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The Bjorken sum rule and R ratio are constructed to Oða4Þ in the Landau gauge in the three momentum
subtraction schemes of Celmaster and Gonsalves where a ¼ g2=ð16π2Þ. We aim to examine the issue of
convergence for observables in the various schemes as well as to test ideas on whether using the
discrepancy in different scheme values is a viable and more quantum field theoretic alternative to current
ways of estimating the theory error on a measurable.
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I. INTRODUCTION

Latterly the development of new methods to evaluate
massless Feynman graphs has led to the computation of
various important quantities in quantum chromodynamics
(QCD) to very high loop order. Aside from the recent
determination of the five loop QCD β function in the
modified minimal subtraction (MS) scheme [1–5] that
underlies the behavior of the gauge coupling constant g,
the extension of the Bjorken sum rule [6–9] and the R
ratio [10–19] to high loop order has led to a greater precision
for comparing to experiment and improving estimates of
αsðMZÞ for example. Here MZ is the mass of the Z boson
and αs is the strong coupling constant with αs ¼ g2=ð4πÞ.
This is important at present since the improvement in
collider data necessarily requires that quantum field theory
precision has to develop in parallel. Despite the progress in
Feynman integral evaluation in general, the error in mea-
surements is invariably dominated by theory uncertainty.
From a theoretical point of view the perturbative expansions
at high loop order are always advanced first in the MS
scheme. This is primarily due to the fact that one only
requires the poles with respect to the regularizing parameter
to determine the renormalization constants. However, the
scheme has a drawback in that it is not a kinematic one. By
this we mean that provided the subtraction point where the
MS renormalization constants are defined is not problematic,
such as inadvertently and incorrectly introducing infrared
singularities, then it carries no information associated with
the kinematics of the subtraction point. Conceptually in an

experiment one makes a measurement of say the interaction
strength at a specific momentum configuration. The value
recorded there can be tied to the value of the coupling
constant in the underlying quantum field theory. By the same
token one can define, in a parallel sense, the renormalization
of the coupling constant at a particular subtraction point.
Then a kinematic scheme is constructed through a vertex
function by defining the coupling constant renormalization
constant in such a way that after renormalization the vertex
function is precisely the renormalized coupling constant.
In other words the finite part of the vertex function at the
subtraction point momentum configuration is fully absorbed
into the renormalization constant. This differs from the MS
scheme where the finite part is ignored in defining the
coupling constant renormalization constant.
A set of such schemes was introduced in QCD in the

work of Celmaster and Gonsalves [20,21]. In those articles
three momentum subtraction (MOM) schemes were con-
structed, each based on the three 3-point vertices of the
QCD Lagrangian. They were denoted by MOMg, MOMc
and MOMq and based respectively on the triple gluon,
ghost-gluon and quark-gluon vertices. More precisely the
kinematic configuration considered in [20,21] was the fully
symmetric point where the squared momenta of the three
external legs of the respective vertices were equal. In
addition in [12,13] the R ratio was computed in each
MOM scheme to ascertain the respective behaviors.
While the low loop order studied in [12,13] was not high
enough to come to concrete conclusions there has been a
renewed interest in the development and application of
MOM schemes to the behavior of observables. This has
been brought about via the development of the Laporta
algorithm [22]. That technique opens the way to evaluate
two and three loop 3-point vertex functions which can be
achieved once the underlying master Feynman integrals
are known. Consequently the three QCD MOM β func-
tions were calculated first to three loops in [23] and then
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more recently to four loops in [24]. The former was an
exact computation in the sense that the masters were
known analytically. Earlier work on the MOM β functions
at that order had been numerical [25]. There the masters
were determined by applying the Mincer algorithm [26] to
the momentum expansion of each master to high numerical
precision before resumming. The remarkable accuracy
of [25] was apparent once the analytic result became
available. A similar approach was adapted to extract the
three loop symmetric point masters again using Mincer
[24]. Exploiting the PSLQ algorithm [27] allowed for the
translation of the highly precise numerical values of the
masters, derived with Mincer and other methods, to
analytic functions whose arguments were the sixth roots
of unity [24]. It is known that such constants have a
connection to cyclotomic polynomials [28]. One conse-
quence of [23] was that the R ratio was determined in the
MOM schemes to Oða3Þ in [29], where a ¼ g2=ð16π2Þ,
thereby extending [12,13]. This was an instance where the
behavior of an observable could be compared in kinematic
schemes to those in nonkinematic ones such as MS. Indeed
another nonkinematic one was also considered which was
the minimal MOM (mMOM) scheme. It was introduced
in [30] and is based on the ghost-gluon vertex where the
momentum of one of the external ghosts is nullified. In
essence it endeavors to preserve Taylor’s observation that
the ghost-gluon vertex is finite in the Landau gauge [31]
for other covariant linear gauges. The mMOM renormal-
ization group functions have been determined to high loop
order [30,32,33]. For the purely theoretical situation where
quarks are massless as well as overlooking resonances and
so forth the R ratio behavior was different in the various
schemes.
One concern was that with the predominant use of the

MS scheme expressions in error analyses there was
potentially another source of theory discrepancy lurking
in the scheme variations. This is primarily due to the
truncation of a series which invariably misses information.
To address this scheme issue various methods have been
developed and used to significantly improve the truncation
uncertainty. There have been several main approaches and
we draw attention to the more popular ones where the
associated references are not an exhaustive nor definitive
list. Rather they are a rough signpost to recent literature.
For instance a widely used method to estimate higher order
corrections or theoretical uncertainties is to use the conven-
tional scale setting method. In this case the theoretical error
at a particular momentum Q is estimated by the maximum
and minimum values of the measurable in the rangeh
1
2
Q; 2Q

i
at the highest available loop order of a particular

scheme. One drawback of this is that the value at 1
2
Q may

be at a point outside the range of perturbative reliability. By
contrast the method known as the principle of maximal
conformality (PMC) has been developed in various

directions [34] and widely applied to several observables.
It has a more field theoretic origin and has been shown to
reduce the scale and scheme uncertainties significantly. For
a recent comprehensive review see, for instance, [35]. In the
context of this article several current studies are worth
noting. For example, the PMC was applied to kinematic
schemes in [36] where the role of the covariant gauge
parameter α was included in the analysis. While the MS β
function does not depend on that parameter [37], this is not
the case in MOM schemes as the explicit α dependence for
the three MOM β functions is available [20,21,23]. Such
PMC studies have shown interesting properties. For in-
stance, in [38] a PMC study of the V scheme [39,40] shows
that it has advantageous properties compared to the MS
scheme. Other approaches include the principle of minimal
sensitivity [41–43], effective charges [44–46], and the
Brodsky-Lepage-Mackenzie method [47] as well as the
more recent development of the principle of observable
effective matching [48]. A comprehensive review of the
scale setting problem in QCD can be found, for instance,
in [49]. Additionally there are other approaches such as
those that extract information about the higher order terms
in the perturbative expansion of various quantities. A recent
study that employs such a technique can be found in [50]
for example. Rather than attempt to fix the scheme or scale
to mitigate residual theoretical uncertainties, in this study
we attempt to understand and quantify the scheme depend-
ence in high loop calculations to improve our understand-
ing of the parametrization of theory error in these terms, a
technique that is applied in [51,52]. Moreover while our
investigation will be at a more theoretical level it is worth
noting that the interplay of schemes with error analysis has
already been examined in a more phenomenological con-
text. See, for example, [53] for a electroweak sector study
as well as, for instance, [54–56] where the extraction of the
top quark mass was considered in the top mass scheme. A
more recent study [57] employed renormalization group
summed perturbation theory to explore convergence and
scale dependence in the mMOM scheme for the R ratio and
Higgs boson decay.
While such probes of the higher order behavior have

improved our understanding of experimental results an
equally useful way is to determine as far as possible the
highest order calculable in the perturbative expansion in a
variety of schemes to see if the scheme dependence shows
signs of being washed out as the loop order increases. That
is the purpose of this article. We will extend the R ratio
calculation in the MOM schemes of [20,21] to the order
beyond that computed in [29] which will be to the same
order of expansion as the R ratio in the MS and mMOM
schemes. Therefore we will have a reasonable number of
terms in the perturbative series to investigate whether the
scheme dependence diminishes. We will carry this out not
only for the R ratio but also for the flavor nonsinglet
Bjorken sum rule [58,59]. One reason for considering this
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quantity as well is partly to see if a similar behavior of
scheme independence emerges. To quantify this in our
approach in a practical way we will gauge the theory error
from each of the schemes at successive loop orders by
extracting estimates for αsðMZÞ using experimental data-
sets. It should be the case that at higher orders agreement on
these ought to improve. We stress, however, that our study
in the main will purely be in a theory laboratory. By this we
mean quarks will be massless and wewill ignore resonances
that are inevitably present in experimental data. This is
because we want to concentrate and particularly focus on
the scheme dependence issue without the complication or
distraction of other features. For instance including quark
masses in a MOM scheme R ratio evaluation is not
straightforward. This is because to have analytic results
for the three loop R ratio would require two loop symmetric
point 3-point master integrals as a function of the quark
masses in order to renormalize the Lagrangian in a MOM
scheme as a function of mass. Such masters are not currently
known. Once the scheme issues are understood in this
idealized massless setting and the significance of the
kinematic schemes quantified, then quark mass effects
could be included within our framework possibly via a
numerical approach. Moreover modeling and including
resonance effects for instance has not been tackled yet
for MOM schemes as such. It would necessitate the use of a
controlled approximation dependent on an appropriate mass
scale in each case.
The article is organized as follows. We provide an

overview of the perturbative expressions for the Bjorken
sum rule and R ratio at high loop order in various
renormalization schemes in Sec. II. These then form the
foundation for our analysis of the scheme dependence in
Sec. III where for example we examine the convergence
properties of an effective coupling constant derived from
each observable. The not unrelated issue of assigning an
error to such an analysis is discussed in Sec. IV for each of
the schemes we consider and we also provide estimates of
αsðMZÞ as a benchmark test. Finally concluding comments
are provided in Sec. V.

II. MOM SCHEME

Before discussing the construction of the MOM scheme
expressions we recall the background to the two quantities
of interest. First, the Bjorken sum rule originates from
polarized deep inelastic scattering [58,59] where it mea-
sures properties of the distribution of quark spins inside
nucleons. In particular the integral over all momentum
fractions is defined as

Γp−n
1 ðQ2Þ ¼

Z
1

0

½gep1 ðx;Q2Þ − gen1 ðx;Q2Þ�dx; ð2:1Þ

whereQ2 ¼ −q2 and gep1 and gen1 are the structure functions
associated with the spin of the proton (p) and neutron (n),

respectively. If the parton model point of view was valid in
experiments, then Γp−n

1 ðQ2Þ would equate exactly to 1
6
gA

where gA is the nucleon axial charge deduced from neutron
β decay. However due to quantum corrections deriving
from QCD and from a wealth of experimental evidence the
equality does not hold and theoretically Γp−n

1 ðQ2Þ depends
on the strong coupling constant a taking the form

Γp−n
1 ðQ2Þ ¼ gA

6
CBjrða; αÞ þ

X∞
r¼2

μp−n2r ðQ2Þ
ðQ2Þr−1 ; ð2:2Þ

where Bjr denotes the Bjorken sum rule and the second
term represents contributions from twists higher than 2
reflecting nonperturbative contributions. By contrast
CBjrða; αÞ is perturbatively accessible and is determined
from computing the correlation function of the axial vector
current in the operator product expansion. In particular the
expansion ofCBjrða; αÞ begins with unity. Our focus will be
on this contribution and not the nonperturbative piece. We
have included the gauge parameter α in the argument of
CBjrða; αÞ since such dependence will in general be present
in many schemes although it is absent in the MS scheme.
The second quantity of interest is the hadronic R ratio

which is related to the correlation function of the electro-
magnetic current jμ. It is defined by

RðsÞ ¼ 12πImΠð−s − iεÞ ð2:3Þ

with ΠðQ2Þ connected to the correlation function via

ΠμνðQ2Þ ¼ i
Q2

Z
d4xeiqxh0jTjμðxÞjνð0Þj0i; ð2:4Þ

where

Πμνðq2Þ ¼ −½q2ημν − qμqν�Πðq2Þ: ð2:5Þ

For practical purposes we remove a common factor by
defining

RðsÞ ¼ NF

�X
f

Q2
f

�
rðaðsÞÞ; ð2:6Þ

where NF is the dimension of the fundamental representa-
tion of the color group and Qf is the charge of the active
quark flavors at energy s. We note that when the correlation
function contains flavor singlet currents rðaðsÞÞ will
involve terms involving another function of Qf. Our focus
here however will be on the nonsinglet case. Singlet terms
begin at Oða3Þ.
Having introduced the background to the Bjorken sum

rule and R ratio we now discuss the derivation of the Oða4Þ
loop expressions for each in the various kinematic schemes
associated with momentum subtraction. To construct the
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respective MOM scheme results at Oða4Þ we exploit a
property of the renormalization group equation. Roughly
stated if a quantity is available atŁ loops in one scheme, then
it can be deduced at the same loop order in another scheme
from the relation of the coupling constant in the new scheme
to that in the old scheme at ðŁ − 1Þ loops. To achieve this
requires the β function at ðŁ − 1Þ loops in the new scheme.
These have been provided recently for the three MOM
schemes in [24] in the Landau gauge, defined by α ¼ 0,
where QCD was renormalized to three loops in each of the
three MOM schemes extending the one loop and two loop
computations of [20,21,23]. Therefore we have used the

coupling constant maps recorded in [20,21,23,24] and
applied them to the two objects of interest in the Landau
gauge. While the two loop maps have been constructed for
arbitrary α the three loop MOM β function computation
was only carried out solely for the Landau gauge [24]. This
is sufficient for our analysis. As the full expressions are
long, in order to illustrate the structure of what emerges we
record the MOMq expressions both for the Bjorken sum
rule and the R ratio in SUð3Þ. An important tool employed
in this respect in our calculations throughout was the
symbolic manipulation language Form [60,61]. In the case
of the Bjorken sum rule we have

CMOMq
Bjr ða; 0Þj

SUð3Þ ¼ 1 − 4aþ
�
72Nf − 510ψ ð1Þ

�
1

3

�
þ 340π2 þ 1269

�
a2

81

þ
�
1258848ψ ð1Þ

�
1

3

�
Nf − 233280N2

f − 11664ψ ð3Þ
�
1

3

�
Nf þ 31104π4Nf

− 839232π2Nf þ 3094848ζ3Nf − 5598720ζ5Nf þ 6114528Nf

− 962190ψ ð1Þ
�
1

3

�
2

þ 1282920ψ ð1Þ
�
1

3

�
π2 − 8916966ψ ð1Þ

�
1

3

�
− 13635ψ ð3Þ

�
1

3

�

− 391280π4 þ 5944644π2 − 21121074ζ3 þ 92378880ζ5 − 52764048

�
a3

52488

þ
�
20623196160H5Nf þ 187812172800H5 þ 2267136H6 þ 9405849600N3

f

− 2821754880ψ ð1Þ
�
1

3

�
2

N2
f þ 3762339840ψ ð1Þ

�
1

3

�
π2N2

f − 15049359360ψ ð1Þ
�
1

3

�
ζ3N2

f

− 169462056960ψ ð1Þ
�
1

3

�
N2

f þ 1516838400ψ ð3Þ
�
1

3

�
N2

f − 5299015680π4N2
f

þ 10032906240π2ζ3N2
f þ 112974704640π2N2

f − 135444234240ζ23N
2
f þ 750691307520ζ3N2

f

− 790091366400ζ5N2
f − 366253332480N2

f þ 40828354560ψ ð1Þ
�
1

3

�
3

Nf

− 81656709120ψ ð1Þ
�
1

3

�
2

π2Nf þ 155496983040ψ ð1Þ
�
1

3

�
2

Nf

− 4996857600ψ ð1Þ
�
1

3

�
ψ ð3Þ

�
1

3

�
Nf þ 67762759680ψ ð1Þ

�
1

3

�
π4Nf − 207329310720ψ ð1Þ

�
1

3

�
π2Nf

þ 1134305399808ψ ð1Þ
�
1

3

�
ζ3Nf − 1598994432000ψ ð1Þ

�
1

3

�
ζ5Nf þ 6622411146624ψ ð1Þ

�
1

3

�
Nf

þ 3331238400ψ ð3Þ
�
1

3

�
π2Nf − 147525507360ψ ð3Þ

�
1

3

�
Nf þ 452620224ψ ð5Þ

�
1

3

�
Nf

− 41901705216π6Nf þ 462511123200π4Nf − 756203599872π2ζ3Nf þ 1065996288000π2ζ5Nf

− 4414940764416π2Nf þ 4469659729920ζ23Nf − 12921382559232ζ3Nf þ 7683712081920ζ5Nf

þ 8295959347200ζ7Nf − 318923619840Nf − 453980630880ψ ð1Þ
�
1

3

�
3
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þ907961261760ψ ð1Þ
�
1

3

�
2

π2−2555163443700ψ ð1Þ
�
1

3

�
2

−11132857680ψ ð1Þ
�
1

3

�
ψ ð3Þ

�
1

3

�

−575619887360ψ ð1Þ
�
1

3

�
π4þ3406884591600ψ ð1Þ

�
1

3

�
π2þ1202060938176ψ ð1Þ

�
1

3

�
ζ3

þ26383408128000ψ ð1Þ
�
1

3

�
ζ5−41716811068632ψ ð1Þ

�
1

3

�
þ7421905120ψ ð3Þ

�
1

3

�
π2

þ1041696774405ψ ð3Þ
�
1

3

�
−2561413512ψ ð5Þ

�
1

3

�
þ233115257088π6−3913486262280π4

−801373958784π2ζ3−17588938752000π2ζ5þ27811207379088π2−36874692771840ζ23

þ97876178446536ζ3−48763797737760ζ5−136883329228800ζ7þ44612309619360

�
a4

3174474240
þOða5Þ; ð2:7Þ

where the variable a here is in the MOMq scheme. We use
the convention that when an object is labeled by a scheme
then the variables of the expression are in that scheme. We
follow the notation of [24] which results in a variety of
numbers such as the Riemann zeta series ζn and the odd
derivatives of the Euler ψ function, ψðzÞ, up to the fifth
order. The first- and third-order derivatives appeared first
in the one loop and two loop expressions, respectively.
However comparing the form of the two loop term of the
coupling constant mapping for the MOM schemes with
the same terms given in [24] it is clear that the latter
expressions are much simpler. This was highlighted in [24]
and is due to a relation between harmonic polylogarithms
that were present in the two loop symmetric point master
integrals computed directly in [62–66]. In [24,67] an
indirect method was chosen to compute the masters.
This involved using the Mincer algorithm [26] to evaluate
the symmetric point masters by using a Taylor series
expansion in the limit as one of the external momenta
approaches zero [25]. The resulting expression was com-
puted to very high numerical accuracy and then recon-
structed analytically using the PSLQ algorithm [27]. At
two loops the basis choice used for the PSLQ fit included
rationals, π, ζ2, ζ3, ζ4, ζ5, ψ ð1Þð1

3
Þ, and ψ ð3Þð1

3
Þ and

combinations. The absence of harmonic polylogarithms
that appeared in previous work [23] is because it is
now known that they were not independent of the basis
choice [24]. One specific relation was recorded in [68]
which we recall is

s2

�
π

6

�
¼ 1

11664

�
324

ffiffiffi
3

p
lnð3Þπ−27

ffiffiffi
3

p
ln2ð3Þπ

þ29
ffiffiffi
3

p
π3−1944ψ ð1Þ

�
1

3

�
þ23328s2

�
π

2

�

þ19440s3

�
π

6

�
−15552s3

�
π

2

�
þ1296π2

�
ð2:8Þ

and holds numerically where

snðzÞ ¼
1ffiffiffi
3

p Im

�
Lin

�
eizffiffiffi
3

p
��

ð2:9Þ

and LinðzÞ is the polylogarithm function. The linear
combination of s2ðπ2Þ, s2ðπ6Þ, s3ðπ2Þ and s3ðπ6Þ that appear
in the two loop masters of [62–66] together with the terms
with an odd power of π is the same as that which occurs
in (2.8). At Oða4Þ the quantities H5 and H6 appear and the
lengthy definitions for them are given explicitly in terms
of both generalized and harmonic polylogarithms in the
info.pdf file accessible from the Supplemental Material
associated with [24]. The three loop master integrals that
underpin [24] are recorded in [67]. We note that electronic
versions of (2.7) as well as similar expressions in the other
Landau gauge MOM schemes are available for an arbitrary
color group in the data file of the associated arXiv version of
this article. It also contains the parallel data for the R ratio.
While the expressions for the other two kinematic

schemes have a similar structure what is perhaps more
instructive is to record the numerical expressions for all the

schemes we will consider here. For instance for the SUð3Þ group we have

CMS
Bjr ða;0ÞjSUð3Þ ¼1−4.000000aþ½5.333333Nf−73.333333�a2þ½−11.358025N2

fþ486.866536Nf−2652.1544368�a3

þ½26.556927N3
f−1970.551732N2

fþ31588.209324Nf−122738.570412�a4þOða5Þ;
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CMOMg
Bjr ða;0Þj

SUð3Þ ¼1−4.000000aþ½−8.333892Nfþ32.636622�a2þ½−37.559047N2
fþ343.123637Nf−539.554265�a3

þ½−190.378849N3
fþ2382.689181N2

f−8789.557343Nfþ3685.269188�a4þOða5Þ;
CMOMq
Bjr ða;0Þj

SUð3Þ ¼1−4.000000aþ½0.888889Nf−6.470235�a2þ½−4.444444N2
fþ110.326436Nf−547.208073�a3

þ½2.962963N3
f−260.408043N2

fþ4464.055445Nf−19390.815675�a4þOða5Þ;
CMOMc
Bjr ða;0Þj

SUð3Þ ¼1−4.000000aþ½0.888889Nfþ0.8597681�a2þ½−4.444444N2
fþ113.578619Nf−116.288597�a3

þ½2.962963N3
f−195.703375N2

fþ2213.334884Nf−10426.816777�a4þOða5Þ;
CmMOM
Bjr ða;0Þj

SUð3Þ ¼1−4.000000aþ½0.888889Nf−17.000000�a2þ½−4.444444N2
fþ134.233344Nf−271.420979�a3

þ½2.962963N3
f−278.134393N2

fþ4556.133051Nf−17123.525160�a4þOða5Þ ð2:10Þ

in the Landau gauge where the Oða4Þ MS result was
provided in [9] and that for the mMOM scheme was given
in [69]. Clearly the OðaÞ term is scheme independent. The
higher order terms show no commonality. For instance
the sign of the leading Nf term at each order varies from
scheme to scheme. Moreover the Oða4Þ Nf-independent
term ranges over 2 orders of magnitude from the MS
scheme to the MOMg one. This of course does not mean

that CMS
Bjr ða; 0Þ is not as accurate as the expression in the

latter scheme. The reason for this is that aside from the fact
that the expansion variables are different in each scheme,
the coupling constant is itself a function that depends on the
underlying momentum scale. Explicitly including the
momentum dependence of the running coupling in each
scheme balances out the apparent disparity in the coef-
ficients we mentioned.
Having focused on the derivation of the Bjorken sum

rule in kinematic schemes we have repeated the exercise for
the R ratio. So for instance the MOMq scheme version is

rMOMqðaÞjSUð3Þ ¼ 1þ 4aþ
�
864ζ3Nf − 828Nf þ 510ψ ð1Þ

�
1

3

�
− 340π2 − 14256ζ3 þ 12501

�
a2

81

þ
�
½855360 − 1866240ζ3�η − 31104π2N2

f − 1119744ζ3N2
f þ 1679616N2

f þ 1762560ψ ð1Þ
�
1

3

�
ζ3Nf

− 2801088ψ ð1Þ
�
1

3

�
Nf þ 11664ψ ð3Þ

�
1

3

�
Nf − 31104π4Nf − 1175040π2ζ3Nf þ 2893824π2Nf

þ 53047872ζ3Nf − 9331200ζ5Nf − 59723568Nf þ 962190ψ ð1Þ
�
1

3

�
2

− 1282920ψ ð1Þ
�
1

3

�
π2

− 29082240ψ ð1Þ
�
1

3

�
ζ3 þ 37007766ψ ð1Þ

�
1

3

�
þ 13635ψ ð3Þ

�
1

3

�
þ 391280π4 þ 19388160π2ζ3

− 33139908π2 − 510524046ζ3 þ 153964800ζ5 þ 455543352

�
a3

52488

þ
��

225740390400ζ23Nf þ 357422284800ζ3Nf − 564350976000ζ5Nf − 294716620800Nf

− 532998144000ψ ð1Þ
�
1

3

�
ζ3 þ 244290816000ψ ð1Þ

�
1

3

�
þ 355332096000π2ζ3 − 162860544000π2

− 3724716441600ζ23 − 7976160460800ζ3 þ 10628610048000ζ5 þ 4722912230400

�
η

− 20623196160H5Nf − 187812172800H5 − 2267136H6 − 15049359360π2ζ3N3
f þ 14422302720π2N3

f

þ 158018273280ζ3N3
f þ 225740390400ζ5N3

f − 378115153920N3
f þ 2821754880ψ ð1Þ

�
1

3

�
2

N2
f
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− 12645642240ψ ð1Þ
�
1

3

�
π2N2

f − 663425925120ψ ð1Þ
�
1

3

�
ζ3N2

f þ 896377466880ψ ð1Þ
�
1

3

�
N2

f

þ 3762339840ψ ð3Þ
�
1

3

�
ζ3N2

f − 4808885760ψ ð3Þ
�
1

3

�
N2

f − 10032906240π4ζ3N2
f þ 20000010240π4N2

f

þ 1187227238400π2ζ3N2
f − 1380621957120π2N2

f þ 902961561600ζ23N
2
f − 12819963985920ζ3N2

f

− 9706836787200ζ5N2
f þ 22470692267520N2

f − 40828354560ψ ð1Þ
�
1

3

�
3

Nf þ 81656709120ψ ð1Þ
�
1

3

�
2

π2Nf

þ 394261862400ψ ð1Þ
�
1

3

�
2

ζ3Nf − 500476112640ψ ð1Þ
�
1

3

�
2

Nf þ 4996857600ψ ð1Þ
�
1

3

�
ψ ð3Þ

�
1

3

�
Nf

− 67762759680ψ ð1Þ
�
1

3

�
π4Nf − 525682483200ψ ð1Þ

�
1

3

�
π2ζ3Nf þ 960450462720ψ ð1Þ

�
1

3

�
π2Nf

þ 24529502979072ψ ð1Þ
�
1

3

�
ζ3Nf − 2664990720000ψ ð1Þ

�
1

3

�
ζ5Nf − 30896934171264ψ ð1Þ

�
1

3

�
Nf

− 3331238400ψ ð3Þ
�
1

3

�
π2Nf − 57680501760ψ ð3Þ

�
1

3

�
ζ3Nf þ 203639456160ψ ð3Þ

�
1

3

�
Nf

− 452620224ψ ð5Þ
�
1

3

�
Nf þ 41901705216π6Nf þ 329042165760π4ζ3Nf − 960905030400π4Nf

− 28644566243328π2ζ3Nf þ 1776660480000π2ζ5Nf þ 33903941250816π2Nf − 46905874606080ζ23Nf

þ 280279032268032ζ3Nf þ 124706756321280ζ5Nf þ 7505867980800ζ7Nf − 389487227794560Nf

þ 453980630880ψ ð1Þ
�
1

3

�
3

− 907961261760ψ ð1Þ
�
1

3

�
2

π2 − 6505320729600ψ ð1Þ
�
1

3

�
2

ζ3

þ 8838711875700ψ ð1Þ
�
1

3

�
2

þ 11132857680ψ ð1Þ
�
1

3

�
ψ ð3Þ

�
1

3

�
þ 575619887360ψ ð1Þ

�
1

3

�
π4

þ 8673760972800ψ ð1Þ
�
1

3

�
π2ζ3 − 14203428246000ψ ð1Þ

�
1

3

�
π2 − 214276142356416ψ ð1Þ

�
1

3

�
ζ3

þ 43972346880000ψ ð1Þ
�
1

3

�
ζ5 þ 215899216511832ψ ð1Þ

�
1

3

�
− 7421905120ψ ð3Þ

�
1

3

�
π2 − 72568742400ψ ð3Þ

�
1

3

�
ζ3

− 971601966405ψ ð3Þ
�
1

3

�
þ 2561413512ψ ð5Þ

�
1

3

�
− 233115257088π6 − 2697737011200π4ζ3þ 8131574351880π4

þ 210454364985984π2ζ3 − 29314897920000π2ζ5 − 215086534781328π2þ 528115645854720ζ23

− 1807448276772936ζ3 − 436869622959840ζ5 − 123846821683200ζ7 þ 2018890127348640

�
a4

3174474240
þOða5Þ

ð2:11Þ

for SUð3Þ, also in the Landau gauge, which includes a parameter η. It is defined to be

η ¼
P

fQ
2
f

½PfQf�2
ð2:12Þ

and is associated with Oða3Þ graphs that contribute to the flavor singlet value of the R ratio. Similar to the Bjorken case we
will set η ¼ 0 throughout and concentrate on the nonsinglet scenario. Moreover, we have checked that all the MOM scheme
Oða3Þ R ratio expressions given in [29] agree with the analytic Oða3Þ expressions derived using the coupling constant
mappings provided in [24] after taking (2.8) into account. For completeness we record theOða4Þ numerical expressions for
the R ratio in each scheme. We have
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rMSðaÞjSUð3Þ ¼ 1þ 4.000000aþ ½−1.844726Nf þ 31.771318�a2 þ ½−26.443505η − 0.331415N2
f − 76.808579Nf

− 424.763877�a3 þ ½49.056846ηNf − 1521.214892ηþ 5.508123N3
f − 204.143191N2

f

þ 4806.339848Nf − 40091.676394�a4 þOða5Þ;
rMOMgðaÞjSUð3Þ ¼ 1þ 4.000000aþ ½11.822499Nf − 74.198637�a2 þ ½−26.443505ηþ 49.709397N2

f

− 401.928163Nf − 335.201612�a3 þ ½−222.000165ηNf þ 580.4478702ηþ 252.625523N3
f

− 2960.042900N2
f þ 7418.803963Nf þ 12015.778615�a4 þOða5Þ;

rMOMqðaÞjSUð3Þ ¼ 1þ 4.000000aþ ½2.599718Nf − 35.091780�a2 þ ½−26.443505ηþ 0.507465N2
f þ 90.741952Nf

− 1140.227696�a3 þ ½−39.088169ηNf − 195.143901ηþ 3.058056N3
f − 183.223433N2

f

þ 3501.125982Nf − 7958.138070�a4 þOða5Þ;
rMOMcðaÞjSUð3Þ ¼ 1þ 4.000000aþ ½2.599718Nf − 42.421783�a2 þ ½−26.443505ηþ 0.507465N2

f þ 74.704019Nf

− 1418.822322�a3 þ ½−39.088169ηNf − 49.770672ηþ 3.058056N3
f − 237.639896N2

f

þ 4083.180193Nf þ 677.129492�a4 þOða5Þ;
rmMOMðaÞjSUð3Þ ¼ 1þ 4.000000aþ ½2.599718Nf − 24.562015�a2 þ ½−26.443505ηþ 0.507465N2

f þ 85.202150Nf

− 1634.833914�a3 þ ½−39.088169ηNf − 403.976819ηþ 3.058056N3
f − 230.126428N2

f

þ 4880.206237Nf − 17400.630113�a4 þOða5Þ: ð2:13Þ

Similar comments to the different scheme expressions of
the Bjorken case apply to the R ratio in that there is a large
disparity in the numerical values. For instance not only
does the size of the coefficients of the Oða4ÞNf ¼ 0 terms
have a wide spread but they can have either sign.

III. ANALYSIS

Our analysis will involve the Bjorken sum rule and the R
ratio evaluated in the mMOM, MS and the three MOM
schemes of [20,21], that we will collectively denote by
MOMi, to provide a comparison of measurable perturbative
series considered in different renormalization schemes.
As noted the numerical values in (2.10) and (2.13) cannot
be directly compared as they are written in terms of the
coupling constants for different schemes. Therefore we

must have a standard which we use to relate the coupling
constants to one another. For example, one could choose to
insert the coupling constant conversion functions without
truncation to get the series in one scheme in terms of the
coupling constant of another. However, as this only makes a
connection with the value of an abstract formal quantity,
we will instead choose to compare the series at set energy
levels by substituting the explicit form of the coupling
constant in terms of the unphysical renormalization
momentum.
The expression for the coupling constant at a particular

energy level can be found by solving the renormalization
group equations perturbatively. Denoting the expression for
the coupling constant to the Łth loop level these expres-
sions are given by

aS1 ðQ;ΛSÞ ¼ 1

bS0L
S ;

aS2 ðQ;ΛSÞ ¼ 1

bS0L
S

�
1 −

bS1 lnðLSÞ
bS0

2LS

�
;

aS3 ðQ;ΛSÞ ¼ 1

bS0L
S

�
1 −

bS1 lnðLSÞ
bS0

2LS þ ½bS1 2½ln2ðLSÞ − lnðLSÞ − 1� þ bS0b
S
2 �

1

bS0
4LS2

�
;

aS4 ðQ;ΛSÞ ¼ 1

bS0L
S

�
1 −

bS1 lnðLSÞ
bS0

2LS þ ½bS1 2½ln2ðLSÞ − lnðLSÞ − 1� þ bS0b
S
2 �

1

bS0
4LS2

−
�
bS1

3

�
ln3ðLSÞ − 5

2
ln2ðLSÞ − 2 lnðLSÞ þ 1

2

�
þ 3bS0b

S
1b

S
2 lnðLSÞ − 1

2
bS0

2bS3

�
1

bS0
6LS3

�
;
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aS5 ðQ;ΛSÞ ¼ 1

bS0L
S

�
1 −

bS1 lnðLSÞ
bS0

2LS þ ½bS1 2½ln2ðLSÞ − lnðLSÞ − 1� þ bS0b
S
2 �

1

bS0
4LS2

−
�
bS1

3

�
ln3ðLSÞ − 5

2
ln2ðLSÞ − 2 lnðLSÞ þ 1

2

�
þ 3bS0b

S
1b

S
2 lnðLSÞ − 1

2
bS0

2bS3

�
1

bS0
6LS3

þ ½18bS0bS2bS1 2½2ln2ðLSÞ − lnðLSÞ − 1� þ 2bS0
2½5bS2 2 þ bS0b

S
4 � þ bS1

4½6ln4ðLSÞ − 26ln3ðLSÞ

− 9ln2ðLSÞ þ 24 lnðLSÞ þ 7� − bS0
2bS3b

S
1 ½12 lnðLSÞ þ 1�� 1

6bS0
6LS4

�
; ð3:1Þ

where S indicates the scheme, LS ¼ ln
�

Q2

ΛS2

�
, the subscript

on aSŁðQ;ΛSÞ denotes the loop order that the running
coupling constant is approximated to and bSn are the
coefficients of theOðanþ2Þ term in the β function in scheme
S [70]. Within each of these equations the momentum
always appears in the combination x ¼ jQj=ΛS . Therefore
we can consider this quantity as the running momentum in
units of theΛ parameter,ΛS , of scheme S. This parameter is
introduced as a constant of integration when solving for the
coupling constant and indicates the position of the Landau
pole where the leading order term becomes divergent.
Its value is dependent on the number of active fermions
which will be left implicit unless the value of Nf we are
considering is unclear. The Λ parameter is also scheme
dependent. However its value in one scheme can be found in
terms of that of another using the Λ ratio. It is given exactly
from a simple one loop calculation. See, for instance [21],

ΛS1

ΛS2
¼ exp

�
cS1;S2

1

2bS1

0

�
; ð3:2Þ

where cS1;S2

1 is the coefficient of the leading order coupling
constant conversion function between the two schemes S1

and S2. Since the leading order β function coefficient is
scheme independent, cS1;S2

1 is the only scheme-dependent
quantity in the equation. This relation allows one to use the
Λ parameter in a single scheme as the only input parameter
to the theory for any scheme required to make numerical
calculations.

A. Partial sum analysis

In [21] a table was constructed with values of the R ratio
at OðaÞ and Oða2Þ level for a variety of different energies
and number of active quarks in both the MS and MOMq
schemes. The momenta considered were Q ¼ 3 GeV with
Nf ¼ 3, Q ¼ 5 GeV with Nf ¼ 4, Q ¼ 20 GeV with

Nf ¼ 5 and Q ¼ 40 GeV with Nf ¼ 6. Choices of ΛMS ¼
500 MeV and ΛMOMq ¼ 850 MeV were made then for the
analysis that produced Table III of [13] with these numbers
chosen to agree with values regarded as reliable at the

time of [13] but have been superseded by subsequent
measurements.
An extension of this table was produced in Tables II

and III of [29] where the values of the partial sum

aSpqðQ;ΛSÞ ¼ r1
Xp
n¼1

aSRR;nðsÞðaSq ðQ;ΛSÞÞn ð3:3Þ

were calculated where s is the center of mass energy and
RR denotes the R ratio. The three MOMi schemes were
considered up to p, q ¼ 3 while mMOM and MS could be

calculated to p, q ¼ 4. The value ΛMS ¼ 500 MeV was
again taken with the Λ parameter in the other schemes then
being deduced from the exact Λ ratio formalism. Only the
Q ¼ 20 GeV and Q ¼ 40 GeV values were produced
because the lower energies did not fall within the pertur-
bative range considered in [29]. Those tables allowed for
the quantification of both the difference in the series in each
scheme as well as the convergence of the value of the series
in single scheme as the loop order is increased.
With the calculation of the R ratio up to Oða4Þ in the

momentum subtraction schemes [24] we have revisited
Table III of [13] and extended it to include all available
information. The outcome is presented in Table I for Q ¼
20 GeV and in Table II for Q ¼ 40 GeV. The five loop
β function of both the MS scheme [1–3] and mMOM
scheme [32] have allowed for the inclusion of the values in
these schemes at the five loop level in the coupling
constant. We note that while the choices of the values

of ΛMS and Nf at a particular energy level are not accurate
to current phenomenological measurements we have
decided to continue with these data as an extension of
past results and to have a common ground for comparison.
The tables are filled by substituting the energy levels and

values of the Λ parameter into the partial sum aSpq employ-
ing the explicit coupling constant expansion aSq ðQ;ΛSÞ.
Using the Λ ratio and a choice of ΛMS we can then compare
the values calculated at a set loop order but in different
schemes (along a row) or consider the convergence of a
single value (down a column). In addition to columns for
each scheme, we have included a column that acts as an
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average of the series. We will use the arithmetic mean for
this average

āpqðQÞ ¼ 1

jSj
X
si ∈ S

asipqðQ;ΛsiÞ; ð3:4Þ

where S is the set of schemes and jSj is the length of
the set. For most loop orders considered the set is S ¼
fMS;MOMg;MOMc;MOMq;mMOMg. However with
the inclusion of the five loop coupling constant in both
MS and mMOM schemes we take S ¼ fMS;mMOMg for
q ¼ 5. Averages found for jSj < 5 will be bracketed to

indicate that a reduced set of schemes are considered. The
unbiased standard deviation can then be used as the error
and is defined as

Δapq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jSj − 1

X
si ∈ S

½asipqðQ;ΛsiÞ − āpqðQÞ�2
s

: ð3:5Þ

In doing this we have implicitly assumed that all schemes
are independent and are distributed about the “true” value
of the series. This assumption is not strictly accurate as will
be discussed in Sec. IV but for the purposes of providing a
rough estimate of scheme dependence we will ignore this

TABLE I. Values of aSpqðQ;ΛSÞ for Nf ¼ 5 with ΛMS ¼ 500 MeV at Q ¼ 20 GeV. Average taken is arithmetic
mean for values of each scheme with the standard deviation as the error; the bracketed averages are averages
produced from an incomplete set of schemes.

p q MS MOMg MOMc MOMq mMOM Average

1 1 0.0707 0.0848 0.0918 0.0881 0.0833 0.0837� 0.0080
1 2 0.0581 0.0683 0.0733 0.0707 0.0672 0.0675� 0.0058
1 3 0.0592 0.0700 0.0753 0.0681 0.0696 0.0684� 0.0058
1 4 0.0593 0.0701 0.0764 0.0715 0.0698 0.0694� 0.0062
1 5 0.0592 � � � � � � � � � 0.0693 (0.0642� 0.0071)

2 2 0.0629 0.0639 0.0634 0.0638 0.0640 0.0636� 0.0005
2 3 0.0641 0.0653 0.0649 0.0617 0.0661 0.0644� 0.0017
2 4 0.0643 0.0655 0.0657 0.0645 0.0663 0.0652� 0.0008
2 5 0.0642 � � � � � � � � � 0.0658 (0.0650� 0.0011)

3 3 0.0615 0.0594 0.0580 0.0584 0.0598 0.0594� 0.0014
3 4 0.0616 0.0596 0.0585 0.0606 0.0599 0.0600� 0.0012
3 5 0.0615 � � � � � � � � � 0.0596 (0.0606� 0.0014)

4 4 0.0606 0.0602 0.0605 0.0612 0.0601 0.0605� 0.0004
4 5 0.0605 � � � � � � � � � 0.0597 (0.0601� 0.0006)

TABLE II. Values of aSpqðQ;ΛSÞ for Nf ¼ 6 with ΛMS ¼ 500 MeV at Q ¼ 40 GeV. Average taken is arithmetic
mean for values of each scheme with the standard deviation as the error; the bracketed averages are averages
produced from an incomplete set of schemes.

p q MS MOMg MOMc MOMq mMOM Average

1 1 0.0652 0.0723 0.0809 0.0780 0.0742 0.0741� 0.0060
1 2 0.0566 0.0622 0.0690 0.0667 0.0637 0.0637� 0.0047
1 3 0.0569 0.0617 0.0688 0.0634 0.0641 0.0630� 0.0043
1 4 0.0571 0.0619 0.0698 0.0656 0.0645 0.0638� 0.0047
1 5 0.0570 � � � � � � � � � 0.0644 (0.0607� 0.0052)

2 2 0.0608 0.0614 0.0610 0.0613 0.0615 0.0612� 0.0003
2 3 0.0611 0.0610 0.0609 0.0585 0.0618 0.0607� 0.0012
2 4 0.0613 0.0611 0.0616 0.0604 0.0621 0.0613� 0.0006
2 5 0.0613 � � � � � � � � � 0.0621 (0.0617� 0.0006)

3 3 0.0585 0.0574 0.0560 0.0562 0.0572 0.0571� 0.0010
3 4 0.0587 0.0575 0.0566 0.0578 0.0575 0.0576� 0.0008
3 5 0.0586 � � � � � � � � � 0.0575 (0.0581� 0.0008)

4 4 0.0580 0.0578 0.0582 0.0584 0.0578 0.0580� 0.0002
4 5 0.0579 � � � � � � � � � 0.0577 (0.0578� 0.0001)
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caveat. An example of a scheme that is not independent in
the context of (3.5) is the modified regularization invariant
(RI0) scheme of [71,72]. While the renormalization of the
underlying fields differ from that of the MS scheme the
renormalization of the coupling constant is carried out in
an MS fashion. This in turn means that the RI0 scheme β
function is formally the same as the MS one which implies
that the expressions for the R ratio and Bjorken sum rule
are also formally the same as their MS counterparts.
This follows from the all-orders relation of the coupling

constants to each other which is aMS ¼ aRI
0
. Therefore

including the RI0 scheme in the set S would unnecessarily
introduce a bias in determining Δapq.
Comparing the values in different schemes at a set loop

order elucidates the residual variation in the evaluation of
the series due to the truncation of the perturbative series at
that order. First we consider the values in Table I for the
leading order series which is p ¼ 1. These are the coupling
constants in each scheme at a particular energy multiplied
by a constant characteristic of the series. While the bare
coupling constant in the Lagrangian is renormalization
group invariant, the running coupling depends on the
choice of renormalization scheme in such a way that all
measurables do not when calculated to all orders. This
means we do not expect to see a great reduction in scheme
dependence by simply increasing the order of the coupling
constant itself without including further terms in the series.
This is shown by considering the range of values at q ¼ 1
of (0.0707, 0.0918) which is commensurate with the range
for q ¼ 4 of (0.0593, 0.0764). Note the form of p ¼ q ¼ 1
is the same in all schemes with the only differences being
introduced as a result of the various Λ parameters.
The range of values for p ¼ 2 significantly decreases

with an absolute range of 0.0011 at q ¼ 2, 0.0044 at q ¼ 3
and 0.0020 at q ¼ 1. This is in contrast to the increase at
p ¼ 3 with ranges of 0.0035 for q ¼ 3 and 0.0031 for
q ¼ 4. Since the apparent reduced scheme dependence at
the two loop level is not continued when the three loop
coupling constant is included this suggests that it is likely
not to be true scheme independence. The reduced range
of 0.0011 at p ¼ q ¼ 4 may be due to the series settling
down toward its true value. However the large amount of
reduction in scheme dependence may again be anomalous
as it was for the two loop case. Considering the full scheme
dependence at p ¼ q ¼ 5 would allow for the discernment
of these two cases. Next we balance this behavior in
relation to the standard deviation quoted as the error on the
average for each loop order. Again we see a large scheme
difference at p ¼ 1 for all q since these values represent
only the scheme-dependent coupling constant difference
reduced severely for p ¼ q ¼ 2 and oscillates at larger
values for p ¼ 2, q ¼ 3 and q ¼ 4. The error value is
similarly increased at p ¼ 3 with over double the error
shown at two loops. Finally at p ¼ q ¼ 4 the error is

reduced below all the other errors given. The averages for
the five loop mMOM and MS coupling constant values at
each order in the series are of similar size but see a slight
increase in error over the four loop values at each order in
the series. At other values for 1 < p < q we observe that
the quoted error behaves qualitatively like the average for
p ¼ q, increasing for q ¼ 3 and decreasing at q ¼ 4.
Therefore provided the assumed scheme distribution is
accurate this suggests a small increase in apparent scheme
dependence in the R ratio series at p ¼ q ¼ 5 in the series
we considered. However, this could not be concretely
verified without the full calculation.
We will now discuss the convergence of the values in

each scheme as loop order is increased by comparing
values down a column of the table and first consider the
convergence for p ¼ q. In general the p ¼ 1 and p ¼ 2

values in all schemes are larger than for the p ¼ 3 and
p ¼ 4. As is expected for a perturbative expansion as the
loop order is increased the difference between asNþ1Nþ1 and
aSNN decreases. For example, for the MS scheme the
differences are 0.0068, 0.0024 and 0.0009. We see that
the different schemes do not all converge in the same way.
While the MS scheme decreases at each order, converging
from above, the MOMi and mMOM schemes decrease
from two loops to three loops and then increase at the next
order, indicating that the convergence can qualitatively
differ between schemes. One may suggest that because the
MS scheme has the smallest leading order coupling
constant then we expect this scheme to converge quickest
toward the true value of the series. While the loop order
change in the MS scheme is often smaller than the others,
we see in the case of Table I that in going from p ¼ 3 to
p ¼ 4 the data for the mMOM scheme change by a smaller
amount. Equally in Table II the MOMg scheme results
changed by a smaller amount between the same orders.
We may ask how accurate our averages are at guessing

the as yet unknown next order. In Table I the average values
converge with the majority oscillating toward the p ¼ 4
value. It can be seen that at p ¼ 2 the apparent scheme
independence means that the two loop average gives a very
small error of 0.005 on 0.0636. However the four loop
value is 0.0004 on 0.0605. So the average value quoted at
two loops is many standard deviations from the central
value at four loops. On the other hand the value for p ¼
q ¼ 3 is 0.0594� 0.0014 meaning the p ¼ q ¼ 4 value
easily lies within the range.
Next we can examine how much the partial higher order

information provided by p < q can give about the con-
vergence of the values. There are cases where the values
appear to converge toward the higher loop values; however
this is not true in general. Expanding aSNN in terms of the
leading order coupling constant and treating the Λ ratio
scale change in the perturbative scale equation, one finds
that the series is identical in all schemes to order aN1 ðxÞ.
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Including only an increase in the loop order of the coupling
constant without additional terms in the series will provide a
partial contribution to higher orders but there will still be
missing terms of the order aNþ1

1 ðxÞ. In this expansion the
two lowest order terms that first appear at order aSNN are the
term aSRR;1ðsÞkNðQ=ΛÞaN1 ðQ;ΛÞ ¼ aSRR;1ðsÞðaSN − aSN−1Þ,
where kNðQ=ΛÞ is a polynomial in lnLS, and the term
aSRR;Na

N
1 ðQ;ΛÞ. We can get the first of these without

calculating the Nth term in the R ratio series, so only if
this term dominates, which equates to the condition
jaSRR;1ðsÞkNðQ=ΛÞj > jaSRR;N j, does the higher order of
the coupling constant provide strong information on the
convergence of the series. Analysis of the table indicates the
new term from the series either dominates or is commen-
surate with the new term from the coupling constant.

B. Effective coupling analysis

Moving forward in our analysis we will now consider the
effective coupling constants associated with the R ratio and
Bjorken sum rule. Indeed the formalism will equally apply
to other observables and we assume the perturbative series
for any of these will be of the form

ρðQ2Þ ¼ ρ0 þ ρ1aSðQ2Þ þ ρ2a2SðQ2Þ þ ρ3a3SðQ2Þ
þ ρ4a4SðQ2Þ þ � � � ; ð3:6Þ

where ρðQ2Þ represents the observable. A quantity is still
measurable if it can be related to another measurable by
adding to or multiplying by a constant. Therefore we can
construct an observable quantity that acts like a coupling
constant to leading order using

aρðQ2Þ ¼ ρðQ2Þ − ρ0
ρ1

¼ aSðQ2Þ þ cρ;S1 a2SðQ2Þ þ cρ;S2 a3SðQ2Þ
þ cρ;S3 a4SðQ2Þ þ � � � : ð3:7Þ

Examining the running of this effective coupling constant
across a range of energy values within the perturbative
regime will allow us to test whether the trends found in the
tables are specific to the points considered or are more
general trends for the series in the range. In order to test our
ideas of residual scheme dependence in a measurable due to
truncation of a perturbative series we can plot their running
across a range of values. In [29] the momentum range

chosen was 20ΛMS
Nf

to 200ΛMS
Nf

which represented a large

part of the perturbative regime especially when ΛMS
Nf

was
converted to more conventional energy units. In general the

value ofΛMS
Nf

is larger for higher values ofNf. Therefore the
momentum considered in [29] for more active quarks will
be lower. This will mean that the effect of truncation will be

greater for Nf ¼ 6 than for Nf ¼ 3. This is counter to what
is expected phenomenologically. However we continue
with this range to allow for direct comparison with the
previous results. It is important to note for instance that due
to the particular polynomial dependence on Nf in different
scheme perturbative series for an observable, when it is
numerically evaluated certain terms may dominate for one
specific number of active quarks but not for another
number. How this transpires can be seen when, for
example, (2.13) is evaluated for a range of Nf.
Scheme comparison plots of the R ratio at both Oða3Þ

and Oða4Þ are provided in Figs. 1 and 2, respectively. For
Nf ¼ 6 in the Oða4Þ plot we see a very small spread in the
value of the series across all momenta, but especially at
high momenta where the coupling constant tends to zero
meaning higher order corrections are indecipherable.

Across the range 20ΛMS to 200ΛMS the MOMq scheme
provides an upper bound on the series, but for the upper

bound at 20ΛMS the minimum line is that of the mMOM

scheme whereas at 200ΛMS it is that of the MOMg scheme.
Therefore the schemes are differently ordered at different
energies. As expected at Nf ¼ 3 there is a much smaller,
but not nonexistent, spread for all the schemes. This is
mirrored by the scale of the series in both cases. Note that at
no point along the series does MOMg provide the lower
bound. So as mentioned the ordering of the series does
depend on the value of Nf. For Oða3Þ we see the values
of the series are similar when compared with Oða4Þ but
provide a much larger spread of values at all energy scales.
This is especially prevalent for Nf ¼ 6, where the MS and
mMOM schemes provide bounds, meaning the schemes are
not in a fixed order between loop orders.
To ensure that any results derived from these graphs are

not dependent on the specific observable we have repeated
the exercise for the Bjorken sum rule with the behavior of
the effective coupling presented in Figs. 3 and 4 for Oða3Þ
and Oða4Þ, respectively. First considering the Oða4Þ graph
we see that the schemes providing the maximum and
minimum lines are not the same with MS being the
minimum for Nf ¼ 3. While the scheme difference is in
general lower at Oða4Þ than Oða3Þ we see that the jump is
not quite as severe. AtOða3Þ it is worth noting that many of
the series are highly correlated with just the MOMq scheme
behavior being an outlier at Nf ¼ 6 and both the MS and
MOMq schemes being outliers in the Nf ¼ 3 graph.
An alternative way of quantifying the behavior of the

observable series is to consider the development of the
effective coupling with loop order. Consequentially this
will allow for a deeper understanding of how each series
converges toward the natural value for each scheme. By
plotting the series calculated in a single scheme but at
different loop orders together we can gain an understanding
of the more general qualitative features of the convergence
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of each scheme across a larger range. Therefore in Figs. 5–9
we have provided loop comparisons of the R ratio in the
MOMc, MOMg, MOMq, MS and mMOM schemes,
respectively, for four values of Nf. In the case of MOMc
scheme we see the series oscillates as the loop order
increases since the Oða4Þ line sits between the two lower
order series. The spread of this oscillation decreases with
Nf. This behavior is shared by all other MOMi schemes,

whereas the MS and mMOM schemes decrease alternating
at each order but converging toward a value. In addition
the same loop comparisons in each scheme are given for the
Bjorken sum rule in Figs. 10–14. Focusing first on the

MOMc convergence, for Nf ¼ 6 we see the series oscil-
lates. While this is also seen at high momentum for Nf ¼ 5,
at low momenta this changes at Oða3Þ in the middle which
suggests the breakdown of perturbation theory. Finally for
Nf ¼ 3 we see that the Oða3Þ and Oða4Þ cases are nearly
identical but the Oða2Þ line lies much further below. This
general behavior is shared by the other MOMi schemes.

IV. SCHEME ERROR

In quantum field theory typically the calculation of a
measurable quantity has no closed form solution. So one
must use an approximation often given by a perturbative

FIG. 1. Comparison of aSRRðxÞ at three loops for the various schemes for Nf ¼ 3, 4, 5, and 6.
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series in some small quantity. In order to quantify the
accuracy of these approximations it is important to assign
an error measurement to them. In perturbative QCD
measurable quantities are expected to be renormalization
group invariant because results in nature should not be
dependent on how we choose to calculate the quantity. One
way this is embodied is in scale invariance in which the
calculation of a physical observable is expected to be
independent of the choice of the renormalization scale. This
idea is used to calculate an error estimate with conventional
scale setting commonly employed which involves varying
the scale, typically by halving and doubling some repre-
sentative scale of the process. The magnitude the scale is

varied by is arbitrary but dictated by what has worked in the
past as opposed to some deeper theoretical understanding.
It is therefore worthwhile comparing this method to other
estimates of the accuracy of a series. Recent reviews of
methods to fix scheme and scale ambiguity are given
in [49,73]. However here we will be using this ambiguity
to quantify the uncertainty in theoretical calculations.
Renormalization group invariance also implies the invari-
ance of measurable quantities with respect to the choice of
renormalization scheme when evaluated to all orders. In
this section we formalize the ideas discussed previously to
investigate, for contrast, the use of scheme difference as a
measure of theoretical error in perturbative QCD. Examples

FIG. 2. Comparison of aSRRðxÞ at four loops for the various schemes for Nf ¼ 3, 4, 5, and 6.
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of the use of scheme error in calculations include [51,52].
For this study we will assume we have a well-defined
renormalization scale.
First we suppose that a measurable quantity ρðQÞ at scale

Q has been evaluated up to the N loop level:

ρðQÞ ¼
XN
j¼0

ρSj aSðQÞj þ ΔðρS; N;QÞ

¼ ρSðNÞðQÞ þ ΔðρS; N;QÞ; ð4:1Þ

where ΔðρS; N;QÞ represents the difference between the
finite approximation and the true value of the series.
Perturbatively it will be OðaNþ1Þ. Calculating this in
schemes S1 and S2 gives

ρðQÞ ¼ ρS1

ðNÞðQÞþΔðρS1 ;N;QÞ ¼ ρS2

ðNÞðQÞþΔðρS2 ;N;QÞ:
ð4:2Þ

This has two distinct cases, either

FIG. 3. Comparison of aSBjrðxÞ at three loops for the various schemes for Nf ¼ 3, 4, 5, and 6.
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(i) sgnðΔðρS1 ; N;QÞÞ ¼ sgnðΔðρS2 ; N;QÞÞ, in which
case both ρS1

ðNÞðQÞ and ρS2

ðNÞðQÞ will produce over- or
underestimates of the true value of the series, or

(ii) sgnðΔðρS1 ; N;QÞÞ ≠ sgnðΔðρS2 ; N;QÞÞ, in which
case ρS1

ðNÞðQÞ and ρS2

ðNÞðQÞ will act as bounds on the

true value of ρðQÞ.
Since in general ΔðρS; N;QÞ is not known, as this would

be equivalent to knowing the true value of the series, we
cannot know which case a particular pair of schemes will fit
into. However, if we consider more schemes there will be a
greater chance that the scheme with the maximum value

and the scheme with the minimum value will correctly
bound the true value of the series, provided there is no
reason to expect additional correlation between the
schemes as in the case at the two loop level.

A. Scheme envelopes

Thus far we have discussed how our measure of error
may bound the true value without assigning a degree of
belief to that bound, a concept which is discussed at length
in [74]. One could attempt to consider the values of the
schemes to exist in some probability distribution which

FIG. 4. Comparison of aSBjrðxÞ at various loops for the various schemes for Nf ¼ 3, 4, 5, and 6.
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could then be used to calculate a mean and standard
deviation on the series. However no distribution is known.
In Sec. III we used the arithmetic mean and unbiased
standard deviation which allowed us to provide a rough
estimate of the true value of the series and remaining error
suggested by the values calculated in each scheme. This
had the advantage of allowing one to use the typical
interpretation of the standard deviation as a degree of
belief in the value reported. However, the use of the
arithmetic mean required the assumption that all schemes
are independent which due to correlation of the scheme

definitions, particularly for the MOMi schemes, is not an
accurate assumption. This can be further demonstrated by
the qualitative similarity of the convergence of the MOMi
schemes and illustrated in the loop comparison graphs. In
this subsection we aim to discuss the idea of scheme error
more concretely and therefore we have chosen not to make
this assumption. So we will not attach any degree of belief
to our error.
To give a concrete example we recall that the R ratio

effective coupling constants with five active fermions in our
five schemes are given numerically by

FIG. 5. Comparison of aMOMc
RR ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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amMOM
RR jNf¼5 ¼ amMOM − 2.89086a2mMOM − 299.03413a3mMOM þ 407.37433a4mMOM þOða5mMOMÞ;
aMOMc
RR jNf¼5 ¼ aMOMc − 7.35580a2MOMc − 258.15390a3MOMc þ 3883.57250a4MOMc þOða5MOMcÞ;

aMOMg
RR jNf¼5 ¼ aMOMg − 3.77154a2MOMg − 275.52688a3MOMg þ 1671.72909a4MOMg þOða5MOMgÞ;

aMOMq
RR jNf¼5 ¼ aMOMq − 5.52330a2MOMq − 168.45783a3MOMq þ 1337.29074a4MOMq þOða5MOMqÞ;
aMS
RR jNf¼5 ¼ aMS þ 5.63692a2

MS
− 204.27304a3

MS
− 5118.76040a4

MS
þOða5

MS
Þ: ð4:3Þ

These have been derived from the R ratio perturbative series using the notation of (3.7). For a valid perturbative series at the
Nth loop level we expect ΔðρS; N;QÞ to be dominated by the (N þ 1)th term in the original series. By considering the sign
of the third term in each series we get a rough estimate of the Δ value at the two loop level for instance. Since each sign is

FIG. 6. Comparison of aMOMg
RR ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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negative this means that each value calculated atOða2Þwill
be an overestimate of the series, which explains the lower
scheme difference at the two loop level when compared to
three loops. This should provide an accurate error since the
signs are different on the Oða4Þ terms in each series. Since
we do not know the five loop terms in any series the signs
of the Δ values at the four loop level cannot be known
exactly. However there is no reason to expect all five
schemes to share the same sign at that loop level. We can
therefore consider the envelope provided by theOða3Þ lines
of the plots as an absolute limit on the true value of the
series with the lines provided by the Oða4Þ values as the
potential minimum error at that order. We note that this

argument is simplified for clarity as it ignores the modi-
fication of the coupling constant at each order, although as
discussed previously the dominant term is typically from
the new term in the series.
With this in mind we compare the envelopes for the R

ratio effective coupling constants at the different loop orders
against each other in Fig. 15. At each energy scale all
schemes are considered but only the ones that evaluate to
give the minimum and maximum values are plotted at each
point. We note that as discussed in Sec. III the bounding
schemes can change between loop order, at different
energies and for different Nf. This means that all schemes
must be considered at all values for an accurate envelope to

FIG. 7. Comparison of aMOMq
RR ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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be formed. For the case of six active fermions we see that
the two loop envelope sits entirely above the three loop
envelope which houses the four loop at its upper bound. The
fact that there is no overlap between the three and four loop
cases is explained by the fact that the three loop term acts
to reduce the value of the R ratio in all of the schemes
considered here. For the situation with three active fermions
there exists an overlap between the three loop and four loop
graphs, although at lower energies while the four loop lies
inside the three loop it is not within the two loop envelope.
At higher energies however the two and three loop
envelopes lie on top of each other with the four loop one

lying in between. In general we see that the two loop and
four loop envelopes are of similar size, with that at three
loops giving a larger bound.
This can be contrasted with similar plots for the Bjorken

sum rule given in Fig. 16. Starting with the case of three
active fermions the Oða2Þ error is entirely below and much
larger than the Oða3Þ bound. The full Oða4Þ envelope is
within the Oða3Þ envelope at higher energies but at lower
energies the upper bound just escapes. As the number of
active fermions is increased both the two loop and four loop
lines increase relative to the three loop one. So for six active
fermions the two loop envelope lies almost entirely above

FIG. 8. Comparison of aMS
RR ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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the three loop one and the four loop lower bound sits on the
upper bound of the three loop. In that case the four loop one
is encapsulated by the two loop one but not the three loop
one, suggesting that the two loop case gives a more accurate
maximum envelope than the three loop one.
Instead of considering the envelopes themselves we can

examine the difference between the maximum and mini-
mum values in the envelope, as normalized by the midpoint
of the envelope. This will provide a clearer display of the
remaining scheme dependence. This is presented in Fig. 17
for the R ratio with Fig. 18 giving the corresponding
situation for the Bjorken sum rule. As discussed earlier, for
the R ratio we see in general the scheme difference atOða3Þ

is largest; at Oða4Þ it is smallest for most of the range
considered except at very low momenta where the Oða2Þ
difference is smaller. For example, at x ¼ 110 for Nf ¼ 5

the Oða2Þ difference is 1.0%, the Oða3Þ is 2.5% and the
Oða4Þ is 0.7%. The Bjorken sum rule provides a more
conventional error for a perturbative series where in general
the Oða2Þ error is larger than the Oða3Þ error which in turn
is larger than the Oða4Þ error.

B. Estimating formal parameters

As a final quantitative scheme comparison we consider
the fundamental formal parameters of the theory calculated

FIG. 9. Comparison of amMOM
RR ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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using experimental data. In massless perturbative QCD the
Λ parameter or equivalently the coupling constant defined
at a particular renormalization scale are the only parameters
that must be inserted in order to make physical calculations.
One can use the Λ ratio or the coupling constant conversion
functions to compare quantities calculated in each scheme
in order to investigate residual scheme dependence. The
most often quoted value is the coupling constant in the MS
scheme evaluated at the mass of the Z boson. Therefore that

parameter, αMS
s ðMZÞ, will be considered here. We note that

in nature resonances in partial interactions at any mass scale

will be present and reflected in associated experimental
data. Such phenomena are not accounted for in a massless
theory. Therefore this study should also be regarded as part
of a theory laboratory where we are particularly interested
and can focus on the scheme dependence of the final result
in a controlled setup rather than the precise value itself.
We will use an experimental measurement for one of our

perturbative series ρ� which was found at a particular
energy level Q�. With the series evaluated in a given
scheme we can numerically solve for the Λ parameter by
varying ΛS in

FIG. 10. Comparison of aMOMc
Bjr ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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ρ� ¼ ρSðQ�;ΛS
Nf
Þ: ð4:4Þ

If in running from Q� to MZ we cross any threshold T that
exists in the massive theory, we still consider the massless
case but we change the number of active fermions. For
example, say there are Nf active fermions at Q� but in
running to MZ we cross the mass threshold where the next
quark becomes active at mass MT ; then we have to
accommodate Nf þ 1 active quarks in the analysis beyond
MT . We can find the value of the coupling constant at the
threshold explicitly by substitutingMT and the value found
for ΛS

Nf
into the explicit formula for the coupling constant

given in (3.1). We consider the coupling constant to change
continuously at the threshold and therefore we solve

aSðMT;ΛS
Nf
Þ ¼ aSðMT;ΛS

Nfþ1Þ ð4:5Þ

numerically for ΛS
Nfþ1. This process is repeated until there

are five current active fermions which is the number of
active fermions atMZ. We note that a similar process could
be used to move down below a mass threshold as well.
Finally, we evaluate aSðMZ=ΛS

5 Þ explicitly and substitute
the value into the coupling constant conversion function in
order to have a value to compare between the schemes.

FIG. 11. Comparison of aMOMg
Bjr ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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In practice we have utilized the Λ ratio and a numerical

root finding algorithm to search for the value of ΛMS which
would result in the correct value of the R ratio at a given

energy level. A fixed range for ΛMS of 50–800 MeV has
been chosen to cover much of the perturbative regime,

where we expect ΛMS ∼ 200 MeV [70]. A root bisection
algorithm was used to find the value of y that gives the
solution of

ρ� − ρS
�
Q� Λ

MS

ΛS ; y

�
¼ 0; ð4:6Þ

where S may be any of the schemes considered including
MS in which the above Λ ratio to the MS scheme is unity.
As the numerical Λ value is intermediate to our analysis
care was taken to ensure the result was sufficiently accurate
for further calculations.
We recall that the world average value of the effective

coupling constant at the mass of the Z boson is αMS
s ðMZÞ ¼

0.1179� 0.0009 [75] where αMS
s ¼ 4πaMS. Since this

coupling constant is more commonly used we have chosen
to display our results with this convention. Converting the
R ratio data given in [76] to our effective coupling constant

and using the above described method for finding αMS
s ðMZÞ

FIG. 12. Comparison of aMOMq
Bjr ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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in each scheme with the data our results are recorded in
Tables III–V which use experimental data from [76]. The
values given at each loop order in each scheme are for the
central experimental value. The errors are found by solving
for the upper and lower bounds on the experimental value.
We have added an additional row for each loop order giving
the average value of the other scheme values at that loop
order. As a scheme distribution is not known we have
chosen to use the central value of the envelopes as the
average with the first error being the theory error from the
scheme difference envelope and the upper and lower bound
on the second error being the experimental error on the

maximum and minimum central value from the schemes,
respectively.
In Tables III–V we see the general trend discussed

before where the scheme error at two loops increases
drastically at three loops and then decreases below the two
loop error at four loops. We note that the values calculated
for αMS

s are larger than the current world average. However
since we are considering massless QCD some difference is
expected and the values found here are commensurate with
similar analysis made using the same data in [49]. Despite
our unphysical assumptions, this analysis does show that
the general trend of reduced scheme dependence at the four

FIG. 13. Comparison of aMS
Bjr ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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loop level can translate to reduced theory error in formal
quantities calculated with experimental data. On general
field theoretical grounds this is not unexpected but the
analysis has provided a degree of quantification.
We have repeated this exercise for the Bjorken sum

rule using data from [77,78] with the results given in
Tables VI–IX. In this case we used the higher Q2 values of
the effective coupling constant presented in Table I of [46]
derived from the deeply virtual Compton scattering meas-
urement of the sum rule recorded in [77,78]. Due to the low
energies considered in this case these data points push the
boundaries of validity for the perturbative regime. Therefore

a three loop estimate could not be made for one or more
instances for the symmetric momentum subtraction schemes
as their three loop series do not meet the experimental
effective coupling constant value. Although, this reduced
scheme error at three loops compared with the two loop
result is consistent with our difference plots of the running
of the Bjorken sum rule in different schemes provided in
Fig. 18. The smaller error on the three loop average values
can then be understood as due to the reduction in the
schemes considered, especially since the MS and mMOM
ones are related as described earlier. Importantly though the
scheme dependence is again reduced at the four loop level.

FIG. 14. Comparison of amMOM
Bjr ðxÞ at various loops for Nf ¼ 3, 4, 5, and 6.
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Indeed for the higherQ2 values in the Bjorken case the four
loop error for what is termed the average, which includes the
MOM schemes, is compatible with if not better than the
three loop average. In other words the fact that all schemes
provide results at four loops, despite not giving results at
three loops, could be interpreted as the series settling down
at the new loop level. However it may be the case that this is
simply due to the fact this is at the interface of perturbative
reliability for low loop order. So there is a large contribution
at the four loop level which is positive in all cases meaning
the term that will dominate as the Λ parameter is decreased
will increase the value of the effective coupling constant
which in turn means the series will increase above the

experimental values. Overall the values found from the
Bjorken data are much lower than those of the R ratio, with
the Bjorken data being closer to the current world average.

V. DISCUSSION

We have completed a comprehensive investigation into
the scheme dependence of two observables at as high a loop
order as is presently possible. This included the kinematic
schemes of [20,21] which are based on a specific momen-
tum configuration of the core 3-point vertices of QCD. Our
main aim was to quantify the error on a benchmark
parameter αMS

s ðMZÞ that was more field theoretically based

FIG. 15. Envelope error for aSRRðxÞ at different loop orders for Nf ¼ 3, 4, 5, and 6 for the schemes considered here.
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and accounted for the uncertainty that is inherent in the
truncation of the perturbation series in different schemes.
We stress that our formulation was in the idealized and
purely theoretical situation where quark masses and thresh-
old effects were not included. We remark parenthetically,
however, that in the former instance a hybrid or partial
MOM scheme investigation could be instigated in the
approximation of heavy mass corrections, such as [79]
which includes the Bjorken sum rule, since the coupling
constant and quark mass, treated as parameters, can be
mapped from the MS scheme to one of the MOMi ones
from available data. The construction is termed hybrid or
partial in the sense that the MOMi scheme maps do not

include quark masses but would have an approximation in
a heavy quark mass. Further, while recognizing that our
massless investigation is not realistic on the contrary it
allowed us to focus purely on the effect corrections in
different schemes have in a controlled scenario. Although

the central value for αMS
s ðMZÞ differed for the two cases of

the Bjorken sum rule and the R ratio what was generally
apparent is that with increasing loop order there was a
narrowing of our error estimates and an indication of
convergence. For the various schemes we concentrated
on this improvement was prevalent at four and higher
orders which is encouraging. Moreover that in itself
justifies the need to progress the renormalization of

FIG. 16. Envelope error for aSBjrðxÞ at different loop orders for Nf ¼ 3, 4, 5, and 6 for the schemes considered here.
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QCD in MOMi schemes to the next order. To improve our
error analysis further more data and additional schemes
could be considered. Here we concentrated on the mMOM,
MS and MOMi schemes, many of which are related via
the renormalization group construction meaning that the
final results from each scheme cannot be considered as
independent. Indeed they are very much connected via
the underlying properties of the renormalization group
equation. In addition to this much of the data considered
is outside the range where perturbation theory is ordin-
arily applied, particularly for the Bjorken sum rule. So
considering more data in the perturbative regime should
provide more accurate information on scheme dependence.

Additional investigation of the scheme distribution could
further inform our results allowing for a better average and
degree of belief to be attached to our error estimates.
Aside from the fully symmetric point schemes of [20,21]

considered here there are extensions of those to more general
kinematic schemes. For instance, one variation of [20,21]
was introduced in [80,81] where a parameter ω reflected
the relative weighting of the external momentum flowing
through one of the legs of the 3-point vertices. Such a
parameter would naturally translate to a suite of schemes
generalizing those of [20,21]. As the range of ω is limited to
ω∈ ð0; 4Þ, with the bounding values originating from
infrared or collinear singularities, then ω could provide a

FIG. 17. Difference error for aSRRðxÞ at different loop orders for Nf ¼ 3, 4, 5, and 6 for the schemes considered here.
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more natural way to tune or quantify the range of theoretical
errors deriving from an application of the approach dis-
cussed here. Equally rather than have one controlling
parameter we recall that there are three independent
variables for an off-shell 3-point vertex. These are one
overall scale and two dimensionless momenta ratios
which, like ω, are bounded but in this instance the
dimensionless variables are constrained to lie within a
paraboloid. While this too could translate to a bounding
region on theory errors of an observable only the underlying
two loop massless off-shell master integrals are available
at present [28,62,64,65,82]. Knowledge of the three loop
fully off-shell masters would be needed before a concrete

analysis of this extensions could proceed. Moreover if
achieved it would be of interest to compare with other
methods of extracting scale-independent information from
observables. Ultimately it ought to be the case that with high
enough loop order information all well-founded methods of
determining scale-independent results for an observable
should themselves converge to the same value. Another
direction that was briefly considered in [29] was the
inclusion of the gauge parameter in the evolution of the
effective coupling derived from the R ratio in the MOM
schemes. Such dependence could equally be embedded in
an error analysis. However before that could proceed to the
order considered here the renormalization group functions

FIG. 18. Difference error for aSRRðxÞ at different loop orders for Nf ¼ 3, 4, 5, and 6 for the schemes considered here.
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TABLE III. Estimates of αMS
s ðMZÞ from the R ratio effective

coupling at order Ł using data from [76] calculated in the MS,
MOMi and mMOM schemes. The error on the average is the
envelope of the scheme values and the average value is the center
of this envelope.

αRRs ¼ 0.16556� 0.01571 at Q ¼ 31.62278 GeV

Scheme Ł αMS
s ðMZÞ

MS 2 0.12772þ0.00948
−0.00904

3 0.13084þ0.01019
−0.00986

4 0.13187þ0.01050
−0.01027

mMOM 2 0.12662þ0.00923
−0.00875

3 0.13260þ0.01083
−0.01081

4 0.13238þ0.01072
−0.01063

MOMq 2 0.12680þ0.00926
−0.00879

3 0.13460þ0.01148
−0.01171

4 0.13131þ0.01030
−0.00999

MOMg 2 0.12665þ0.00923
−0.00875

3 0.13306þ0.01097
−0.01102

4 0.13228þ0.01067
−0.01054

MOMc 2 0.12713þ0.00934
−0.00888

3 0.13479þ0.01171
−0.01239

4 0.13194þ0.01053
−0.01032

Average 2 0.12717� 0.00055þ0.00948
−0.00875

3 0.13281� 0.00197þ0.01171
−0.00986

4 0.13185� 0.00053þ0.01072
−0.00999

TABLE IV. Estimates of αMS
s ðMZÞ from the R ratio effective

coupling at order Ł using data from [76] calculated in the MS,
MOMi and mMOM schemes. The error on the average is the
envelope of the scheme values and the average value is the center
of this envelope.

αRRs ¼ 0.14546� 0.01382 at Q ¼ 59.16080 GeV

Scheme Ł αMS
s ðMZÞ

MS 2 0.12731þ0.01070
−0.01045

3 0.13004þ0.01136
−0.01122

4 0.13085þ0.01162
−0.01156

mMOM 2 0.12636þ0.01047
−0.01017

3 0.13124þ0.01180
−0.01185

4 0.13116þ0.01175
−0.01176

MOMq 2 0.12651þ0.01051
−0.01021

3 0.13273þ0.01229
−0.01252

4 0.13048þ0.01148
−0.01136

(Table continued)

TABLE IV. (Continued)

αRRs ¼ 0.14546� 0.01382 at Q ¼ 59.16080 GeV

Scheme Ł αMS
s ðMZÞ

MOMg 2 0.12638þ0.01047
−0.01017

3 0.13159þ0.01191
−0.01200

4 0.13111þ0.01172
−0.01172

MOMc 2 0.12680þ0.01058
−0.01029

3 0.13264þ0.01233
−0.01269

4 0.13089þ0.01163
−0.01159

Average 2 0.12683� 0.00048þ0.01070
−0.01017

3 0.13138� 0.00135þ0.01229
−0.01122

4 0.13082� 0.00034þ0.01175
−0.01136

TABLE V. Estimates of αMS
s ðMZÞ from the R ratio effective

coupling at order Ł using data from [76] calculated in the MS,
MOMi and mMOM schemes. The error on the average is the
envelope of the scheme values and the average value is the center
of this envelope.

αRRs ¼ 0.13697� 0.01225 at Q ¼ 82.15838 GeV

Scheme Ł αMS
s ðMZÞ

MS 2 0.12725þ0.01066
−0.01053

3 0.12982þ0.01126
−0.01124

4 0.13056þ0.01149
−0.01154

mMOM 2 0.12635þ0.01044
−0.01027

3 0.13085þ0.01162
−0.01174

4 0.13081þ0.01159
−0.01169

MOMq 2 0.12650þ0.01048
−0.01031

3 0.13216þ0.01203
−0.01230

4 0.13024þ0.01137
−0.01137

MOMg 2 0.12637þ0.01045
−0.01028

3 0.13115þ0.01171
−0.01187

4 0.13077þ0.01157
−0.01166

MOMc 2 0.12677þ0.01054
−0.01039

3 0.13201þ0.01203
−0.01237

4 0.13059þ0.01150
−0.01156

Average 2 0.12680� 0.00045þ0.01066
−0.01027

3 0.13099� 0.00117þ0.01203
−0.01124

4 0.13053� 0.00028þ0.01159
−0.01137
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TABLE VI. Estimates of αMS
s ðMZÞ from the Bjorken sum rule

effective coupling at order Ł using data from [77,78] calculated in
the MS, MOMi and mMOM schemes. The error on the average is
the envelope of the scheme values and the average value is the
center of this envelope. The bracketed error indicates an envelope
formed with the incomplete set of schemes.

αBjrs ¼ 0.70800� 0.25716 at Q ¼ 1.64500 GeV

Scheme Ł αMSðMZÞ
MS 2 0.12819þ0.01064

−0.00538
3 0.12665þ0.01101

−0.00574
4 0.12320þ0.00973

−0.00498

mMOM 2 0.12228þ0.00847
−0.00403

3 0.12395þ0.00952
−0.00536

4 0.12025þ0.00749
−0.00328

MOMq 2 0.12080þ0.00795
−0.00374

3 � � �
4 0.11752þ0.00659

−0.00291

MOMg 2 0.12340þ0.00823
−0.00388

3 � � �
4 0.12185þ0.00700

−0.00279

MOMc 2 0.12003þ0.00768
−0.00364

3 � � �
4 0.11752þ0.00614

−0.00229

Average 2 0.12411� 0.00408þ0.01064
−0.00364

3 ½0.12530� 0.00135þ0.00536
−0.01101 �

4 0.12036� 0.00284þ0.00973
−0.00229

TABLE VII. Estimates of αMS
s ðMZÞ from the Bjorken sum rule

effective coupling at order Ł using data from [77,78] calculated in
the MS, MOMi and mMOM schemes. The error on the average is
the envelope of the scheme values and the average value is the
center of this envelope. The bracketed error indicates an envelope
formed with the incomplete set of schemes.

αBjrs ¼ 0.61700� 0.25410 at Q ¼ 1.79500 GeV

Scheme Ł αMSðMZÞ
MS 2 0.12736þ0.01470

−0.00686
3 0.12559þ0.01488

−0.00726
4 0.12242þ0.01335

−0.00631

mMOM 2 0.12194þ0.01211
−0.00522

3 0.12331þ0.01315
−0.00640

4 0.12019þ0.01106
−0.00437

MOMq 2 0.12057þ0.01147
−0.00485

3 � � �
4 0.11762þ0.00984

−0.00384

(Table continued)

TABLE VII. (Continued)

αBjrs ¼ 0.61700� 0.25410 at Q ¼ 1.79500 GeV

Scheme Ł αMSðMZÞ

MOMg 2 0.12319þ0.01188
−0.00503

3 0.12863þ0.01538
−0.02879

4 0.12210þ0.01077
−0.00384

MOMc 2 0.11986þ0.01112
−0.00470

3 � � �
4 0.11784þ0.00959

−0.00321

Average 2 0.12361� 0.00375þ0.01470
−0.00470

3 ½0.12597� 0.00266þ0.01538
−0.02347 �

4 0.12002� 0.00240þ0.01335
−0.00384

TABLE VIII. Estimates of αMS
s ðMZÞ from the Bjorken sum rule

effective coupling at order Ł using data from [77,78] calculated in
the MS, MOMi and mMOM schemes. The error on the average is
the envelope of the scheme values and the average value is the
center of this envelope. The bracketed error indicates an envelope
formed with the incomplete set of schemes.

αBjrs ¼ 0.58100� 0.22308 at Q ¼ 1.96700 GeV

Scheme Ł αMSðMZÞ
MS 2 0.12812þ0.01423

−0.00711
3 0.12620þ0.01433

−0.00747
4 0.12310þ0.01289

−0.00650

mMOM 2 0.12284þ0.01180
−0.00546

3 0.12412þ0.01274
−0.00649

4 0.12119þ0.01084
−0.00464

MOMq 2 0.12151þ0.01120
−0.00508

3 � � �
4 0.11866þ0.00966

−0.00406

MOMg 2 0.12417þ0.01161
−0.00528

3 0.12907þ0.01453
−0.03158

4 0.12330þ0.01067
−0.00417

MOMc 2 0.12081þ0.01087
−0.00492

3 � � �
4 0.11896þ0.00948

−0.00350

Average 2 0.12446� 0.00365þ0.01423
−0.00492

3 ½0.12660� 0.00248þ0.01453
−0.02663 �

4 0.12098� 0.00232þ0.01067
−0.00406
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in the three MOM schemes would have to be determined for
nonzero α. Currently only the four loop Landau gauge
expressions are available [24]. Finally, in the more imme-
diate future extending the present work to the five loop level
would provide further insight into whether the scale of
reduction in scheme dependence is due to an artifact of the
underlying scheme used at the four loop level or because
it is due to true scheme independence. In the short term it
would seem that all the technology to analytically compute
the four loop massless symmetric 3-point master Feynman
integrals is actually available. For instance, the first step of
carrying out the momentum expansion of the four loop
masters to high order is viable now that the four loop Forcer
algorithm [83,84], written in Form [60,61], has superseded
the three loop Mincer package.
The electronic versions representing the Landau gauge

expressions for the Bjorken sum rule and R ratio in the
mMOM and MOMi schemes used here are accessible from
the arXiv ancillary directory associated with the article.
The symbolic manipulation language Form [60,61] was
employed for various calculations in this article.
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