
Lepton pair production in ultraperipheral collisions:
Toward a precision test of the resummation formalism

Ding Yu Shao ,1,2 Cheng Zhang,1 Jian Zhou ,3 and Ya-jin Zhou 3

1Department of Physics, Center for Field Theory and Particle Physics, Key Laboratory of Nuclear Physics
and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China

2Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University,
Shanghai 200438, China

3Key Laboratory of Particle Physics and Particle Irradiation (MOE), Institute of Frontier
and Interdisciplinary Science, Shandong University, QingDao, China

(Received 16 August 2023; accepted 21 November 2023; published 18 December 2023)

We present a detailed investigation of the azimuthal asymmetries and acoplanarity in lepton pair
production in ultraperipheral collisions (UPCs). These observables provide a unique opportunity to test the
soft colliner effective theory resummation formalism, given the exceptionally high photon flux in UPCs,
which enables precise measurements of these processes. We improve the accuracy of the previous
calculations by including the soft photon contributions beyond the double leading logarithm approxima-
tion. Notably, the single logarithmic terms arising from the collinear region are greatly enhanced by the
small mass of the leptons. Our findings demonstrate the accessibility of these subleading resummation
effects through the analysis of angular correlations in lepton pairs produced in UPCs at the Relativistic
Heavy Ion Collider and the Large Hadron Collider.
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I. INTRODUCTION

The study of pure electromagnetic dilepton production in
ultraperipheral heavy ion collisions (UPCs) has been and
continues to be an active area of research since the physics
operation began at the Relativistic Heavy Ion Collider
(RHIC) [1–11]. One of the key features of dilepton pro-
duction in UPCs is the enhancement of the cross section by
a factor of Z4 at low transverse momentum, where Z is the
nuclear charge number. This enhancement makes dilepton
production in UPCs an attractive channel for searching
for physics beyond the Standard Model [12–17], as well
as for studying the properties of QED under extreme
conditions [18–23].
Dilepton back-to-back production in the transverse plane

in UPCs recently gained renewed interest from both
experimental and theoretical sides. This is partially trig-
gered by the observation of the lepton pair transverse
momentum q⊥ broadening at the Large Hadron Collider
(LHC) [5,6,8] and RHIC [3,4]. The mean value of lepton
pair transverse momentum was found to increase with
decreasing impact parameter b⊥ which is the transverse

distance between two colliding nuclei. To account for this
phenomenon, it is crucial to employ a formalism [10,24–31]
that allows us to derive the joint b⊥ and q⊥ dependent cross
section. As a result, the coherent photon distribution entering
the cross section formula is the Wigner distribution rather
than the transverse momentum dependent distribution.
In this paper, we focus on a relatively high pair trans-

verse momentum region where the q⊥ (>30 MeV) spec-
trum is no longer controlled by the primordial coherent
photon distribution. The q⊥ spectrum instead is dominantly
generated via the recoiled effect due to the final state soft
photon radiations when q⊥ is much larger than the reverse
of the nuclear radius. Despite the smallness of the QED
fine-structure coupling constant αe, the fixed order con-
tribution is greatly enhanced by the large logarithm term of

the type αe
π ln

M2

m2 ln
P2⊥
q2⊥

and thus calls for a resummation,

whereM andm are the invariant mass of the lepton pair and
lepton mass, respectively, and P⊥ is approximately the
individual lepton transverse momentum. Such a resumma-
tion formalism was first developed in the context of heavy
quark pair production [32–35]. It later has been extended to
include azimuthal dependent contributions [36,37] and
applied to study azimuthal asymmetries in dilepton pro-
duction in UPCs [37,38] in the leading double logarithm
approximation. The first attempt to take into account the
subleading logarithm contribution relevant in the kinematic
region where m is of the same order as M to the azimuthal
asymmetries in dimuon production has been presented in
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Ref. [38]. The next to leading logarithm contribution to
azimuthal asymmetries turns out to be sizable for muon
production. The purpose of this work is to resum the
subleading logarithm contribution in dielectron production,
which is important in the kinematic limitm ≪ M. Note that
at low q⊥ (∼30 MeV), the azimuthal angular correlation in
dilepton pair production mainly arises from the linear
polarization of coherent photons [39–44] rather than the
soft photon radiation effect.
In addition to directly measuring the q⊥ distribution, the

azimuthal angular decorrelation of the lepton pair is often
studied experimentally. When the lepton pair acquires finite
transverse momentum, either from the incoming coherent
photons or from the recoiled effect due to soft photon
radiation, the electron and positron are no longer produced
in the exact back-to-back configuration in the transverse
momentum phase space. The degree of the deviation
from the back-to-back configuration is measured by the
so-called acoplanarity, whose definition will be specified
later. Acoplanarity as a way of exploring nucleon structure
and quark gluon plasma (QGP) properties was extensively
discussed in the context of dijet production and gauge
boson-jet production [45–61]. The acoplanarity in dilepton
production in UPCs was first studied in Refs. [27,62]. The
leading double logarithm involved in the calculation of this
observable is the type of αe

2π ln
2 M2

q2x
, where qx is one of the

transverse components of q⊥ perpendicular to P⊥. In this
work, we extend the resummation formalism to the next to
leading logarithm accuracy and investigate its phenomeno-
logical consequences as well.
The paper is structured as follows. We first briefly review

the previous calculations for the observables under con-
sideration in the next section. The resummation formalism
formulated in the effective theory is discussed in Secs. II
and III for two different kinds of angular correlations. The
approach based on effective theory allows us to resum the
subleading logarithm contribution to all orders in a sys-
tematic manner. We also present the heuristic derivations of
the two Sudakov factors up to the next to leading logarithm
accuracy following a more conventional perturbative QCD
method in the Appendixes. The numerical results are
presented in Sec. IV. We summarize the paper in Sec. V.

II. ANGULAR CORRELATIONS IN THE LEADING
DOUBLE LOGARITHM APPROXIMATION

At low total transverse momentum of the dilepton pair,
the electron and positron pair is dominantly produced via

two coherent photon fusion processes. The corresponding
kinematics are specified as follows:

γ1ðx1Pþ k̃1⊥Þ þ γ2ðx2P̄þ k̃2⊥Þ → lþðp1Þ þ l−ðp2Þ; ð1Þ

where P, P̄, p1, and p2 are the four momenta of the two
nucleons and final state leptons, respectively, k̃1⊥¼
ð0;0;k1⊥Þ and k̃2⊥ ¼ ð0; 0; k2⊥Þ with k1⊥ and k2⊥ being
the transverse momenta of the photons. The leptons are
produced nearly back to back in azimuth with q⊥ ¼
jq⊥j ≪ P⊥ ¼ jP⊥j, where the total transverse momentum
q⊥ ≡ p1⊥ þ p2⊥ ¼ k1⊥ þ k2⊥ and P⊥ ¼ ðp1⊥ − p2⊥Þ=2.
To sort out the UPC events, one has to first compute the
impact parameter dependent cross section [24,63] and then
integrate b⊥ (¼ jb⊥j) over the range ½2RWS;∞Þ, where b⊥
is the impact parameter between two colliding nuclei and
RWS is the nuclear radius. Once b⊥ dependence is intro-
duced, the transverse momentum carried by the incoming
photon in the amplitude is no longer identical to that in the
conjugate amplitude. Below, we use k1⊥, k2⊥ and k01⊥, k02⊥
to denote transverse momenta in the amplitude and in the
conjugate amplitude with the constraint k01⊥ þ k02⊥ ≡ q⊥.
The Born cross section of the dielectron production takes
the form [39,40,64]

dσ0
d2p1⊥d2p2⊥dy1dy2d2b⊥

¼ 2α2e
M4

1

ð2πÞ2 ½Aþ B cos 2ϕþ C cos 4ϕ�; ð2Þ

where ϕ is the angle between transverse momenta q⊥ and
P⊥. y1 and y2 are lepton rapidities, respectively. M is the
invariant mass of the lepton pair. At low q⊥, the cos 4ϕ
azimuthal modulation is mainly induced by the linear
polarization of coherent photons [39–44]. The computed
cos 4ϕ asymmetry [39,40] is in excellent agreement with
the measured asymmetries by the STAR collaboration [41].
It is worth mentioning that the polarization dependent
reactions in UPCs open a new avenue to explore the novel
QCD phenomenology [65–72]. The hard coefficient B is
suppressed by the power of m2

M2 at the tree level and is
neglected. The coefficients A and C have been computed at
the leading order in Ref. [40],

A ¼ M2 − 2P2⊥
P2⊥

Z4α2e
π4

Z
d2k1⊥d2k2⊥d2Δ⊥δ2ðq⊥ − k1⊥ − k2⊥ÞeiΔ⊥·b⊥

× ½ðk1⊥ · k01⊥Þðk2⊥ · k02⊥Þ þ ðk1⊥ · k2⊥ÞΔ2⊥ − ðk1⊥ · Δ⊥Þðk2⊥ · Δ⊥Þ�
× F ðx1; k21⊥ÞF �ðx1; k021⊥ÞF ðx2; k22⊥ÞF �ðx2; k022⊥Þ; ð3Þ
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and

C ¼ −2
Z4α2e
π4

Z
d2k1⊥d2k2⊥d2Δ⊥δ2ðq⊥ − k1⊥ − k2⊥ÞeiΔ⊥·b⊥

× f2½2ðk2⊥ · q̂⊥Þðk1⊥ · q̂⊥Þ − k1⊥ · k2⊥�½2ðk02⊥ · q̂⊥Þðk01⊥ · q̂⊥Þ − k01⊥ · k02⊥�
− ½ðk1⊥ · k01⊥Þðk2⊥ · k02⊥Þ þ ðk1⊥ · k2⊥ÞΔ2⊥ − ðk1⊥ · Δ⊥Þðk2⊥ · Δ⊥Þ�g
× F ðx1; k21⊥ÞF �ðx1; k021⊥ÞF ðx2; k22⊥ÞF �ðx2; k022⊥Þ; ð4Þ

where Δ⊥ ¼ k1⊥ − k01⊥ ¼ k02⊥ − k2⊥. q̂⊥ is a unit vector
defined as q̂ ¼ q⊥=q⊥. The incoming photons’ longitudinal
momentum fractions are fixed by the external kine-

matics according to x1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
P2⊥þm2

s

q
ðey1 þ ey2Þ and x2 ¼ffiffiffiffiffiffiffiffiffiffiffi

P2⊥þm2

s

q
ðe−y1 þ e−y2Þ with m being the lepton mass and

s being the square of the center-of-mass beam energy.
F ðx; k2⊥Þ describes the amplitude of finding a photon
carrying a certain momentum. For a given nuclear charge

form factor Fðk2Þ, it is computed as F ðx; k2⊥Þ ¼ Fðk2⊥þx2M2
pÞ

ðk2⊥þx2M2
pÞ ,

where Mp is the proton mass. Note that the lepton mass is
ignored in the hard coefficients.
At low transverse momentum q⊥, the spectrum is

primarily influenced by coherent photon distributions
inherent to the primordial state, while at high q⊥, the
dominant contribution to the transverse momentum spec-
trum arises perturbatively from soft photon radiation in the
final state. This latter effect is exacerbated by large
logarithmic terms, necessitating an all-order resummation
for accurate description. Such resummation is most con-
veniently performed in the transverse position space, as
illustrated by the following expression:

dσ
d2p1⊥d2p2⊥dy1dy2d2b⊥

¼
Z

d2r⊥
ð2πÞ2 e

ir⊥·q⊥e−Sudðr⊥Þ

×
Z

d2q0⊥e−ir⊥·q
0⊥
dσ0ðq0⊥Þ
dP:S:

; ð5Þ

where r⊥ ¼ jr⊥j, Sudðr⊥Þ represents the Sudakov factor,
the phase space dP:S: ¼ d2p1⊥d2p2⊥dy1dy2d2b⊥, and
dσ0ðq⊥Þ≡dσ0=dq⊥. The leading logarithm contri-
bution of the Sudakov factor has been derived in
Refs. [32–34,36,37],

Sudðr⊥Þ ¼
αe
π
ln
M2

m2
ln
P2⊥
μ2r

; ð6Þ

with μr ¼ 2e−γE=r⊥. In this work, we extended the all-
order Sudakov resummation to include the subleading
logarithm contributions. The detailed derivations are pre-
sented in the next section (for a heuristic derivation, see
Appendix A).

We now turn to discussing how to formulate the
calculation of the acoplanarity. One can define an azimuthal
angle ϕ⊥ ¼ π − ðϕ1 − ϕ2Þ, where ϕ1 and ϕ2 represent the
azimuthal angles for the lepton and the antilepton, respec-
tively. The acoplanarity observed in experiments is defined
as α ¼ jϕ⊥j=π. We fix the direction of electron transverse
momentum p1⊥ to be the Y axis. The acoplanarity can then
be easily reconstructed by the ratio of qx (the component of
q⊥ aligned with the X axis) and P⊥. The qx dependent cross
section takes the form

dσ
dqxd2P⊥dy1dy2d2b⊥

¼
Z

dqy
drydrx
ð2πÞ2 eiðrxqxþryqyÞe−Sudaðrx;ryÞ

×
Z

dq0xdq0ye−iðrxq
0
xþryq0yÞ dσ0ðq0⊥Þ

dP:S:

¼
Z

drx
2π

eirxqxe−Sudaðrx;ry¼0Þ

×
Z

dq0xdq0ye−irxq
0
x
dσ0ðq0⊥Þ
dP:S:

; ð7Þ

where the leading logarithm contribution to the Sudakov
factor SudaðrxÞ is given by

SudaðrxÞ ¼
αe
2π

�
ln2

M2

μ2rx
− ln2

m2

μ2rx
θðm − μrxÞ

�
; ð8Þ

with μrx ¼ 2e−γE=rx. This expression is identical to what is
obtained in Ref. [62] if μrx is replaced with μr. One notices
that we make a one-dimensional Fourier transform in the
above-resummed formula rather than a two-dimensional
Fourier transform as has been done in Eq. (5). This is
because the acoplanarity is essentially a one-dimensional
observable, whereas the q⊥ spectrum is a two-dimensional
distribution. Naturally, the associated Sudakov factors in
the two resummed cross sections differ from each other.
When deriving the momentum space expression of the
Sudakov factor SudaðlxÞ, the Y component of soft photon
transverse momentum has to be integrated over the whole
available phase-space region. It is thus not appropriate to
reconstruct the qx distribution from the resummed q⊥
distribution by integrating out qy. We will present the
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detailed derivation of the Sudakov factor SudaðrxÞ in
Sec. IV (for a heuristic derivation, see Appendix B).

III. MASS FACTORIZATION AND
RESUMMATION IN SCET

In the previous section, we presented the double loga-
rithmic resummation formula for low transverse momen-
tum q⊥ and acoplanarity α. In this section, we will utilize
the soft colliner effective theory (SCET) [73–77] and
standard Renormalization Group (RG) methods to derive
a resummation formula that includes the effects of lepton
mass resummation to all orders. We adopt dimensional
regularization in d ¼ 4 − 2ϵ dimensions, following the MS
prescription. The dimensional regularization scale μ2 is
replaced by μ2eγE=ð4πÞ, and we subtract ϵ poles to obtain
the renormalized results in the MS scheme. All renormal-
ized results are presented in the MS scheme.

A. Factorization formula at low q⊥
In Ref. [38], we derived a resummation formula at low

transverse momentum q⊥ for muon pair production at the
RHIC energy by assuming M ∼m ≫ q⊥. The differential
cross section is factorized into the product of hard and soft
factors, with the lepton mass m retained in both factors.
To obtain a resummation formula that includes lepton

mass resummation, we need to refactorize the massive hard
and soft functions in the small mass limit (M ≫ q⊥ ≳m).
Explicitly, the massive hard function HðM;m; μÞ is fac-
torized as the product of the massless hard function
HðM; μÞ and collinear jet functions Jðm; μÞ. Similarly,
the massive soft function Sðl⊥;Δy;m; μÞ is factorized as
the product of the massless soft function Sðl⊥;Δy; μÞ and
collinear-soft functions Ciðki;⊥; pT;m; μÞ. The resulting
differential cross section is given by

dσðq⊥Þ
dP:S:

¼ HðM; μÞJ2ðm; μÞ
Z

d2l⊥d2k1⊥d2k2⊥

×
dσ0ðjq⊥ − l⊥ − k1⊥ − k2⊥jÞ

dP:S:
× Sðl⊥;Δy; μÞC1ðk1⊥; P⊥; y1; m; μÞ
× C2ðk2⊥; P⊥; y2; m; μÞ; ð9Þ

where the hard function HðM; μÞ comes from the matching
from QED to the low energy effective theory, and it can be
obtained from the virtual corrections for massless ampli-
tudes of γγ → lþl−. The corresponding anomalous dimen-
sion is written as

ΓH ¼ αe
4π

�
8 ln

M2

μ2
− 12

�
; ð10Þ

where the scale-dependent term gives double logarithmic
resummation results, while the scale-independent term

controls single logarithmic resummation. The physical
scale in the hard function is μh ¼ M.
The collinear jet functions Jðm; μÞ, which depend on the

lepton mass, have been extensively studied in the literature
[78–84]. In particular, the two-loop expression for these
functions was derived in [85–87]. At the one-loop level, the
jet function takes the form

JNLOðm; μÞ ¼ 1þ αe
4π

�
2

ϵ2
þ 1

ϵ

�
1þ 2 ln

μ2

m2

�

þ
�
1þ ln

μ2

m2

�
ln

μ2

m2
þ 4þ π2

6

�
: ð11Þ

Then the one-loop anomalous dimension associated with
this jet function is given by

ΓJ ¼
αe
4π

�
4 ln

μ2

m2
þ 2

�
: ð12Þ

It should be noted that the typical scale of the jet function is
μj ¼ m, and that as matching coefficients of low energy
effective theory, both hard and jet functions do not depend
on the small transverse momentum.
The second line of Eq. (9) represents the factorization of

the massive soft function in Ref. [38], which accounts for
the contribution of real photon emissions. In the small m
limit, the massless soft function S is defined in terms of soft
Wilson lines,

SniðxÞ ¼ exp

�
−ie

Z
0

−∞
dsni · Aðxþ sniÞ

�
; ð13Þ

which describe a pointlike source traveling along the path
xμ þ snμi with the lightlike vector n2i ¼ 0. In the r⊥ space
we have the soft function

S̃ðr⊥;ΔyÞ ¼ h0jT̄½S†n1ðr⊥ÞSn2ðr⊥Þ� T½S†n2ð0ÞSn1ð0Þ�j0i;
ð14Þ

where n1;2 denote the directions of final-state leptons.
Expanding the Wilson line in the coupling perturbatively,
the one-loop soft function is obtained as

S̃NLOðr⊥;ΔyÞ ¼ 1þ e20

Z
ddk

ð2πÞd−1 δðk
2Þθðk0Þ

×
2n1 · n2

n1 · kk · n2
eik⊥·r⊥ ; ð15Þ

where e0 is the bare electric charge, and k is the momentum
of the final-state photon. Note that k⊥ is the photon
transverse momentum with the beam directions which is
different from the direction of ni. After performing the
momentum integral, we obtain
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S̃NLOðr⊥;ΔyÞ ¼ 1þ αe
4π

�
4

ϵ2
þ 4

ϵ
ln
μ2r2⊥
b20Ar

þ 2ln2
μ2r2⊥
b20Ar

þ π2 − 4 lnAr lnð1 − ArÞ − 4Li2ðArÞ
�
;

ð16Þ

where b0 ¼ 2e−γE , Ar ¼ M2=ð4P2⊥ cos2 ϕrÞ and ϕr repre-
sents the azimuthal angle of r⊥. In the r⊥ space μr is chosen
as the soft scale, and the anomalous dimension is

ΓS ¼
αe
4π

�
8 ln

μ2r2⊥
b20

þ 8 ln cos2ϕr − 8 ln
1þ coshΔy

2

�
:

ð17Þ

It is apparent that as ϕr approaches π=2 or 3π=2, i.e., when
the direction of r⊥ becomes perpendicular to the lepton
direction, the expression becomes divergent due to the
presence of ln cos2ϕr. This divergence is connected to the
rapidity divergence that dimensional regulators cannot
regulate. We will elaborate on this further in the next
subsection when we introduce the factorization formula for
the acoplanarity distribution.
The soft function describes the large-angle long-wave

photons contribution, while the collinear-soft function Ci
captures the contribution from the soft photon radiating
close to the lepton direction, which is defined as

C̃iðr⊥;P⊥;yi;mÞ¼h0jT̄½S†viðr⊥ÞSn̄iðr⊥Þ�T½S†n̄ið0ÞSvið0Þ�j0i;
ð18Þ

where the soft Wilson line Svi is defined in analogy with Sni
in Eq. (13), but with the lightlike vector ni replaced with the
timelike vector vi, which is

vμi ¼
ωi

m
nμi
2
þ m
ωi

n̄μi
2
; with ωi ¼ 2P⊥ cosh yi: ð19Þ

At one loop, the perturbative expansion of the collinear-soft
function gives us

C̃NLO
i ðr⊥; P⊥; yi; mÞ ¼ 1þ e20

Z
ddk

ð2πÞd−1 δðk
2Þθðk0Þ

×

�
2vi · n̄i

vi · kk · n̄i
−

vi · vi
vi · kk · vi

�
× ein̄i·kni·r⊥=2; ð20Þ

then we obtain

C̃NLO
i ðr⊥; P⊥; yi; mÞ ¼ 1þ αe

4π

�
−

2

ϵ2
þ 2

ϵ
ð1 − 2 ln μRÞ

− 4 ln2 μRþ 4 ln μR −
5π2

6

�
; ð21Þ

where R ¼ −iP⊥eγEni · r⊥=ðmr⊥Þ, and the anomalous
dimension is

ΓC1;2
¼ αe
4π

�
−4 ln

4P2⊥μ2r2⊥
b20m

2
þ4−4 ln cos2ϕr�4iπ

�
: ð22Þ

We set the collinear soft scale as μc ¼ μrm=ð2P⊥Þ. With
the anomalous dimensions presented for all the ingredients,
we now show that our factorized formula satisfies the
consistency relations for the RG evolutions. The consis-
tency equation reads

ΓH þ ΓS þ 2ΓJ þ ΓC1
þ ΓC2

¼ 0: ð23Þ

Based on the above discussions on the intrinsic scale and
RG methods in SCET, we can obtain the expression for the
all-order resummed cross section, and the Sudakov factor is
given by

Sudðr⊥Þ ¼
Z

M

μr

dμ
μ
ΓH þ 2

Z
m

μr

dμ
μ
ΓJ þ

Z
μrm=ð2P⊥Þ

μr

dμ
μ
ΓC1

þ
Z

μrm=ð2P⊥Þ

μr

dμ
μ
ΓC2

; ð24Þ

where we evolve hard, jet, and collinear-soft functions
from their intrinsic scale to μr. After taking Δy ¼ 0, and
neglecting the contribution from single logarithmic terms,
we find

Sudðr⊥ÞjDL;Δy¼0 ¼
αe
π
ln
M2

m2
ln
P2⊥
μ2r

þ αe
π
ln
M2

m2
ln 4cos2ϕr;

ð25Þ

where the first term on the right is consistent with the
Sudakov factor given in Eq. (6) [36–38]. In order to
investigate the contributions from single logarithms, in
the left panel of Fig. 1 we present the Sudakov factor for
only double logarithmic terms and both double and single
logarithmic terms. We find that the single logarithmic
corrections reduce the Sudakov suppression.
Moreover, the azimuthal angle-dependent terms that are

enhanced in the small mass limit are also resummed into an
exponential form, and the azimuthal angle correlation
coefficients are given by

A2 ≡
Z

2π

0

dϕr
cos 2ϕr

π
exp

�
−
αe
π
ln
M2

m2
ln 4cos2ϕr

�
; ð26Þ
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A4 ≡
Z

2π

0

dϕr
cos 4ϕr

π
exp

�
−
αe
π
ln
M2

m2
ln 4cos2ϕr

�
: ð27Þ

As a consistent check, we expand the above expression at
one loop and find they reproduce the coefficients c2 and c4
in the limit M ≫ m [38] as follows:

ALO
2 ¼ −

αe
π
ln
M2

m2

Z
2π

0

dϕr
cos 2ϕr

π
ln 4cos2ϕr ¼ −

2αec2
π

;

with c2 ≈ ln
M2

m2
; ð28Þ

ALO
4 ¼ −

αe
π
ln
M2

m2

Z
2π

0

dϕr
cos 4ϕr

π
ln 4 cos2 ϕr

¼ αec4
π

; with c4 ≈ ln
M2

m2
; ð29Þ

where, as the azimuthal correlation first appears at one loop,
we refer to the corresponding coefficients as the leading-
order (LO) coefficients. Besides, we can use the all-order
formula (25) to explore the azimuthal angular correlation
coefficients at higher orders. The middle and right panels of
Fig. 1 show A2;4 at LO (one-loop), next to leading order
(NLO) (two-loop), and all orders. It is evident that the high-
order corrections enhance the azimuthal asymmetry, and the
degree of enhancement depends on the scale hierarchy
between M and m. In the typical RHIC kinematic regions,
A2 and A4 increase by about 5% and 10%, respectively.

B. Factorization formula at low α

In the previous subsection, we derived a factorization
formula for low values of q⊥. Equations (17) and (22) show
that the anomalous dimensions become divergent as the
direction of r⊥ becomes perpendicular to the lepton
direction. If we choose that the direction of lepton trans-
verse momentum is along the y axis and r⊥ ¼ rx, then the
anomalous dimensions in Eqs. (17) and (22) diverge in
dimensional regularization. As a result, we need to rederive
a factorization formula in the small α limit since the
acoplanarity α is reconstructed by qx (or rx in the conjugate
Fourier space).

Since the hard and jet functions in Eq. (9) are matching
coefficients that are independent of the specific observable,
they should be the same in the factorization formula for the
α distribution. In other words, only the soft and collinear-
soft functions need to be modified in this case. As α → 0,
the factorization formula should be expressed as

dσðαÞ
dP:S:

¼ 2P⊥HðM; μÞJ2ðm; μÞ
Z

dlxdk1;xdk2;x

×
dσ0ðqx − lx − k1x − k2xÞ

dP:S:
Sðlx;Δy; μ; νÞ

× C1ðk1x; P⊥; y1; m; μ; νÞ
× C2ðk2x; P⊥; y2; m; μ; νÞ; ð30Þ

where only a one-dimensional Fourier transformation is
needed, as explained in Sec. II. The soft and collinear-soft
functions exhibit different divergence structures from those
in Eq. (9). Specifically, the naive separation of soft and
collinear-soft momentum regions is not well defined with-
out additional regulators. The modified factorization for-
mula for the α distribution takes into account these extra
divergences. The variable ν denotes the scale introduced by
the dimensionless rapidity regulator. In this study, we will
utilize the analytical regulator introduced in Refs. [88–90],
and alternative regulators can be found in Refs. [91–97].
After performing the one-dimensional Fourier trans-

formation, the operator definition of the soft function is
given by

S̃ðrx;ΔyÞ ¼ h0jT̄½S†n1ðrxÞSn2ðrxÞ� T½S†n2ð0ÞSn1ð0Þ�j0i; ð31Þ

where rx points along the x direction, which is perpen-
dicular to the direction of the final state leptons in the y-z
plane. The NLO soft function is therefore expressed as

S̃NLOðrx;ΔyÞ ¼ 1þ e20

Z
ddk

ð2πÞd−1 δðk
2Þθðk0Þ

�
ν

2k0

�
η

×
2n1 · n2

n1 · kk · n2
eikxrx ; ð32Þ

FIG. 1. Sudakov factor Sudðr⊥Þ and azimuthal asymmetry A2;4 in q⊥ resummation formula. Left panel: Sudakov factor for double
logarithmic (yellow line) and double þ single logarithmic (blue line) contributions. The values of M, m, and Δy are chosen to be
500 MeV, 0.5 MeV, and 0, respectively. Middle panel: azimuthal asymmetry A2 shown for leading order (blue), next-to-leading order
(yellow), and all-order (green) results. Right panel: azimuthal asymmetry A4 shown in the same colors as A2.
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where we introduce the rapidity regulator to regularize the
rapidity divergence. In order to evaluate this integral, it is
convenient to boost two lightlike vectors n1;2 into their
center-of-mass frame. Since such a boost operation can be
performed in the y-z plane, the Fourier exponent function is
not changed. As a result, only the rapidity regulator
transforms as �

ν

2k0

�
η

→

�
ν

2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 · n2

2

r �η

: ð33Þ

Therefore, we have the NLO soft function

S̃NLOðrx;ΔyÞ ¼ 1þ αe
4π

�
4

ϵ2
− 4

�
ln
μ2r2x
b20

þ 1

ϵ

�

×

�
2

η
þ ln

n1 · n2ν2

2μ2

�
− 2ln2

μ2r2x
b20

−
π2

3

�
;

ð34Þ
where the 1=η pole comes from rapidity divergences. In order
to resum large logarithms associated with rapidity divergen-
ces, one can apply collinear anomaly [88,89] methods.
Similarly to the soft function, the operator definition of

the collinear soft function takes the form

C̃iðrx; P⊥; yi; mÞ
¼ h0jT̄½S†viðr⊥iÞSn̄iðr⊥iÞ� T½S†n̄ið0ÞSvið0Þ�j0i; ð35Þ

where r⊥i is perpendicular to the direction of the lepton. At
one loop, we have

C̃NLO
i ðr⊥i;P⊥;yi;mÞ ¼ 1þ e20

Z
ddk

ð2πÞd−1 δðk
2Þθðk0Þ

×

�
ν

n̄i · k

�
η
�

2vi · n̄i
vi · kk · n̄i

−
vi ·vi

vi · kk ·vi

�
× eik⊥i·r⊥i ; ð36Þ

where the small component of the momentum ni · k in the
rapidity regulator is expanded out and only the large
component n̄i · k is retained since 2k0 ¼ ni · kþ n̄i · k in
the light-cone coordinate. Therefore

C̃NLO
i ðr⊥i;P⊥; yi;mÞ ¼ 1þ αe

4π

�
−
2

ϵ2
þ 2

ϵ
− 2

�
ln
μ2r2x
b20

þ 1

ϵ

�

×

�
ln
ω2
i μ

2

m2ν2
−
2

η

�
þ ln2

μ2r2x
b20

þ 2 ln
μ2r2x
b20

þ π2

6

�
: ð37Þ

It is clear to see that the rapidity poles are canceled after
combining soft and collinear-soft functions. Explicitly,
we have

S̃C̃1C̃2 ¼ 1þ αe
4π

�
−4 ln

μ2r2x
b20

ln
M2

m2
þ 4 ln

μ2r2x
b20

þ 8π2
�

þOðα2eÞ; ð38Þ

where the UV poles have been removed by the MS
subtraction scheme. Besides, the logarithm of the ratio
between M and m cannot be resummed by standard RG
equations, and this problem is referred to as the collinear
anomaly, where the extra large logarithms are resummed by
the collinear anomaly factor. Explicitly, we define

S̃C̃1C̃2 ¼
�
M2

m2

�−Fðrx;μÞ
Wðrx; μÞ; ð39Þ

where the anomaly exponent F depends only on rx and the
renormalization scale μ, and its one-loop expression is

Fðrx; μÞ ¼
αe
π
ln
μ2r2x
b20

þOðα2eÞ: ð40Þ

It satisfies the following RG equations:

d
d ln μ

Fðrx; μÞ ¼
2αe
π

: ð41Þ

In Eq. (39) we have introduced the remainder function
Wðrx; μÞ which also depends only on rx and μ,

WNLOðrx; μÞ ¼ 1þ αe
4π

�
4 ln

μ2r2x
b20

þ 8π2
�
; ð42Þ

with the one-loop anomalous dimension as ΓW ¼ 2αe=π.
The typical scale in F and W functions is μrx, and the RG
consistency can be easily verified at one loop. After
evolving the hard and jet functions to μrx, we obtain the
all-order resummation formula for the α distribution, where
the Sudakov factor is expressed as

SudaðrxÞ ¼
Z

M

μrx

dμ
μ
ΓH þ 2

Z
m

μrx

dμ
μ
ΓJθðm − μrxÞ;

¼ αe
2π

��
ln2

M2

μ2rx
− 3 ln

M2

μ2rx

�

−
�
ln2

m2

μ2rx
− ln

m2

μ2rx

�
θðm − μrxÞ

�
; ð43Þ

where the double logarithmic terms are consistent with the
expression in Eq. (8).

IV. NUMERICAL RESULTS

We now discuss the model input used in the numerical
evaluations. It is convenient to perform the numerical
calculation with the electromagnetic form factor taken
from the STARlight MC generator [7],
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FðjkjÞ ¼ 4πρ0

jkj3A ½sinðjkjRAÞ − jkjRA cosðjkjRAÞ�
1

a2jkj2 þ 1
;

ð44Þ

where a ¼ 0.7 fm, and ρ0 is a normalization factor. The
nucleus radius is chosen to be RA ¼ 1.1A1=3 fm for Au and
Pb targets. This parametrization is numerically very close
to the Woods-Saxon distribution.
The azimuthal asymmetries, i.e., the average value of

cos 2nϕ are defined as

hcosð2nϕÞi ¼
R

dσ
dP:S: cosð2nϕÞdP:S:R

dσ
dP:S: dP:S:

: ð45Þ

We compute both the azimuthal independent cross sections
and the asymmetries for the unrestricted UPC case, where
we simply integrated the impact parameter over the range
½2RWS;∞Þ, with the nucleus radius RWS being 6.4 fm for
Au and 6.68 fm for Pb.
The azimuthal independent and dependent cross sections

are plotted as a function of q⊥ at RHIC energy in Fig. 2 and

LHC energy in Fig. 3. It is clear to see that at relatively high
q⊥, the perturbative tail generated by soft photon radiation
dominates over the lepton pair transverse momentum
spectrum determined by the coherent photon primordial
k⊥ distribution. In this work, both the azimuthal indepen-
dent and dependent leading logarithms are resummed into
an exponential form, whereas in the previous work [36,37],
we only resummed the azimuthal independent logarithm to
all orders and treat the azimuthal dependent piece at the
fixed order. We numerically compare the results computed
from these two resummation schemes. The difference
between these two methods becomes manifest when
evaluating the azimuthal asymmetries in the large q⊥
region, in particular for cos 4ϕ azimuthal asymmetry. It
would be interesting to test such a resummation effect in
future experiments.
The acoplanarity distributions computed at LHC energy

for both dielectron and dimuon production are displayed in
Fig. 4. To avoid the possible contribution from incoherent
photons, which could play a role in the large α region, we
only make numerical estimations for the 0n0n events in
which no neutron is emitted after the EM interaction

FIG. 2. Dielectron production in unrestricted UPCs in Auþ Au collisions at the RHIC energy. The following kinematic cuts are
imposed: the electrons’ rapidities jy1;2j < 1, transverse momentum P⊥ > 200 MeV, and the invariant mass of the electron pair
450 MeV < M < 760 MeV. The blue solid lines stand for the fully resummed results from Eq. (24), and the purple dashed lines
represent the results with the azimuthal dependent part being treated at the one-loop order. The results without soft photon radiation
effect are shown with the dotted orange lines. Left panel: azimuthal averaged differential cross sections; middle panel: hcosð2ϕÞi
azimuthal asymmetry; right panel: hcosð4ϕÞi azimuthal asymmetry.

FIG. 3. Dielectron production in unrestricted UPCs in Pbþ Pb collisions at the LHC energy. The following kinematic cuts are
imposed: the electrons’ rapidities jy1;2j < 0.8 and the invariant mass of the dielectron 10 GeV < M < 20 GeV. The blue solid lines
stand for the fully resummed results from Eq. (24), and the purple dashed lines represent the results with the azimuthal dependent part
being treated at the one-loop order. The results without soft photon radiation effect are shown with the dotted orange lines. Left panel:
azimuthal averaged differential cross sections; middle panel: hcosð2ϕÞi azimuthal asymmetry; right panel: hcosð4ϕÞi azimuthal
asymmetry.
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occurs. For the 0n0n event, the impact parameter depend-
ence of the cross section is weighted with an b⊥ distribution
(see the review article [98] and references therein),

2π

Z
∞

2RWS

b⊥db⊥P2ðb⊥Þdσðb⊥;…Þ; ð46Þ

where the probability Pðb⊥Þ for the 0n event is commonly
parametrized as [18]

Pðb⊥Þ ¼ exp

�
−5.45 × 10−5

Z3ðA − ZÞ
A2=3b2⊥

�
: ð47Þ

The theoretical calculation is consistent with both ATLAS
and CMS low α data. However, in the relatively large α
region, our numerical results clearly overshoot the exper-
imental data. The inclusion of the leading single logarithm
contribution in the resummation formalism does relieve
the tension between the experimental data and the theory
calculation to some extent. The possible origin of this
discrepancy is that collinear physics is not fully captured in
our resummation formalism. The contribution from the
phase-space region where the momentum of the emitted
hard photon is almost aligned with that of the outgoing
lepton is enhanced by a collinear logarithm. We can
effectively resum such a large logarithm by introducing
lepton fragmentation functions in our calculation, whose
scale evolution is governed by the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equation. We will
address this point in future work. In the meantime, we
also reconstruct the acoplanarity using the resummed q⊥
distribution given in Eq. (5). The measured α distribution
obviously does not favor this approach as shown in Fig. 4.

V. CONCLUSION

We study the azimuthal angular correlations of high-q⊥
lepton pairs produced in UPCs, which are mainly generated
by soft photon radiation in the final state. We show that
the resummation of soft photon radiation has different
formulations for the lepton pair q⊥ distribution and the
acoplanarity distribution, and that it is not valid to infer
the acoplanarity distribution from the resummed q⊥
distribution. Within the SCET framework, we perform
the all-order resummation for both observables up to the
single leading logarithm accuracy. Our results show that
the q⊥-dependent azimuthal asymmetries are not very
sensitive to subleading resummation effects, but the
leading single logarithm contribution is essential to
describe the acoplanarity data from ATLAS and CMS.
However, our calculations still exceed the data for large α.
This discrepancy certainly warrants further investigation.
Nevertheless, we conclude that the process of lepton pair
production in UPCs provides a great opportunity to test
the resummation formalism through angular correlations,
thanks to the high coherent photon luminosity and the
high angular resolution of modern detectors [101]. The
resummation formalism presented here can be extended to
study the angular correlations in the diffractive produc-
tions of dijet, jet-hadron, and hadron-hadron in UPCs. We
leave these for future studies.
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APPENDIX A: A HEURISTIC DERIVATION
OF THE SUDAKOV FACTOR Sudðr⊥Þ

The subleading logarithm contribution to the Sudakov
factor Sudðr⊥Þ can be derived in an alternative way. We
start by discussing the azimuthal angular dependent part.
The soft factor in the leading logarithm approximation can
be expanded as [37]

Sðl⊥Þ ¼
αe
π2

1

l2⊥
ln
M2

m2
f1þ 2 cos 2ϕþ 2 cos 4ϕ

þ 2 cos 6ϕþ � � �g; ðA1Þ

where ϕ is the azimuthal angle between the soft
photon transverse momentum l⊥ and P⊥. Our task is to
Fourier transform the soft factor to r⊥ space Sðr⊥Þ ¼R
d2l⊥eir⊥·l⊥Sðl⊥Þ. With the help of the Jacobi-Anger

expansion,

eiz cosðϕÞ ¼ J0ðzÞ þ 2
X∞
n¼1

inJnðzÞ cosðnϕÞ; ðA2Þ

and the integration formula,

Z
∞

0

djq0⊥j
jq0⊥j

Jnðjq0⊥jjb⊥jÞ ¼
1

n
; ðA3Þ

one arrives at

Sðr⊥Þ ¼
αe
π
ln
M2

m2
4
X∞
n¼1

i2n

2n
cosð2nϕrÞ

¼ −
αe
π
ln
M2

m2
ln ½2þ 2 cosð2ϕrÞ�; ðA4Þ

where ϕr is the azimuthal angle between r⊥ and P⊥. This
result is consistent with the second term in Eq. (25).
Now we turn to discuss the derivation of the single

logarithm terms. For simplicity, we consider the special
case Δy ¼ 0. The part of the single logarithm contribution
purely comes from the virtual correction. The leading
logarithm virtual correction can be expressed as (see, for
example, [102,103])

αe
2π2

Z
M

0

d2l⊥
l2⊥ þ ð1−zÞ2

z2 m2

Z
dz

1þ z2

1 − z
; ðA5Þ

in the frame where the electron momentum is chosen to be
the light-cone direction. z stands for the longitudinal

momentum fraction of the electron carried by the virtual
photon. The UV cutoff is chosen to be the lepton pair
invariant mass. The virtual contribution from the soft region
has already been combined with the real correction to form
the leading double logarithm contribution. Therefore, we
have to subtract the soft region contribution,

αe
2π2

Z
M

0

d2l⊥
l2⊥ þ ð1−zÞ2

z2 m2

Z
dz

�
1þ z2

1 − z
−

2

1 − z

�

¼ 3

4

αe
π
ln
M2

m2
þO

 
1

lnM2

m2

!
: ðA6Þ

Another contribution to the single logarithm term is from
the diagram where a soft photon connects two electron lines
or two positron lines. After applying the Eikonal approxi-
mation, one has

Z
d3q
2q0

m2

ðq ·PÞ2 ¼
Z

dq2⊥
4q2⊥P2⊥

Z
dydϕ

×
m2� ffiffiffiffiffiffiffiffiffiffiffiffi

1þm2

P2⊥

q
coshðyÞ− cosϕ

�
2

¼
Z

dq2⊥
4q2⊥P2⊥

Z
dy

m22π
ffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

P2⊥

q
coshðyÞh�

1þm2

P2⊥

�
cosh2ðyÞ−1

i3
2

:

ðA7Þ

After changing the variable ey ¼ z, the above y integration
can be readily carried out,

e2
Z

d3q
ð2πÞ32q0

m2

ðq · PÞ2 ≈
αe
2π2

Z
d2q⊥
q2⊥

; ðA8Þ

where the terms suppressed by the power of m2=P2⊥ have
been neglected. Now we combine the virtual and real
corrections together,

αe
2π2

Z
M d2q⊥

q2⊥
ð1 − eiq⊥·r⊥Þ ≈ αe

2π
ln
M2

μ2r
: ðA9Þ

The sum of Eqs. (A6) and (A9) gives the full single
logarithm contribution from each lepton line to the
Sudakov factor Sudðr⊥Þ.

APPENDIX B: A HEURISTIC DERIVATION
OF THE SUDAKOV FACTOR SudaðrxÞ

The Sudakov factor SudaðrxÞ can be reproduced by
isolating the large logarithm contributions from the collin-
ear splitting function for the electron. In the collinear limit,
the electron fragmentation function at the leading order
reads (see, for example, [102,103])
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αe
2π2

Z
M

0

d2l⊥
l2⊥ þ ð1−zÞ2

z2 m2

Z
dz

1þ z2

1 − z
þ virtual correction;

ðB1Þ

where l⊥ is perpendicular to the outgoing electron momen-
tum p1. The X component of l⊥, i.e., lx, is chosen such that
it satisfies the following conditions:

p2 · lx ¼ 0; p2⊥ · lx ¼ 0; p · lx ¼ 0; n · lx ¼ 0; ðB2Þ

where pμ and nμ are the commonly defined light-cone
vectors along the beam direction in the lab frame. The
acoplanarity is determined by the ratio of lx and p2⊥ ¼
p2⊥;y where p2 is positron momentum. Since ly goes
unobserved, it needs to be integrated out at the end of
the calculations. Note that ly is generally not perpendicular
to the light-cone momenta pμ and nμ.
The light-cone divergence z → 1 in Eq. (B1) can be

cured by taking into account the exact kinematics.
According to the on-shell condition of a radiated photon,
one has

l2⊥
2P̄− < lþ < Pþ; ðB3Þ

where Pþ and P̄− stand for the light-cone vectors along the
lepton momentum direction instead of these along the beam
direction. We take the collinear photon emission along the
Pþ direction as an example. To avoid double counting, we
further require

l− < lþ; ðB4Þ

which leads to the constraintffiffiffi
2

p jl⊥j
2

< lþ < Pþ: ðB5Þ

This converts to the integration limits for z which are
specified as

αe
2π2

Z
M

0

d2l⊥
l2⊥ þ ð1−zÞ2

z2 m2

Z
1−
ffiffi
2

p
2

l⊥
Pþ

0

dz
1þ z2

1 − z

≈
αe
2π2

Z
M

0

d2l⊥
�Z

1

0

dz
1

l2⊥ þ ð1−zÞ2
z2 m2

1þ z2

ð1 − zÞþ

þ
Z

1−

ffiffiffiffi
l2⊥
M2

q
0

dz
1

l2⊥ þ ð1−zÞ2
z2 m2

2

1 − z

�

≈
αe
2π2

Z
1

0

dz
Z

M

0

d2l⊥
l2⊥

1þ z2

ð1 − zÞþ
þ αe
2π2

Z
M

0

d2l⊥
l2⊥

ln
m2 þM2

l2⊥ þm2
: ðB6Þ

The term in the fifth line gives rises to the leading double
logarithm contribution. Combining with the virtual correc-
tion, one hasZ

M

0

d2l⊥
l2⊥

ln
M2

l2⊥ þm2
½eil⊥·r⊥ − 1�

¼
Z

M

0

d2l⊥
l2⊥

	
ln
M2

l2⊥
þ ln

l2⊥
l2⊥ þm2



½eil⊥·r⊥ − 1�: ðB7Þ

As explained earlier, we should only make the Fourier
transform with respect to lx, and integrated out ly. The
integration over ly can be easily achieved by setting ry ¼ 0

at the end of the calculations. It is straightforward to carry
out l⊥ integration,Z

M

0

d2l⊥
l2⊥

ln
M2

l2⊥
½eil⊥·r⊥ − 1� ≈ −

π

2
ln2

M2

μ2r
; ðB8Þ

andZ
M

0

d2l⊥
l2⊥

ln
l2⊥

l2⊥ þm2
½eil⊥·r⊥ − 1� ≈ −

π

2
ln2

m2

μ2r
θðm − μrÞ;

ðB9Þ
where we only keep the leading logarithm contributions.
After carrying out ly integration, ry is fixed to be 0.
Correspondingly, μr is converted into μx. These two double
logarithm terms can be promoted to an exponential form
after carrying out all-order resummation.
Now we consider the collinear part that is free of the

light-cone divergence,

αe
2π2

1

l2⊥
1þ z2

ð1 − zÞþ
−

αe
2π2

δ2ðl⊥Þδð1 − zÞ

×
Z

d2k⊥
k2⊥

Z
1

0

dξ
1þ ξ2

ð1 − ξÞþ
¼ αe

2π2
1

l2⊥

�
1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ

�

−
αe
2π2

3

2
δð1 − zÞ

�
1

l2⊥
− δ2ðl⊥Þ

Z
d2k⊥
k2⊥

�
; ðB10Þ

where it is safe to neglect ð1−zÞ
2

z2 m2 in the denominator as the
integration is no longer dominated by the region z → 1. The
last two terms proportional to δð1 − zÞ can be resummed
into an exponential form after making the Fourier trans-
form. In r⊥ space, it reads

−δð1− zÞ αe
2π2

3

2

Z
M

0

d2l⊥
l2⊥

ðeir⊥·l⊥ −1Þ¼ δð1− zÞαe
2π

3

2
ln
M2

μ2r
;

ðB11Þ
which contributes to the single leading logarithm term in the
Sudakov factor SudaðrxÞ. The term involving the DGLAP
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splitting kernel in Eq. (B10) should be absorbed into the
renormalized electron fragmentation function. Another sin-
gle logarithm term αe

2π ln
m2

μ2r
θðm − μrÞ receives the contribu-

tion from the diagrams with the soft photon connecting two

electron lines or two positron lines in the cutting graphs. The
derivation of this term is rather straightforward. We thus
reproduce both the double and the single logarithm terms in
the Sudakov factor SudaðrxÞ given in Eq. (43).
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