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We study the full phase diagram of a non-Hermitian PT-symmetric generalization of the paradigmatic
two-dimensional massive Thirring model. Employing the nonperturbative functional renormalization
group, we find that the model hosts a regime where PT symmetry is spontaneously broken. This new phase
is characterized by a relevant imaginary mass, corresponding to monstronic excitations displaying
exponentially growing amplitudes for timelike intervals and tachyonic (Lieb-Robison-bound breaking,
oscillatory) excitations for spacelike intervals. Furthermore, since the phase manifests itself as an
unconventional attractive spinodal fixed point, which is typically unreachable in finite real-life systems,
we find that the effective renormalized mass reached can be tuned through the microscopic parameters of
the model. Our results further predict that the new phase is robust to external gauge fields, contrary to the
celebrated BKT phase in the PT unbroken sector. The gauge field then provides an effective and easy
means to tune the renormalized imaginary mass through a wide range of values, and therefore the amplitude
growth/oscillation rate of the corresponding excitations.
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I. INTRODUCTION

The study of quantum-mechanical systems has largely
relied on the assumption of Hermiticity of Hamiltonians.
This effectively ensures the reality of their spectrum and
guaranties the conservation of probability. Real systems
nevertheless tend to interact with their environment leading
to nonunitary evolutions which can be described in terms
of non-Hermitian effective Hamitonians. It was however
realized that non-Hermiticity does not necessarily invali-
date the essential properties of Hermitian Hamitonians. In
particular, a broad class of non-Hermitian matrices termed
pseudo-Hermitian was shown to exhibit real spectra [1–3].
While this typically includes Hamitonians possessing a
range of antilinear symmetries [4], one of them stands out
for its experimental accessibility: PT symmetry [5], i.e.,
simultaneous reversal of space and time. AHamiltonianH is
PT-symmetric if it commutes with the product operator PT
where P and T are the parity and time-reversal operators,
while not necessarily commuting with P or T individually.
An intuitive way to picture a PT-symmetric system is to

consider two subsystems related through spatial inversion
handled in such a way that the gains encountered by the
former correspond exactly to the losses experienced by the
latter [6]. In this picture, one naturally understands how

such a symmetry can be implemented through spatial
engineering of gain-loss structures. In addition to its
experimental accessibility, this class of non-Hermitian
Hamitonians often displays a rich distinctive feature,
namely the possibility of breaking PT symmetry sponta-
neously [6,7]. PT symmetry is said to be unbroken if every
eigenstate of the Hamitonian H is an eigenstate of the PT
operator. In this case, the spectrum of H is entirely real
despite its non-Hermiticity. In contrast, PT symmetry is
spontaneously broken if some eigenstates have complex
eigenvalues. These then occur in complex conjugate
pairs. The spontaneous breaking of PT symmetry is
generally associated with the coalescence of eigenvalues
and their respective eigenstates at an exceptional point [8]
in the discrete spectrum or at spectral singularities [9] in
the continuum. Altogether, this makes PT symmetry an
extraordinary platform to explore novel critical behaviors in
non-Hermitian systems.
While in the past research in non-Hermitian systems

has largely focused on single and effective few-body
problems, recent technological advances in the design of
open many-body systems in ultracold atoms and exciton-
polariton condensates [10–18] have opened a new arena for
strongly interacting non-Hermitian systems and in particular
non-Hermitian quantum critical phenomena. Historically, the
study of phase transitions in non-Hermitian systems started
out with the investigation of the Lee-Yang edge singularity,
where the Ising model in the presence of an imaginary
magnetic field was demonstrated to present a universal
scaling, connected to its equilibrium criticality [19–21].
While these predictions were long viewed as purely of
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theoretical interest, the aforementioned recent experimental
developments have opened the door to the experimental
exploration of a wide variety of collective non-Hermitian
phenomena [22–27]. Specifically, Yang-Lee edge singular-
ities have been detected in recent experiments on a normal
metal connected to superconducting leads [28–30].
Recent studies have predicted a host of phenomena in

non-Hermitian many-body systems, including a many-
body localization-delocalization transition [31], dynamical
phase transitions [32], continuous quantum phase transi-
tions unaccompanied by gap closures [33] and Kibble-
Zurek scaling across exceptional points [34]. Interplays
between the spontaneous breaking of both PT and a
continuous symmetry have also been explored [35–39].
PT symmetry breaking may also occur in concurrence with
topological scaling phenomena as was predicted in a non-
Hermitian generalization of the sine-Gordon model [40], a
model of profound relevance to both condensed matter and
high-energy physics [41,42]. Such imaginary-coupled sine-
Gordon model was formally predicted to host excitations
with amplitudes that grow exponentially in time, termed
monstrons [43]. Perturbative RG has flagged the presence
of semicircular flows breaking the c-theorem [44] in the PT
symmetry broken phases of the generalized sine-Gordon
model [42] and non-Hermitian Kondo models [45,46].
Clearly, these results warrant an in-depth revision of the
standard notions of critical behavior and universality.
In this paper, we investigate the interplay between topo-

logical scaling and PT symmetry breaking in the non-
Hermitian generalization of the massive Thirring model in
(1þ 1)-dimensions [40].
The paradigmatic original Hermitian model is dual to

the quantum sine-Gordon model [47] and manifests the
Berezinskii-Kosterlitz-Thouless (BKT) transition [48].
While the duality was predicted to extent to the correspond-
ing non-Hermitian generalization in the PT-unbroken phase
[40], it may not necessarily hold in the presence of sponta-
neous breaking of PT symmetry.
To study the generalization of the Thirring model, we

employ the functional renormalization group (FRG), a
versatile formalism based on the effective action paradigm
[49–52]. FRG has recently been used to study interactions
in the non-Hermitian setting [53–56]. We obtain the full
nonperturbative flow diagram of the model. Our FRG
analysis predicts a new phase displaying a relevant imagi-
nary mass, corresponding for spacelike intervals to
tachyonic (Lieb-Robison bound breaking, oscillatory) exci-
tations, or excitations displaying exponentially growing
amplitudes for timelike intervals called monstrons. This
novel phase manifests itself as an unconventional attractive
spinodial fixed point. Consequently, the effective renor-
malized mass can be tuned through the microscopic
parameters of the model.
It was shown that the BKT transition in the original

Hermitian model was wiped out by the presence of external

gauge fields [48]. It is therefore of great interest to study
their influence on the extended phase diagram of the PT-
symmetric non-Hermitian generalization of the massive
Thirring, and in particular on the PT-broken sector. The
external gauge fields are relevant to many physical systems;
they can notably be realized as incommensurabilities in
classical systems [57,58], magnetic fields in spin systems
[59] soliton fugacities [60] in bosonic settings or chemical
potentials [61] in fermionic systems. While our results
further predict a dramatic change in the renormalization
group flows in the presence of an external gauge field, the
new tachyonic phase is robust and the gauge field is shown
to provide an additional practical way to tune the corre-
sponding imaginary mass.

II. GENERALIZED MASSIVE THIRRING

We consider the generalized massive Thirring model in
(1þ 1)-dimensional space-time [40], whose Hamiltonian is
given by

H ¼
Z

dx½ψ̄ð−i=∇þm1 þm2γ5Þψ þ λðψ̄ψÞ2�; ð1Þ

where ψ̄ðx; tÞ ¼ ψ†ðx; tÞγ0. With the following conven-
tions γ0 ¼ σ1, γ1 ¼ iσ2 and γ5 ¼ γ0γ1 ¼ σ3, where σ are
the Pauli matrices, we have γ20 ¼ γ25 ¼ 1 and γ21 ¼ −1.
Equation (1) reduces to the massive Thirring model for
m2 ¼ 0. The parity operator P acts as

Pψðx; tÞP ¼ γ0ψð−x; tÞ; Pψ̄ðx; tÞP ¼ ψ̄ð−x; tÞγ0: ð2Þ

The time-reversal operator T acts as

Tψðx; tÞT ¼ γ0ψðx;−tÞ; Tψ̄ðx; tÞT ¼ ψ̄ðx;−tÞγ0; ð3Þ

which is identical to the action of P if not for the fact that T
is antilinear. Using these definitions, we can check that
the Hamitonian is Hermitian for m2 ¼ 0. Note that it is
also separately invariant under parity and time reversal in
this case.
The γ5-dependent mass termm2 renders the Hamiltonian

non-Hermitian because the sign of the m2 term is reverted
under Hermitian conjugation. This sign change takes place
because γ0 and γ5 anticommute. The Hamitonian is more-
over not invariant under either P or T separately because
the m2-term changes sign under both these operations. It is
however invariant under the product operator PT. Thus, H
is PT-symmetric.
Spontaneously broken PT symmetry manifests as the

occurrence of nonreal eigenvalues for the many-body
Hamiltonian (1). Considering the free theory (λ ¼ 0) at
first, we write the field equations of motion for ψ, which
square to a Klein-Gordon equation with square mass [6]

μ2 ¼ m2
1 −m2

2: ð4Þ
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The physical mass μ that propagates is therefore real for
m1 > m2 (μ2 > 0), which we refer to as the PT-unbroken
sector. Conversely, m1 < m2 (μ2 < 0) corresponds to the
PT-broken sector, for which the mass is purely imagi-
nary μ ¼ �ijμj.
As we will see, whether PT symmetry is spontaneously

broken or not is crucial in determining the asymptotic
behavior of propagators. The spacetime propagator for the
generalized Thirring fermions ΔFðxÞ can be written as

−iΔFðx; tÞ ¼ ði=∂ −m1 −m2γ5ÞΔðx; tÞ; ð5Þ
where the form of ΔðxÞ is given according to the sign
of μ2 as follows. For μ2 > 0, i.e., the PT-symmetric regime,

Δðx; tÞ ¼
(
− 1

2πK0ðμrÞ ðspacelikeÞ
− i

4
Hð2Þ

0 ðμsÞ ðtimelikeÞ;
ð6Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t2 þ x2

p
and s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þt2 − x2

p
, Hð2Þ

0 is the
Hankel function of the second kind which represents an
outgoing wave for large times jtj, while K0 is the modified
Bessel function of the second kind displaying exponential
decay at large distances jxj (therefore ensuring exponential
suppression of amplitudes outside of the light cone). In
contrast, for μ2 < 0, i.e., when PT symmetry is sponta-
neously broken, one finds (see Appendix A)

Δðx; tÞ ¼
(

i
4
Hð2Þ

0 ðjμjrÞ ðspacelikeÞ
1
2πK0ðjμjsÞ þ i

2
I0ðjμjsÞ ðtimelikeÞ;

ð7Þ

where I0 is the modified Bessel function of the first
kind, displaying exponential growth at large times jtj.
This implies exponentially growing amplitudes for timelike
intervals (i.e., within the light cone), indicating the pres-
ence of excitations that we call monstrons [43]. While such
unitarity-violating modes have to be excluded in closed
(Hermitian) systems, nothing prevents their occurrence in
non-Hermitian settings. Outside of the light cone (beyond
the Lieb-Robinson bound), we see oscillatory behavior
indicative of tachyonic modes. These results are schemati-
cally summarized in Fig. 1. Since both types of modes
are the manifestation of the imaginary mass μ associated
with PT breaking, the modulus jμj may either refer to the
growth rate of the amplitudes of the monstronic modes or
the oscillation rate of tachyonic amplitudes depending on
whether we are inside or outside of the light cone. In the
following, we shall refer for simplicity mainly to tachyons,
which we use from now on as a generic term for modes
characterized by an imaginary mass.

III. RENORMALIZATION GROUP ANALYSIS

It is known that the Hermitian massive Thirring model
admits a continuous line of interacting massless fixed
points, which is either attractive or repulsive depending
on the bare mass and coupling strength. We now study the
behavior of the generalized massive Thirring model under
renormalization to investigate how the occurrence of a γ5-
dependent mass and the interplay between interactions and
non-Hermiticity modify those results. Of particular interest
is the behavior of the model under renormalization when
the propagating mass is imaginary in the PT-broken sector
(μ2 < 0). The renormalization group analysis detailed in
Appendix B predicts the following flow equations for the
mass m1 and its γ5-dependent counterpart m2

∂τm̄i ¼ m̄i

�
1þ 2λ̄

πð1þ 4μ̄2Þ
�
; ði ¼ 1; 2Þ ð8Þ

where τ is the “RG time” jτj ¼ lnðΛ=kÞ and the dimension-
lessmasses m̄i ¼ ð2kÞ−1mk;i and coupling strength λ̄ ¼ λk=2
are expressed in units of the runningmomentum scale k. The
ultraviolet cutoff Λ is naturally provided by the lattice
spacing if the underlying microscopic model is defined on
a lattice. Noticing the similarity between the flow equations
for m1 and m2, one can show that the ratio between m1 and
m2 remains constant under renormalization

∂τ

�
m̄1

m̄2

�
¼ 0: ð9Þ

The structure of the RG flow reflects the fact that the
only physically-relevant mass in the problem (namely

FIG. 1. Schematic of the asymptotic behavior of the propagator
Δðx; tÞ for large spacetime intervals inside and outside of the light
cone in the case of (left) unbroken (μ2 > 0) and (right) sponta-
neously broken (μ2 < 0) PT symmetry. For large timelike
intervals (i.e., inside the light cone), while amplitudes asymp-

totically display oscillatory (Hð2Þ
0 ) behavior in the PT-unbroken

sector, they can display exponential growth (I0) in the PT-broken
sector, or in other words monstronic behavior. For spacelike
intervals (i.e., outside the light cone, beyond the Lieb-Robinson
bound), amplitudes in the PT-broken sector asymptotically
display oscillatory (tachyonic) behavior in contrast with their
exponential suppression (K0) when PT symmetry is unbroken.
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the one appearing in the propagator) is given by μ.
Accordingly, in the PT-unbroken sector, the Hamiltonian
of the generalized non-Hermitian massive Thirring (1) is
known to admit the same spectrum [6] as that of the
Hermitian massive Thirring with mass μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 −m2
2

p
.

Given these considerations, the flow equations can be
expressed entirely in terms of μ̄2 ¼ m̄2

1 − m̄2
2 (whose sign

is therefore also preserved under renormalization) and λ̄ as

1

2
∂τμ̄

2 ¼ μ̄2
�
1þ 2λ̄

πð1þ 4μ̄2Þ
�
;

∂τλ̄ ¼
16

π

λ̄2μ̄2

ð1þ 4μ̄2Þ2 : ð10Þ

The phase diagram of the non-Hermitian Thirring model
obtained from the FRG flow equation (10) is reported in
Fig. 2. For μ̄2 > 0 (i.e., the PT-unbroken sector), the flow
reproduces the well-known BKT physics; one finds a line

of fixed points at μ̄2 ¼ 0 that is attractive (double red line)
for λ̄ ≤ −π=2 and repulsive otherwise. The unbinding point
at λ̄ ¼ −π=2 is reported as a red full circle. More interest-
ingly, in the PT-broken sector μ̄2 < 0, the flow equa-
tions (10) display a spinodial line at μ̄2 ¼ −1=4, where both
beta functions become infinite. This spinodal line repre-
sents the UV limit of the theory. For each point above this
line μ̄2 > −1=4 with λ̄ < 0, the flows are semicircular and
the system will eventually end up in any of the attractive
BKT fixed points. In this regime, the behavior of the non-
Hermitian Thirring model reproduces the one of the
generalized sine-Gordon model [42], as would be expected
from the straightforward extension of the duality [40,47] to
the PT-broken phase.
This analogy fails when the fermions, representing the

sine-Gordon solitons, become repulsive, i.e., when λ̄ > 0.
While the PT-unbroken sector displays the same infrared
behavior for any λ̄ > −π=2 (yellow region in Fig. 2), a novel
infrared phase emerges in the PT-broken sector of the
massive Thirring model for λ̄ > 0 (blue region in Fig. 2).
There, the flow is attracted to an infrared spinodal point
ðμ̄2; λ̄Þ ¼ ð−1=4; 0Þ, which is the termination of the UV
spinodal line described for λ̄ < 0. This point corresponds to a
noninteracting theory with an imaginary propagating mass
(μ̄2 ¼ −1=4). Yet, the spinodal nature of this attractive
infrared point causes the flow to terminate at a finite scale
kc in its vicinity [62]. The spinodal point stemming from the
singularity in the beta functions is also known to arise in
Hermitian systems. In Hermitian systems, kc represents a
finite correlation length scale of the system and the value of
the couplings at the breakdown of the flow coincide with the
thermodynamic properties of the system in the massive
infrared phase [62]. These effective parameters describing
the renormalized theory are nonuniversal and depend on the
microscopic (bare) initial conditions of the flow. Therefore,
the spinodal infrared point describes a noncritical mas-
sive phase.
At λ̄ ¼ 0, a phase transition occurs between a massless

(interacting) phase and a phase with an imaginary propa-
gating mass. As explained above, this phase is character-
ized by tachyonic modes. Since the flows interrupt before
reaching the singularity, the renormalized (imaginary)
mass (meaning the mass obtained at the end of the flow)
depends on the microscopic parameters of the model, pro-
viding a way to tune the corresponding mode oscillation/
amplification rate. We mention that an infrared phase was
evidenced in the nonperturbative treatment of the non-
Hermitian sine-Gordon model. There, the semicircular
flows occurring in the PT-broken phase break down at a
finite value of the superfluid stiffness K, where a new
infrared phase appears [56]. Whereas this phase has found
no clear interpretation in the sine-Gordon paradigm, the
fermionic Thirring picture provides a physical meaning for
this phase as a truly non-Hermitian phase hosting tachyonic
excitations occurring when the interaction between the

FIG. 2. RG flow for the dimensionless square mass μ̄2 and
quartic coupling strength λ̄. In the PT-unbroken sector (μ̄2 > 0),
the flows qualitatively reproduce the traditional BKT picture; the
line of fixed points with μ̄2 ¼ 0 that is attractive for λ̄ ≤ −π=2
(red solid line) and repulsive otherwise. This results in a massless
BKT (red) and a massive (yellow) phase separated by the well-
known BKT point. The PT-broken sector (μ̄2 < 0) displays for
λ̄ < 0 semicircular flows consistent with previous perturbative
RG studies of the generalized sine-Gordon [42]. In this region,
the BKT line is attractive also for −π=2 ≤ λ̄ ≤ 0, resulting in the
stabilization of the power-law scaling for all attractive interaction
strengths (red). For repulsive interactions λ̄ ≥ 0, a novel massive
phase emerges characterized by a finite imaginary mass and
leading to exponentially growing (monstronic) amplitudes for
large timelike intervals and oscillatory (tachyonic) amplitudes for
large spacelike intervals.
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fermions (the solitons of the sine-Gordon model [63])
becomes repulsive in the PT-broken sector. In the follow-
ing we will show how the transparency of the Thirring
picture allows us to generalize our findings to the presence
of external gauge fields.

IV. GENERALIZED MASSIVE THIRRING
WITH EXTERNAL GAUGE FIELD

We now study the influence of an additional external
gauge field on the phase diagram of the generalized massive
Thirring model, with particular focus on the interplay
between such interactions and spontaneous symmetry break-
ing of PT symmetry. As mentioned before, these terms may
be used to model various phenomena depending on the
setting such as incommensurabilities in classical systems
[57,58], magnetic fields in spin systems [59], soliton fugac-
ities [60] in bosonic settings, or chemical potentials [61] in
fermionic systems. The modified Hamiltonian obtained via
the minimal substitution ∂μ → Dμ ¼ ∂μ − idμ with d0 ¼ d
and d1 ¼ 0 reads

H¼
Z

dx½ψ̄ð−i=∇þdγ0þm1þm2γ5Þψ þ λðψ̄ψÞ2�: ð11Þ

We first note that μ2 ¼ m2
1 −m2

2 remains the effective
mass even when d ≠ 0 (this can be checked by writing the
field equations ofmotion for thegauge-transformed fermions
ψ̃ ≡ eid

μxμψ). The RG flow reflects this fact and (9) remains
unchanged. The associated flow equations derived in
Appendix B can again be expressed in terms of μ̄2

1

2
∂τμ̄

2 ¼ μ̄2

0
B@1þ λ̄

4πd̄2
ð1 − 4d̄2 þ 4μ̄2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r
1
CA;

1

2
∂τd̄2 ¼ d̄2 −

λ̄

4π

þ λ̄

4π

ð1 − 4d̄2 þ 4μ̄2Þð1þ 1
8d̄2

½1 − 4d̄2 þ 4μ̄2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r ;

∂τλ̄ ¼ −
2λ̄2

π

�
1 −

μ̄2

d̄2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r :

ð12Þ

The flowdiagram for the following combinationof couplings
ðμ̄2 − d̄2; λ̄Þ is displayed in Fig. 3.
Comparing Figs. 2 and 3, we see that the flow lines are

strongly modified by the gauge field. As a notable feature,
for d ≠ 0, the flow equations no longer display μ̄2 ¼ 0 as a
continuum line of fixed points (parametrized by the
interaction λ̄), effectively ruling out the BKT transition.

This is consistent with a recent study focusing on the
Hermitian model [48]. Instead, the trajectories in red in
Fig. 3 flow towards increasingly strong attractive inter-
actions λ̄ < 0. Note that for λ̄ ≪ 0, the first equation in (12)
approximates at leading order in λ̄ to

1

2
∂τμ̄

2 ¼ μ̄2λ̄fðμ̄; d̄Þ; ð13Þ

where f is a positive function of μ̄ and d̄ in the range of
parameter values considered. In particular, this means that
μ̄2 and the corresponding beta function ∂τμ̄

2 have opposite
signs. In other words, the rate of change in the value of μ̄2

along the flow (τ) is positive when μ̄2 is negative and
conversely the rate of change is negative when μ̄2 is
positive. Therefore, asymptotically, the value of μ̄2 is
driven to zero and the trajectories in the lower left sector
of the phase diagram in Fig. 3 converge towards μ̄2 ¼ 0.
Thus, while the original gapless BKT phase (in red in
Fig. 2) is lost in the presence of external gauge fields, the
corresponding phase at finite d (in red in Fig. 3) remains
massless nonetheless.
As shown in Fig. 3, the point ðμ̄2 − d̄2; λ̄Þ ¼ ð−1=4; 0Þ

has a basin of attraction (in blue) contained in the region

FIG. 3. RG flow slice for the coupling combination μ̄2 − d̄2 and
the quartic coupling strength λ̄ (for d̄ fixed at 0.3, other values of
d̄ lead to qualitatively equivalent flow charts). In particular, the
flow no longer displays μ̄2 ¼ 0 as a continuum of fixed points for
d̄ ≠ 0, effectively ruling out the BKT transition as pointed out in a
recent study [48]. For points belonging to a region (in blue)
included in the lower-left quadrant (λ̄ > 0 and μ̄2 < d2), the flows
converge to μ̄2 − d̄2 ¼ −1=4 and λ̄ ¼ 0. This includes the PT-
broken sector for which μ̄2 < 0 and a part of the PT-unbroken
sector μ̄2 > 0.
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defined by λ̄ > 0 and μ̄2 < d̄2 (the lower-right quadrant).
μ̄2 − d̄2 ¼ −1=4 allows for two different possibilities:
either μ̄2 ¼ d̄2 − 1=4 > 0 and we are in the PT-symmetric
phase or μ̄2 ¼ d̄2 − 1=4 < 0 and PT symmetry is sponta-
neously broken. The attractive point ðμ̄2 − d̄2; λ̄Þ ¼
ð−1=4; 0Þ can therefore still characterize a PT-broken
phase. Hence, in contrast to the BKT phase which is wiped
out by the gauge field, the new tachyonic phase is
preserved. While bare couplings d̄0, λ̄0 may take any value
in ðμ̄20; d̄20Þ∈R ×Rþ, the asymptotic (renormalized) values
they reach at the end of the flow in the phase in blue
in Fig. 3 are subject to the constraint μ̄2 − d̄2 ¼ −1=4.

This leaves in particular one degree of freedom: as we will
see, in this part of the phase diagram, the renormalized
mass itself (i.e., the value of μ̄2 reached at the end of the
flow) can be continuously tuned via the bare parameters μ̄0,
d̄0, and λ̄0. This is demonstrated in Fig. 4 which displays
the flow of μ̄2, d̄2, and μ̄2 − d̄2 together with λ̄ for different
starting points (solid black dots) corresponding to distinct
bare values of the coupling strengths.
We first focus on the panels (a)–(c) in Fig. 4, which

displays the flows of μ̄2, d̄2, and μ̄2 − d̄2, respectively, as a
function of λ̄ for different initial (bare) values of the
propagating mass μ̄0. The bare values of the gauge field
d̄0 and coupling λ̄0 are kept fixed. Three different regimes
are identified, corresponding respectively to the dotted,
dashed and solid flow lines. In panel (c), there exists a
threshold value μ̄20 − d̄20 ≈ 0 for the bare difference in
coupling strengths above which both λ̄ and μ̄2 − d̄2 flow
towards arbitrary high values (dotted curve). In this regime,
both μ̄ and d̄ diverge [see panels (a) and (b)]. This phase
corresponds to the yellow region in the upper-right (λ̄ > 0)
quadrant in Fig. 3. In contrast, below this threshold, we
have flows which converge to μ̄2 − d̄2 ¼ −1=4 and λ̄ ¼ 0
[dashed and solid lines in panel (c)]. This corresponds to
the blue region in the lower-right quadrant (λ̄ > 0) in Fig. 3.
From panel (a), we infer that these trajectories arise in both
the unbroken PT sector (dashed lines) where μ̄2 > 0 and
the PT-broken sector (solid lines) where μ̄2 < 0. In both
cases, each value of the bare mass μ̄20 (solid black dots)
leads to a different value of the renormalized mass μ̄2. The
value of d̄2 for the dashed and solid trajectories adapts
correspondingly, see panel (b), so that μ̄2 − d̄2 → −1=4 as
displayed in panel (c).
Panels (d)–(f) show the flows of μ̄2, d̄2 and μ̄2 − d̄2 as a

function of λ̄ for different initial (bare) values λ̄0 of the
quartic coupling strength. The bare values d̄0; μ̄0 are kept
fixed and chosen in the PT-broken sector (μ̄2 < 0) so
that the trajectories belong to the blue region in Fig. 4.
As shown in panel (d), each value of the bare coupling
strength λ̄0 (solid black dots) leads to a different value of the
renormalized mass μ̄2. Once again, d̄ adapts, see panel (e),
so that μ̄2 − d̄2 → −1=4 asymptotically as shown in panel
(f). To summarize, we see that the renormalized mass and
the corresponding asymptotic properties of the propagator
can be tuned via the bare parameters of the model (μ̄0, d̄0,
λ̄0). In particular, one can tune in the PT-broken sector the
amplification/oscillation rate of amplitudes of the tachyonic
modes. We note that this applies to a part of the PT-
unbroken sector in which the (now real) mass of the particle
modes can be tuned as well.

V. CONCLUSION/DISCUSSION

The functional renormalization group was employed to
investigate putative phase transitions and the influence of

FIG. 4. Flow diagrams for the dimensionless propagating mass
μ̄2, external gauge field d̄2 as well as the combination μ̄2 − d̄2

together with λ̄ for different initial conditions obtained by varying
the bare value of the mass μ̄20 in panels (a)–(c) or by tuning the
strength of the bare interaction λ̄0 in the region of positive λ̄ in
panels (d)–(f). Unless the initial value for μ̄2 − d̄2 is above a given
threshold (dotted trajectories), λ̄ is irrelevant and μ̄2 − d̄2 con-
verges towards −1=4. For all trajectories in this regime, one
observes that different bare/initial conditions lead to different
values of the renormalized/final square mass μ̄2, to which d̄2

adapts since the renormalized/final difference is constrained. This
is the case for the region of the PT-unbroken (μ̄2 > 0) sector in
the aforementioned regime (dashed lines) and for the PT-broken
sector (solid lines). The renormalized propagating mass can
therefore be tuned through the microscopic (bare) parameters
of the model.
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external gauge fields in a generalized PT-symmetric
two-dimensional massive Thirring model. We see that this
model spontaneously breaks PT symmetry in a certain
coupling regime. We find that for attractive interactions,
PT symmetry is restored in the asymptotic flow. However,
for repulsive interactions, our analysis predicts a novel
PT-broken phase, which manifests as an attractive spinodal
fixed point of the flow equations, characterized by the ter-
mination of the flow at a finite nonzero momentum kc. This
phase harbors an imaginary mass describing tachyonic
excitations, which display exponentially (oscillatory) amp-
litudes for timelike (spacelike) intervals and potentially
violate Lieb-Robinson bounds.
The presence of an additional gauge field is shown to

dramatically alter the renormalization group flows. The
tachyonic PT-broken phase is however robust to this gauge
field. As opposed to standard massive phases, the renor-
malized imaginary mass of the tachyons can be tuned in a
controlled manner via the microscopic parameters.
Future perspectives include the quantitative study of

the relation between the generalized Thirring model and
the PT-broken sine-Gordon model [42], generalizing the
duality argument [40,47] to the PT-broken setting. More
generally, it is of great interest to investigate fundamental
questions which remain unanswered regarding the consis-
tent path-integral description of PT-broken phases. Note
that the results of renormalization group procedures should
nevertheless be independent of the description and have
been applied (together with other procedures such as
the thermodynamic Bethe ansatz, finite size analysis or
scattering theory) directly onto PT-broken action func-
tionals while showing consistency with numerical simu-
lations [42,43]. Other possible enlightening perspectives
might include the computation of the mass of lowest
excitation as a function of the interaction strength in the
PT-symmetric Thirring/sine-Gordon models, aiming to
generalize previous results based on the derivative expan-
sion in the Hermitian setting [64] to the PT-broken regime.
Lastly, it would be exciting to explore prospects for realizing
such novel monstronic/tachyonic modes stemming from PT
symmetry breaking in realistic experimental platformswhich
can simulate non-Hermitian Hamiltonians such as ultracold
atoms and exciton-polariton condensates [10–18].
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APPENDIX A: TACHYONIC PROPAGATOR
IN THE PT-BROKEN PHASE

Whether PT symmetry is spontaneously broken (or
equivalently the sign of the square propagating mass μ2)

is crucial to determine the asymptotic decay of propagators.
A standard calculation in the PT-symmetric case (μ2 > 0)
leads to asymptotic properties of amplitudes analogous to
the purely Hermitian case; Eq. (6) only differs from the
Hermitian case through the substitution μ → m1. In con-
trast, we will see that PT symmetry breaking (μ2 < 0) has
dramatic consequences for the asymptotic decay of propa-
gators. The fermion propagator can be generally obtained
as follows:

−iΔFðx; tÞ ¼ ði=∂ −m1 −m2γ5ÞΔðx; tÞ;

where Δðx; tÞ≡
Z

d2k
ð2πÞ2

ie−ik
μxμ

k2 − μ2 þ iϵ
; ðA1Þ

in which ϵ → 0þ. In the PT-broken phase, the propagating
mass μ becomes imaginary μ ¼ ijμj. We now derive a
closed form for Δðx; tÞ in this particular case:

Δðx; tÞ ¼
Z

d2k
ð2πÞ2

ie−ik
μxμ

k2 þ jμj2 þ iϵ

¼
Z

dk1dk0
ð2πÞ2

ie−ik0tþik1x

k20 − k21 þ jμj2 þ iϵ

¼ i
Z
jk1j<jμj

dk1
ð2πÞ

e−
ffiffiffiffiffiffiffiffiffiffiffi
jμj2−k2

1

p
jtj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2 − k21

p eþik1x

þ
Z
jk1j>jμj

dk1
ð2πÞ

e−i
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
−jμj2

p
jtj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − jμj2

p eþik1x

¼ i
Z jμj

0

dk1
ð2πÞ

e−
ffiffiffiffiffiffiffiffiffiffiffi
jμj2−k2

1

p
jtjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμj2 − k21
p cosðk1xÞ

þ
Z

∞

jμj

dk1
ð2πÞ

e−i
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
−jμj2

p
jtjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 − jμj2
p cosðk1xÞ; ðA2Þ

in which we have evaluated the integral in k0 as follows:

Z þ∞

−∞

dk0
2π

ie−ik0t

k20 − k21 þ jμj2 þ iϵ

¼ e−i
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
−jμj2

p
jtj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − jμj2

p θðk21 − jμj2Þ þ e−
ffiffiffiffiffiffiffiffiffiffiffi
jμj2−k2

1

p
jtj

−2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2 − k21

p θðjμj2 − k21Þ;

ðA3Þ

taking into account the fact that for jk1j > jμj, the poles are
on the real axis at k0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − jμj2

p
while for jk1j < jμj,

they are on the imaginary axis at k0 ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2 − k21

p
. For

spacelike intervals, we can pick a frame of reference such
that the spacetime interval is purely spatial and revert back
to the original coordinates to find
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Δðx; tÞ ¼ i
Z jμj

0

dk1
ð2πÞ

cosðk1rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2 − k21

p þ
Z

∞

jμj

dk1
ð2πÞ

cosðk1rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − jμj2

p
¼ i

4
J0ðjμjrÞ −

1

4
Y0ðjμjrÞ

¼ i
4
H0ðjμjrÞ; ðA4Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t2 þ x2

p
. Similarly for timelike intervals, we

can write

Δðx; tÞ ¼ i
Z jμj

0

dk1
ð2πÞ

e−
ffiffiffiffiffiffiffiffiffiffiffi
jμj2−k2

1

p
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jμj2 − k21
p þ

Z
∞

jμj

dk1
ð2πÞ

e−i
ffiffiffiffiffiffiffiffiffiffiffi
k2
1
−jμj2

p
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 − jμj2
p

¼ i
Z jμj

0

dp
ð2πÞ

e−psffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμj2 − p2

p þ
Z

∞

jμj

dl
ð2πÞ

e−ilsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ jμj2

p
¼ i

2
I0ðjμjsÞ þ

1

2π
K0ðjμjsÞ; ðA5Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þt2 − x2

p
. Note that the fact that the presence

of the Bessel function I0ðjμjsÞ implies exponential growth
of amplitudes with time. This intrinsically violates unitarity
of dynamics, which is generally assumed. This apparent
problem is sometimes cured through the instauration of
an infrared cutoff for k1 at jμj [65]. In the non-Hermitian
setting, these cannot however be excluded, particularly in
the PT-broken phase where unitarity cannot be restored
through a choice of scalar product [6].
Note the qualitative difference in the pole structure of the

momentum-space propagators in the PT-symmetric and
PT-broken phases:

Δðk0; k1Þ ¼
( 1

k2
0
−k2

1
−μ2þiϵ μ2 > 0

1
k2
0
−k2

1
þjμj2þiϵ μ2 < 0

: ðA6Þ

The poles in the PT-symmetric phase are given in the
complex k0-plane by ð−∞;−μ� ∪ ½þμ;þ∞Þ while they are
given by R ∪ i½−jμj; jμj� in the PT-broken phase. In
particular, at the exceptional point (μ2 ¼ 0), the spectrum
transitions from being fully real to being partially imagi-
nary. The presence of this singular point marking the
qualitative difference between the PT-symmetric and
PT-broken phase prevents the use of classical analytical
continuation tools such as identities for Bessel and Hankel
functions for imaginary arguments that would connect the
propagators in the two phases.

APPENDIX B: DERIVATION OF THE FLOW
EQUATIONS

The flow equations (12) are derived from the Wetterich
equation based on a LPA scheme coupled with an expan-
sion in the field-dependent part of the inverse regularized
propagator applied onto the euclidean action corresponding

to the generalized massive Thirring Hamiltonian in the
presence of an external gauge field, see Eq. (11).
Equation (12) reduce to Eq. (10) for d ¼ 0. The sharp

cutoff rðq2k2Þ ¼
n∞; q2 < k2

0; q2 > k2
is employed, which facili-

tates explicit evaluation of the threshold functions. Details
of the calculation are provided below and closely follow
the FRG treatment of the Hermitian massive Thirring
model in the presence of external gauge fields [48] while
generalizing them to the non-Hermitian case. In particular,
the computation differs in the additional presence of a
γ5-dependent mass term γ5m2 with γ5 ¼ σ3.
We start by writing the Euclidean action corresponding

to the Hamiltonian (11) for the two-dimensional massive
Thirring model in the presence of external gauge fields

S ¼ i
Z

d2r½ψ̄ðσμDμ þm1 þm2σ3Þψ þ λðψ̄ψÞ2�; ðB1Þ

where the covariant derivative Dμ ¼ ∂μ − dδμ;1 is given in
terms of the external gauge field d. Through a Fourier
transform

ψðxÞ ¼
Z

d2p
ð2πÞ2 e

ipxψp ≡
Z
p
eipxψp; ðB2Þ

the action (B1) can be written as follows in momentum
space:

S ¼
Z

d2p
ð2πÞ2 ψ̄pð−=p − i=dþ im1 þ im2σ3Þψp þ ð2πÞ2λ

×
Z Y4

i¼1

d2pi

ð2πÞ2 ðψ̄p1
ψp2

Þðψ̄p3
ψp4

Þ

× δð−p1 þ p2 − p3 þ p4Þ; ðB3Þ

where the (newly redefined) slashed notations =p ¼
pμσμ; =d ¼ dσ1 are used.
Wetterich’s formulation of RG is based on the effective

average action Γk, a generalization of the effective action
retaining only rapidly oscillating modes, namely fluctua-
tions with wave vectors satisfying q2 ≥ k2, where k is a
UV cutoff for slowly varying modes [66]. This is imple-
mented through the use of a regulator (IR cutoff) Rk in
the inverse propagator. Slowly oscillating modes with
momenta q2 ≤ k2 are decoupled through the regulator
which largely increases their mass, while leaving high-
momentum modes unaffected.
The Wetterich equation governs how Γk depends on the

scale k

∂kΓk ¼ −
1

2
Tr

�
∂kRk

Γð2Þ þ Rk

�
¼ −

1

2
∂̃kTr log ðΓð2Þ þ RkÞ;

ðB4Þ

LIÉGEOIS, CHITRA, and DEFENU PHYS. REV. D 108, 116014 (2023)

116014-8



with Γð2Þ denoting the second derivative of Γk with respect
to the fields. The trace is here meant as both an integration
over momenta as well as a sum over internal indices.
The tilde on the derivative ∂̃k is intended as a sign that it
acts only on the k-dependence of the regulator Rk and not
on that of Γð2Þ. The negative sign on the right-hand side
of Eq. (B4) is a consequence the Grassman nature of the
field ψ [67].
The average action at k ¼ 0 is by definition identical

to the effective action, as the IR cutoff is not present and
all modes are included. Similarly to (B3), we make the
following ansatz for the average action

Γk ¼
Z

d2p
ð2πÞ2 ψ̄pð−=p − i=dk þ im1;k þ im2;kσ3Þψp þ ð2πÞ2

× λk

Z Y4
i¼1

d2pi

ð2πÞ2 ðψ̄p1
ψp2

Þðψ̄p3
ψp4

Þ

× δð−p1 þ p2 − p3 þ p4Þ; ðB5Þ

where the momentum-scale index k indicates the scale-
dependence of all parameters in the effective action.
Using Eq. (B4), the effects of the interaction λ on

the various parameters and in particular their flows and
fixed points can be studied systematically. To be able to
make analytical predictions, one may decompose the
inverse regularized propagator into a field-independent

ðΓð2Þ
k;0 þ RkÞ part and a field-dependent ðΔΓð2Þ

k Þ part, which
gives

∂kRk

Γð2Þ þ Rk
¼ ∂̃k log ðΓð2Þ

k;0 þ ΔΓð2Þ
k þ RkÞ

¼ ∂̃k log ðΓð2Þ
k;0 þ RkÞ þ ∂̃k

ΔΓð2Þ
k

Γð2Þ
k;0 þ Rk

−
1

2
∂̃k

�
ΔΓð2Þ

k

Γð2Þ
k;0 þ Rk

�2

þ � � � : ðB6Þ

The regulator may be selected as follows [68,69]:

Rk ¼ −
δp;q
ð2πÞ2 r

�
q2

k2

��
0 qT

q 0

�
ðB7Þ

for Thirring fermions. We now compute explicitly the
field-independent part of the inverse (regularized) propa-
gator and the corresponding field-dependent part.
The second derivatives of Γk with respect to the fields ψ

and ψ̄ can be obtained from Eq. (B5)

Γð2Þ
k ðp; qÞ ¼

 
∂⃗ψT

−p
Γk∂⃖ψq

∂⃗ψT
−p
Γk∂⃖ψ̄T

−q

∂⃗ψ̄p
Γk∂⃖ψq

∂⃗ψ̄p
Γk∂⃖ψ̄T

−q

!
; ðB8Þ

which yields the field-independent part

Γð2Þ
k;0ðp; qÞ ¼

δp;q
ð2πÞ2

 
0 −=pT þ i=dTk − im1;k−im2;kσ3

−=p − i=dk þ im1;kþim2;kσ3 0

!
: ðB9Þ

The corresponding inverted regularized propagator therefore reads

ðΓð2Þ
k;0 þ RkÞðp;qÞ ¼

δp;q
ð2πÞ2

0
B@ 0 −=pT

h
1þ r

�
q2

k2

�i
þ i=dTk − im1;k−im2;kσ3

−=p
h
1þ r

�
q2

k2

�i
− i=dk þ im1;kþim2;kσ3 0

1
CA: ðB10Þ

If B and C are invertible matrices, we have that

�
0 B

C 0

�
−1

¼
�

0 C−1

B−1 0

�
; ðB11Þ

which we can apply to the inverted regularized propagator together with inversion of linear combinations of sigma
matrices

ðz0σ0 þ z1σ1 þ z2σ2 þ z3σ3Þ−1 ¼
z0σ0 − z1σ1 − z2σ2 − z3σ3

z20 − z21 − z22 − z23
; ðB12Þ

provided that z20 − z21 − z22 − z23 ≠ 0. Using those identities, the field-independent propagator is found to be
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ðΓð2Þ
k;0 þ RkÞ−1 ¼ ð2πÞ2δp;q

0
B@ 0

αk−im1;kþim2;k

α2kþμ2k

=βTkþim1;k−im2;k

β2kþμ2k
0

1
CA

¼ ð2πÞ2Ĝ0δp;q; ðB13Þ

where =αk ¼ −q½1þ rðq2k2Þ� − i=dk ≡ akq − i=dk and =βk ¼
−q½1þ rðq2k2Þ� þ i=dk ≡ akqþ i=dk; α2 ¼ α21 þ α22 and β2 ¼
β21 þ β22 and μ2k ≡m2

1;k −m2
2;k.

The field-dependent part of the propagator ΔΓð2Þ
k ∝ λk

remains unchanged with respect to the Hermitian case,
namely directly follows the computation in [48]. We
directly obtain

ΔΓð2Þ
k ¼ 2ð2πÞ2λk ×

�
−ψ̄T ψ̄ ψ̄TψT þ ψT ψ̄T

ψψ̄ þ ψ̄ψ −ψψT

�
δp;q

¼ 2ð2πÞ2λkĜ1δp;q; ðB14Þ

where the derivative is evaluated at constant background

fields. That means we evaluate ΔΓð2Þ
k at ψp ¼ ð2πÞ2ψδðpÞ

in momentum space and hence on the right-hand side, ψðψ̄Þ
are constants [69].
By combining Eqs. (B4) and (B10), we now expand the

flow equation in powers of the fields

∂kΓk ¼ −
1

2
Tr½∂̃k log ðΓð2Þ

k;0 þ RkÞ� −
1

2
Tr

"
∂̃k

ΔΓð2Þ
k

Γð2Þ
k;0 þ Rk

#

þ 1

4
Tr

"
∂̃k

 
ΔΓð2Þ

k

Γð2Þ
k;0 þ Rk

!
2
#
þ � � � : ðB15Þ

The beta functions for the various coupling strengths
may be obtained by comparing the coefficients of each
fermion monomial of the right-hand side of Eq. (B15) with
the coupling terms included in the anzatz (B5). We now
compute the beta functions for the two-fermion and four-
fermion terms in Eq. (B15).
We focus here on the RG flow equations for the

coupling strengths appearing in the quadratic part of the
action. The only term contributing in the expansion (B15)
is given by

−
1

2
Tr

�
ΔΓð2Þ

k

Γð2Þ
k;0 þ Rk

�
¼ −λkΩ

Z
d2q
ð2πÞ2 Tr½Ĝ1Ĝ0�; ðB16Þ

where Ω is the volume of the system and the defini-
tion of Ĝ1 is found in Eq. (B14). Using Trðψψ̄AÞ ¼
−ðψ̄AψÞ, valid for Grassmann fields, and some algebra,
we compute

Tr½Ĝ1Ĝ0� ¼ −
αkμ

α2k þ μ2k
ðψ̄σμψÞ þ

βkμ
β2k þ μ2k

ðψ̄σμψÞ

− i

�
1

α2k þ μ2k
þ 1

β2k þ μ2k

�
× ðm1;kðψ̄ψÞ þm2;kðψ̄σ3ψÞÞ

¼ −2im1;k
a2kq

2 − d2k þ μ2k
ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd

2
kq

2
1

ðψ̄ψÞ

−2im2;k
a2kq

2 − d2k þ μ2k
ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd

2
kq

2
1

ðψ̄σ3ψÞ

þ 2idk
a2kq

2 − d2k þ μ2k − 2a2kq
2
1

ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd
2
kq

2
1

ðψ̄σ1ψÞ

− 4idk
a2kq1q2

ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd
2
kq

2
1

ðψ̄σ2ψÞ:

ðB17Þ

After integration over the momentum q in Eq. (B16), the
fourth term (∝ q1q2) in Eq. (B17) drops out. This yields

−
1

2
Tr

�
∂̃k

ΔΓð2Þ
k

Γð2Þ
k;0 þ Rk

�
¼ þ2iΩm1;kλk∂̃kL1ðψ̄ψÞ

þ 2iΩm2;kλk∂̃kL1ðψ̄σ3ψÞ
− 2iΩdkλk∂̃kL2ðψ̄σ1ψÞ; ðB18Þ

where the threshold functions L1 and L2 are given by

L1 ¼
Z

d2q
ð2πÞ2

a2kq
2 − d2k þ μ2k

ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd
2
kq

2
1

;

L2 ¼
Z

d2q
ð2πÞ2

a2kq
2 − d2k þ μ2k − 2a2kq

2
1

ða2kq2 − d2k þ μ2kÞ2 þ 4a2kd
2
kq

2
1

: ðB19Þ

From the ansatz for the quadratic part of the effective action
(B5), we have that

∂kΓk ¼ −iΩð∂kdkÞðψ̄σ1ψÞ þ iΩð∂km1;kÞψ̄ψ
þ iΩð∂km2;kÞðψ̄σ3ψÞ: ðB20Þ

Identifying the coefficients of the quadratic contributions
in Eqs. (B18) and (B20) to the flow equations yields the
expressions for the beta functions of the mass m1;k, its
γ5-dependent counterpart m2;k and the external gauge
field dk

∂km1;k ¼ 2λkm1;k∂̃kL1;

∂km2;k ¼ 2λkm2;k∂̃kL1;

∂kdk ¼ 2λkdk∂̃kL2: ðB21Þ

Now turning to the four-fermion beta function, we have
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1

4
Tr

"
∂̃k

 
ΔΓð2Þ

k

Γð2Þ
k;0 þ Rk

!
2
#
¼ λ2kΩ

Z
d2q
ð2πÞ2 Tr½Ĝ1Ĝ0Ĝ1Ĝ0�:

ðB22Þ

We must evaluate

Tr½Ĝ1Ĝ0Ĝ1Ĝ0�

¼
	
− det

�
=αk − im1;k þ im2;kσ3

α2k þ μ2k

�

− det

�
=βk − im1;k þ im2;kσ3

β2k þ μ2k

�

þ 2X
�
=αk − im1;k þ im2;kσ3

α2k þ μ2k
;
=βk þ im1;k þ im2;kσ3

β2k þ μ2k

�

× ðψ̄ψÞ2; ðB23Þ

where X takes matrix arguments and is defined through

XðM̂; N̂Þ ¼ 1

2
ðM11N22 −M12N21 −M21N12 þM22N11Þ:

ðB24Þ

Evaluating the quartic part of ansatz (B5) for constant
fields, we have

Γk ¼ Ωλkðψ̄ψÞ2: ðB25Þ

The flow for the coupling constant λk is obtained by
using Eqs. (B22) and (B25) and comparing both sides of
Eq. (B15)

∂kλk ¼ λ2k∂̃kL3; ðB26Þ

where the threshold function L3 is given by

L3 ¼
Z

d2q
ð2πÞ2

	
−det

�
=αk− im1;kþ im2;kσ3

α2kþ μ2k

�

− det

�
=βk− im1;kþ im2;kσ3

β2kþμ2k

�

þ 2X
�
αk− im1;kþ im2;kσ3

α2kþ μ2k
;
=pkþ im1;kþ im2;kσ3

β2k þμ2k

�

:

ðB27Þ

Summarizing, we have so far obtained Eqs. (B21) and
(B26), which express the beta functions of the various
coupling strengths in terms of the regulator scale depend-
ence of momentum integrals given by the threshold
functions L1;2;3. Practical derivations of the flow equations
may be performed using the sharp cutoff regulator

r

�
q2

k2

�
¼
	
∞; q2 < k2

0; q2 > k2
; ðB28Þ

which renders most easy the explicit analytical evaluation
of the threshold functions L1;2;3. Detailed calculations are
given in Appendix C and yield

k∂̃kL1 ¼ −
ðk2 − d2k þ μ2kÞ

4πd2k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
2
�
k2−d2kþμ2k

2kdk

�
2 þ 1

i
2
− 1

r

k∂̃kL2 ¼
�
1þ 1

2d2
ðk2 − d2k þ μ2kÞ

�
k∂̃kL1 þ

k2

4πd2k

k∂̃kL3 ¼
4ðμ2k − d2kÞ

ðk2 − d2k þ μ2kÞ
k∂̃kL1: ðB29Þ

We now express the latter in terms of the dimension-
less coupling strengths λ̄ ¼ λk=2; m̄1 ¼ ð2kÞ−1m1;k, m̄2 ¼
ð2kÞ−1m2;k, μ̄2 ¼ m̄2

1 − m̄2
2, d̄ ¼ ð2kÞ−1dk, defined in units

of the running scale k. The resulting RG equations read

∂τm̄1 ¼ m̄1 þ
m̄1λ̄

4πd̄2
ð1 − 4d̄2 þ 4μ̄2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r

∂τm̄2 ¼ m̄2 þ
m̄2λ̄

4πd̄2
ð1 − 4d̄2 þ 4μ̄2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r

∂τd̄ ¼ d̄ −
λ̄

4πd̄

þ λ̄

4πd̄

ð1 − 4d̄2 þ 4μ̄2Þ
�
1þ 1

8d̄2

h
1 − 4d̄2 þ 4μ̄2

i�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r

∂τλ̄ ¼ −
2λ̄2

π

�
1 −

μ̄2

d̄2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih

2
�
1−4d̄2þ4μ̄2

4d̄

�
2 þ 1

i
2
− 1

r ;

ðB30Þ

where the “RG time” τ is defined as jτj ¼ lnðΛ=kÞ. As
explained in the text, the renormalization of m̄1 and m̄2 are
not independent, in particular we have

ð∂τm̄1Þ
m̄1

¼ ð∂τm̄2Þ
m̄2

; ðB31Þ

and hence the ratio between m̄1 and m̄2 is fixed under
renormalization
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∂τ

�
m̄1

m̄2

�
¼ ð∂τm̄1Þ

m̄2

− m̄1

ð∂τm̄2Þ
m̄2

2

¼
�
m̄1

m̄2

��ð∂τm̄1Þ
m̄1

−
ð∂τm̄2Þ
m̄2

�
¼ 0; ðB32Þ

as reported in Eq. (9). Equations (B30) can be reexpressed
entirely in terms of the propagating mass μ: using

1

2
∂τμ̄

2 ¼ 1

2
∂τðm̄2

1 − m̄2
2Þ ¼ m̄1∂τðm̄1Þ − m̄2ð∂τm̄2Þ

1

2
∂τd̄2 ¼ d̄∂τd̄; ðB33Þ

and plugging in Eq. (B30) leads to the flow equations (12)
upon which we base our analysis.

APPENDIX C: THRESHOLD FUNCTIONS

The threshold functions defined in Eqs. (B19) and (B27)
contain the details of the scale dependence of the regulator
in the regularized propagator. In the flow equations, ∂̃k is
defined to act on the regulator’s k-dependence. The sharp
cut-off regulator (B28) remarkably enables the explicit
analytical evaluation of all threshold integrals. In polar
coordinates, we find

∂̃kL1 ¼ ∂̃k

Z
Λ

k

dq
ð2πÞ2

Z
2π

0

dϕ
qðq2−d2kþ μ2kÞ

ðq2 −d2kþμ2kÞ2þ 4d2kq
2cos2ϕ

;

ðC1Þ
where Λ is the UV cutoff, and a ¼ −1 for the cutoff (B28).
The k-dependence is only present for values of momenta q2

smaller than k2 in the momentum integral. Using

∂̃kL1 ¼ ∂̃k

Z
Λ

k
dqfðqÞ ¼ ∂̃k

Z
Λ

0

dqfðqÞθðk − qÞ

¼
Z

Λ

0

dqfðqÞð−δðk − qÞÞ ¼ −fðkÞ; ðC2Þ

one obtains

k∂̃kL1 ¼ −
1

8π2
ðk2 − d2k þ μ2kÞ

d2

×
Z

2π

0

dϕ

2
�
k2−d2kþμ2k

2kdk

�
2 þ 1þ cos 2ϕ

: ðC3Þ

Performing the integral yields the RG running of L1

k∂̃kL1¼−
ðk2−d2kþμ2kÞ

4πd2k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
2
�
k2−d2kþμ2k

2kdk

�
2þ1

i
2
−1

r : ðC4Þ

Similarly, the scale dependence of L2 is given by

k∂̃kL2 ¼
�
1þ 1

2d2
ðk2 − d2k þ μ2kÞ

�
k∂̃kL1 þ

k2

4πd2k
: ðC5Þ

To find the scale derivative of L3, we make use of the
following identities:

det

�
=αk − im1;k þ im2;kσ3

α2k þ μ2k

�
¼ −

1

α2k þ μ2k
;

det

�
=βk þ im1;k − im2;kσ3

β2k þ μ2k

�
¼ −

1

β2k þ μ2k
; ðC6Þ

and

X
�
=αk − im1;k þ im2;kσ3

α2k þ μ2k
;
=βk þ im1;k − im2;kσ3

β2k þ μ2k

�

¼ μ2k − α1kβ1k − α2kβ2k
ðα2k þ μ2kÞðβ2k þ μ2kÞ

: ðC7Þ

Therefore,

−det

�
=αk− im1;kþ im2;kσ3

α2kþμ2k

�
−det

�
=βk− im1;kþ im2;kσ3

β2kþμ2k

�

þ2X
�
=αk− im1;kþ im2;kσ3

α2kþμ2k
;
=βkþ im1;k− im2;kσ3

β2kþμ2k

�

¼ 4μ2kþðα1k−β1kÞ2þðα2k−β2kÞ2
ðα2kþμ2kÞðβ2kþμ2kÞ

: ðC8Þ

The choice of the sharp cutoff (B7), for which α1k − β1k ¼
−2idk and α2k − β2k ¼ 0, yields

4ðμ2k − d2kÞ
ðq2 − d2k þ μ2kÞ2 þ 4q21d

2
k

: ðC9Þ

Inserting this result in Eq. (B27), we obtain

L3 ¼
1

π2

Z
Λ

k
dqq

Z
2π

0

dϕ
ðμ2k − d2kÞ

ðq2 − d2k þ μ2kÞ2 þ 4q2d2k cos
2 ϕ

:

ðC10Þ

In particular, one finds that

k∂̃kL3 ¼
4ðμ2k − d2kÞ

ðk2 − d2k þ μ2kÞ
k∂̃kL1: ðC11Þ
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