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We present a derivation of quantum kinetic theory for massive spin-1 particles from the Wigner-function
formalism up to first order in an ℏ-expansion, including a general interaction term. Both local and nonlocal
contributions are computed in a covariant fashion. It is shown that, up to first order in ℏ, the collision term
takes the same form as in the case of spin-1=2 particles.
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I. INTRODUCTION

The study of polarization phenomena in noncentral
heavy-ion collisions has become an active area of research
in recent years [1–6]. The quark-gluon plasma produced
in such collisions behaves as a relativistic fluid, whose
hydrodynamic gradients polarize the particles that are
detected in experiments. An example of such an effect is
the global spin polarization of Λ-hyperons, which was
measured at different collision energies by the STAR,
ALICE, and HADES Collaborations [7–10]. Despite
global polarization data being well described by models
which assume local equilibrium of spin degrees of free-
dom [4,11–17], the polarization as a function of transverse
momentum remains an active field of research [5,18–22],
spurring also the formulation of relativistic spin hydro-
dynamics [23–62].
In contrast, the theory behind explaining the spin

alignment of vector mesons such as the ϕ and K⋆0

mesons, which was measured by the ALICE and STAR
Collaborations [63–65], is not yet as developed. There have
been notable steps taken toward providing a theoretical
framework for this kind of polarization [66–77]. In par-
ticular, in Ref. [75] we discussed a new mechanism which
relates the spin alignment to the shear stress of the fluid and
provided a formula which can be used for phenomeno-
logical applications. In this paper, we systematically for-
mulate the quantum kinetic theory for massive spin-1
particles based on the Wigner-function formalism used
in Ref. [75].
Vector mesons have a richer structure as compared to spin-

1=2 particles. While the spin-density matrix of spin-1=2
particles only has three independent entries which determine
the polarization vector, spin-1 particles feature eight internal

degrees of freedom [78]. Three of these entries are again
associatedwith a polarizationvector, while the remaining five
quantify the so-called tensor polarization. In present heavy-
ion collision experiments, since strong decays of vector
particles are studied, only the effects of tensor polarization
can be accessed through the 00-element of the spin-density
matrix. Thus, the spin alignment of vector mesons can be
considered as a genuine spin-1 effect, which necessitates the
development of an adequate formalism.
As opposed to approaches put forward in

Refs. [66–70,72–74] where the properties of the vector
mesons are determined through the polarization of the
individual quarks, the aim of this work is to construct a
quantum kinetic theory using theWigner-function formalism
where the effective degrees of freedom are massive spin-1
fields. Employing a semiclassical expansion, the equations of
motion are truncated at first order in the Planck constant,
resulting in a Boltzmann-type equation. This procedure
stands in line with Ref. [36], where such a formalism,
accounting for general interactions, was developed for
spin-1=2 particles, and later used as a foundation for the
formulation of spin hydrodynamics [57,79].
This paper is structured as follows. In Sec. II, we discuss

the quantum kinetic theory for massive spin-1 particles and
obtain a Boltzmann equation for the Wigner function. In
Sec. III, we expand the collision integral on the right-hand
side of the Boltzmann equation in terms of the Wigner
function, restricting ourselves to binary elastic collisions.
Section IV focuses on the derivation of the local-
equilibrium distribution function that makes the previously
obtained collision term vanish, while Sec. V discusses the
implications for the formulation of spin-1 hydrodynamics.
Finally, in Sec. VI we give the conclusions and outlook.
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We use the following notation and conventions: a · b ≔
aμbμ, a½μbν� ≔ aμbν − aνbμ, aðμbνÞ ≔ aμbν þ aνbμ, gμν ≔
diagð1;−1;−1;−1Þ, ϵ0123 ¼ −ϵ0123 ≔ 1, and repeated
indices are summed over. Projection operators parallel
and orthogonal to the four-momentum kμ are denoted by
Eμν ≔ kμkν=k2 and Kμν ≔ gμν − Eμν, respectively. We use
natural units with c ¼ kB ¼ 1, but do not set ℏ to unity in
order to allow for a clear semiclassical expansion.

II. KINETIC THEORY FOR INTERACTING
VECTOR BOSONS

We start from the Lagrangian for a charged vector
field V̂μ,

L̂ ¼ −ℏ
�
1

2
V̂†μνV̂μν −

m2

ℏ2
V̂†μV̂μ

�
þ L̂int; ð1Þ

where V̂μν ≔ ∂
½μV̂ν� and L̂int is a general interaction

Lagrangian, which we assume not to depend on the
derivatives of the field. Defining

ρ̂ν ≔ −
1

ℏ
∂L̂int

∂V̂†
ν

; ð2Þ

the equations of motion read�
□þm2

ℏ2

�
V̂ν − ∂

ν
∂ · V̂ ¼ ρ̂ν; ð3Þ

from which the constraint equation

∂ · V̂ ¼ ℏ2

m2
∂ · ρ̂ ð4Þ

follows.
The Wigner function is defined as [58,80–84]

Wμν ≔ −
2

ð2πℏÞ4ℏ
Z

d4ve−ik·v=ℏh∶V̂†μ
þ V̂ν

−∶i; ð5Þ

where V̂μ
� ≔ V̂μðx� v=2Þ and its evolution equations are

found via the Bopp operators Dμ ≔ kμ þ iℏ
2
∂
μ [85], which

fulfill

DμWαβðx; kÞ ¼ −iℏ
2

ð2πℏÞ4ℏ
Z

d4ve−ik·v=ℏh∶V̂†α
þ ∂

μV̂β
−∶i;

ð6aÞ

D�μWαβðx; kÞ ¼ iℏ
2

ð2πℏÞ4ℏ
Z

d4ve−ik·v=ℏh∶ð∂μV̂†α
þ ÞV̂β

−∶i:

ð6bÞ
Acting with appropriate combinations of the Bopp oper-
ators to make use of the field equations (3) and defining the
collision term

Cμν ≔ −
2

ð2πℏÞ4
Z

d4ye−ik·y=ℏh∶V̂†μ
þ ρ̂ν−∶i; ð7Þ

we obtain the equation of motion for the Wigner function,

ðD2 þm2ÞWμν −
ℏ
m2

DνDαCμα ¼ −ℏCμν: ð8Þ

In addition to the fact that theWigner function is Hermitian,
we employed the constraint equation (4), whose analog for
the Wigner function reads

DμWνμ ¼ ℏ
m2

DμCνμ: ð9Þ

In order to disentangle the equations of motion for the
Wigner function into several expressions determining its time
evolution as well as its structure in momentum space, we
define two Hermitian combinations of the collision term (7):

Cμν ≔ −
i

ð2πℏÞ4
Z

d4ve−ik·v=ℏh∶V†μ
þ ρν− − ρ†μþ Vν

−∶i

≡ i
2
ðCμν − C�νμÞ; ð10aÞ

δMμν ≔
1

ð2πℏÞ4
Z

d4ve−ik·v=ℏh∶V†μ
þ ρν− þ ρ†μþ Vν

−∶i

≡ −
1

2
ðCμν þ C�νμÞ: ð10bÞ

From the constraint equation (9) and its complex con-
jugate, we obtain

kμW
μν
S −

iℏ
2
∂μW

μν
A

¼ ℏ
m2

�
kμðiCμνA − δMμν

S Þ þ ℏ
2
∂μðCμνS þ iδMμν

A Þ
�
; ð11aÞ

kμW
μν
A −

iℏ
2
∂μW

μν
S

¼ ℏ
m2

�
kμðiCμνS − δMμν

A Þ þ ℏ
2
∂μðCμνA þ iδMμν

S Þ
�
; ð11bÞ

where we split both Wμν and the collision terms δMμν and
Cμν into symmetric and antisymmetric parts, denoted with
the subscript S and A, respectively. Note that the symmetric
parts of δMμν, Wμν, and Cμν are real, while their antisym-
metric parts are imaginary. Using this fact, we obtain the
Boltzmann-like equations for the symmetric and antisym-
metric parts of the Wigner function from Eq. (8),

k · ∂Wμν
S ¼ CμνS −

1

2m2

��
kαkðμ −

ℏ2

4
∂α∂

ðμ
�
ðCνÞαS − iδMνÞα

A Þ

þ ℏ
2
ðkα∂ðμ þ ∂αkðμÞðiCνÞαA þ δMνÞα

S Þ
�
; ð12aÞ
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k · ∂Wμν
A ¼ CμνA −

1

2m2

��
kαk½μ −

ℏ2

4
∂α∂

½μ
�
ðiδMν�α

S − Cν�αA Þ

−
ℏ
2
ðkα∂½μ þ ∂αk½μÞðiCν�αS þ δMν�α

A Þ
�
: ð12bÞ

In order to further clarify the structure of the constraint
and evolution equations (11) and (12), it is helpful to
decompose the Wigner function and all related quantities
with respect to the four-momentum kμ,

Wμν
S ¼ EμνfE þ kðμ

2k
FνÞ
S þ Fμν

K þ KμνfK;

Wμν
A ¼ i

k½μ

2k
Fν�
A þ iϵμναβ

kα
m

Gβ; ð13aÞ

CμνS ¼ EμνCE þ kðμ

2
CνÞS þ CμνK þ KμνCK;

CμνA ¼ i
k½μ

2k
Cν�A þ iϵμναβ

kα
m

CG;β; ð13bÞ

δMμν
S ¼ EμνDE þ kðμ

2k
DνÞ

S þDμν
K þ KμνDK;

δMμν
A ¼ i

k½μ

2k
Dν�

A þ iϵμναβ
kα
m

DG;β; ð13cÞ

where FS · k ¼ FA · k ¼ G · k ¼ 0, Fμν
K kν ¼ 0, and Fμν

K is
symmetric and traceless. Analogous properties hold for the
components of the collision terms Cμν and δMμν. We
remind the reader that the projection operators with respect
to the four-momentum used above are defined as Eμν ≔
kμkν=k2 and Kμν ≔ gμν − Eμν.
In the remainder of this section, we aim at performing a

semiclassical expansion to next-to-leading order in powers
of ℏ, i.e., setting B ≔

P∞
j¼0 ℏ

jBðjÞ for any quantity B in
Eqs. (11) and (12) and truncating the sum at j ¼ 1. We note
that, since factors of ℏ are always accompanied by a
gradient of the Wigner function, this expansion is effec-
tively a gradient expansion. At this point it is evident that,
in the course of such an expansion in ℏ, the effect of the
constraint equations (11) consists of expressing fE, F

μ
S, and

Fμ
A (i.e., the components of the Wigner function which are

parallel to the four-momentum in at least one index) in
terms of fK , F

μν
K , and Gμ, while the kinetic equations (12)

determine the time evolution of the latter quantities.
In order to expand the kinetic equations to first order in

the Planck constant, we have to clarify which parts of the
collision terms enter at leading order. Using the definition
of the collision term (7) and the constraint (4), we obtain

�
kμ −

iℏ
2
∂μ

�
Cμν ¼OðℏÞ;

�
kμ þ

iℏ
2
∂μ

�
C�μν ¼OðℏÞ;

ð14Þ

from which it follows that Cð0ÞE ¼ Dð0Þ
E ¼ 0. Note that there

are no such constraints on the other components of Cμν and
δMμν, which can in principle enter at zeroth order already.
However, following Refs. [34,58], we consider a situation
where no initial large (vector or tensor) polarization is
present. In this case we conclude that Gð0Þμ ¼ 0 and

Fð0Þμν
K ¼ 0 as well as Cð0ÞμS ¼ Cð0ÞμA ¼ Dð0Þμ

S ¼ Dð0Þμ
A ¼ 0,

which follows from the fact that there are no vector or
tensor structures at our disposal at orderOð1Þwhich possess
the required symmetries of the aforementioned terms.
With these simplifications, we obtain from the real parts

of Eq. (11)

fE ¼ ℏ2

4k2
Kαβ

∂α∂βf
ð0Þ
K −

ℏ
m2

DE þOðℏ3Þ; ð15aÞ

Fν
S ¼ Oðℏ2Þ; ð15bÞ

kFν
A ¼ ℏKνμ

∂μf
ð0Þ
K þOðℏ2Þ: ð15cÞ

Furthermore, from Eq. (12) we obtain a simple form of the
Boltzmann-like equations for the independent parts of the
Wigner function,

k · ∂fK ¼ CK þOðℏ2Þ; ð16aÞ

k · ∂Fμν
K ¼ CμνK þOðℏ2Þ; ð16bÞ

k · ∂Gμ ¼ CμG þOðℏ2Þ; ð16cÞ

while the mass-shell equations follow from the real part
of Eq. (8),

ðk2 −m2ÞfK ¼ ℏDK þOðℏ2Þ; ð17aÞ

ðk2 −m2ÞFμν
K ¼ ℏDμν

K þOðℏ2Þ; ð17bÞ

ðk2 −m2ÞGμ ¼ ℏDμ
G þOðℏ2Þ: ð17cÞ

In order to account for the degrees of freedom of the
Wigner function connected to spin, in analogy with
Refs. [34,36,58], we may enlarge the phase space by
introducing an additional variable sμ, together with a
respective measure

dSðkÞ ≔ 3m
2σπ

d4sδðs2 þ σ2Þδðk · sÞ; σ2 ≔ 2; ð18Þ

such thatZ
dSðkÞ ¼ 3;

Z
dSðkÞsμsν ¼ −2Kμν;Z

dSðkÞKμν
ρσsρsσsαsβ ¼ 8

5
Kμν;αβ; ð19Þ
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where Kμν
αβ ≔

1
2
Kμ

ðαK
ν
βÞ −

1
3
KμνKαβ, and

Z
dSðkÞsμ1 � � � sμ2nþ1 ¼ 0 for n∈N: ð20Þ

Note that the measure (18) differs from the spin-1=2
case [34,36,40] in the normalization of the spin vector
sμ, whose squared length is given by σ2 ¼ 2≡ sðsþ 1Þ
with s ¼ 1, while the normalization of the phase-space
volume is given by the spin degeneracy, as expected. We
remark that the introduction of the continuous variable sμ

does not imply a classical treatment of spin. Instead, it
provides a tool to define a scalar distribution function that
still contains all information related to spin degrees of
freedom, which are contained in Gμ and Fμν

K .
Defining a distribution function in this enlarged phase

space

fðx; k; sÞ ≔ fK − s ·Gþ 5

8
sμsνFK;μν; ð21Þ

which fulfills

1

3

Z
dSðkÞf ¼ fK;

1

2

Z
dSðkÞsμf ¼ Gμ;Z

dSðkÞKμν
αβs

αsβf ¼ Fμν
K ; ð22Þ

Eqs. (16) and (17) become

k · ∂f ¼ C½f�; ð23aÞ

ðk2 −m2Þf ¼ ℏM; ð23bÞ

where we defined

C½f� ≔ CK − s · CG þ 5

8
sμsνC

μν
K ;

M ≔ DK − s ·DG þ 5

8
sμsνD

μν
K : ð24Þ

In analogy with the decomposition of the Wigner function,
the components of Cμν and δMμν are defined as

CK ≔
1

3
KμνCμν; CμG ≔−

i
2
ϵμναβ

kν
m
Cαβ; CμνK ≔Kμν

αβC
αβ;

ð25aÞ

DK ≔
1

3
KμνδMμν; Dμ

G ≔ −
i
2
ϵμναβ

kν
m
δMαβ;

Dμν
K ≔ Kμν

αβδM
αβ: ð25bÞ

Similar to the spin-1=2 case discussed in Ref. [36], the
solution of the mass-shell equation (23b) is given by

fðx; k; sÞ ¼ δðk2 −M2Þfðx; k; sÞ; ð26Þ

where M2 ≔ m2 þ ℏδm2ðx; k; sÞ, and

ℏδðk2 −m2Þδm2ðx; k; sÞfðx; k; sÞ ¼ ℏMðx; k; sÞ þOðℏ2Þ:
ð27Þ

Wewill show in Appendix C that the off-shell effects cancel
in the Boltzmann equation.

III. EVALUATING THE COLLISION TERM

In this section we follow the approach by De Groot
et al. [86] to expand the collision operator appearing
in Eq. (23a) in terms of the distribution function f. The
steps performed here are similar to the ones for scalar
particles discussed in [86], but differ in some aspects due to
the nontrivial spin structure of vector particles. For this
reason we recap some of the steps of Ref. [86] here, with
more technical details explained in Appendix A.
The main idea is to express any operator in terms of the

asymptotic initial states (“in” states), which are defined by

jkn; λniin ≔ â†inðkn; λnÞj0i; ð28Þ

where

kn ≔ kμ1; k
μ
2;…; kμn; λn ≔ λ1;λ2;…;λn;

â†inðkn;λnÞ≔ â†inðk1;λ1Þâ†inðk2;λ2Þ � � � â†inðkn;λnÞ: ð29Þ

These states form a complete and orthogonal basis of the
Fock space; i.e., we have the relations

inhk; λjk0; λ0iin ¼ ð2πℏÞ32k0δð3Þðk − k0Þδλλ0 ; ð30aÞ

1 ¼
X∞
n¼0

1

n!

X
λn

Z
d3kn

ð2πℏÞ3n2ðk0Þn jk
n; λniininhkn; λnj: ð30bÞ

Here, we defined

Z
d3kn

ð2πℏÞ3n2ðk0Þn ≔
Z

d3k1

ð2πℏÞ32k01

Z
d3k2

ð2πℏÞ32k02
� � �

×
Z

d3kn

ð2πℏÞ32k0n
;

X
λn

≔
X3
λ1¼1

X3
λ2¼1

� � �
X3
λn¼1

: ð31Þ
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The factorial in Eq. (30b) is needed to account for double
counting, such that the Fock space is spanned by all distinct
in-states. Note that the same completeness relation also
holds for the asymptotic final states (“out” states). Using
these creation and annihilation operators, we define the in-
fields

V̂μ
inðxÞ ≔

ffiffiffi
ℏ

p X
σ

Z
d4k

ð2πℏÞ3 Θðk
0Þδðk2 −m2Þ

× e−
i
ℏk·xϵðσÞμðkÞâinðk; σÞ; ð32Þ

where the prefactor is needed to recover the correct units of
the vector field. Here, ϵðσÞμðkÞ are polarization vectors,
which fulfill the following orthogonality and completeness
relations

ϵ�ðλÞμðkÞϵðλ0Þμ ðkÞ ¼ −δλλ0 ; ð33aÞX
λ

ϵ�ðλÞμðkÞϵðλÞνðkÞ ¼ −Kμν: ð33bÞ

Using Eq. (32), we define the in-Wigner function

Wμν
in ðx; kÞ ≔ −

2

ð2πℏÞ4ℏ
Z

d4ve−
i
ℏk·v

×

�
V̂†μ
in

�
xþ v

2

�
V̂ν
in

�
x −

v
2

��
: ð34Þ

In a subsequent step, we use the fact that an arbitrary
operator may be expressed in terms of the in-Wigner
functions. This step contains the assumption of molecular
chaos, thus rendering the evolution of the Wigner function
irreversible; cf. Appendix A and Ref. [86]. Then, one can
use this expression to express both the Wigner function
itself and the collision kernel Cμν in terms of Wμν

in . Both
calculations are detailed in Appendix B.
The Wigner function itself can simply be written

as Wμν ¼ Wμν
in þ � � �, where the dots indicate contributions

of higher order in the density, which we neglect in this
work in the collision term [36,86]. We show in Appendix B
that the components of the collision term that are
orthogonal to the four-momentum (marked by a subscript
“⊥”) read to lowest order in the density and to first order
in ℏ

Cμν⊥;on-shell ¼
ð2πℏÞ7

4

Z
d3k1

ð2πℏÞ32k01

Z
d3k2

ð2πℏÞ32k02

Z
d3k0

ð2πℏÞ32k00 M
γ1γ2δ1δ2Mζ1ζ2η1η2

Z
d4u2

× Kμ
μ0K

ν
ν0

�
K −

U1 þ U2

2

�
μ0α
�
K þU1 þU2

2

�
ν0β
�
δð4Þðkþ k0 − k1 − k2Þgαδ1gβζ1K0

δ2ζ2

×
n
δð4Þðu1ÞWα1β1

on-shellðx; k1Þ − iℏ
h
∂
ρ
u1δ

ð4Þðu1Þ
i
∂ρW

α1β1
on-shellðx; k1Þ

o�
K1 −

U1

2

�
γ1α1

�
K1 þ

U1

2

�
β1η1

×
n
δð4Þðu2ÞWα2β2

on-shellðx; k2Þ − iℏ
h
∂
ρ
u2δ

ð4Þðu2Þ
i
∂ρW

α2β2
on-shellðx; k2Þ

o�
K2 −

U2

2

�
γ2α2

�
K2 þ

U2

2

�
β2η2

−
1

2

	
δð4Þðu1ÞWα1β1

on-shell

�
x; k −

u2
2

�
− iℏ

h
∂
ρ
u1δ

ð4Þðu1Þ
i
∂ρW

α1β1
on-shell

�
x; k −

u2
2

�


×
n
δð4Þðu2ÞWα2β2

on-shellðx; k0Þ − iℏ
h
∂
ρ
u2δ

ð4Þðu2Þ
i
∂ρW

α2β2
on-shellðx; k0Þ

o�
K0 −

U2

2

�
γ2α2

K1;δ1ζ1K2;δ2ζ2

× gαα1gβγ1

�
K þU1 −U2

2

�
β1η1

�
K0 þ U2

2

�
β2η2

δð4Þ
�
kþ k0 − k1 − k2 þ

u1
2

�

−
1

2

	
δð4Þðu1ÞWα1β1

on-shell

�
x; kþ u2

2

�
− iℏ

h
∂
ρ
u1δ

ð4Þðu1Þ
i
∂ρW

α1β1
on-shell

�
x; kþ u2

2

�


×
n
δð4Þðu2ÞWα2β2

on-shellðx; k0Þ − iℏ
h
∂
ρ
u2δ

ð4Þðu2Þ
i
∂ρW

α2β2
on-shellðx; k0Þ

o�
K0 −

U2

2

�
γ2α2

K1;δ1ζ1K2;δ2ζ2

× gαη1gββ1

�
K þ U2 −U1

2

�
γ1α1

�
K0 þ U2

2

�
β2η2

δð4Þ
�
kþ k0 − k1 − k2 −

u1
2

��
: ð35Þ

In this equation, the fourth-rank tensors M are the tree-level vertices of the theory, defined in Eq. (B30). Compared to
Ref. [36], we neglected the contribution of collisions that exchange only spin, but not momentum, since this term can be
considered as a modification of the left-hand side of the Boltzmann equation (cf. Ref. [87]). In the following subsections, we
evaluate the local and nonlocal components of Eq. (35).
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A. Local collisions

The local collision term is obtained by taking into account only the contributions in Eq. (35) that are proportional to
δð4Þðu1Þδð4Þðu2Þ, and it is thus given by

Clocal;μν⊥;on-shellðx; kÞ ¼
ð2πℏÞ7

4

Z
d3k1

ð2πℏÞ32k01

Z
d3k2

ð2πℏÞ32k02

Z
d3k0

ð2πℏÞ32k00 δ
ð4Þðkþ k0 − k1 − k2ÞMγ1γ2δ1δ2Mζ1ζ2η1η2

×

�
Wα1β1

on-shellðx; k1ÞWα2β2
on-shellðx; k2ÞKμ

δ1
Kν

ζ1
K1;γ1α1K2;γ2α2K

0
δ2ζ2

K1;β1η1K2;β2η2

−
1

2
Wα1β1

on-shellðx; kÞWα2β2
on-shellðx; k0ÞK0

γ2α2K1;δ1ζ1K2;δ2ζ2K
0
β2η2

ðKν
γ1K

μ
α1Kβ1η1 þ Kμ

γ1K
ν
β1
Kγ1α1Þ

�
: ð36Þ

As a next step, we want to express the collision kernel in
extended phase space. In order to do this, we first express
the on-shell part of the noninteracting Wigner function in
the collision term via the distribution function in extended
phase space as

Wμν
on-shellðx; kÞ ¼

Z
dSðkÞhμνðk; sÞfðx; k; sÞ; ð37Þ

where

hμνðk; sÞ ≔ 1

3
Kμν þ i

2
ϵμναβ

kα
m

sβ þ Kμν
αβs

αsβ: ð38Þ

Note that in this form only the components of the Wigner
function that are orthogonal to the momentum have been
considered, which is justified since all Wigner functions
that appear in Eq. (36) are contracted with projectors
orthogonal to their respective momenta. Similarly, we
define the second-rank tensor

Hμνðk; sÞ ≔ 1

3
Kμν þ i

2
ϵμναβ

kα
m

sβ þ
5

8
Kμν

αβs
αsβ; ð39Þ

such that we can express the collision kernel in extended
phase space defined in Eq. (24) as C ≔ Hνμðk; sÞCμν.
Introducing the phase-space measure

dΓi ≔ dKidSiðkiÞ; dKi ≔
d3ki

ð2πℏÞ3k0i
ð40Þ

and using the fact that

Z
dSðkÞhμνðk; sÞ ¼

Z
dSðkÞHμνðk; sÞ ¼ Kμν; ð41Þ

we can then write the on-shell part of the collision kernel in
extended phase space as

Clocal
on-shell ¼

1

2

Z
dΓ1dΓ2dΓ0dS̄ðkÞð2πℏÞ4δð4Þðkþ k0 − k1 − k2ÞW½fðx; k1; s1Þfðx; k2; s2Þ − fðx; k0; s0Þfðx; k; s̄Þ�; ð42Þ

where the local transition rate is given by

W ≔
ð2πℏÞ3
32

Mγ1γ2δ1δ2Mζ1ζ2η1η2hγ1η1ðk1; s1Þhγ2η2ðk2; s2Þhζ2δ2ðk0; s0ÞfHðk; sÞ; hðk; s̄Þgζ1δ1 : ð43Þ

In this expression, the curly brackets denote the anticom-
mutator. Note also the similarity of Eq. (43) to its spin-1=2
counterpart given in Ref. [87]. Note that a similar result has
already been obtained in Ref. [88], where mean-field
effects were included as well, but nonlocal contributions
to the collision term were omitted.

B. Nonlocal collisions

In order to obtain the nonlocal collision term, we have to
evaluate the u1 and u2 derivatives appearing in Eq. (35),

which we achieve by integrating by parts. The result can be
split into three contributions, which we label with Roman
numbers below. First, the term with the u1 and u2
derivatives acting on the projectors ðK�U1=2�U2=2Þμν
is evaluated using the relation

∂

∂uλ

�
K �U

2

�
μν
����
u¼0

¼ −
∂

∂uλ
Eμν

�
k� u

2

�����
u¼0

¼ ∓ 1

2m2
gλðμkνÞ � kλkμkν

m4
; ð44Þ
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and the result reads

Cnonlocal;μν⊥;on-shell;I ¼
iℏ
2m2

ð2πℏÞ7
32

Z
dK1dK2dK0Mγ1γ2δ1δ2Mζ1ζ2η1η2δð4Þðkþ k0 − k1 − k2ÞðKρμkαKνβ − KμαKρνkβÞ

× ∂ρ

�
Wα1β1

on-shellðx; k1ÞWα2β2
on-shellðx; k2ÞK1;β1η1K1;γ1α1K2;β2η2K2;γ2α2K

0
δ2ζ2

gαδ1gβζ1

−
1

2
Wα2β2

on-shellðx; k0ÞWα1β1ðx; kÞon-shellK1;δ1ζ1K2;δ2ζ2K
0
γ2α2K

0
β2η2

ðgαα1gβγ1Kβ1η1 þ gαη1gββ1Kγ1α1Þ
�
: ð45Þ

Translating this equation into extended phase space, we find

Cnonlocal
on-shell;I ¼ −

iℏ
2m2

ð2πℏÞ7
32

Z
dΓ1dΓ2dΓ0Mγ1γ2δ1δ2Mζ1ζ2η1η2δð4Þðkþ k0 − k1 − k2Þhγ1η1ðk1; s1Þhγ2η2ðk2; s2Þ

× hδ2ζ2ðk0; s0Þ
h
Hρ

δ1ðk; sÞkζ1 − kδ1Hζ1
ρðk; sÞ

i
∂ρ

�
fðx; k1Þfðx; k2Þ −

1

2
fðx; k0Þfðx; kÞ

�
: ð46Þ

Here, we used the symmetries ofM (cf. Appendix B) as well as the fact that the distribution functions are spin-independent
at zeroth order in ℏ.
The second contribution is obtained from the u1 and u2 derivatives acting on the other projectors that differ between the

gain and loss terms, yielding

Cnonlocal;μν⊥;on-shell;II ¼
iℏ
2m2

ð2πℏÞ7
32

Z
dK1dK2dK0Mγ1γ2δ1δ2Mζ1ζ2η1η2δð4Þðkþ k0 − k1 − k2Þ

×

	h
∂ρW

α1β1
on-shellðx; k1Þ

i
Won-shell;γ2η2ðx; k2Þδρα1Kμ

δ1
Kν

ζ1
K0

δ2ζ2
K1;β1½η1k1;γ1�

þ
h
∂ρW

α2β2
on-shellðx; k2Þ

i
Won-shell;δ1ζ1ðx; k2Þδρα2Kμ

δ1
Kν

ζ1
K0

δ2ζ2
K2;β2½η2k2;γ2�

−
1

2

h
∂ρW

α2β2
on-shellðx; k0Þ

i
Wα1β1

on-shellðx; kÞK1;δ1ζ1K2;δ2ζ2

h
Kμ

α1K
ν
γ1

�
Kβ1η1δ

ρ
α2K

0
β2½η2k

0
γ2�

þK0
γ2α2K

0
β2η2

δρβ1kη1


þKμ

η1K
ν
β1

�
Kγ1α1δ

ρ
α2K

0
β2½η2k

0
γ2� − K0

γ2α2K
0
β2η2

δρα1kγ1

i
−
1

2

h
∂ρW

α1β1
on-shellðx; kÞ

i
Won-shell;γ2η2ðx; k0ÞK1;δ1ζ1K2;δ2ζ2δ

ρ
α1ðKμ

η1K
ν
β1
kγ1 − Kμ

β1
Kν

γ1kη1Þ


: ð47Þ

Here, we used that, since the nonlocal contributions are of order OðℏÞ, we may take the Wigner function to be symmetric,
sinceWμνðx; kÞ ¼ Kμνfð0Þðx; kÞ þOðℏÞ. Contracting Eq. (45) with Hνμðk; sÞ and using Eq. (37) as well as the symmetries
of the vertex M, we obtain

Cnonlocal
on-shell;II ¼

iℏ
2m2

ð2πℏÞ7
32

Z
dΓ1dΓ2dΓ0ð2πℏÞ4δð4Þðkþ k0 − k1 − k2ÞMγ1γ2δ1δ2Mζ1ζ2η1η2

×

	
fðx; k2Þ½∂ρfðx; k1Þ�

�
hρη1ðk1; s1Þk1;γ1 − k1;η1hγ1

ρðk1; s1Þ
�
hγ2η2ðk2; s2Þh0ζ2δ2ðk0; s0ÞHζ1δ1ðk; sÞ

þ fðx; k1Þ½∂ρfðx; k2Þ�hγ1η1ðk1; s1Þ
�
hρη2ðk2; s2Þk2;γ2 − k2;η2hγ2

ρðk2; s2Þ
�
h0ζ2δ2ðk0; s0ÞHζ1δ1ðk; sÞ

− fðx; kÞ½∂ρfðx; k0Þ�hγ1η1ðk1; s1Þhγ2η2ðk2; s2Þ
h
hρδ2ðk0; s0Þk0ζ2 − k0δ2hζ2

ρðk0; s0Þ
i
Hζ1δ1ðk; sÞ

−
1

2
½fðx; k0Þ∂ρfðx; kÞ − fðx; kÞ∂ρfðx; k0Þ�hγ1η1ðk1; s1Þhγ2η2ðk2; s2Þ

× hζ2δ2ðk0; s0Þ
h
Hρ

δ1ðk; sÞkζ1 − kδ1Hζ1
ρðk; sÞ

i

: ð48Þ

The third contribution consists in the derivatives acting on the Wigner functions and delta functions in the loss term in
Eq. (35). We compute it as

QUANTUM KINETIC THEORY WITH INTERACTIONS FOR … PHYS. REV. D 108, 116017 (2023)

116017-7



Cnonlocal;μν⊥;on-shell;III ¼
iℏ
4

ð2πℏÞ7
32

Z
dK1dK2dK0Mγ1γ2δ1δ2Mζ1ζ2η1η2δð4Þðkþ k0 − k1 − k2Þ

×
nh

∂ρWon-shell;γ2η2ðx; k0Þ
ih
∂
ρ
kW

α1β1
on-shellðx; kÞ

i
þ
h
∂ρW

α1β1
on-shellðx; kÞ

ih
∂
ρ
k0Won-shell;γ2η2ðx; k0Þ

io
× K1;δ1ζ1K2;δ2ζ2

�
Kμ

α1K
ν
γ1Kβ1η1 − Kμ

η1K
ν
β1
Kγ1α1

�
¼ Oðℏ2Þ: ð49Þ

The second equality follows from the fact that Wμν
on-shellðx; kÞ is proportional to Kμν at zeroth order, such that this

contribution to the nonlocal collision term vanishes up to first order in ℏ. This is consistent with the result for spin-1=2
particles found in Ref. [87].
We define the nonlocal shifts

Δμ
1 ≔

1

3

1

W
ð2πℏÞ3
32

iℏ
m2

Mγ1γ2δ1δ2Mζ1ζ2η1η2ðhμ1η1k1;γ1 − k1;η1h1;γ1
μÞh2;γ2η2h0ζ2δ2Hζ1δ1 ; ð50aÞ

Δμ
2 ≔

1

3

1

W
ð2πℏÞ3
32

iℏ
m2

Mγ1γ2δ1δ2Mζ1ζ2η1η2h1;γ1η1ðhμ2η2k2;γ2 − k2;η2h2;γ2
μÞh0ζ2δ2Hζ1δ1 ; ð50bÞ

Δ0μ ≔
1

3

1

W
ð2πℏÞ3
32

iℏ
m2

Mγ1γ2δ1δ2Mζ1ζ2η1η2h1;γ1η1h2;γ2η2ðh0μδ2k0ζ2 − k0δ2h
0
ζ2
μÞHζ1δ1 ; ð50cÞ

Δμ ≔
1

3

1

W
ð2πℏÞ3
32

iℏ
m2

Mγ1γ2δ1δ2Mζ1ζ2η1η2h1;γ1η1h2;γ2η2h
0
ζ2δ2

ðHμ
δ1kζ1 − kδ1Hζ1

μÞ; ð50dÞ

where we used the shorthand notation h1 ≔ hðk1; s1Þ (and analogously for h2, h0, and H). Note again the similarity of
Eq. (50) to the analogous expression for spin-1=2 particles reported in Eq. (100) of Ref. [87]. With these definitions, the
nonlocal collision term, defined as the sum of the individual contributions, reads

Cnonlocal
on-shell ¼

1

2

Z
dΓ1dΓ2dΓ0dS̄ðkÞð2πℏÞ4δð4Þðkþ k0 − k1 − k2ÞW

× ½fðx; k2ÞðΔμ
1 − ΔμÞ∂μfðx; k1Þ þ fðx; k1ÞðΔμ

2 − ΔμÞ∂μfðx; k2Þ − fðx; kÞðΔ0μ − ΔμÞ∂μfðx; k0Þ�; ð51Þ

where we introduced a spurious integration over s̄ in order to be able to combine Eqs. (42) and (51) in the next subsection.

C. Full collision term

Adding up the results (42) and (51), we arrive at the main result of this work,

k · ∂fðx; k; sÞ ¼ 1

2

Z
dΓ1dΓ2dΓ0dS̄ðkÞð2πℏÞ4δð4Þðkþ k0 − k1 − k2ÞW

× ½fðxþ Δ1 − Δ; k1; s1Þfðxþ Δ2 − Δ; k2; s2Þ − fðxþ Δ0 − Δ; k0; s0Þfðx; k; s̄Þ�; ð52Þ

where W is defined in Eq. (43), while the nonlocal shifts
Δμ

1, Δ
μ
2, Δ0μ, and Δμ have been introduced in Eq. (50).

Furthermore, we used the fact that the nonlocal shifts are of
first order in ℏ, such that we may interpret the local and
nonlocal contributions as the zeroth and first term in a
Taylor series, respectively.
At this point it should be noted that it is in general not

possible to formulate a weak equivalence principle for the
collision kernel as done in Ref. [36], i.e., remove the
integration over s̄. The reason for this lies in the appearance
of terms of second order in the spin variables, and thus the

inequivalence of hμνðk; s̄Þ and Hμνðk; sÞ at this order.
Nevertheless, in cases where only terms up to first order
in the spin vectors are needed, a weak equivalence principle
can be formulated (cf. Secs. IV and V).

IV. EQUILIBRIUM

In addition to conserved scalar quantities such as baryon
number or electric charge, the so-called summational invar-
iants in binary elastic collisions are the four-momentum kμ

and the total angular momentum Jμν ≔ x½μkν� þ ℏΣμν
s , where
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the first termconstitutes anorbital part andΣμν
s ≔ −ϵμναβ kα

m sβ
denotes the dipole-moment tensor. Since local equilibrium is
defined bymaximizing the entropy, which in kinetic theory is
equivalent to a vanishing collision term, the local-equilibrium
distribution function has to consist of the conserved quan-
tities. Furthermore, since we consider the low-density
approximation, the local-equilibrium distribution function
has to be of Maxwell-Jüttner form, i.e., an exponential.
Thus, we may write the local-equilibrium distribution func-
tion as [34,36]

feqðx; k; sÞ ¼
1

ð2πℏÞ3 exp
�
αðxÞ − βμðxÞkμ þ

ℏ
2
ΩμνðxÞΣμν

s

�
;

ð53Þ

where α; βμ, and Ωμν are Lagrange multipliers (cf. also
Refs. [30,34,57,79]). Note that βμ ≔ bμ þΩμνxν, where bμ

is the Lagrange multiplier for the four-momentum and
Ωμν the Lagrange multiplier for the total angular momen-
tum [34]. It should be stressed that with this form of the
local-equilibrium distribution function there is no tensor
polarization in local equilibrium, since the tensor polari-
zation is related to the components of the distribution
function that are bilinear in the spin vector. Thus, when
taking vector particles as fundamental degrees of freedom,
to first order in ℏ the tensor polarization is a purely
dissipative effect (cf. Ref. [75]).
Expanding the right-hand side of Eq. (52) up to first

order in ℏ, the collision term reads

Con-shell½feq� ¼ −
Z

dΓ1dΓ2dΓ0dS̄ðkÞWe2α−β·ðk1þk2Þ
�
∂μαðΔμ þ Δ0μ − Δμ

1 − Δμ
2Þ

þ ∂μβνðΔμ
1k

ν
1 þ Δμ

2k
ν
2 − Δμkν − Δ0μk0νÞ − ℏ

2
ΩμνðΣμν

s1 þ Σμν
s2 − Σμν

s̄ − Σμν
s0 Þ

�
: ð54Þ

To proceed, we would like to use the conservation of the
total angular momentum, Jμν1 þ Jμν2 − Jμν − J0μν ¼ 0,
which, however, is not immediately possible because the
spin variable after the collision is s̄, and not s. As
mentioned at the end of Sec. III, in this case it is possible
to formulate a weak equivalence principle as done in
Ref. [34]. There the goal is to eliminate the integration
over s̄ in order to obtain a form of the collision term with
standard gain and loss terms. Since only spin-integrated
quantities are physical, we aim to find a new distribution
function f̃ðx; k; sÞ as well as a collision term (omitting the
subscript “on-shell”) C̃½f̃� such that

k · ∂f̃ðx; k; sÞ ¼ C̃½f̃�; ð55aÞZ
dSðkÞbQ̃ ¼

Z
dSðkÞbQ; ð55bÞ

where b∈ f1; sμ; Kμν
αβs

αsβg, Q̃∈ ff̃; C̃g, and Q∈ ff;Cg.
Analogous to the argumentation put forward in Ref. [36],
we obtain f̃ ¼ f from Eq. (55b). For parity-conserving
interactions it holds thatZ

dSiðkiÞWsμi ¼0;
Z

dSiðkiÞdSjðkjÞWsμi K
νλ
αβs

α
js

β
j ¼0;

ð56Þ
where si; sj ∈ fs1; s2; s0; s; s̄g, since the quantities in
Eq. (56) transform as pseudotensors under parity, while

the only tensor structures at our disposal are given by an
odd number of powers of momentum, which transform as
tensors. Thus, the only term that is nonzero after integration
over spin space is the one linear in s. Making use of the
equalities

Z
dS̄ðkÞ½Hμαðk; sÞhανðk; s̄Þ þ hμαðk; s̄ÞHα

νðk; sÞ�

¼ 2Hμνðk; sÞ; ð57aÞ
Z

dSðkÞsρdS̄ðkÞs̄σ½Hμαðk;sÞhανðk; s̄Þþhμαðk; s̄ÞHα
νðk;sÞ�

¼2

Z
dSðkÞsρsσHμνðk;sÞ; ð57bÞ

we may replace s̄ with s and remove the dS̄-integral in
Eq. (61) while redefining the transition rate as

W̃ ≔
ð2πℏÞ3
16

Mγ1γ2δ1δ2Mζ1ζ2η1η2Hγ1η1ðk1; s1ÞHγ2η2ðk2; s2Þ
×Hδ2ζ2ðk0; s0ÞHδ1ζ1ðk; sÞ; ð58Þ

where we used that hμνðk; sÞ ¼ Hμνðk; sÞ to linear
order in s (which are the only relevant terms for this case).
Then, we are able to employ the conservation of the
total angular momentum to obtain the modified collision
term
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C̃½feq� ¼ −
Z

dΓ1dΓ2dΓ0W̃e−β·ðk1þk2Þ
�
∂μαðΔμ þ Δ0μ − Δμ

1 − Δμ
2Þ

þ 1

2
∂ðμβνÞðΔμ

1k
ν
1 þ Δμ

2k
ν
2 − Δμkν − Δ0μk0νÞ − ℏ

2
ðΩμν −ϖμνÞðΣμν

s1 þ Σμν
s2 − Σμν

s − Σμν
s0 Þ

�
; ð59Þ

which is equivalent to the original equilibrium collision
term (54). Here, the thermal vorticity is defined
as ϖμν ≔ − 1

2
∂
½μβν�. Thus, as in the case of spin-1=2

particles [36], the collision term vanishes to this order if
∂μα ¼ 0, Ωμν ¼ ϖμν, and ∂

ðμβνÞ ¼ 0, which are the con-
ditions for global equilibrium as well.

V. SPIN HYDRODYNAMICS FROM
KINETIC THEORY

In this section we shortly discuss the implications of the
kinetic theory developed previously to the formulation of
spin hydrodynamics for massive spin-1 particles. Such a
theory was recently derived for spin-1=2 particles in
Ref. [57] by using the method of moments to obtain
hydrodynamic equations of motion from the Boltzmann
equation. The main difference between spin and standard
hydrodynamics lies in the fact that, in addition to the
equations of motion for the energy-momentum tensor and
other conserved currents, one has to supply an evolution
equation for the spin tensor Sλ;μν as well [24,25]. The form

of this equation of motion depends on the so-called
pseudogauge [40,89], which has recently been discussed
for interacting spin-1=2 and spin-1 particles in Ref. [58]. It
was found that for the case of spin-1=2 particles the so-
called Hilgevoord-Wouthuysen (HW) spin tensor is con-
served for free fields or in global equilibrium as well as for
a purely local collision term [34,40]. We will show in the
following that this property of the HW spin tensor also
holds for spin-1 particles.
We consider the spin tensor in the HW pseudo-

gauge [40,58]

Sλ;μνHW ¼
Z

dΓkλ
�
Σμν
s −

ℏ
3m2

k½μ∂ν�
�
fðx; k; sÞ þOðℏ2Þ;

ð60Þ

where off-shell contributions are neglected due to the low-
density approximation [86]. Using Eq. (23) with the local
collision term given by Eq. (42), we obtain the following
equation of motion for the spin tensor:

∂λS
λ;μν
HW jlocal ¼

Z
dΓΣμν

s Clocal
on-shell½f�

¼ 1

2

Z
dΓdΓ1dΓ2dΓ0dS̄ðkÞΣμν

s ð2πℏÞ4δð4Þðkþk0−k1−k2ÞW½fðx;k1;s1Þfðx;k2;s2Þ−fðx;k0;s0Þfðx;k; s̄Þ�: ð61Þ

In order to proceed, it is important that the right-hand side of
Eq. (61) takes on the standard formof gain and loss terms; i.e.,
s̄ has to be replaced by s. Because the dipole-moment tensor
Σμν
s is linear ins, it is possible to employ theweak equivalence

principle as shown in Sec. IV, i.e., replace W by W̃ and
remove the dS̄-integration. Since W̃ is manifestly symmetric
under the exchanges ðk1; s1Þ ↔ ðk2; s2Þ, ðk; sÞ ↔
ðk0; s0Þ, and ½ðk1; s1Þ; ðk2; s2Þ� ↔ ½ðk; sÞ; ðk0; s0Þ�, the sum-
mational conservation of spin in local collisions,
Σμν
s þ Σμν

s0 ¼ Σμν
s1 þ Σμν

s2 , implies that in this case the HW
spin tensor is a conserved quantity. On the other hand, for
nonlocal collisions the dipole-moment tensor would not be a
collisional invariant and, therefore, the HW spin tensor is in
general not conserved.

VI. CONCLUSIONS

In this paper,wehave derived the collision term formassive
spin-1 particles from the Wigner-function formalism

up to first order in ℏ, following the method outlined in
Ref. [86] and recently employed for spin-1=2 particles in
Refs. [34,36]. Both local and nonlocal contributions have
been computed in a covariant fashion, resulting in similar
expressions to those derived in Ref. [87] for spin-1=2
particles.
We find that it is in general not possible to formulate a

weak equivalence principle for the collision term as done in
Ref. [36] in order to obtain the standard form of the gain
and loss terms. However, when the distribution function is
at most of first order in the phase-space spin variable, such a
replacement is possible, allowing one to establish the usual
form of the local-equilibrium distribution function and to
show that the dipole-moment tensor Σμν

s is conserved in
local collisions. Furthermore, we do not find contributions
of second order in the spin variable in local equilibrium,
suggesting that all effects related to the spin alignment of
vector mesons are either of dissipative origin [75] or of
higher order in ℏ.
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The theory developed in this paper can be employed
to evaluate the spin alignment of particles such as the
ϕ-mesons, which can then be compared to experimental
results. As a first step in this direction, Ref. [75] evaluated
the hydrodynamic Navier-Stokes limit of the kinetic theory
presented here to derive a relation between the spin
alignment of vector mesons and the shear stress of the
medium. In order to refine these results, one can derive
second-order dissipative spin-1 hydrodynamics by using
the method of moments, as it has recently been carried out
for the spin-1=2 case [57,79].
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APPENDIX A: REWRITING EXPECTATION
VALUES

In this appendix we show how to express the expectation
value of an arbitrary operator in terms of the in-Wigner
function (34). Consider a general operator Ô acting in the
Hilbert space. Inserting Eq. (30b), we can express its
statistical average as

D
Ô
E
≔ Trρ̂ Ô ¼

X∞
n¼0

1

ðn!Þ2
X
λn;λ0n

Z
d3kn

ð2πℏÞ3n2ðk0Þn
Z

d3k0n

ð2πℏÞ3n2ðk00Þn inhkn; λnjÔjk0n; λ0niininhk0n; λ0njρ̂jkn; λniin: ðA1Þ

Note that, to arrive at this expression, we assume that the density matrix commutes with the number operator of in-state
particles [86]. The next task is to express the matrix element of the density matrix through expectation values of bilinear
products of creation and annihilation operators. For this we first compute, using the cyclicity of the trace,D

â†inðkn; λnÞâinðk0n; λ0nÞ
E
¼ Trâinðk0n; λ0nÞρ̂â†inðkn; λnÞ

¼
X∞
k¼0

1

k!

X
σn

Z
d3pk

ð2πℏÞ3k2ðp0Þk inhpk; k0n; σk; λ0njρ̂jpk; kn; σk; λniin: ðA2Þ

The inversion of this relation, proven in Ref. [86], gives

inhk0n; λ0njρ̂jkn; λniin ¼
X∞
m¼0

ð−1Þm
ðm!Þ2

X
σm;σ0m

Z
d3pm

ð2πℏÞ3m2ðp0Þm
Z

d3p0m

ð2πℏÞ3m2ðp00Þm inhpm; σmjp0m; σ0miin

×
D
â†inðkn; pm; λn; σmÞâinðk0n; p0m; λ0n; σ0mÞ

E
; ðA3Þ

which we may insert into Eq. (A1) to obtain

D
Ô
E
¼

X∞
n¼0

1

ðn!Þ2
X
λn;λ0n

Z
d3kn

ð2πℏÞ3n2ðk0Þn
Z

d3k0n

ð2πℏÞ3n2ðk00Þn inhkn; λnjÔjk0n; λ0niin

×
X∞
m¼0

ð−1Þm
ðm!Þ2

X
σm;σ0m

Z
d3pm

ð2πℏÞ3m2ðp0Þm
Z

d3p0m

ð2πℏÞ3m2ðp00Þm inhpm; σmjp0m; σ0miin

×
D
â†inðkn; pm; λn; σmÞâinðk0n; p0m; λ0n; σ0mÞ

E
: ðA4Þ

Introducing a new summation index, j ≔ nþm, and using the fact that
P∞

n¼0

P∞
m¼0 ≡

P∞
j¼0

Pj
m¼0, we arrive at
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D
Ô
E
¼

X∞
j¼0

�
1

j!

�
2X
λj;λ0j

Z
d3kj

ð2πℏÞ3j2ðk0Þj
Z

d3k0j

ð2πℏÞ3j2ðk00Þj in⟪k
j; λjjÔjk0j; λ0j⟫in

D
â†inðkj; λjÞâinðk0j; λ0jÞ

E
; ðA5Þ

where we defined the expression (taken to be symmetric under the exchange of primed and unprimed variables)

in⟪k
j; λjjÔjk0j; λ0j⟫in ≔

Xj

m¼0

ð−1Þm
�

j

m

�
2

inhkm; λmjk0m; λ0miinin
�
kj−m; λj−mjÔjk0j−m; λ0j−m�in: ðA6Þ

Next we put in the essential assumption of molecular chaos, implying that the expectation value of creation and annihilation
operators factorizes pairwise as

D
â†inðkn; λnÞâinðk0m; λ0mÞ

E
¼ δnm

X
P

Yn
j¼1

D
â†inðkj; λjÞâinðk0j; λ0jÞ

E
: ðA7Þ

Here, the symbol P stands for the symmetrization with respect to the primed and unprimed variables, which is necessary
because of the bosonic nature of the particles. In terms of the fields, Eq. (A7) becomes

D
V̂†μ1
in ðx1Þ � � � V̂†μn

in ðxnÞV̂ν1
in ðx01Þ � � � V̂νm

in ðx0mÞ
E
¼ δnm

X
P

Yn
j¼1

D
V̂
†μj
in ðxjÞV̂νj

inðx0jÞ
E
: ðA8Þ

Inverting the definition of the in-fields (32), we have

1

2πℏ3=2

Z
d4xe

i
ℏk·xϵ�ðλÞμ ðkÞV̂μ

inðxÞ ¼ −Θðk0Þδðk2 −m2Þâinðk; λÞ: ðA9Þ

Inserting this expression into Eq. (A5), we obtain

D
Ô
E
¼

X∞
n¼0

1

n!

Z
d4xn

Z
d4x0nÕn;μ1ν1���μnνnðxn; x0nÞ

Yn
j¼1

D
V̂
†μj
in ðxjÞV̂νj

inðx0jÞ
E
; ðA10Þ

where

Õn;μ1ν1���μnνnðxn; x0nÞ ≔ ℏ−n
Z

d4kn

ð2πℏÞ4n
Z

d4k0n

ð2πℏÞ4n
X
λn;λ0n

�Yn
j¼1

e−
i
ℏðkjxj−k0jx0jÞϵðλjÞμj ðkjÞϵ

�ðλ0jÞ
νj ðk0jÞ

�
in⟪k

n; λnjÔjk0n; λ0n⟫in: ðA11Þ

Using the definition of the in-Wigner function (34), we obtain�
V̂†μ
in

�
xþ v

2

�
V̂ν
in

�
x −

v
2

��
¼ −

ℏ
2

Z
d4ke

i
ℏk·vWμν

in ðx; kÞ: ðA12Þ

Defining the center and difference variables x̄j ≔ ðxj þ x0jÞ=2 and vj ≔ xj − x0j, Eq. (A12) in conjunction with Eq. (A10)
yields

hÔi ¼
X∞
n¼0

1

n!

Z
d4x̄n

Z
d4k̄nOn;μ1ν1���μnνnðx̄n; k̄nÞ

Yn
j¼1

W
μjνj
in ðx̄j; k̄jÞ; ðA13Þ

where we defined

On;μ1ν1���μnνnðx̄n; k̄nÞ ≔
ð−1Þn

2nð2πℏÞ4n
Z

d4un
X
λn;λ0n

�Yn
j¼1

e
i
ℏuj·x̄jϵ

ðλjÞ
μj

�
k̄j −

uj
2

�
ϵ
�ðλ0jÞ
νj

�
k̄j þ

uj
2

��
in⟪k̄

n −
un

2
; λnjÔjk̄n þ un

2
; λ0n⟫

in
:

ðA14Þ
Note that in this calculation k̄ is the integration variable appearing in Eq. (A12), and we used the emerging delta function

δð4Þðkjþk0j
2

− k̄jÞ and defined kj − k0j≕ uj.
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Equation (A13) is the sought-after relation that allows
one to express the expectation value of any operator in
terms of Wμν

in .

APPENDIX B: EXPANSION IN TERMS OF Wμν
in

In this appendix we show how to use Eq. (A13) in order
to express both the Wigner function and the collision kernel
in terms of Wμν

in .

1. Expansion of Wμν in terms of Wμν
in

The (positive-frequency) Wigner function may be
expressed as the following ensemble average:

Wμνðx; kÞ ¼
D
e

i
ℏP̂·xΨ̂μνðkÞe− i

ℏP̂·x
E
; ðB1Þ

where

Ψ̂μνðkÞ≔−
2

ð2πℏÞ4ℏ
Z

d4ve−
i
ℏk·v∶V̂†μ

�
v
2

�
V̂ν

�
−
v
2

�
∶ ðB2Þ

and P̂ is the usual momentum operator. Since the in-states
are eigenstates of the total momentum, we may replace
e−

i
ℏP̂·xjkn;λniin¼

Q
n
j¼1e

− i
ℏkj·xjkn;λniin. Rethinking the steps

that led to Eq. (A13), we observe that the definition of x̄j
will contain an additional term of x. Thus we have

Wμνðx; kÞ ¼
X∞
n¼0

1

n!

Z
d4x̄n

Z
d4k̄nΨμν

n;α1β1���αnβnðx̄n; k̄njkÞ
Yn
j¼1

W
αjβj
in ðxþ x̄j; k̄jÞ; ðB3Þ

where

Ψμν
n;α1β1���αnβnðx̄n; k̄njkÞ ≔

ð−1Þn
2nð2πℏÞ4n

Z
d4un

X
λn;λ0n

�Yn
j¼1

e
i
ℏuj·x̄jϵ

ðλjÞ
αj

�
k̄j −

uj
2

�
ϵ
�ðλ0jÞ
βj

�
k̄j þ

uj
2

��

×
in
⟪k̄n − un

2
; λnjΨ̂μνðkÞjk̄n þ un

2
; λ0n⟫

in
: ðB4Þ

Following Ref. [86], we compute Ψμν
n;αβ for n ¼ 0; 1.

In the case n ¼ 0, inserting Eq. (A6) and making use of the completeness of the out-states, we obtain

Ψμν
0 ð0jkÞ¼−

2

ℏ
Θðk0ÞΘðk2Þ

X∞
m¼0

1

m!

X
λm

Z
d3km

ð2πℏÞ3m2ðk0Þm h0jV̂
†μð0Þjkm;λmiout outhkm;λmjV̂νð0Þj0iδð4Þ

�
kþ

Xm
l¼1

kl

�
; ðB5Þ

where we employed the fact that the out-states are eigenstates of the momentum as well. Since due to the Heaviside
functions (which are also implied in the momentum integrals) the zero component of the momenta is always positive, and
the delta function is always zero, such that

Ψμν
0 ð0jkÞ ¼ 0: ðB6Þ

Similarly, the n ¼ 1 case yields

Ψμν
1;αβðx;pjkÞ ¼ −

1

2ð2πℏÞ4
Z

d4u
X
λ;λ0

e
i
ℏu·xϵðλÞα

�
p −

u
2

�
ϵ�ðλ

0Þ
β

�
pþ u

2

�

×

�
in

�
p −

u
2
; λ

����Ψ̂μν

����pþ u
2
; λ0

�
in
−

in

�
p −

u
2
; λ

����pþ u
2
; λ0

�
inh0jΨ̂μνj0i

�
:

Note that the second term vanishes for the same reasons as Ψμν
0 . Inserting a complete set of out-states again, we have

Ψμν
1;αβðx;pjkÞ ¼

1

ð2πℏÞ4ℏ
Z

d4u
X
λ;λ0

e
i
ℏu·xϵðλÞα

�
p −

u
2

�
ϵ�ðλ

0Þ
β

�
pþ u

2

�X∞
m¼0

1

m!

X
σm

×
Z

d3p0m

ð2πℏÞ3m2ðp00Þm in

�
p −

u
2
; λ

����V̂†μð0Þjp0m; σm
�

out

×
out

�
p0m; σm

����V̂νð0Þ
����pþ u

2
; λ0

�
in
δð4Þ

�
kþ

Xm
l¼1

p0
l − p

�
: ðB7Þ
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Using the fact that the one-particle in or out-states are orthogonal, we find that�
0

����V̂νð0Þ
����pþ u

2
; λ0

�
in
¼

ffiffiffi
ℏ

p
ϵðλ0Þν

�
pþ u

2

�
; ðB8Þ

which may be used to obtain an explicit expression for the m ¼ 0 term in Eq. (B7). The other terms in the respective sum
require that

p2 ¼ ðkþ p0Þ2 ¼ 2m2 þ 2k · p0 > 2m2; ðB9Þ
which implies including the possibility of creating particles with masses larger than twice the mass of the original vector
bosons. This possibility we will neglect, such that only the m ¼ 0 term in Eq. (B7) contributes, yielding

Ψμν
1;αβðx;pjkÞ ¼

1

ð2πℏÞ4
Z

d4u
X
λ;λ0

e
i
ℏu·xϵðλÞα

�
p −

u
2

�
ϵ�ðλ

0Þ
β

�
pþ u

2

�
ϵ�ðλÞμ

�
p −

u
2

�
ϵðλ0Þν

�
pþ u

2

�
δð4Þðk − pÞ: ðB10Þ

Truncating the sum in Eq. (B3) after the first term (higher orders would lead to nonlinear dependencies ofWμν onWμν
in ) and

expanding the in-Wigner function around x, we obtain

Wμνðx; kÞ ¼
Z

d4u
X
λ;λ0

ϵ�ðλÞμ
�
k −

u
2

�
ϵðλÞα

�
k −

u
2

�
ϵ�ðλ

0Þ
β

�
kþ u

2

�
ϵðλ0Þν

�
kþ u

2

�

×
n
Wαβ

in ðx; kÞδð4ÞðuÞ − iℏ
h
∂
ρ
uδð4ÞðuÞ

i
∂ρW

αβ
in ðx; kÞ

o
¼ Kμ

αKν
βW

αβ
in ðx; kÞ − iℏ

Z
d4u

�
K −

U
2

�
μ

α

�
K þ U

2

�
ν

β

h
∂
ρ
uδð4ÞðuÞ

i
∂ρW

αβ
in ðx; kÞ; ðB11Þ

where we defined �
K � U

2

�
μν

≔ gμν − ðk� uÞ−2
�
k� u

2

�
μ
�
k� u

2

�
ν

: ðB12Þ

Integrating by parts and using

∂
ρ
u

�
K �U

2

�
μν
����
u¼0

¼ ∓ k−2
�
1

2
gρðμkνÞ −

kρkμkν

k2

�
ðB13Þ

as well as the fact that k · ∂Wμν
in ðx; kÞ ¼ 0, we can evaluate the second term in Eq. (B11) to get

Wμνðx; kÞ ¼ Kμ
αKν

βW
αβ
in ðx; kÞ þ iℏ∂u

��
K −

U
2

�
μ

α

�
K þU

2

�
ν

β

�
∂ρW

αβ
in ðx; kÞ

¼ Kμ
αKν

βW
αβ
in ðx; kÞ þ

iℏ
2
k−2ð∂ðμkαÞKν

β − ∂
ðνkβÞK

μ
αÞWαβ

in ðx; kÞ:

Remembering that the in-Wigner function corresponds
to free particles, we know from the results of free
Proca theory [58] that kμW

μν
S;in ∼Oðℏ2Þ and kμW

μν
A;in ¼

ðiℏ=2Þ∂νfð0ÞK þOðℏ2Þ. Thus, we may rewrite this expres-
sion up to first order in ℏ as

Wμνðx; kÞ ¼ Kμ
αKν

βW
αβ
in ðx; kÞ þ

iℏ
2

k½μ

k2
∂
ν�fð0ÞK;inðx; kÞ

≡Wμν
in ðx; kÞ: ðB14Þ

Manifestly, we may identify the Wigner function with its in
counterpart to this order. Note that this does not mean that
k · ∂Wμν ∼Oðℏ2Þ, as the low-density approximation (B14)
will only be used inside the collision integral.

2. Expansion of Cμν in terms of Wμν
in

Similar to the Wigner function itself, we may also
express the expectation value given in Eq. (10), which
determines the right-hand side of the Boltzmann equation,
via the in-Wigner functions:
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Cμνðx; kÞ ¼
X∞
n¼2

1

n!

Z
d4x̄n

Z
d4k̄nΦμν

n;α1β1���αnβnðx̄n; k̄njkÞ
Yn
j¼1

W
αjβj
in ðxþ x̄j; k̄jÞ; ðB15Þ

where

Φμν
n;α1β1���αnβnðx̄n; k̄njkÞ ≔

ð−1Þn
2nð2πℏÞ4n

Z
d4un

X
λn;λ0n

�Yn
j¼1

e
i
ℏuj·x̄jϵ

ðλjÞ
αj

�
k̄j −

uj
2

�
ϵ
�ðλ0jÞ
βj

�
k̄j þ

uj
2

��

×
in
⟪k̄n − un

2
; λn

��Φ̂μνðkÞ��k̄n þ un

2
; λ0n⟫

in
ðB16Þ

and

Φ̂μνðkÞ ≔ −
i

ð2πℏÞ4
Z

d4ve−
i
ℏk·v∶

�
V̂†μ

�
v
2

�
ρ̂ν
�
−
v
2

�
− ρ̂†μ

�
v
2

�
V̂ν

�
−
v
2

��
∶: ðB17Þ

Note that the sum in Eq. (B15) starts at n ¼ 2, which,
following Ref. [86], can be understood as follows: The
n ¼ 0 term vanishes via the same argumentation as before,
since the line of reasoning did not depend on the objects
appearing in the two-point function, but rather on their
arguments (i.e.,�v=2). The n ¼ 1 term has to vanish as well
since the in-Wigner function represents the distribution of
particles without interactions, such that k · ∂Wμν

in ¼ 0.

The kernel (B16) will be analyzed in the following
for n ¼ 2, corresponding to 2 → 2 collisions. It should
be noted that, considering Eq. (23a), only the parts
of Φμν orthogonal to kμ will contribute to the kinetic
equation.
Inserting a complete set of out-states and using the fact

that the in and out-states are momentum eigenstates, we
obtain

in

�
k2 −

u2

2
; λ2

����Φ̂μνðkÞ
����k2 þ u2

2
; λ02

�
in

¼ −i
X∞
m¼0

1

m!

X
σ0m

Z
d3k0m

ð2πℏÞ3m2ðk00Þm in

�
k2 −

u2

2
; λ2

����½V̂†μð0Þjk0m; σ0m
�

out out

�
k0m; σ0m

����∶ρ̂νð0Þ∶
− ∶ρ̂†μð0Þ∶

����k0m; σ0m
�

out out

�
k0m; σ0m

����V̂νð0Þ�
����k2 þ u2

2
; λ02

�
in
δð4Þ

�
kþ

Xm
j¼0

k0j − k1 − k2

�

¼ −i
X
σ0

Z
d3k0

ð2πℏÞ32k00 in

�
k2 −

u2

2
; λ2

����½V̂†μð0Þ
����k0; σ0

�
out out

�
k0; σ0

����∶ρ̂νð0Þ∶
− ∶ρ̂†μð0Þ∶

����k0; σ0
�

out out

�
k0; σ0

����V̂νð0Þ
�����k2 þ u2

2
; λ02

�
in
δð4Þðkþ k0 − k1 − k2Þ: ðB18Þ

Note that in the last equality we assumed some conserved
charge to be present (e.g., baryon number or electric
charge) and assumed only one species of particles. Under
these conditions, the only permissible scattering with two
outgoing particles is 2 → 2 scattering.
Our next task consists in evaluating the matrix elements

involving the field operators, for which we use the Yang-
Feldman equation relating the fields to the in-fields and the
source operators ρ̂μ [86],

V̂μð0Þ ¼ V̂μ
inð0Þ þ

Z
d4xΔμν

R ð−xÞρ̂νðxÞ: ðB19Þ

Here, Δμν
R is the (symmetric) retarded vector boson propa-

gator. Making use of the Fourier decomposition of the in-
field operators,

V̂μ
inð0Þ ¼

ffiffiffi
ℏ

p X
σ0

Z
d3k0

ð2πℏÞ32k00 âinðk
0; σ0Þϵðσ0Þμðk0Þ; ðB20Þ
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and the orthogonality of the in and out-states in conjunction with the fact that one-particle momentum eigenstates are stable,
we obtain

out

�
k0; σ0

����V̂μð0Þ
����k2 þ u2

2
; λ02

�
in
¼

ffiffiffi
ℏ

p
ð2πℏÞ32k00

�
ϵðλ01Þμ

�
k1 þ

u1
2

�
δð3Þ

�
k0 − k2 −

u2

2

�
δσ0λ0

2
þ ð1 ↔ 2Þ

�

þ Δ̃μν
R

�
k1 þ k2 þ

u1 þ u2
2

− k0
�

out

�
k0; σ0

����ρ̂νð0Þ
����k2 þ u2

2
; λ02

�
in
: ðB21Þ

Here, we also used the Fourier decomposition of the propagator. Inserting Eq. (B21) into Eq. (B18), we have

in

�
k2 −

u2

2
; λ2

����Φ̂μνðkÞ
����k2 þ u2

2
; λ02

�
in

¼ −i
X
σ0

Z
d3k0

ð2πℏÞ32k00
�

out

�
k0; σ0

����∶ρ̂νð0Þ∶
����k2 þ u2

2
; λ02

�
in

×

	 ffiffiffi
ℏ

p
ð2πℏÞ32k00

�
ϵ�ðλ1Þμ

�
k1 −

u1
2

�
δð3Þ

�
k0 − k2 þ

u2

2

�
δσ0λ2 þ ð1 ↔ 2Þ

�

þ Δ̃�μα
R

�
k −

u1 þ u2
2

�
in

�
k2 −

u2

2
; λ2

����∶ρ̂†αð0Þ∶
����k0; σ0

�
out



−

in

�
k2 −

u2

2
; λ2

����∶ρ̂†μð0Þ∶
����k0; σ0

�
out

×

	 ffiffiffi
ℏ

p
ð2πℏÞ32k00

�
ϵðλ01Þν

�
k1 þ

u1
2

�
δð3Þ

�
k0 − k2 −

u2

2

�
δσ0λ0

2
þ ð1 ↔ 2Þ

�

þ Δ̃να
R

�
kþ u1 þ u2

2

�
out

�
k0; σ0

����∶ρ̂αð0Þ∶
����k2 þ u2

2
; λ02

�
in


�
δð4Þðkþ k0 − k1 − k2Þ: ðB22Þ

Notice that we may rewrite the expectation value of a source term as

out

�
k0;σ0

����ρ̂νð0Þ
����k2þu2

2
;λ02

�
in
¼
X3
σ¼0

gσσϵðσÞν
�
kþu1þu2

2

�
ϵ�ðσÞα

�
kþu1þu2

2

�
out

�
k0;σ0

����ρ̂αð0Þ
����k2þu2

2
;λ02

�
in
; ðB23Þ

where we introduced a timelike polarization vector
ϵð0ÞμðkÞ ≔ kμ=k, such that

X3
σ0¼0

gσ
0σ0ϵðσ0ÞμðkÞϵ�ðσ0ÞνðkÞ ¼ Eμν þ Kμν ¼ gμν: ðB24Þ

Note that the term containing the timelike polarization
vector in the sum in Eq. (B23) is actually of higher order in
ℏ. To see this, consider the action of the respective four-
momentum on the source term,

�
kα þ uα1 þ uα2

2

�
out

�
k0; σ0

����ρ̂αð0Þ
����k2 þ u2

2
; λ02

�
in

¼
out

�
k0; σ0

����½ρ̂αð0Þ; P̂α�
����k2 þ u2

2
; λ02

�
in

¼ iℏ
out

�
k0; σ0

����ð∂ · ρ̂Þð0Þ
����k2 þ u2

2
; λ02

�
in
: ðB25Þ

If the source was conserved, this term would vanish
identically. Even though we do not assume this, we will
find that this term will not contribute to the Boltzmann
equation to first order in ℏ.
The contraction of a polarization vector with a

source term can be related to the transfer-matrix elements
through [86]

ϵ�ðσÞαðkÞouthk0; σ0j∶ρ̂αð0Þ∶jk2; λ02iin
¼ −

1ffiffiffi
ℏ

p hk; k0; σ; σ0jt̂jk2; λ02i: ðB26Þ

From this equation and Eq. (B25) we deduce that all
transfer-matrix elements in which one of the polarizations
is timelike, i.e., where σ ¼ 0, are one order higher in ℏ than
their counterparts where all polarizations are spacelike.
Next we note that the retarded propagator of a massive
vector boson may be written as
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Δ̃μν
R ðkÞ ¼ ℏ2

�
Eμν

m2
−

Kμν

k2 −m2 þ iηk0

�

¼ Δ̃RðkÞ
�X3
σ¼0

gσσϵðσÞμðkÞϵ�ðσÞνðkÞ − k2

m2
Eμν

�

¼ Δ̃RðkÞ
X3
σ¼0

gσσϵðσÞμðkÞϵ�ðσÞνðkÞ
�
1 −

k2

m2
δσ0

�
; ðB27Þ

where we defined the scalar retarded propagator Δ̃RðkÞ ≔ −ℏ2ðk2 −m2 þ iηk0Þ−1 and used the fact that η is an infinitesimal
quantity prescribing which contour to take in the complex plane.
Inserting Eqs. (B23), (B26), and (B27) into Eq. (B22), we obtain

in

�
k2 −

u2

2
; λ2

����Φ̂μνðkÞ
����k2 þ u2

2
; λ02

�
in

¼ −i
X3
σ;σ0¼0

gσσgσ
0σ0
�
δ

�
k0 − k01 − k02 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2 −

u2

2

�
2

þm2

s �
δð3Þ

�
k − k1 −

u2

2

�
δσ0λ1

×

�
kþ u1 þ u2

2
; k2 −

u2
2
; σ; λ2

����t̂
����k2 þ u2

2
; λ02

�
ϵðσÞν

�
kþ u1 þ u2

2

�
ϵ�ðσ0Þμ

�
k −

u1 þ u2
2

�

þ ð1 ↔ 2Þ −
�
δ

�
k0 − k01 − k02 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2 þ

u2

2

�
2

þm2

s �
δð3Þ

�
k − k1 þ

u2

2

�
δσλ0

1

×

�
k2 −

u2

2
; λ2

����t̂†
����k − u1 þ u2

2
; k2 þ

u2
2
; σ0; λ02

�
ϵ�ðσ0Þμ

�
k −

u1 þ u2
2

�
ϵðσÞν

�
kþ u1 þ u2

2

�

þ ð1 ↔ 2Þ
�
−
1

ℏ

X
σ00

Z
d3k0

ð2πℏÞ32k00 ϵ
�ðσ0Þμ

�
k −

u1 þ u2
2

�
ϵðσÞν

�
kþ u1 þ u2

2

�

×

�
k2 −

u2

2
; λ2

����t̂†
����k − u1 þ u2

2
; k0; σ0; σ00

��
k0; kþ u1 þ u2

2
; σ00; σ

����t̂
����k2 þ u2

2
; λ02

�

×

	
Δ̃R

�
k −

u1 þ u2
2

��
1 −

ðk − u1þu2
2

Þ2
m2

δσ00

�
− Δ̃�

R

�
kþ u1 þ u2

2

��
1 −

ðkþ u1þu2
2

Þ2
m2

δσ0

�


× δð4Þðkþ k0 − k1 − k2Þ
�
; ðB28Þ

where we inserted identities in order to be able to factor out the sums over σ and σ0. In the third and fifth lines of Eq. (B28)
we separate the real and imaginary parts of t̂ and t̂† in order to make use of the optical theorem

i
2
hk2; λ2jt̂ − t̂†jp2; λ02i ¼ −

ð2πℏÞ4
4

X
ρ2

Z
d3q1

ð2πℏÞ32q01

Z
d3q2

ð2πℏÞ32q02
δð4Þðq1 þ q2 − k1 − k2Þ

× hk2; λ2jt̂jq2; ρ2ihq2; ρ2jt̂†jp2; λ02i: ðB29Þ

In order to arrive at the expression in the main text, we furthermore need to rewrite the scattering-matrix elements as

hk; k0; σ; σ0jt̂jk2; λ02i ¼ ϵ�ðσÞα ðkÞϵ�ðσ0Þβ ðk0Þϵðλ01Þγ ðk1Þϵðλ
0
2
Þ

δ ðk2ÞMαβγδðk; k0; k1; k2Þ; ðB30Þ

whereM is the tree-level vertex function of the theory. In the remainder of this work wewill assume thatM� ¼ M, similar to
Ref. [87]. Note that the vertex fulfills Mμναβ ¼ Mνμαβ ¼ Mμνβα ¼ Mαβμν.
Truncating the sum in Eq. (B15) at n ¼ 2, inserting Eqs. (B28)–(B30), as well as using the completeness relation of the

polarization vectors, we find for the components of the collision term that are orthogonal to the four-momentum
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Cμν⊥;on-shellðx; kÞ ¼ Cμν⊥;ks þ Cμν⊥;s: ðB31Þ

Here, Cμν⊥;ks is defined as

Cμν⊥;ks ≔
ð2πℏÞ7

4

Z
d4x̄2

Z
d3k1

ð2πℏÞ32k01

Z
d3k2

ð2πℏÞ32k02

Z
d3k0

ð2πℏÞ32k00
Z

d4u2

ð2πℏÞ8 e
i
ℏðu1·x̄1þu2·x̄2ÞMγ1γ2δ1δ2Mζ1ζ2η1η2

× Kμ
μ0K

ν
ν0

�
K −

U1 þU2

2

�
μ0α
�
K þU1 þ U2

2

�
ν0β
�
Wα1β1

on-shellðxþ x̄1; k1ÞWα2β2
on-shellðxþ x̄2; k2Þ

× gαδ1gβζ1

�
K1 −

U1

2

�
γ1α1

�
K2 −

U2

2

�
γ2α2

K0
δ2ζ2

�
K1 þ

U1

2

�
β1η1

�
K2 þ

U2

2

�
β2η2

δð4Þðkþ k0 − k1 − k2Þ

−
1

2
Wα1β1

on-shell

�
xþ x̄1; k −

u2
2

�
Wα2β2

on-shellðxþ x̄2; k0Þgαα1gβγ1
�
K0 −

U2

2

�
γ2α2

K1;δ1ζ1K2;δ2ζ2

×

�
K þ U1 −U2

2

�
β1η1

�
K0 þU2

2

�
β2η2

δð4Þ
�
kþ k0 − k1 − k2 þ

u1
2

�

−
1

2
Wα1β1

on-shell

�
xþ x̄1; kþ

u2
2

�
Wα2β2

on-shellðxþ x̄2; k0Þgαη1gββ1
�
K0 −

U2

2

�
γ2α2

K1;δ1ζ1K2;δ2ζ2

×

�
K þ U2 −U1

2

�
γ1α1

�
K0 þU2

2

�
β2η2

δð4Þ
�
kþ k0 − k1 − k2 −

u1
2

��
: ðB32aÞ

This term will turn out to describe collisions exchanging both momentum and spin; cf. the discussion in the main text. The
term Cμν⊥;s will be responsible for the collisions exchanging only spin, and it reads

Cμν⊥;s ≔
ið2πℏÞ3

4

Z
d4x̄2

Z
d3k2

ð2πℏÞ32k02

Z
d4u2

ð2πℏÞ8 e
i
ℏðu1·x̄1þu2·x̄2ÞMγ1γ2δ1δ2

×

�
K2 −

U2

2

�
γ2α2

�
K2 þ

U2

2

�
β2δ2

�
K −

U1 þU2

2

�
μ0α
�
K þU1 þ U2

2

�
ν0β
Kμ

μ0K
ν
ν0

×

�
Wα1β1

on-shell

�
xþ x̄1; k −

u2
2

�
Wα2β2

on-shellðxþ x̄2; k2Þgαα1gβδ1
�
K þU1 − U2

2

�
β1δ1

−Wα1β1
on-shell

�
xþ x̄1; kþ

u2
2

�
Wα2β2

on-shellðxþ x̄2; k2Þgαγ1gββ1
�
K þU2 − U1

2

�
γ1α1

�
: ðB32bÞ

Note that, as mentioned in Ref. [87], it can be shown that
this term gives a correction to the drift term and a Vlasov-
like contribution on the left-hand side of the Boltzmann
equation.
In these expressions, we already used that the Wigner

functions entering the Boltzmann equation are on the mass
shell (cf. Appendix C). Furthermore, we employed the
relation

Δ̃RðkÞ − Δ̃�
RðkÞ ¼ 2πiℏ2δðk2 −m2Þ: ðB33Þ

In Eq. (B32), it can be seen that to first order the terms in
the sum in Eq. (B28) where σ ¼ 0 or σ0 ¼ 0 do not
contribute to Cμν⊥;on-shell. This is due to the fact that the
transfer-matrix elements containing timelike polarizations
are one order higher in the ℏ-gradient expansion than their

counterparts containing only spacelike polarization
[cf. Eq. (B25)].
In order to arrive at Eq. (35) in themain text, we neglect the

pure-spin exchange term Cμν⊥;s, approximate (for j∈ f1; 2g)

Wμνðxþ x̄j; kÞ ≃Wμνðx; kÞ þ x̄j · ∂Wμνðx; kÞ; ðB34Þ

and perform the d4x̄2-integrations.

APPENDIX C: PROOF THAT THE OFF-SHELL
TERMS CANCEL

In this appendix, we show that the off-shell terms in the
kinetic equation vanish to first order in ℏ. Acting with the
Bopp operators on the collision integral (7) and neglecting
terms of higher order in ℏ, it holds that
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ðD� ·D� −m2ÞCμν
⊥ ðx; kÞ ¼ ℏ

2ℏ2

ð2πℏÞ4 K
μ
αKν

β

Z
d4ve−ik·v=ℏhρ̂†αðxþ v=2Þρ̂βðx − v=2Þi≕ℏZμνðx; kÞ: ðC1Þ

Note that it is sufficient to consider the components of Cμν orthogonal to kμ since only these enter into Eq. (23). Since
Z�νμ ¼ Zμν, we have that

ReZμν ¼ Zμν
S ; ImZμν ¼ −iZμν

A : ðC2Þ

Splitting the equation of motion for Cμν into real and imaginary parts, we obtain

ðk2 −m2ÞReCμν
⊥;S þ ℏk · ∂ImCμν

⊥;S ¼ ℏZμν
S ; ðk2 −m2ÞReCμν

⊥;A þ ℏk · ∂ImCμν
⊥;A ¼ 0;

ðk2 −m2ÞImCμν
⊥;A − ℏk · ∂ReCμν

⊥;A ¼ −iℏZμν
A ; ðk2 −m2ÞImCμν

⊥;S − ℏk · ∂ReCμν
⊥;S ¼ 0: ðC3Þ

Subtracting the fourth equation from the second one multiplied by i, we have

ðk2 −m2ÞðiReCμν
⊥;A − ImCμν

⊥;SÞ þ ℏk · ∂ðReCμν
⊥;S þ iImCμν

⊥;AÞ ¼ 0: ðC4Þ

Making use of Eq. (10), this becomes

ðk2 −m2ÞCμν⊥ ¼ ℏk · ∂δMμν
⊥ ; ðC5Þ

which implies that the collision kernel may be expanded as

Cμν⊥ ¼ δðk2 −m2ÞðCð0Þ;μν⊥ þ Cð1Þ;μν⊥;on-shellÞ þ
ℏ

k2 −m2
k · ∂δMμν

⊥ þOðℏ2Þ: ðC6Þ

Remembering the mass-shell equations (17) we get to first order in ℏ

Wμν
⊥ ðx; kÞ ¼ δðk2 −m2Þ½Wð0Þ;μν

⊥ ðx; kÞ þ ℏWð1Þ;μν
⊥;on-shellðx; kÞ� þ

ℏ
k2 −m2

δMμν
⊥ : ðC7Þ

Inserting this solution into the kinetic equation k · ∂Wμν
⊥ ðx; kÞ ¼ Cμν⊥ and making use of Eq. (C6), we obtain

δðk2 −m2Þk · ∂½Wð0Þ;μν
⊥ ðx; kÞ þ ℏWð1Þ;μν

⊥;on-shellðx; kÞ� þ
ℏ

k2 −m2
k · ∂δMμν

⊥

¼ δðk2 −m2ÞðCð0Þ;μν⊥ þ Cð1Þ;μν⊥;on-shellÞ þ
ℏ

k2 −m2
k · ∂δMμν

⊥ : ðC8Þ

It is straightforward to see that the off-shell terms cancel and the Boltzmann equation is on-shell:

k · ∂Wμν
⊥;on-shellðx; kÞ ¼ Cμν⊥;on-shell: ðC9Þ
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statistique classique particulière?, Ann. l’inst. Henri
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