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We consider the effects of a noisy magnetic field background over the fermion propagator in QED, as an
approximation to the spatial inhomogeneities and time fluctuations that would naturally arise in certain
physical scenarios, such as heavy-ion collisions or the quark-gluon plasma in the early stages of the
evolution of the Universe. We considered a classical, finite and uniform average magnetic field background
(B(x))» = B, subject to white-noise fluctuations with autocorrelation of magnitude Ag. By means of the
Schwinger representation of the propagator in the average magnetic field as a reference system, we used the
replica formalism to study the effects of the magnetic noise at the mean-field level, in terms of a vector
order parameter Q; = ieAz{(Wy ;) Whose magnitude represents the ensemble average (over magnetic
noise) of the fermion currents. We identified the region where this order parameter acquires a finite value,

5.8

thus breaking the U(1) symmetry of the model due to the presence of the magnetic noise.
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I. INTRODUCTION

There are a number of important physical scenarios
where the presence of strong magnetic fields determine
the dynamics of relativistic particles. The quark-gluon
plasma [1-4] and heavy-ion collisions [5-8] are among
them. For technical reasons, it is a common assumption in
the theoretical analysis of such systems to simplify the
configuration of the field, by assuming it to be constant
(both static and uniform), such that the Schwinger proper
time formalism can be applied [9—11]. However, in a more
realistic description of such phenomena, the electromag-
netic field may develop spatiotemporal patterns [5,6] that
will then in principle modify the associated physical
predictions. We discussed such possibility in our recent
work [12], where we applied a perturbative analysis to
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conclude that such magnetic noise effects may indeed be
relevant. In this work, we revisit the problem from a
nonperturbative point of view, in order to shed further
light onto such effects over a broader range of magnetic
noise intensities.

Following the analysis presented in our previous
work [12], we shall consider a physical scenario where a
classical and static magnetic field background, possessing
local random fluctuations, modifies the quantum dynamics
of a system of fermions. For this purpose, we shall assume
the standard QED theory involving fermionic fields y(x),
as well as gauge fields A#(x). In the latter, we shall
distinguish three physically different contributions [12],

AF(x) = AF(x) + Al (x) + 6AR5(x). (1)

Here, A¥(x) represents the dynamical photonic quantum
field, while BG stands for “background,” thus capturing the
presence of a classical external field B = (V x Apg(x)) 4,
assumed to be static and uniform as imposed by the
experimental conditions. Moreover, for this BG contribu-
tion, we consider the effect of white-noise fluctuations
5AR(x) with respect to the mean value Ag(x), satisfying
the statistical properties
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(64} (x)5ALG (X)) s = Apd; 89 (x — x'),
(6AfG(x))a = 0. (2)

We remark that the sources of the noisy gauge field are, in
the context of heavy-ion collisions, the anisotropic and
incoherent distribution of ionic beams in the initial stages
prior to thermalization that are modeled here as a classical
current J% (x) + 8J%,(x). Therefore, our noisy gauge fields
are solutions of CI(Ay, + 6Akg) = J4,(x) + 6J%,(x), and
hence by construction the background noisy magnetic
field Bgg + 6Bgpg = V x (Agg + 6Agg) satisfies the Gauss
law V . (BBG —+ 6BBG) =0.

We also remark that, in contrast to our previous
work [12], where we assumed only spatial fluctuations,
here we shall assume spatiotemporal fluctuations in the
background gauge fields. These statistical properties
are represented by a Gaussian functional distribution of
the form

. ﬁAgG(x)z
dPloAl) = Ne~ ] il 25 ] DlsAgs(x)].  (3)

with the corresponding statistical average over background
fluctuations defined by

(0)s = / dP(5AL G O5AL ). (4)

In heavy-ion collisions, strong magnetic fields B = V x
Apg are generated locally within a small spatial region
whose characteristic length scale is L ~ /o, with ¢ being
the effective cross section. In these collisions, the dominant
component of the magnetic field is along the axial z
direction, such that on average we have (B) = &;B.
However, there are also smaller transverse components
0B, and 6By, such that we can estimate the fluctuation of
the field within the small collision region to be on the order
of (6B)* ~ (6B,)* + (6B,)*. Since many such collisions
occur at different points in space and their time span
6t ~ L' /¢, an approximate model for this physical scenario
is provided by the magnetic random noise (2). By dimen-
sional analysis, the magnitude of Ap is of the order

Ag ~ (8B)?L°L' ~ (6B)*c°L'. (5)

The effective cross section for a nuclear collision can be
estimated as the fraction f of the area of perfectly central
collisions between two nuclei, each with a radius of r,,

o= frri. (6)

Here, f represents the fraction of the geometrical cross
section 6., Which is defined as the area of the circle with
a radius of r| + r, = 2R in a maximum peripheral colli-
sion, and the cross section ¢, for a peripheral collision with
impact parameter b [13,14],

O)p N part 2/3
= = 7
f Ogeom ( 2N ) ’ ( )

where o, describes an effective nucleus of radius b. The
nuclear radius is always written as r, = roN'/3, where N is
the number of nucleons per ion and ry~ 107> MeV~!.
Here, Ny, is the number of participants corresponding to
the effective nucleus.

Therefore, under these considerations, we have

5 Npart\ /3
Ap ~ m3/2(8B)?ryN>/3 N L. (8)

In peripheral heavy-ion collisions, the magnetic field
fluctuations along the transverse plane are approximately
|eSB| ~ m2/4, where m, is the pion mass [14,15]. For an
Au + Au collision with N =197, and if Ny, /N =1/2,
we obtain (for L' ~ r,)

e?Ap ~ 1.6 x 107° MeV~2, 9)
or for less central collisions with Ny, /N = 1/8,
e?Ap ~ 1.6 x 1077 MeV—2. (10)

As we shall later show, the effects of magnetic noise are
controlled by the dimensionless parameter A = e*Agzm7,
where m is the fermion mass. If one considers the mass of
the proton, then the relevant dimensionless scale would be

Aproton ~ 0.16-1.6, (11)

whereas if one considers the mass of the constituent quark
species,

Aquark ~ 0.018-0.18. (12)

Taking into account the previous analysis, we write the
Lagrangian for this model as a superposition of two terms

L = Lpc + Lnpe- (13)

Here, the first term represents the system of fermions
(and photons) immersed in the deterministic background
field (FBG)

_ . 1
Lepg = W(ig — efgg — eA —my)y — ZFWF’“’, (14)

where F,, =0,A, —d,A, is the strength tensor for the
dynamical quantum gauge fields (photons). The second
term in the Lagrangian (13) represents the interaction
between the fermions and the classical noise (NBG),

Lxpc = P (—edfpe)y. (15)

The generating functional (in the absence of sources) for
a given realization of the noisy fields is given by
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W]eifd4x[£FBG+£NBG]. (16)

M=/DW

To study the physics of this system, as usual we need the
generator of connected correlation functions. However,
as the presence of disorder is modeled by a statistical
ensemble of different realizations of the magnetic back-
ground noise 6Aj(x), we need to calculate the disorder-
averaged generator of connected correlation functions
(In Z) . For this purpose, we apply the replica method,
which is based on the following identity [16]:

(In Z[A]), = 1%%.

(17)

Here, we defined the statistical average according to the
Gaussian functional measure of Eq. (3) as in Eq. (4), and Z"
is obtained by incorporating an additional “replica” com-
ponent for each of the fermion fields, i.e., w(x) = y“(x),
for 1 < a < n. The “replicated” Lagrangian has the same
form as Egs. (14) and (15), but with an additional sum over
the replica components of the fermion fields. Therefore, the
averaging procedure leads to

(z"A A—/HD‘// w /DéA’éG fdx MR

x elfd4x Z«:] (Lena v wl+Losa 7 v )

= [ 1oyt (18)

where in the last step we explicitly performed the Gaussian
integral over the background noise, leading to the definition
of the effective averaged action for the replica system

Bl K0 KD O S e

P (7w’ (y)

Sty psal =i [ d‘*x(zzpa (19— chnc - eh—m, )y

) oo
ZZ POt (). (19)

Clearly, we end up with an effective interacting theory
between vector currents corresponding to different replicas,
with a coupling constant proportional to the fluctuation
amplitude Ay that characterizes the magnetic noise, as
defined in Eq. (2). In this context, the noise parameter plays
the role of a mutual induction coefficient between such
currents.

The “free” part of the action corresponds to fermions in
the average background classical field Aj;(x). We choose
this background to represent a uniform, static magnetic
field along the z direction B = 3B, using the gauge [10]

1
Afg(x) = 3 (0,—Bx?, Bx',0). (20)
In addition, as we shall focus on the analysis for the
fermion propagator, we shall not consider the photons in
this scenario A#(x) =0, and hence its corresponding
strength tensor F,, = 0.

II. INTRODUCTION OF AUXILIARY
BOSONIC FIELDS

Let us now introduce a Hubbard-Stratonovich trans-
formation via a set of complex bosonic fields Q;(x), by
means of the Gaussian integral identity

3
— N[H / DQ.(X)DQ*_(X)} o5 J QP e [0, () YT v ) (x)—ie [dx; () Y v (v (x) 21)
J J :
j=1

With this transformation into the averaged, replicated nth power of the generating functional (18), we obtain the

equivalent form

3
(Z"Apgl)a =N lH / DQ](X)DQj (x)] e—ﬁfd“‘x\Q,'(x”z
=1

x [H [Pt

S v @ gl efog—m —er (Q;=0))w () }

3
=N lH / DQ]-(X)DQ; (x)] e_ﬁfd‘*x\Qj(X)l' [det (ig — efpg — m; — ey/(Q; — Q;«))]n
=1

3 .
— NlH/DQ](x)DQj (x)l e—ﬁfd“x‘Qj(X)PJrnTrln [iy_f‘ﬂ/BG_mf_e}’f(Qj_Qp]. (22)
=1

Based on this identity, and combined with Eq. (17), we obtain the effective action
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iSeit[Apa] — 1S0[Apc] = (InZ[Apg]) s — In Zy[Agg]

=N

> 2 [axloP LT atrinfiglef i(0,-0;
I1 / DQ;(x)DQ;(x) | e ) 1A nm_[e" rin fig=efn—my—er <Qf-Qf>1—1} —InZy[Agg]
j=1

n-0n

= (Trln (ig — eApg — my — eJ’j(Qj - Q}))>A —Trln (ig — eApg — mf)v (23)

where ((-)), represents the average over the Gaussian
functional measure of the complex fields Q;(x). Let us
define the inverse fermion propagator, including the
classical background field, as follows:

Si'(x = y) = (ig — efng —my) W (x = ). (24)

Therefore, for the effective action we have

iSeit[Apc] = (Trin (ig — eApg — myg — e?’j(Qj - Q;)»A
= (Trin (S5' = ey/(Q; = 0})))a

|
By noticing that iSy[Agg] = Trin Sg!, we have

iSest[Apg] — 1So[Apg] = (Trin (1 - eSFY‘i(Qj - Q;)»Aa
(26)

where the right-hand side contains all the effects of
the noise.

III. SADDLE POINT APPROXIMATION

= Trln S;! (MEAN FIELD)
+ (Trin (1 - eSgy/(Q; — 09)))a- (25) Th§ resqlt in Eq. (26) can be expressed in the explicit
functional integral form
|
3
. . % —Z [ d*x|Q;(x)[>+In[Tr In(1—eSgy/ (Q;—Q*

iSes[Apg] — iSo[Apg] = N[H/DQJ(X)DQ,- (x)]e 2 [ %10, (x)P+In[Tr In(1-eSer (Q; o1 (27)

j=1

In order to study the effects of the background noise, we shall adopt a mean-field approximation, by searching for the

saddle point of the exponent in Eq. (22),

o 2
50,(x) {_A_B/ d*yQ,(y)Q;(y) + In[Trin [1 — eSpy'(Q; — QT)]]} =0,
1) 2
e {~5 [ #2)0i0) + it esur(0,- 0]} 0. (28)
This condition leads to the equation [assuming homo- Q;+0;=0,
luti f the fi (x)=0;
geneous solutions of the form Q;(x) = Q,] 4= 0,~ 0 =2iImQ, %0, (31)

2, e[ Se7/(1 = eSer' (01 - 07)

Q)
O = T Trm{l = eS (01— 0))

;_l] . (29)

From the second equation in Eq. (28), we obtain the
additional condition

Q; = -0, (30)

We can combine both equations, by noticing that

where the second line implies that g; is a pure imaginary
number, and it satisfies the nonlinear equation

Tr [SF7j<1 - eSFJ/’cn)‘l]
Tr In[1 - eSgy'q)]

(32)

The numerator of this equation can be expanded as an
infinite geometric series as follows:
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Tr |:SF7j (1- eSFVZqI)_l} = €T [Sm/j (SFkaIk)l:|
0

I
= Zel[nfl=lqka]

=1
X Tr[Sgy! Sgr*1 Sy . Sey*].
(33)

[Se]

On the other hand, the denominator can also be expanded
by means of the Taylor series for the natural logarithm as
follows:

~

e

TTT[(SFﬂ)I}

[M]s

Tr In[1 — eSgylq)] =

—
I

1

—~

e
lll

X Tr[Sgyki Spyke...Sgrk].  (34)

Il
NgE

[Htlle Qk(,}

From the exact expression of Eq. (32), we can extract the
leading contribution by retaining terms up to third order in
the g; coefficients in the numerator, while retaining up to
second order in the denominator,

eMilq + e Mimngq,.q,

q; = eA , 35
e < M"™q,.q, (39)
where we defined the matrix coefficients
Mt = TT[SF}’j SF}’Z]
d*k .
= | —tr[Sp(k)y/Sp(—=k)y'], 36
| eSSzl (36)

and
Mjlmn — Tr[SijSF}/ISFVm SF}’n}

:/(f‘T];tr[SF(k)ijF(k>7lSF(k)7mSF(k)yn]' (37)

Here, tr[-] stands for trace over the space of Dirac matrices.
The Schwinger propagator in Fourier space is defined by
Eq. (41) and, more importantly for calculation purposes, by
its alternative form Eq. (45).

We can analyze the possible solutions to Eq. (35) by
casting it into the form of a quasilinear system,

(ABM n M[q])q -0, (38)

where we defined

. i 1 . .
[al]" = (=50 + 2apr g (9

There is always a trivial solution q =0 to Eq. (38).
However, nontrivial solutions q may exist provided that
the (nonlinear) matrix coefficient is singular, i.e.,

det (ABM + M[q}) — 0. (40)

In order to analyze this second condition, we need to
evaluate the matrix coefficients explicitly. For this purpose,
we first discuss the mathematical representation of the
Schwinger propagator in the next section.

IV. THE SCHWINGER PROPAGATOR

As discussed in the previous section, the matrix coef-
ficients depend on traces and integrals involving products
of the fermion propagator immersed in the constant back-
ground magnetic field. Therefore, this allows us to use
directly the Schwinger proper time representation of the
free-fermion propagator dressed by the background field,
whose direction is chosen along the z axis, B = é3B, as
follows [9,10]:

[Se(K) 4 = =160 / mﬁ eir(kﬁ—ki‘“"j;f’>_m;+ie)
0 eptT

X {[cos(eBr) + y'y?sin(eBz)|(my + K))

+k7l}, (41)

cos(eBr)

which is clearly diagonal in replica space. Here, as usual,
we separated the parallel from the perpendicular directions
with respect to the background external magnetic field by
splitting the metric tensor as ¢ = g|" + ¢/", with

d"‘” = diag(1,0,0,-1),

¢\ = diag(0,-1,-1,0), (42)

thus implying that for any four-vector, such as the
momentum k¥, we write

K=K +¥ (43)
and

k= ki - k3, (44)

respectively. In particular, we have kﬁ = k3 — k3, while

k, = (k',k?) is the Euclidean two-vector lying in the
plane perpendicular to the field, such that its square norm is
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k3 = k? + k3. The Schwinger propagator can alternatively
be expressed as [12]

[Se(k)] 4 = =160 [(mf + K) A + (ieB)y'y? (mf + ku)

0A; . > A
e
= _iéa,b |:(mf + kH)Al + }/1}/2 (mf + kH)AZ
+ A3h] (45)

Here, we defined the function

2

o . , .k
A, (k, B) — A dren(kﬁ—mﬂ»le)—lﬁtan(eBr)’ (46)

that clearly reproduces the scalar propagator (with
Feynman prescription) in the zero-field limit

i

limA,(k,B) = ———,
B 1(k. B) kz—m%+1€

(47)
and its derivatives

Ay (k,B) = /oo d’rtan(eBT)eif(kﬁ_tﬂ(f)ki—m%k)
0
0A,

f— 1 B N
“Poa?)

(48a)

Ag (k, B) = /00 Leif(kﬁ_%(‘f)ki—m}—kie)
) o cos’(eBr)

= .Al + (163)2

) (48b)

As we showed in detail in our previous work [12], an exact
representation for the function (46) is given by

K2

oL . 2 __ 2 3
Ay(k) =2 e‘2‘«”B<k2-"13“€)F<‘ g mf+1€>

2¢B 2¢eB

K —m%+ie o2
><U<—7f,0,—L : (49)
2eB eB

where I'(z) is the Gamma function, while U(a,b,z)
represents Tricomi’s confluent hypergeometric function.

V. RESULTS AND DISCUSSION

For the analysis of our numerical results, it is convenient
to define the following dimensionless groups:

A= ezABm;,
B
B=%, (50)
my

respectively. The matrices M and M¥"¥ as defined by
Eqgs. (36) and (37), respectively, are calculated by tracing
over the Dirac matrix space, as explained in Appendix A,
and the resulting momentum integrals are calculated from
the generic formula developed in Appendix B. The inter-
ested reader is referred to those Appendixes for further
mathematical details.

In order to analyze the existence and features of non-
trivial solutions for the order parameter ¢ = (g, ¢», ¢3), we
solve the secular equation (40) by assuming two different
symmetry conditions, according to the directions orthogo-
nal (L) and parallel (||) to the magnetic field, respectively.

A. Case 1: g3 = qﬁ, with ¢; =¢,=0
If we impose the condition g; = ¢, = 0 onto Eq. (39),

we have
- i 1 . .
[M[CIH]}” _ (_EéﬂM?’s + ezABM"I”)qz

=Clq. (51)

Therefore, substituting this reduced expression into the
secular equation (40), we obtain

det (ABM n qﬁC”> —0. (52)

Furthermore, using elementary matrix properties and
given that the matrix M is nonsingular, we can manipulate
the expression above as follows:

det (ABM + qﬁc”) — det (A M)
.det(13+qﬁAglM—lc”):o. (53)

Given that M is nonsingular, the above expression implies
the secular condition

det (15 + gag' MI¢)) =0, (54)

Our analysis to this point is consistent up to second
order powers in the components of the order parameter.
Therefore, applying the elementary identity det (1 + €X) =
1 + etrX + O(€?), we expand Eq. (54) to obtain
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0.12 A = 0.0005 A =0.0025 A = 0.005 A = 0.0075

< 0.09

g
= 0.06 .
= .

0.03 - e -~
0.12 A =001 A =002 A =0.03 A =004
[

- 0.09 - »
= 0.06 /“l ,."‘ ‘_,»' .
= o o = r

0.03 .,r” 'I" 'I" "I
0 0.1 0.2 0 0.1 0.2 0. 0.1 0.2 0 0.1 0.2
B B

FIG. 1. Nontrivial solutions of Eq. (52) for case 1 as a function of B for A € [0.1, 0.04]. The dashed line represents the smooth envelope
connecting the discrete nontrivial solutions.

P [M“)}ﬂ = M3, (57)
[ tr(/\/l ICH)

_ _ Agp Figure 1 illustrates the nontrivial solutions of Eq. (52)

— % MB3tr(M™) 4 e Aptr ( M1 M(33)> for case 1, as a function of the external magnetic field and

various values of A. It can be observed that there exists a

__ X Ap (55) region where the discrete solutions exhibit a monotonically

1+ KA ’ increasing pattern with a smooth envelope, abruptly

terminated at a point beyond which only the trivial solution
g =0 exists. We refer to this point as the “critical
magnetic field” B.. A similar scenario arises when the
magnitude of A is increased, as demonstrated in Fig. 2.

where we defined the parameters

2 Furthermore, it is worth noting that, for higher values of A,
X = MB(MT)’ the solutions become approximately identical, and the 1.
_ converges toward a specific limit as is shown in Fig. 3.
—2e2tr</\/l"/\/l<33>) In line with the results presented above, it is worth
K= MM (56)  emphasizing that a specific combination of parameters
(A, B) plays a pivotal role in giving rise to a discrete set of
nontrivial solutions characterized by ¢ #0, or in the
as well as the reduced matrix context of Eq. (31), resulting in purely imaginary values
0.6 A=0.1 A=03 A=05 A=07
T 04
=
=02k A T ok I .
0. grl"".--' g!l‘.".--’ grl"'.'” g.l"—..-—
0.6 ] A=2. A=3. A=4.
'g 0.4
=
= 02
0. gpn " L =I.'. gt L gt -
0. 0.1 0.2 0.30. 0.1 0.2 0.30. 0.1 0.2 0.30. 0.1 0.2 0.3
B B B B

FIG. 2. Nontrivial solutions for g5 of Eq. (52) as a function of eB for Ay €10.1,4].
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_—
0.15
—
mw 0.1 __—
0.05 jaF
0.

0. 0.01 0.02 0.03 0.04 0.05
A

FIG. 3.

for g;. This behavior is depicted in Fig. 4, offering valuable
insights into the system’s dynamics. Figure 4 illustrates a
spectrum of these parameters, revealing that for fixed
values of B not all the values of A produce nontrivial
solutions (those are discrete). We have also shown in Fig. 4,
by a dashed line, the smooth envelope of those discrete
points. Nevertheless, for higher values of A the solutions
become a quasicontinuum and saturate to the value qﬁ(oo)

defined as

¢(c0) = lim g7 =1 (58)

A—oo H o ’C” ’

where qﬁ is given in Eq. (55). In the opposite limit, for

very small values of A, Eq. (55) shows that the order
parameter follows an approximately linear trend with a
slope defined by

0
= lim —¢?. 59
)(H Ap—0 GAB q” ( )
1.01
B = 0.0182187 B =0.0213135
%L
=
a= 0.99
=
0.98
1.01
B = 0.0286136 B = 0.0524598
%L
=
a= 0.99
=
0.98
0. 0.005 0.01 0.015 0. 0.005 0.01 0.015
A A

FIG. 4. Discrete solutions for the order parameter (normalized
by its asymptotic limit) as a function of A, for fixed B (filled
squares). The continuous line represents the envelope function
defined by Eq. (55) before the conditions of Eq. (31) have been
applied.

0.1906

m‘d 0.1902 ..‘.‘/_'—-
0.1898

Critical magnetic field 5. of Fig. 2 as a function of A, in two different ranges of such parameter.

B. Case 2: ¢3=¢3 =¢>, with ¢3=0

In this case, the matrix Eq. (39) reduces to
. i 1 .
[M[mﬂﬂz (—55/1(/\/1“4—/\/1224—/\/112—1—/\/{21)

+€2AB(Mjlll+Mj122+Mj“2+Mjlzl))q2l

=C| 4. (60)
For this case, the secular Eq. (40) reduces to
det (AgM +¢3C,) =0, (61)

and repeating the same procedure as described in case 1,
we obtain
det (13 + g2 Az' M7IC,) = 0. (62)

Finally, just as in case 1, we retain only second order
powers of g in Eq. (62) to arrive at the explicit algebraic
solution

Ap X1Ap

2 = _ = , 63
= r(M7IC) 1+ K Ap (©3)
where we defined the parameters
2
XL = )
(Zm,n:l.Zan)tr(M_l)
_2622:}?1,}1:1.2tr (M_1M<’nn))
ICL — ’ (64)
(Zm.n:l.Zan) tr(M_l)
and the reduced matrices
|:.A~/l(mn)1|/l _ Mjlmn' (65)

As already discussed in Eq. (31), the order parameter g;
(for j =1, 2, 3) is a pure imaginary number.

Figure 5 illustrates the nontrivial solutions for ¢ in case
2, considering various values of A. Similar to case 1, these
solutions are discrete and highly dependent on the magnetic
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0.3
A =0.0005 A =0.0025 A =0.005 A =0.0075
-
g 0.2
=
—
= 01
- i" -r - -
0. n mu s =..-' ==.l"'
0.3
A =0.01 A =0.02 A =003 A =004
= 0.2 -
£ P
E .
= 0.1 - . y
.. .. . = -
0. I‘..-.‘- T Ll e = ]
0. 0.1 0.2 0. 0.1 0.2 0. 0.1 0.2 0. 0.1 0.2
B
FIG. 5. Nontrivial solutions of Eq. (52) for case 2 as a function of B for A €[0.1,0.04]. The dashed line is the smooth envelope

connecting those discrete nontrivial solutions.

field and noise parameter. Notably, the critical magnetic field
in this scenario is lower compared to case 1. Furthermore,
Fig. 6 demonstrates the behavior of the critical magnetic
field B3, which exhibits a distinct functional form from that
shown in Fig. 3. The relationship between g% and A, with an
envelope given by Eq. (63), is depicted in Fig. 7, where
discrete nontrivial solutions at particular values of A are
permissible for a constant magnetic field.

Here, we can also identify the value at which the
sigmoidal equation (63) saturates as a function of the
noise Ag,

2 (00) = limg? = 2L,
qJ_(OO) A—)OOQJ_ ICL

(66)
In the opposite limit, for very small values of A, Eq. (63)
shows that the order parameter follows an approximately
linear trend with a slope defined by

0
— i 22
2L = Jim 5 A, T (67)
0.15}
2 0.1p ==
0.05 : . . . .
0. 0.01 0.02 0.03 0.04 0.05
A

FIG. 6. Critical magnetic field .. of Fig. 5 as a function of A
for case 2.

Consequently, we can infer that the underlying physics in
both cases is closely related, and the mechanism leading to
the emergence of a nontrivial value of the order parameter
maintains a consistent nature and interpretation, regardless
of the specific values of (g, ¢, q3).

C. Physical interpretation of the order parameter Q;

The physical interpretation of the order parameter
components can be obtained from the functional represen-
tation (22), before we integrate out the fermions, to obtain
via saddle point the mean expectation value

Q; =ieAp{yrwha = —0;, (68)
where here the double bracket stands for the statistical

average over the classical noise in the background field, as
well as the quantum expectation value of the corresponding

1.25
1.2
1.15

1.1
1.05

B = 0.0218559

B =0.0296188

@1/} (c0)

B = 0.0335942 B = 0.0388212

¢t /¢} ()
&

0. 0.005 0.01 0.015 0. 0.005

A A

0.01 0.015

FIG. 7. Discrete solutions for the order parameter (normalized
by its asymptotic limit) as a function of A, for fixed B (filled
squares). The continuous line represents the envelope function
defined by Eq. (63) before the conditions of Eq. (31) have
been applied.
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observable, which clearly is a component of the vector
current for the fermions, j =1, 2, 3.

It is important to remark upon the physical effect that this
order parameter, at the mean-field level, produces in the
disorder-averaged fermion propagator, which is given by

iSgh(x —y) = (i — efgg —my — eﬂ)x5(4) (x—=y), (69)

where we defined ¢ = y/g j» for g; = Q; — Q7 the order
parameter. Clearly then, the differential equation for the
propagator in the presence of the magnetic noise is given by

(ig — eApg — myg — eﬂ)xSF,A(x -y) = i (x=y). (70)

It is straightforward to verify that, if Sg(x — y) represents
the Schwinger propagator in the presence of the average
background magnetic field, then the function

Sea(x —y) = et Sp(x — y) (71)

is a solution to Eq. (70). Indeed, by direct substitution,
we have

(ig — eApg — my — ed) Sp.a(x =)
= (ig — efgg —my —ef), [e_ieq'(x_y)SF(x - J’>]

= 7 (ig — efgg — ms) Se(x —y) = i6W (x - y),
(72)

where in the last step we applied the definition (24) for the
Schwinger propagator in the absence of noise.

Therefore, we conclude that at the level of the disorder-
averaged propagator, Eq. (71) introduces an exponential
damping effect given that the order parameter g; is a pure
imaginary number.

VI. SUMMARY AND CONCLUSIONS

In this work, we considered a system of QED fermions
submitted to an external, classical magnetic field. In
particular, we studied the effects of white noise in this
magnetic field with respect to an average uniform value
(B), = €3B, as a function of the standard deviation Ag,
over the fermion propagator. As we discussed in the
Introduction, this represents a statistical model for the
actual scenario in heavy-ion collisions, where strong
magnetic fields emerge for very short times within small
spatial regions, whose size is of the order of the scattering
cross section. Since several such collisions occur at differ-
ent points in space, the physical situation can be repre-
sented by a statistical ensemble, for different realizations of
the magnetic field fluctuations, which are then described as
a random variable.

We analyzed our model by applying the replica formal-
ism that led us to an effective action in terms of auxiliary

bosonic fields. A mean-field analysis of the corresponding
effective action reveals that the magnetic noise effects can
be captured by an order parameter, whose physical inter-
pretation is the statistical ensemble average of the expect-
ation value of the fermion vector current components.
Therefore, nontrivial solutions where this order parameter
acquires a nonzero value break the U(1) gauge symmetry in
the system, as a consequence of the statistical noise in the
background magnetic field. An interesting feature of such
nontrivial solutions is that they exist only for certain discrete
values of the average background magnetic field. Such
discrete values can be identified to be in correspondence
with the quantized Landau levels associated with the
average background field. This feature is then consistent
with the interpretation of the order parameter as the
ensemble average of the fermion current. In addition, for
a fixed value of the disorder strength characterized by A,
we find an upper critical value of the average background
magnetic field B, beyond which the nontrivial solutions
cease to exist in favor of a vanishing order parameter. This
region of parameter space is then characterized by a
dominance of the average background field over noise,
whose effect then becomes negligible. In contrast, in the
limit of very strong magnetic noise Ap — oo, we observe
that the order parameter asymptotically saturates to a
constant finite value qﬁ. | (00) that depends on the field,

but is independent of Ap, as can be clearly seen from
Egs. (55) and (63), respectively.

Remarkably, in the context of the fermion propagator,
we showed that the order parameter, which is strictly
imaginary, represents a finite screening length that leads to
weak localization effects. Our present analysis is restricted
to the fundamental level of the fermion propagator, but its
consequences could manifest themselves in physical
observables, such as effective collision rates for certain
processes.
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APPENDIX A: TRACES INVOLVED
IN THE DEFINITION OF THE MATRICES M

In this appendix, we provide an explicit example of the
method used to calculate the traces of products of operators
involved in the definition of the matrices M"/ and MK

For definiteness, let us consider the following expression:

M (k) = Tr[Sp(k)y/ Sg(k)y' Se(k)y™ Sg(k)y"]. (A1)
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To calculate the traces over Dirac matrices, note that the propagator product yields to several terms for M/ so that we
can define

3 3 3 3
M () = 5SS ST AR A ()AL () Ag ()T (k) (ks (07" s(K)7")
a=1 b=1 c=1 d=1
3 3 3 3
=D 33 AR AR A (k) Ag () My k), (A2)
a=1 b=1 c=1 d=1
where
s1(k) = +m,
5o (k) = iy'y? (kn + m)
53(k) =¥ (A3)

Note that, for the cyclic property of the trace, the elements satisfy
jlmn njlm __ mnjl Imnj
Mabcd - Mabcd - Mabcd - Mabcd’ (A4)

and, therefore, just a few traces need to be computed explicitly, so that the whole expression can be reached by adding terms

/l'”"( k) can be straightforwardly computed,

with the convenient indexes. The needed elements M,

Jjlmn lmn 2 _ 12 nlm mn l lmJn il 1, m
Miin —4[8kf|kukk 2(m ku)<9’ Kkit + 9"k} + g K]k + 'K k)

+ (m _ kZ) (g/n Im gjmgln) 4 (m4 4 k“‘l)gﬂgm"} , (AS)

Mgé";;*—4[smkm+k‘1<gf"gm g 4 gingm) — 263 (K, kg + K kg + kg + k)| (A6)

jlmn __ 4. 2_ an ,bm bllm bm 1.k 1,n blmipn
M = (k3 = m2)egs [2 (o okl k] + g IRk + gk + gk )
+ (kf —m?) (9‘1’”9?’9” + gl + g + g g™ + g g+ gi’glfg’"")} (A7)
where €, is given by €, = —e3; = 1.

The element M3, is conveniently split in two pieces, i.e.,

M = Te[ () + m)rd (K + m)y' 72y + m)r™i' 72y + m)y” |
= Tr[(ku +m)y () + m)y' (J + m)yi(ky + m)}’"} - Tr[(ku +m)y! (f + m)y' (§) + m)y'7 (K + m)}’"}
= M5 () + M55 (b), (A8)
where we have used
Yyt = v+ oL (A9)

and we defined

M) = Tr [ () + m)y (K + m)r () + m)r Oy + m)r”], (A10a)
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and
M3 (b) = —Tf[(kn + m)y! (f) + m)y (K + m)yT () + m))/”], (A10Db)
so that
jlmn lmpn 2 m . jn im _In mn ,j
M (a )—4[8"Jkkn ki + (kn ’”2) <9|1| 9" =9"9" + 9| 9”)
2 |l mn l m n lm min
+2< —k )(kﬁkugn Kiki'g™ + Kkigl" + ki'kitg/ )} (Alla)
and
M (b) = 40 = m?) [26] (kg + Kiglt) + (& = m?) (g'g"™ = g™ = g9 . (Al1b)

]lmn_ ]nlm | .mn 2 1]
Ml {4kk”k K+ kTR = 263 )

kg™ = k" + kig™)
0 =) [ - g+ ) + 200 (K - kg - i) (A12)
By following the same procedure, the term Méé";g’ is split into
M (a) = Tf[(ku +m)y| (k) + m)fh?”"h?”}
= 4{(m2 - 12) {2kﬁkfgﬁ” + 27k gl + K (gﬁmgl” —gl'g" - gﬁlgm")}
+ 24] [ki (kﬁ" g =k glm) + K QKT — g™ + 2kﬁkikﬁ] } (A13a)
and
M) = =Te [ (k) + m)rs (k) + m)rkr K]
— 4l = k) [2ky (Koo — kgl = Kigl") + k2 (glg™ = gl'g" + glg™)]. (Al3b)

APPENDIX B: MOMENTUM INTEGRALS

In the calculation of the matrix coefficients, such as the example provided in Appendix A, we need to obtain momentum
integrals of the general form

d*k
a.p,
157 = [ S AW AP R[] (B1)
Here, we recall the representation we obtained in Ref. [12] for the function
K2 . .
e~ k2 —m? + ie kK —m?+ie  2x2
1€ <% —m(kd—mitie) [ S [ S 1
k) = 2<'B I Il — - - _ B B2
A (k) 2¢B ¢ ( 2eB )U( 2eB -0 eB)’ (B2)

where I'(z) is the Gamma function, while U(a, b, z) is Tricomi’s confluent hypergeometric function.
As a first step, let us perform a Wick rotation to recover the Euclidean metric ko, — ik, which implies d*k — id*k and
kﬁ - —kﬁ (here we avoid adding further subindexes to keep the notation simple). Moreover, let us define the following

auxiliary variables:
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2
_ k + mf
2eB ’
262
= — B3
B (B3)
In terms of these new variables, we can write
ie=?/%
Ai(a,z) = 728 ™ T (a)U(a,0, z), (B4)
and the integration measure id*k = id*k | d*ky, with
eB
Pk, = nd(K2) = ”sz,
k) = nd(k}) = 2meBda. (BS)

Therefore, Eq. (B1) reduces to the expression

B)2+5
Irx,ﬂ,y _ (e 2¢B
o 725(2@ o da( e a—i—mf)

2eB

x / ® 422 [Ay (a.2)] [ Ao (. )P [As(a. )] (B6)

In order to calculate the integrals in this last form, we
shall apply the identity

['(a)U(a,e,z) = éM(a,e,z) +T(-1+e)M(1 +a,2,z)

1
~5M(a,€,z) +(ye—DzM(1 +a,2,z),

(B7)
where M(a, b, z) represents Kummer’s confluent hyper-
geometric function, and I'(z) is the Gamma function. In the
second line, we have removed the 1/¢ divergence of the
['(—1 + ¢) function. Finally, we regularize by subtracting

the divergent term M(a,€,z) as € — 0, to arrive at the
prescription

[(a)U(a,e,z) ~(y.— 1)zM(1 + a,2,z)

= (ve - 1)z<1 + It az) +0(z%). (B8)

From this expansion, we obtain

ie=#/?2 1+a
1)——e"z( 1 . B
) 508 Z( t— Z) (B9)

Ai(a,z) =~

(7@ -

The other functions are expressed by the following
expansions at the same order:

. aAl (Cl, Z)
A(a,z) =21———=
»(a,z) =2i %
=2(1)%(y, - 1)ﬂe-z/2 1+ (a +1 z
¢ 2eB 2
I+a,
- B10
1 c } (B10)
and
LA,
As(a.2) = Ayfa.2) + (20)"
eiﬂa
= —4i(y, — 1)ﬁe-z/2[a - (1+a)z. (BI1)
Inserting into the integral expression, we obtain
2 B)2+§ (}, _ 1) a+p+y
Ia.ﬂ.}/ :7[ (6‘ 2 Vi —4)|i e
8,0 25(2 ) ( ) ( ) 1 2€B
x /;o dae™* Pt (2eBa + m7)°
"
2eB
o0 (a+p+7)z 1 a
X/ dze—5" 5+“[1+ +a}
0 2
1 I+a ,]°
1 _ _ 2
X { + (a + 2>z 1 z }
xla—(1+a)Z]". (B12)

Now, let us expand the binomials and trinomials in the
integrand as follows:

1+a e a a! 1+a\m
1 - m  (B13
{ T } ;)m!(a—m)!( 2 ) ‘ (B13)

(B14)

(B15)
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Inserting these expansions into Eq. (B13), we obtain

b :ﬂ2(63)5+6(21)/}(—4)7 i(ye_ 1) a+ﬁ+yz“: al2™m 27: zﬂ:zq: plai-a
o0 20-°(27)* 2eB “m!(a—m)! = n!(y —n)!

q=0 j=0
x/ood wlapnal g 4 " (=1 + @)1+ ay (a+ )
ae a — | a - a a a =
v 2¢B 2

o a Z .
X / dze_%25+(l+n+m+2q_1 .
0

We further expand the binomials in the variable a as follows:

o—k

_r f k
(“+2e3> Zk'a k! <2e3) “

(—=(1+ a))"+q—j — (_1)n+q—j 2 l (n+q—j)! d.

< N(n+q—j—1)!

N & .
—) = L o-(-hgh,
<“+2> 2 G-t

h=0

Inserting these expansions into Eq. (B17), we obtain

HB=a)(g—=j)!

2(eB)H o2 (=4) [ (y. — 1)]etPr s a2 L /3v4f a
Ia,/i,y _ s (e - \V/e
o0 20-0(2)* " 2eB r;) m!(a—m)! Z )! Z Z

o

o! (f"%)""‘ IS (tg-i)t &) .
X L (=1)nta=i : : 2-(i—h)
;k!(a—k)! 2¢B ; l!(n+q—J—l)!hZ:0h!(J—h)!

[s+] -
) [/2 daei™a+brr+ie)a gr— n+k+l+h:| {/ dze—wzé+a+n+m+2q—j:|
- 0
2¢B

It is now trivial to show the identities

\

© at+f+7)z . 2 a+6+n+m-+2q—j+1
/ dze_wzﬁ—ka—kn-&-m-ﬂq—] — <7> . (a +6+n+m+2q- j)!
0

a+p+y
and
© : 2
/2 dae™atphrrtiela — v eiﬂ(a+ﬂ+7)ﬁ’
—f m(a+p+7)
/ daeimatB+r+ie)agn — jn+l r (n + 1, —iz(a+p + 7/) m_%) ]
55 [Z(a+ B+ },)]n+1 ) 0B
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Inserting these identities, we finally obtain

wpy _ (B (=A) [ (r, — D] *H47 &
JePr {17 ] Zm,

bo 20=0(27)* 2eB -

(o2

al2™m
(a m)! Z

(n+tg-j) &)

P 4q
ﬂ'41q
i 2

==/ B-a)g—))!

k= =0

n+l
x [[” (@t f+ )k

> a+6+m+n+2g—j+1
X

(a+ﬁ+y

2\ o—k n+q-j
S i () ey
< k!(c—k)! \2eB Nn+q-—

(a+6+n+m+2qg—j)!

2=(i—h)

j—l)!hz:;h!(j—h)!

m2
F<y—n—|—k+l—|—h+1,—iﬂ(a+ﬂ—|—y)—'>]

7
2¢eB

(B24)
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