysh approach to second-
order hydrodynamic theories. First-order theories, such as
BDNK theory [27–29,31], are directly amenable to the
current Schwinger-Keldysh formalism [79] because their
equations of motion stem from the conservation laws. On
the other hand, Israel-Stewart-like theories have noncon-
served elements of their dynamics baked into the equations
of motion, so their Schwinger-Keldysh formulation will
have to start from a different starting point. Our results,
therefore, extend the idea of using KMS symmetry to the
case of hydrodynamic systems in the presence of non-
conserved currents.2

The second key difference between the Schwinger-
Keldysh and MSR approaches is that, in the former descrip-
tion, the “quantum” fields δϕa have well-defined physical
meaning in terms of the closed time path contour, and
known transformation properties under time reversal (see
Appendix A 3). In the MSR formalism, however, the
auxiliary fields δϕ̄ are introduced to enforce the equations
of motion and have no deeper meaning a priori. Below we
show that the action obtained from our information-current-
driven approach obeys, with appropriate modifications, the
standard properties expected from a Schwinger-Keldysh
action, providing a dictionary between these two approaches.
To more directly compare, we need to determine whether

our action satisfies the Schwinger-Keldysh constraints

S½δϕr; δϕa ¼ 0� ¼ 0; S½δϕr;−δϕa� ¼ −S�½δϕr; δϕa�;
ð76Þ

ImðS½δϕr; δϕa�Þ ≥ 0; ð77Þ

S½δϕr; δϕa� ¼ S½Θδϕr;Θδϕa þ iΘLβδϕr�; ð78Þ

whereΘ represents the transformation of δϕ under a discrete
symmetryΘ of the problem which includes time reversal T,

and Lβ is the Lie derivative with respect to the timelike
Killing vector of the system. The first two conditions are
trivially satisfied for the action of Eq. (34) provided that
δϕa → −δϕa when δϕ̄ → −δϕ̄. However, the final condi-
tion, known as the dynamical KMS symmetry, requires a
nontrivial link between the two descriptions.
The KMS symmetry of the effective action is a remnant

of the time reversal invariance of the microscopic theory
(see Appendix A 3 for details). While the symmetry of the
microscopic action, Smicro½Θδϕr;Θδϕa� ¼ Smicro½δϕr; δϕa�,
is lost due to the coarse-graining in the macroscopic
effective theory, it can be recovered by swapping the initial
and final states in the construction of the effective action
Seff → SΘeff , so that S

Θ
eff ½Θδϕr;Θδϕa� ¼ Seff ½δϕr; δϕa� is still

a symmetry (up to boundary terms). In the Schwinger-
Keldysh formalism, SΘeff can be found by changing the closed
time path contour so that the initial and final density matrices
are interchanged, which has the same effect as appropriately
transforming thevariables δϕr and δϕa. In the classical limit,
this transformation acts only in the “quantum” fields δϕa,
and is given by the classical KMS symmetry of Eq. (78).
Here, rather than expecting that the auxiliary variables

defined from the MSR action, δϕ̄, transform in the same
way as the Schwinger-Keldysh variables δϕa, we obtain
their transformation properties from the MSR action of
Eq. (34) itself. We do so by observing how the MSR action
transforms under the discrete symmetry Θ, and enforcing
the principle of detailed balance. Our procedure is very
similar to the one of Ref. [103], but it implements detailed
balance in a way that is independent of the choice of
spacetime foliation.

A. Modified KMS symmetry for the
MSR action from time reversal

Consider first the transformation δϕ → Θδϕ alone. We
take Θ to include both time reversal and parity. Because
Eμ ¼ 1

2
δϕTEμδϕ is the information current, it transforms

as Eμ → Eμ, and it follows that EμΘ ¼ ΘTEμ. By also
demanding that the classical equation of motion in the
absence of dissipation ðEμ

∂μ þ Ṽ asymÞδϕ ¼ 0 is preserved
under Θ, we find that Ṽ asymΘ ¼ −ΘT Ṽ asym. On the other
hand, as σσ is responsible for dissipation and the breakdown
of the symmetry under Θ, the dissipative equations of
motion must transform to ðEμ

∂μ þ Ṽ asym − σσÞδϕ ¼ 0,
which implies σσΘ ¼ ΘTσσ.
To find how the auxiliary fields δϕ̄ transform, consider

an effective Lagrangian of the form

LMSR ¼ −δϕ̄TðEμ
∂μ þ σσÞδϕþ iδϕ̄TQδϕ̄; ð79Þ

where the noise correlator 2Q has been left arbitrary. Again,
the application of Θ should not affect the ideal term, but
should invert the dissipative one. Hence, we find that Θ
takes δϕ̄ → Θδϕ̄ ¼ −Θδϕ̄, and thus δϕ̄ is of Θ-parity

2A similar extension using a standard Schwinger-Keldysh
approach is provided in [112] for Israel-Stewart theory. Where the
approaches overlap, the results of that work agree with those
presented herein.
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opposite to that of δϕ, analogously to the T-parity of
canonically conjugate momenta. The Lagrangian above
thus transforms as

LMSR⟶
Θ

− δϕ̄TðEμ
∂μ − σσÞδϕþ iδϕ̄TQΘδϕ̄; ð80Þ

where we denote QΘ ≡ ΘTQΘ.
To find the analog of the KMS symmetry for our MSR

action, we look for a transformation of the form

δϕ → Θδϕ; δϕ̄ → −Θδϕ̄þ iΘOδϕ; ð81Þ

with O some differential operator, such that the effective
Lagrangian is invariant up to a total derivative. Under this
transformation, the Lagrangian becomes

LMSR → LKMS ¼ LMSR þ 2δϕ̄TðσσþQΘOÞδϕ
þ iδϕ̄TðQΘ −QÞδϕ̄
− iδϕTðσσþOTQΘÞOδϕ
− iδϕTOEμ

∂μδϕ: ð82Þ

Therefore, the Lagrangian is invariant if Q ¼ QΘ and
OTQ ¼ QΘO ¼ −σσ and the last term is a total derivative.
By employing the fluctuation-dissipation theorem, Q ¼ σσ,
one immediately finds that O ¼ −I. This implies that the
proper symmetry involving time reversal and parity is

δϕ → Θδϕ; δϕ̄ → −Θδϕ̄ − iΘδϕ: ð83Þ

Here, we have derived this transformation by direct study of
the MSR action, but it can also be obtained by invoking a
physical principle, as discussed below.

B. Detailed balance condition and relation to the
modified KMS symmetry

The tentative transformation rule in Eq. (81) can be
completed and fully understood by considering the prin-
ciple of detailed balance and imposing the correct equi-
librium probability distribution [103]. A similar approach
was also employed using the Crooks theorem in [68] by
considering infinitesimal variations of the foliation. The
equilibrium probability distribution w½δϕ� found in (27) can
be made stationary by imposing the following detailed
balance condition3:

P½δϕfðx∈ΣfÞjδϕ0ðx∈Σ0Þ�w½δϕ0�
¼ P½Θδϕ0ðx∈Σ0ÞjΘδϕfðx∈ΣfÞ�w½δϕf�; ð84Þ

where P½δϕfðx∈ΣfÞjδϕ0ðx∈Σ0Þ� denotes the conditional
probability distribution that the system is in state δϕf for x
in some final hypersurface Σf given that it was in state δϕ0

for x in some initial hypersurface Σ0. Using Eq. (27), the
condition in Eq. (84) can be written as

P½Θδϕ0ðx∈Σ0ÞjΘδϕfðx∈ΣfÞ�

¼ e
−
R

Σf
Σ0

d4xδϕTEμ
∂μδϕP½δϕfðx∈ΣfÞjδϕ0ðx∈Σ0Þ�: ð85Þ

Expressing the conditional probability distribution as a path
integral,

P½Θδϕ0ðx∈Σ0ÞjΘδϕfðx∈ΣfÞ�

¼
Z

Θδϕ0ðx∈Σ0Þ

Θδϕfðx∈ΣfÞ
DδϕDδϕ̄ei

R
d4xL: ð86Þ

We would like to make the bounds of this path integral
match those that will appear on the right-hand side of
Eq. (85) when both conditional probability distributions are
written as path integrals. This can be done by flipping the
bounds of this path integral and changing the integration
variables as δϕ → Θδϕ, δϕ̄ → Θδϕ̄. This amounts to a full
spacetime reversal, taking L½δϕ; δϕ̄� → LKMS½δϕ; δϕ̄�≡
LΘ½Θδϕ;Θδϕ̄�, where LΘ is the Lagrangian transformed
due to the swapping of the initial and final states:

P½Θδϕ0ðx∈Σ0ÞjΘδϕfðx∈ΣfÞ�

¼
Z

δϕfðx∈ΣfÞ

δϕ0ðx∈Σ0Þ
DδϕDδϕ̄ei

R
d4xLKMS : ð87Þ

Expressing both sides of Eq. (85) as a path integral, we find
that

Z
δϕfðx∈ΣfÞ

δϕ0ðx∈Σ0Þ
DδϕDδϕ̄ei

R
d4xLKMS

¼
Z

δϕfðx∈ΣfÞ

δϕ0ðx∈Σ0Þ
DδϕDδϕ̄ei

R
d4xðLþiδϕTEμ

∂μδϕÞ: ð88Þ

Since the boundary conditions of the path integrals have
been made the same and are arbitrary, this equality is
satisfied only when the integrands are equal, which implies
that

LKMS ¼ Lþ iδϕTEμ
∂μδϕ: ð89Þ

That is, for detailed balance to hold, the action of parity
and time reversal on the effective action should shift the
Lagrangian by a total derivative term that is determined
from the stationary distribution of Eq. (27). This shift is
provided by the transformation rule of Eq. (81). Comparing
Eq. (89)–Eq. (82), we find that detailed balance is achieved
by taking O ¼ −I, where I is the identity. We also find that

3The extension of the detailed balance principle to a micro-
scopic symmetry Θ including parity is discussed in [113].
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Q ¼ σσ, which is the fluctuation-dissipation relation
recently found in [98].
Hence, the proper Z2 symmetry involving time-reversal

invariance for this action is then

δϕ → Θδϕ; δϕ̄ → −Θδϕ̄ − iΘδϕ: ð90Þ

This symmetry should be used for the MSR action in
Eq. (34) in place of the previous form of KMS symmetry
discussed in the case of first-order theories. It provides a
guide for the construction of effective actions for hydro-
dynamic systems where the equations of motion do not
solely stem from conservation laws.
In the case of time-reversal even fields δϕ, the trans-

formation rule in Eq. (90) could also be obtained following
the procedure introduced in [103], by noting that the
conjugate momenta corresponding to δϕ is π ¼ −E0δϕ̄
and taking the equilibrium distribution to be exp ð−ΦÞ,
with Φ ¼ 1

2

R
d3xδϕTE0δϕ. The corresponding symmetry

transformation becomes π→−πþ iμ, with μ≡−∂Φ=∂δϕ¼
E0δϕ, thus recovering Eq. (90).

C. Mapping to Schwinger-Keldysh variables

From Eq. (90), the standard Schwinger-Keldysh varia-
bles, δϕa; δϕr, for the MSR action can be derived. Since the
Schwinger-Keldysh action is invariant when these trans-
form as

δϕa → Θδϕa þ iΘLβδϕr; δϕr → Θδϕr; ð91Þ

the proper form of δϕa; δϕr as a function of δϕ̄; δϕ should
transform in this manner under Eq. (90). This can be
realized by defining

δϕr ¼ δϕ; δϕa ¼ Lβδϕ̄: ð92Þ

This relationship between these variables should not be too
surprising as the information current picture can arise due
to making an order reduction with respect to the physical
evolution equation, such as in Israel-Stewart theory. This
order reduction can be generated via integrating by parts,
which contributes a factor of Lβ, as in Eq. (92). While these
variables can in principle be used to write an action that
obeys the standard KMS symmetry, Eq. (90) provides a
much simpler way to determine if the action is KMS
invariant. Note that the relationship between auxiliary
variables recovers the correct form of the auxiliary current,
Eq. (62), found in Sec. III C.

D. Modified KMS symmetry for Israel-Stewart
diffusion in a general frame

We now consider the application of the modified KMS
symmetry to Israel-Stewart diffusion in a general hydro-
dynamic frame. From the derivation above and Eq. (34), we
find that the MSR action for the Israel-Stewart theory of
diffusion is given by

LMSR ¼ −
δn̄
χT

ðuμ∂μδnþ uμ∂μδN þ ∂μδJ μÞ − δN̄
χT

�
uμ∂μδnþ βNχuμ∂μδN þ χ

λ
δN

�

−
δJ̄ μ

χT

�
∂μδnþ βJχuν∂νδJ μ þ

χ

κ
δJ μ

�
þ i
λT

δN̄ 2 þ i
κT

δJ̄ 2: ð93Þ

This action is invariant under the modified KMS transformation, Eq. (90). To verify this, we consider the transformation

δn → δn; δn̄ → −δn̄ − iδn; ð94Þ

δN → δN ; δN̄ → −δN̄ − iδN ; ð95Þ

δJ μ → δJ μ; δJ̄ μ → −δJ̄ μ − iδJ μ: ð96Þ

Then, in the local rest frame, each term transforms to

−
δn̄
χT

ð∂tδnþ ∂tδN þ ∂iδJ iÞ → δn̄
χT

ð−∂tδn − ∂tδN − ∂iδJ iÞ þ −
iδn
χT

ð∂tδN þ ∂iδJ iÞ; ð97Þ

−
δN̄
χT

�
∂tδnþ βNχ∂tδN þ χ

λ
δN

�
→

δN̄
χT

�
−∂tδn − βNχ∂tδN þ χ

λ
δN

�
þ −

iδN
χT

�
∂tδn −

χ

λ
δN

�
; ð98Þ

−
δJ̄ i

χT

�
∂iδnþ βJχ∂tδJ i þ

χ

κ
δJ i

�
→

δJ̄ i

χT

�
−∂iδn − βJχ∂tδJ i þ

χ

κ
δJ i

�
þ −

iδJ i

χT

�
∂iδn −

χ

κ
δJ i

�
; ð99Þ
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i
λT

δN̄ 2 →
i
λT

ðδN̄ 2 þ 2iδN̄ δN − δN 2Þ; ð100Þ

i
κT

δJ̄ 2 →
i
κT

ðδJ̄ 2 þ 2iδJ̄ iδJ i − δJ 2Þ: ð101Þ

Combining each of these, we find that

LMSR → −
δn̄
χT

ðuμ∂μδnþ uμ∂μδN þ ∂μδJ μÞ − δN̄
χT

�
uμ∂μδnþ βNχuμ∂μδN þ χ

λ
δN

�

−
δJ̄ μ

χT

�
∂μδnþ βJχuν∂νδJ μ þ

χ

κ
δJ μ

�
þ i
λT

δN̄ 2 þ i
κT

δJ̄ 2: ð102Þ

Since the equation of motion for this conserved current
cannot be written as a single second-order equation for the
density δn, finding an action that is invariant under the
standard KMS symmetry is difficult. In this form, however,
the action can be easily determined from the informa-
tion current and the entropy production, and it still trans-
forms as expected under the appropriate modified KMS
transformation.

V. CONCLUSIONS

In this paper, we have studied how causality and stability
manifest in the effective actions of fluctuating, relativistic,
dissipative hydrodynamic systems. This is first explored
through the example of diffusion in first-order BDNK
theory, investigated using the Schwinger-Keldysh formal-
ism. We showed that the correlation functions of hydro-
dynamic fluctuations only display the expected physical
properties at small frequencies and wave number, i.e.,
within the expected regime of validity of the first-order
approach, when causality and stability conditions are
imposed. However, the corresponding generating func-
tional does not converge in this case. This issue arises
due to the fact that the equilibrium state is not a maximum
of the entropy in such theories, which in principle allows
for fluctuations to grow without bound. These off shell
subtleties do not affect the on shell properties of the theory,
which remain well defined. Our results indicate that there
are still unresolved issues when considering hydrodynamic
fluctuations in relativistic first-order theories (already in the
linear regime).
This motivated us to consider the new theory of

relativistic fluctuations developed in [98] for Gibbs stable
systems with an information current. In these systems,
which include Israel-Stewart theories as an example,
causality and stability hold, and the equilibrium state is
guaranteed to be the maximum of the entropy in a covariant
manner. These properties follow from the information
current, which tracks the net flow of information carried

by perturbations around the equilibrium state. By con-
structing a theory of fluctuations from the information
current, these desirable properties are built in, whereas
other methods can seemingly fluctuate unstable systems
with no obvious issues, as discussed in Sec. II. This class of
systems is described by conservation laws and also addi-
tional equations of motion that describe the relaxation
process associated with dissipative fluxes. Therefore, their
dynamics is not solely given by conservation laws. Such
systems have not been explored much from the perspective
of Schwinger-Keldysh effective field theory. By using
thermodynamic arguments, we provide a versatile approach
for describing the stochastic fluctuations of relativistic
systems that does not rely on microscopic dynamics.
In order to describe the fluctuations of Israel-Stewart

theories through an effective action, at the linearized level,
we showed in this paper that the following simple recipe
can be applied:

(i) Construct the information current and entropy pro-
duction, starting from the underlying symmetries
and degrees of freedom as explained in [108,111].

(ii) Derive the conditions for Gibbs stability using [102].
(iii) Write the corresponding MSR effective action,

Eq. (34).
(iv) For the calculation of Green’s functions, introduce

source terms of the form h̄Tδϕþ hTLβδϕ̄, with
sources h and h̄, as exemplified in Sec. III C.

Since a general formula for the action is provided by
Eq. (34) that holds for any information current and entropy
production, the on shell physics dictates the form of the
effective action. In [108,111] it is shown that the informa-
tion current and entropy production can be determined
using only knowledge of the tensor structure of the degrees
of freedom, and which of these degrees of freedom are
dissipative. This organizing principle can be extended to
the results of this work, allowing for the straightforward
construction of universality classes for fluctuating hydro-
dynamics, which may be hard to obtain using other
approaches.
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To compare this MSR action to the Schwinger-Keldysh
action, we studied how it behaves under discrete sym-
metries. As expected, it was found that the MSR action is
not invariant under the standard dynamical KMS symmetry
of [79], since the standard transformation was only pre-
scribed for conserved hydrodynamic fields. Rather, it was
found that it obeys a new symmetry under time reversal and
parity, which can be found from a direct examination of the
action or using detailed balance [103]. This new symmetry
can be used to determine the noise distribution of fluctuat-
ing relativistic systems constructed from an information
current. We expect that this symmetry will be important to
guide future research concerning the inclusion of nonlinear
effects from fluctuations. In that case, one must determine
the information current and entropy production beyond
quadratic order and use the modified KMS symmetry of
Sec. IV to determine the corresponding off shell terms,
mirroring the procedure used in Schwinger-Keldysh theory
[97]. Such a construction would also give a nonlinear
probability distribution for fluctuations that could poten-
tially be used in other approaches for solving stochastic
systems [114].
The properties of this new MSR action were examined

through the example of diffusion in the Israel-Stewart
approach. In this example, the dynamics do not follow
exclusively from the conservation law. We note that for
such systems the Schwinger-Keldysh approach can in
principle be applied; see [112]. The approach developed
in this paper, based on the information current and its
modified KMS symmetry, provides a simple framework
that can be applied to any system with an information
current satisfying the conditions of Sec. III.
By implementing the modified KMS condition devel-

oped in Sec. IV, one should be able to enforce the
fluctuation-dissipation theorem at the full nonlinear level
in extensions of our effective action beyond quadratic
order. Moreover, the mapping to Schwinger-Keldysh var-
iables presented in Sec. IV C enables one to compute
general n-point Green’s functions, with the correct
approach to equilibrium, via a similar approach to that
of Sec. III C. The construction of a nonlinear MSR effective
theory will be important for the renormalization of
transport coefficients [60] and for investigating the
renormalization-group flow of the newfound universality
classes discussed in Refs. [108,111].
Furthermore, the nonlinear extension of our effective

theory construction should be relevant to investigate the
dynamics of higher-order fluctuations [43,44,49,115],
which are phenomenologically relevant in the search for
the QCD critical point [40,116–122].

Note added. Recently, a draft of this paper was shared with
A. Jain and P. Kovtun, and a draft of their work [112] was
provided to us. Both works involve the study of effective
actions for Israel-Stewart-like systems. The paper [112]

focused on the corresponding effective field theory formu-
lation through the Schwinger-Keldysh approach, while in
this paper we focused on enforcing off shell causality and
stability constraints with the information current. Despite
these differences in motivation, there are a number of
similarities between our works, and both papers were further
progressed through our mutual discussions. Here, we briefly
summarize the similarities and differences of these papers, as
well as what was developed during our correspondence.
Under the standard Schwinger-Keldysh formulation, the

effective action is constructed using the underlying sym-
metries of the system and the corresponding conserved
quantities. In the Israel-Stewart theory, however, conser-
vation laws are insufficient to describe the dynamics on
their own. In this work, we circumvented this issue by
using the information current which is constructed from
thermodynamic quantities in a fashion that is natural for the
Israel-Stewart theory. On the other hand, in Ref. [112],
extended irreversible thermodynamics is used to add new
degrees of freedom to the first law of thermodynamics that
generates the out-of-equilibrium terms of the Israel-Stewart
theory when the Schwinger-Keldysh action is derived. It
was found during our correspondence that this approach is
not sufficient to find a unique dynamical KMS symmetry,
but rather the same action can be obtained from different
models, leading to distinct realizations of the KMS sym-
metry. These are referred to as “alternate” prescriptions in
[112], one of which recovers the modified KMS symmetry
discussed in this work, in the linear case. By comparing the
actions found in our work to those found in [112], an
additional symmetry of the action, Eq. (48), in the Landau
frame was found that corresponds to the standard KMS
symmetry. While this symmetry may seem preferable for
comparison between these two approaches, it is more
complicated to generalize when working from the infor-
mation current.
In summary, we believe that the equivalence between our

framework and the framework of [112] is a manifestation
of the duality between thermodynamics and statistical
mechanics. In fact, our approach is entirely “macroscopic,”
as it assigns to the macrostates a probability distribution in
terms of their hydrodynamic free energy (through the
formula P ∝ e−Ω=T). On the other hand, the approach of
[112] aims to compute all quantum correlators within an
effective field theory formalism, and it claims a more direct
connection with microphysics. We consider the agreement
of the two methodologies as a strong confirmation of the
self-consistency of both and of fluctuating relativistic
hydrodynamics as a whole.
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APPENDIX: SCHWINGER-KELDYSH APPROACH

For the sake of completeness, in this Appendix, we
briefly review a few points concerning the Schwinger-
Keldysh effective field theory and its formulation on a
closed time path (CTP) [10,11,79].

1. Path integrals in the closed time path

The CTP allows for the study of time-dependent thermal
processes. Let us start from the case of unitary evolution.
Consider, for instance, the following 2-point function in the
Heisenberg representation:

hϕ̂Bðt2Þϕ̂Aðt1Þi ¼ trfUð0;t2Þϕ̂BUðt2;t1Þϕ̂AUðt1;0Þρ̂0g; ðA1Þ

where ρ̂0 is the thermal-equilibrium density operator and
Uðtf;tiÞ is the unitary evolution operator from time ti to time
tf. Regardless of time ordering, this thermal average can be
computed using the following generating functional:

eW½h1;h2� ¼ trfUðT ;0Þ½h1�ρ̂0Uð0;T Þ½h2�g
¼ trfUð0;T Þ½h2�UðT ;0Þ½h1�ρ̂0g; ðA2Þ

where T > t1; t2 is some time far in the future. In the
equation above, we have introduced sources h1 and h2 into
the evolution operatorsUðT ;0Þ andUð0;T Þ, respectively. Note
that Uðtf;tiÞ½hi� ≠ Uðtf−ti;0Þ½hi�, because the sources hi are
time dependent, thus breaking time-translation invariance.
The functional derivative of UðT ;0Þ½h� with respect to the

source hA evaluated at time t (with T ≥ t ≥ 0) is defined as
follows:

δUðT ;0Þ½h�
δhAðtÞ ¼ d

dε






ε¼0

UðT ;0Þ½hAtε�; ðA3Þ

where ðhAtεÞBðτÞ ≔ hBðτÞ þ εδBAδðt − τÞ. If η > 0 is infini-
tesimal, we can write

UðT ;0Þ½hAtε� ¼ UðT ;tþηÞ½hAtε�Uðtþη;t−ηÞ½hAtε�Uðt−η;0Þ½hAtε�:
ðA4Þ

However, since the operators Uðtf;tiÞ½hAtε� are solutions of

d
dtf

Uðtf;tiÞ½hAtε�¼−iĤhAtεðtfÞUðtf;tiÞ½hAtε�; Uðti;tiÞ½hAtε�¼ I;

ðA5Þ

we have that (for η → 0þ)

UðT ;tþηÞ½hAtε� ¼ UðT ;tÞ½h�;

Uðtþη;t−ηÞ½hAtε� ¼ I − i
Z

tþη

t−η
ĤhAtεðτÞdτ þOðε2Þ;

Uðt−η;0Þ½hAtε� ¼ Uðt;0Þ½h�: ðA6Þ

Hence, plugging (A4) and (A6) into (A3), we obtain

δUðT ;0Þ½h�
δhAðtÞ ¼ −iUðT ;tÞ½h�

∂ĤhðtÞ
∂hAðtÞ Uðt;0Þ½h�: ðA7Þ

Assuming that the perturbation to the Hamiltonian has the
form hAϕ̂A, we obtain

δUðT ;0Þ½h1�
δhA1 ðtÞ

¼ 1

i
UðT ;tÞ½h1�ϕ̂AUðt;0Þ½h1�;

δUð0;T Þ½h2�
δhA2 ðtÞ

¼ 1

i
Uð0;tÞ½h2�ϕ̂AUðt;T Þ½h2�: ðA8Þ

The generating functionalW allows for the calculation of
the connected part of Eq. (A1) both for t1 < t2 and t1 > t2,
respectively:

hT þ½δϕ̂Bðt2Þδϕ̂Aðt1Þ�i ¼
1

i2
δ2W½h1; h2�

δhA1 ðt1ÞδhB1 ðt2Þ




h1¼0
h2¼0

; ðA9Þ

hT −½δϕ̂Bðt2Þδϕ̂Aðt1Þ�i ¼
1

i2
δ2W½h1; h2�

δhA2 ðt1ÞδhB2 ðt2Þ




h1¼0
h2¼0

: ðA10Þ

Further, because the operator Uð0;TÞ½h2� is applied after
UðT;0Þ½h1� in the rightmost side of Eq. (A2), one can
compute the same two-point function, regardless of time
ordering by performing variations with respect to hB2 ðt2Þ
and hA1 ðt1Þ.
Equation (A2) admits a path integral representation in

the CTP contour with an action SCTP given by

eW½h1;h2� ¼
Z

Dϕ1Dϕ2eiSCTP½ϕ1;ϕ2;h1;h2�: ðA11Þ
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One can observe that the branch ordered forward in time
corresponds to evolution of ket states in the density operator
with Uh1ðT ; 0Þ. Conversely, the branch ordered backward
in time corresponds to evolution of bra states in the density
operator with Uh2ð0; T Þ.
Finally, it is convenient to introduce symmetric and

antisymmetric combinations of sources and fields in the
two branches of the CTP contour:

ϕr ≡ 1

2
ðϕ1 þ ϕ2Þ; ϕa ≡ ϕ1 − ϕ2;

hr ≡ 1

2
ðh1 þ h2Þ; ha ≡ h1 − h2; ðA12Þ

so that variations with respect to the sources yield the
advanced, retarded, and symmetrized Green’s functions,
respectively:

1

i2
δW½hr;a�

δhrðx1Þδhaðx2Þ
¼ GAðx1; x2Þ;

1

i2
δW½hr;a�

δhaðx1Þδhrðx2Þ
¼ GRðx1; x2Þ; ðA13Þ

1

i2
δW½hr;a�

δhaðx1Þδhaðx2Þ
¼ GSðx1; x2Þ: ðA14Þ

2. Effective field theories in the CTP

In principle, one could integrate out fast modes to
obtain an effective action for slow degrees of freedom,
Seff ½ϕslow

r;a ; hslowr;a �, in the CTP or Schwinger-Keldysh contour:

eW½h1;2� ¼
Z

Dϕslow
r Dϕslow

a

×

�Z
Dϕfast

r Dϕfast
a eiSCTP½ϕ

fast;slow
r;a ; hr;a�

�
ðA15Þ

¼
Z

Dϕslow
r Dϕslow

a eiSeff ½ϕslow
r;a ; hr;a�: ðA16Þ

Henceforth,wewill drop the superscript inϕslow
r;a andhslowr;a , so

as to make the notation simpler. The integration over fast
degrees of freedom will be implicit whenever we work with
Seff ½ϕr;a; hr;a�.
In practice, Seff ½ϕa;r; ha;r� is often constructed in the spirit

of an effective field theory, that is, by considering all the
terms allowed by the relevant symmetries and physical
constraints and then applying a truncation scheme to
obtain a finite number of couplings. Besides constraints
from microscopic theories, effective actions in the CTP
must satisfy three requirements, for consistency. Because ρ̂0
is Hermitian, taking the complex conjugate of Eq. (A2)
exchanges the two branches of the CTP. Hence, −S�eff ½ϕr;
ϕa; hr; ha� ¼ Seff ½ϕr;−ϕa; hr;−ha�. For the path integral to

be well defined, the stability condition ImSeff ½ϕr;ϕa;
hr; ha� ≥ 0 must be satisfied, which can be proved from
Eq. (A2) as a Cauchy–Schwarz inequality. Finally, because
any unitary operation preserves the trace of the density
operator trfUρ̂0U†g¼ 1, one finds Seff ½ϕa ¼ 0;ha ¼ 0� ¼ 0.

3. Time reversal and Kubo-Martin-Schwinger
symmetry

Because of the integration over fast modes, the evolution
of ϕ1 and ϕ2 becomes intertwined, which reflects the fact
that, in general, the evolution of the (reduced) density
operator is no longer unitary (i.e., given by the von
Neumann equation) after a partial trace. As a consequence
of nonunitarity, time reversal symmetry is, in general,
broken by dissipation. However, the symmetry properties
of the microscopic theory under time reversal have impor-
tant consequences for the effective action, which are
discussed below.
Suppose the microscopic theory is invariant under a

discrete Z2 symmetry operation Θ, which includes time
reversal. We assume as well that the system starts at time
t ¼ 0 from the equilibrium density matrix ρ̂0 ¼ eβαP̂

α
=Z,

with βα ¼ uα=T, uα the 4-velocity of the medium, and T its
temperature. UnderΘ, the generating functional transforms
according to

eW½h1;h2� → eWΘ½Θh1;Θh2�

¼ trfUð0;TÞ½Θh2ðxαÞ�ρ̂0UðT;0Þ½Θh1ðxαÞ�g: ðA17Þ

Using the invariance of the microscopic theory under this
transformation, we find how W½h1; h2� changes when Θ is
applied to the sources h1;2:

eW½Θh1;Θh2� ¼ eWΘ½h1;h2� ¼ trfUð0;TÞ½h2ðxαÞ�ρ̂0UðT;0Þ½h1ðxαÞ�g
ðA18Þ

¼ trfUð0;TÞ½h2ðxαÞ�ρ̂0ρ̂−10 UðT;0Þ½h1ðxα − iβαÞ�ρ̂0g
ðA19Þ

¼ trfUðT;0Þ½h1ðxα − iβαÞ�ρ̂0Uð0;TÞ½h2ðxαÞ�g
ðA20Þ

¼ eW½h1ðxαþiβαÞ;h2ðxαÞ�; ðA21Þ

where we use the fact that ρ̂0 ¼ e−iðiβαP̂
αÞ=Z, with P̂μ being

the 4-momentum operator, performs a translation by an
imaginary displacement iβμ.
In Eq. (A21), we observe that the original effective

potential W½h1;2� is not recovered when the microscopic
symmetry Θ is applied to the sources h1;2. The reason for
that can be traced back to the fact that the time reversal
exchanges the initial and final states. However, the
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equilibrium density matrix allows us to recover the original
W½h1;2� by making the following transformation:

h1ðxαÞ→Θh1ðxα þ iβαÞ; h2ðxαÞ→Θh2ðxαÞ: ðA22Þ

Because of its relation to the usual KMS condition, the
transformation above is called a KMS symmetry
[75,76,78,79]. It guarantees that the correct equilibrium
partition function is recovered, and imposes the fluctuation-
dissipation theorem at the nonlinear level.
Just as W½h1;2� corresponds to a trace over the final

density matrix, the effective action Seff ½ϕ1;2; h1;2� contains a
partial trace over fast degrees of freedom. One can enforce
Eq. (A22) at the level of the effective action by imposing
that Seff ½ϕ1;2; h1;2� is invariant under Eq. (A22) supple-
mented by the change

ϕ1ðxαÞ→ Θϕ1ðxα þ iβαÞ; ϕ2ðxαÞ→ Θϕ2ðxαÞ; ðA23Þ

up to boundary terms—that is, up to total derivative terms
in the effective Lagrangian.
If powers of ℏ are restored, the imaginary displacement

promoted by ρ̂0 becomes iℏβμ. In the classical limitℏω ≪ T,
where ω is the typical energy scale, Eqs. (A22) and (A23)
become

hrðxαÞ→ΘhrðxαÞ; haðxαÞ→ΘðhaðxαÞþ iβα∂αhrðxαÞÞ;
ðA24Þ

ϕrðxαÞ→ΘϕrðxαÞ; ϕaðxαÞ→ΘðϕaðxαÞþ iβα∂αϕrðxαÞÞ;
ðA25Þ

wherewehave changed to r anda variables. Equations (A24)
and (A25) define the KMS symmetry in the classical limit
[75,76,78,79].
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