
QED fermions in a noisy magnetic field background:
The effective action approach

Jorge David Castaño-Yepes,1,* Marcelo Loewe,2,3,† Enrique Muñoz ,1,4,‡ and Juan Cristóbal Rojas 5,§

1Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile
2Centre for Theoretical and Mathematical Physics, Department of Physics, University of Cape Town,

Rondebosch 7700, South Africa
3Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 8420524 Santiago, Chile

4Center for Nanotechnology and Advanced Materials CIEN-UC,
Avenida Vicuña Mackenna 4860, Santiago, Chile

5Departamento de Física, Universidad Católica del Norte, Angamos 610, Antofagasta, Chile

(Received 25 August 2023; accepted 20 November 2023; published 14 December 2023)

We consider the effects of a noisy magnetic field background over the fermion propagator in QED, as an
approximation to the spatial inhomogeneities and time fluctuations that would naturally arise in certain
physical scenarios, such as heavy-ion collisions or the quark-gluon plasma in the early stages of the
evolution of the Universe. We considered a classical, finite and uniform average magnetic field background
hBðxÞiΔ ¼ B, subject to white-noise fluctuations with autocorrelation of magnitude ΔB. By means of the
Schwinger representation of the propagator in the average magnetic field as a reference system, we used the
replica formalism to study the effects of the magnetic noise at the mean-field level, in terms of a vector
order parameter Qj ¼ ieΔB⟪ψ̄γjψ⟫Δ whose magnitude represents the ensemble average (over magnetic
noise) of the fermion currents. We identified the region where this order parameter acquires a finite value,
thus breaking the Uð1Þ symmetry of the model due to the presence of the magnetic noise.
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I. INTRODUCTION

There are a number of important physical scenarios
where the presence of strong magnetic fields determine
the dynamics of relativistic particles. The quark-gluon
plasma [1–4] and heavy-ion collisions [5–8] are among
them. For technical reasons, it is a common assumption in
the theoretical analysis of such systems to simplify the
configuration of the field, by assuming it to be constant
(both static and uniform), such that the Schwinger proper
time formalism can be applied [9–11]. However, in a more
realistic description of such phenomena, the electromag-
netic field may develop spatiotemporal patterns [5,6] that
will then in principle modify the associated physical
predictions. We discussed such possibility in our recent
work [12], where we applied a perturbative analysis to

conclude that such magnetic noise effects may indeed be
relevant. In this work, we revisit the problem from a
nonperturbative point of view, in order to shed further
light onto such effects over a broader range of magnetic
noise intensities.
Following the analysis presented in our previous

work [12], we shall consider a physical scenario where a
classical and static magnetic field background, possessing
local random fluctuations, modifies the quantum dynamics
of a system of fermions. For this purpose, we shall assume
the standard QED theory involving fermionic fields ψðxÞ,
as well as gauge fields AμðxÞ. In the latter, we shall
distinguish three physically different contributions [12],

AμðxÞ → AμðxÞ þ Aμ
BGðxÞ þ δAμ

BGðxÞ: ð1Þ

Here, AμðxÞ represents the dynamical photonic quantum
field, while BG stands for “background,” thus capturing the
presence of a classical external field B ¼ h∇ ×ABGðxÞiΔ,
assumed to be static and uniform as imposed by the
experimental conditions. Moreover, for this BG contribu-
tion, we consider the effect of white-noise fluctuations
δAμ

BGðxÞ with respect to the mean value Aμ
BGðxÞ, satisfying

the statistical properties
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hδAj
BGðxÞδAk

BGðx0ÞiΔ ¼ ΔBδj;kδ
ð4Þðx − x0Þ;

hδAμ
BGðxÞiΔ ¼ 0: ð2Þ

We remark that the sources of the noisy gauge field are, in
the context of heavy-ion collisions, the anisotropic and
incoherent distribution of ionic beams in the initial stages
prior to thermalization that are modeled here as a classical
current JμclðxÞ þ δJμclðxÞ. Therefore, our noisy gauge fields
are solutions of □ðAμ

BG þ δAμ
BGÞ ¼ JμclðxÞ þ δJμclðxÞ, and

hence by construction the background noisy magnetic
field BBGþδBBG ¼∇× ðABGþδABGÞ satisfies the Gauss
law ∇ · ðBBG þ δBBGÞ ¼ 0.
We also remark that, in contrast to our previous

work [12], where we assumed only spatial fluctuations,
here we shall assume spatiotemporal fluctuations in the
background gauge fields. These statistical properties
are represented by a Gaussian functional distribution of
the form

dP½δAμ
BG� ¼ N e−

R
d4x

½δAμBGðxÞ�2
2ΔB D½δAμ

BGðxÞ�; ð3Þ
with the corresponding statistical average over background
fluctuations defined by

hÔiΔ ¼
Z

dP½δAμ
BG�Ô½δAμ

BG�: ð4Þ

In heavy-ion collisions, strong magnetic fields B ¼ ∇ ×
ABG are generated locally within a small spatial region
whose characteristic length scale is L ∼

ffiffiffi
σ

p
, with σ being

the effective cross section. In these collisions, the dominant
component of the magnetic field is along the axial z
direction, such that on average we have hBi ¼ ê3B.
However, there are also smaller transverse components
δBx and δBy, such that we can estimate the fluctuation of
the field within the small collision region to be on the order
of ðδBÞ2 ∼ ðδBxÞ2 þ ðδByÞ2. Since many such collisions
occur at different points in space and their time span
δτ ∼ L0=c, an approximate model for this physical scenario
is provided by the magnetic random noise (2). By dimen-
sional analysis, the magnitude of ΔB is of the order

ΔB ∼ ðδBÞ2L5L0 ∼ ðδBÞ2σ5=2L0: ð5Þ
The effective cross section for a nuclear collision can be

estimated as the fraction f of the area of perfectly central
collisions between two nuclei, each with a radius of rA,

σ ¼ fπr2A: ð6Þ

Here, f represents the fraction of the geometrical cross
section σgeom, which is defined as the area of the circle with
a radius of r1 þ r2 ¼ 2R in a maximum peripheral colli-
sion, and the cross section σb for a peripheral collision with
impact parameter b [13,14],

f ¼ σb
σgeom

¼
�
Npart

2N

�
2=3

; ð7Þ

where σb describes an effective nucleus of radius b. The
nuclear radius is always written as rA ¼ r0N1=3, where N is
the number of nucleons per ion and r0 ∼ 10−3 MeV−1.
Here, Npart is the number of participants corresponding to
the effective nucleus.
Therefore, under these considerations, we have

ΔB ∼ π5=2ðδBÞ2r50N5=3

�
Npart

2N

�
5=3

L0: ð8Þ

In peripheral heavy-ion collisions, the magnetic field
fluctuations along the transverse plane are approximately
jeδBj ∼m2

π=4, where mπ is the pion mass [14,15]. For an
Auþ Au collision with N ¼ 197, and if Npart=N ¼ 1=2,
we obtain (for L0 ∼ rA)

e2ΔB ∼ 1.6 × 10−6 MeV−2; ð9Þ
or for less central collisions with Npart=N ¼ 1=8,

e2ΔB ∼ 1.6 × 10−7 MeV−2: ð10Þ
As we shall later show, the effects of magnetic noise are

controlled by the dimensionless parameter Δ ¼ e2ΔBm2
f,

where mf is the fermion mass. If one considers the mass of
the proton, then the relevant dimensionless scale would be

Δproton ∼ 0.16–1.6; ð11Þ
whereas if one considers the mass of the constituent quark
species,

Δquark ∼ 0.018–0.18: ð12Þ
Taking into account the previous analysis, we write the

Lagrangian for this model as a superposition of two terms

L ¼ LFBG þ LNBG: ð13Þ
Here, the first term represents the system of fermions

(and photons) immersed in the deterministic background
field (FBG)

LFBG ¼ ψ̄ði=∂ − e=ABG − e=A −mfÞψ −
1

4
FμνFμν; ð14Þ

where Fμν ¼ ∂μAν − ∂νAμ is the strength tensor for the
dynamical quantum gauge fields (photons). The second
term in the Lagrangian (13) represents the interaction
between the fermions and the classical noise (NBG),

LNBG ¼ ψ̄ð−eδ=ABGÞψ : ð15Þ
The generating functional (in the absence of sources) for

a given realization of the noisy fields is given by
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Z½A� ¼
Z

D½ψ̄ ;ψ �ei
R

d4x½LFBGþLNBG�: ð16Þ

To study the physics of this system, as usual we need the
generator of connected correlation functions. However,
as the presence of disorder is modeled by a statistical
ensemble of different realizations of the magnetic back-
ground noise δAμ

BGðxÞ, we need to calculate the disorder-
averaged generator of connected correlation functions
hln ZiΔ. For this purpose, we apply the replica method,
which is based on the following identity [16]:

hln Z½A�iΔ ¼ lim
n→0

hZn½A�iΔ − 1

n
: ð17Þ

Here, we defined the statistical average according to the
Gaussian functional measure of Eq. (3) as in Eq. (4), and Zn

is obtained by incorporating an additional “replica” com-
ponent for each of the fermion fields, i.e., ψðxÞ → ψaðxÞ,
for 1 ≤ a ≤ n. The “replicated” Lagrangian has the same
form as Eqs. (14) and (15), but with an additional sum over
the replica components of the fermion fields. Therefore, the
averaging procedure leads to

hZn½A�iΔ ¼
Z Yn

a¼1

D½ψ̄a;ψa�
Z

D½δAμ
BG�e−

R
d4x

½δAμBGðxÞ�2
2ΔB

× ei
R

d4x
P

n
a¼1

ðLFBG½ψ̄a;ψa�þLDBG½ψ̄a;ψa�Þ

¼
Z Yn

a¼1

D½ψ̄a;ψa�eiS̄½ψ̄a;ψa;A�; ð18Þ

where in the last step we explicitly performed the Gaussian
integral over the background noise, leading to the definition
of the effective averaged action for the replica system

iS̄½ψ̄a;ψa;A� ¼ i
Z

d4x

�X
a

ψ̄aði=∂−e=ABG−e=A−mfÞψa

−
1

4
FμνFμν

�
−
e2ΔB

2

Z
d4x
Z
d4y

×
X
a;b

X3
j¼1

ψ̄aðxÞγjψaðxÞψ̄bðyÞγjψbðyÞ: ð19Þ

Clearly, we end up with an effective interacting theory
between vector currents corresponding to different replicas,
with a coupling constant proportional to the fluctuation
amplitude ΔB that characterizes the magnetic noise, as
defined in Eq. (2). In this context, the noise parameter plays
the role of a mutual induction coefficient between such
currents.
The “free” part of the action corresponds to fermions in

the average background classical field Aμ
BGðxÞ. We choose

this background to represent a uniform, static magnetic
field along the z direction B ¼ ê3B, using the gauge [10]

Aμ
BGðxÞ ¼

1

2
ð0;−Bx2; Bx1; 0Þ: ð20Þ

In addition, as we shall focus on the analysis for the
fermion propagator, we shall not consider the photons in
this scenario AμðxÞ ¼ 0, and hence its corresponding
strength tensor Fμν ¼ 0.

II. INTRODUCTION OF AUXILIARY
BOSONIC FIELDS

Let us now introduce a Hubbard-Stratonovich trans-
formation via a set of complex bosonic fields QjðxÞ, by
means of the Gaussian integral identity

e−
e2ΔB

2

R
d4x
R

d4y
P

n
a;b

P
3

j¼1
ψ̄aðxÞγjψaðxÞψ̄bðyÞγjψbðyÞ

¼ N
�Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
�
e−

2
ΔB

R
d4xjQjðxÞj2þie

R
d4xQjðxÞ

P
n
a¼1

ψ̄aðxÞγjψaðxÞ−ie
R

d4xQ�
j ðxÞ
P

n
a¼1

ψ̄aðxÞγjψaðxÞ: ð21Þ

With this transformation into the averaged, replicated nth power of the generating functional (18), we obtain the
equivalent form

hZn½ABG�iΔ ¼ N

"Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
#
e−

2
ΔB

R
d4xjQjðxÞj2

×

"Yn
a¼1

Z
D½ψ̄a;ψa�

#
ei
R

d4xfPn
a¼1

ψ̄aðxÞði=∂−e=ABG−mf−eγjðQj−Q�
j ÞÞψaðxÞg

¼ N

"Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
#
e−

2
ΔB

R
d4xjQjðxÞj2 ½det ði=∂ − e=ABG −mf − eγjðQj −Q�

jÞÞ�n

¼ N

"Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
#
e−

2
ΔB

R
d4xjQjðxÞj2þnTr ln ½i=∂−e=ABG−mf−eγjðQj−Q�

j Þ�: ð22Þ

Based on this identity, and combined with Eq. (17), we obtain the effective action
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iSeff ½ABG� − iS0½ABG� ¼ hlnZ½ABG�iΔ − lnZ0½ABG�

¼ N

"Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
#
e−

2
ΔB

R
d4xjQjðxÞj2 lim

n→0

1

n

h
enTr ln ½i=∂−e=ABG−mf−eγjðQj−Q�

j Þ� − 1
i
− lnZ0½ABG�

¼ hTr ln ði=∂ − e=ABG −mf − eγjðQj −Q�
jÞÞiΔ − Tr ln ði=∂ − e=ABG −mfÞ; ð23Þ

where hð·ÞiΔ represents the average over the Gaussian
functional measure of the complex fields QjðxÞ. Let us
define the inverse fermion propagator, including the
classical background field, as follows:

S−1F ðx − yÞ ¼ ði=∂ − e=ABG −mfÞxδð4Þðx − yÞ: ð24Þ

Therefore, for the effective action we have

iSeff ½ABG� ¼ hTr ln ði=∂ − e=ABG −mf − eγjðQj −Q�
jÞÞiΔ

¼ hTr ln ðS−1F − eγjðQj −Q�
jÞÞiΔ

¼ Tr ln S−1F

þ hTr ln ð1 − eSFγjðQj −Q�
jÞÞiΔ: ð25Þ

By noticing that iS0½ABG� ¼ Tr ln S−1F , we have

iSeff ½ABG� − iS0½ABG� ¼ hTr ln ð1 − eSFγjðQj −Q�
jÞÞiΔ;

ð26Þ

where the right-hand side contains all the effects of
the noise.

III. SADDLE POINT APPROXIMATION
(MEAN FIELD)

The result in Eq. (26) can be expressed in the explicit
functional integral form

iSeff ½ABG� − iS0½ABG� ¼ N
�Y3
j¼1

Z
DQjðxÞDQ�

jðxÞ
�
e−

2
ΔB

R
d4xjQjðxÞj2þln½Tr lnð1−eSFγjðQj−Q�

j ÞÞ�: ð27Þ

In order to study the effects of the background noise, we shall adopt a mean-field approximation, by searching for the
saddle point of the exponent in Eq. (22),

δ

δQjðxÞ
�
−

2

ΔB

Z
d4yQlðyÞQ�

l ðyÞ þ ln ½Tr ln ½1 − eSFγlðQl −Q�
l Þ��
�

¼ 0;

δ

δQ�
jðxÞ

�
−

2

ΔB

Z
d4yQlðyÞQ�

l ðyÞ þ ln ½Tr ln ½1 − eSFγlðQl −Q�
l Þ��
�

¼ 0: ð28Þ

This condition leads to the equation [assuming homo-
geneous solutions of the form QjðxÞ≡Qj]

Q�
j ¼ −e

ΔB

2

Tr
h
SFγjð1 − eSFγlðQl −Q�

l ÞÞ−1
i

Tr ln ½1 − eSFγlðQl −Q�
l Þ�

: ð29Þ

From the second equation in Eq. (28), we obtain the
additional condition

Q�
j ¼ −Qj: ð30Þ

We can combine both equations, by noticing that

Qj þQ�
j ¼ 0;

qj ≡Qj −Q�
j ¼ 2i ImQj ≠ 0; ð31Þ

where the second line implies that qj is a pure imaginary
number, and it satisfies the nonlinear equation

qj ¼ eΔB

Tr
h
SFγjð1 − eSFγlqlÞ−1

i
Tr ln ½1 − eSFγlql�

: ð32Þ

The numerator of this equation can be expanded as an
infinite geometric series as follows:
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Tr
h
SFγjð1 − eSFγlqlÞ−1

i
¼
X∞
l¼0

elTr
h
SFγjðSFγkqkÞl

i

¼
X∞
l¼1

el½Πl
α¼1qkα �

× Tr½SFγjSFγk1SFγk2…SFγkl �:
ð33Þ

On the other hand, the denominator can also be expanded
by means of the Taylor series for the natural logarithm as
follows:

Tr ln ½1 − eSFγlql� ¼
X∞
l¼1

el

l
Tr
h
ðSF=qÞl

i

¼
X∞
l¼1

el

l
½Πl

α¼1qkα �

× Tr½SFγk1SFγk2…SFγkl �: ð34Þ

From the exact expression of Eq. (32), we can extract the
leading contribution by retaining terms up to third order in
the qj coefficients in the numerator, while retaining up to
second order in the denominator,

qj ¼ eΔB
eMjlql þ e3Mjlmnqlqmqn

e2
2
Mmnqmqn

; ð35Þ

where we defined the matrix coefficients

Mjl ¼ Tr½SFγjSFγl�

¼
Z

d4k
ð2πÞ4 tr½SFðkÞγ

jSFð−kÞγl�; ð36Þ

and

Mjlmn¼Tr½SFγjSFγlSFγmSFγn�

¼
Z

d4k
ð2πÞ4 tr½SFðkÞγ

jSFðkÞγlSFðkÞγmSFðkÞγn�: ð37Þ

Here, tr½·� stands for trace over the space of Dirac matrices.
The Schwinger propagator in Fourier space is defined by
Eq. (41) and, more importantly for calculation purposes, by
its alternative form Eq. (45).
We can analyze the possible solutions to Eq. (35) by

casting it into the form of a quasilinear system,

	
ΔBMþ M̃½q�



q ¼ 0; ð38Þ

where we defined

h
M̃½q�

i
jl ≡

�
−
1

2
δjlMmn þ e2ΔBMjlmn

�
qmqn: ð39Þ

There is always a trivial solution q ¼ 0 to Eq. (38).
However, nontrivial solutions q may exist provided that
the (nonlinear) matrix coefficient is singular, i.e.,

det
	
ΔBMþ M̃½q�



¼ 0: ð40Þ

In order to analyze this second condition, we need to
evaluate the matrix coefficients explicitly. For this purpose,
we first discuss the mathematical representation of the
Schwinger propagator in the next section.

IV. THE SCHWINGER PROPAGATOR

As discussed in the previous section, the matrix coef-
ficients depend on traces and integrals involving products
of the fermion propagator immersed in the constant back-
ground magnetic field. Therefore, this allows us to use
directly the Schwinger proper time representation of the
free-fermion propagator dressed by the background field,
whose direction is chosen along the z axis, B ¼ ê3B, as
follows [9,10]:

½SFðkÞ�a;b ¼ −iδa;b
Z

∞

0

dτ
cosðeBτÞ e

iτðk2k−k2⊥
tanðeBτÞ
eBτ −m2

fþiϵÞ

×

�
½cosðeBτÞ þ γ1γ2 sinðeBτÞ�ðmf þ =kkÞ

þ =k⊥
cosðeBτÞ

�
; ð41Þ

which is clearly diagonal in replica space. Here, as usual,
we separated the parallel from the perpendicular directions
with respect to the background external magnetic field by
splitting the metric tensor as gμν ¼ gμνk þ gμν⊥ , with

gμνk ¼ diagð1; 0; 0;−1Þ;
gμν⊥ ¼ diagð0;−1;−1; 0Þ; ð42Þ

thus implying that for any four-vector, such as the
momentum kμ, we write

=k ¼ =k⊥ þ =kk; ð43Þ

and

k2 ¼ k2k − k2⊥; ð44Þ

respectively. In particular, we have k2k ¼ k20 − k23, while

k⊥ ¼ ðk1; k2Þ is the Euclidean two-vector lying in the
plane perpendicular to the field, such that its square norm is
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k2⊥ ¼ k21 þ k22. The Schwinger propagator can alternatively
be expressed as [12]

½SFðkÞ�a;b ¼ −iδa;b
h
ðmf þ =kÞA1 þ ðieBÞγ1γ2

	
mf þ =kk



×
∂A1

∂k2⊥
þ ðieBÞ2=k⊥

∂
2A1

∂ðk2⊥Þ2
�

¼ −iδa;b
h	

mf þ =kk


A1 þ γ1γ2

	
mf þ =kk



A2

þA3=k⊥
i
: ð45Þ

Here, we defined the function

A1ðk; BÞ ¼
Z

∞

0

dτeiτðk
2
k−m

2
fþiϵÞ−ik

2⊥
eB tanðeBτÞ; ð46Þ

that clearly reproduces the scalar propagator (with
Feynman prescription) in the zero-field limit

lim
B→0

A1ðk; BÞ ¼
i

k2 −m2
f þ iϵ

; ð47Þ

and its derivatives

A2ðk; BÞ≡
Z

∞

0

dτ tanðeBτÞeiτðk2k−tBðτÞk2⊥−m2
fþiϵÞ

¼ ieB
∂A1

∂ðk2⊥Þ
; ð48aÞ

A3ðk; BÞ≡
Z

∞

0

dτ
cos2ðeBτÞ e

iτðk2k−tBðτÞk2⊥−m2
fþiϵÞ

¼ A1 þ ðieBÞ2 ∂
2A1

∂ðk2⊥Þ2
: ð48bÞ

As we showed in detail in our previous work [12], an exact
representation for the function (46) is given by

A1ðkÞ ¼
ie−

k2⊥
eB

2eB
e−

iπ
2eBðk2k−m2

fþiϵÞΓ

 
−
k2k −m2

f þ iϵ

2eB

!

×U

 
−
k2k −m2

f þ iϵ

2eB
; 0;

2k2⊥
eB

!
; ð49Þ

where ΓðzÞ is the Gamma function, while Uða; b; zÞ
represents Tricomi’s confluent hypergeometric function.

V. RESULTS AND DISCUSSION

For the analysis of our numerical results, it is convenient
to define the following dimensionless groups:

Δ ¼ e2ΔBm2
f;

B ¼ eB
m2

f

; ð50Þ

respectively. The matrices Mij and Mijkl, as defined by
Eqs. (36) and (37), respectively, are calculated by tracing
over the Dirac matrix space, as explained in Appendix A,
and the resulting momentum integrals are calculated from
the generic formula developed in Appendix B. The inter-
ested reader is referred to those Appendixes for further
mathematical details.
In order to analyze the existence and features of non-

trivial solutions for the order parameter q ¼ ðq1; q2; q3Þ, we
solve the secular equation (40) by assuming two different
symmetry conditions, according to the directions orthogo-
nal (⊥) and parallel (k) to the magnetic field, respectively.

A. Case 1: q23 ≡ q2k, with q1 = q2 = 0

If we impose the condition q1 ¼ q2 ¼ 0 onto Eq. (39),
we have

h
M̃½qk�

i
jl ¼

�
−
1

2
δjlM33 þ e2ΔBMjl33

�
q2k

≡ Cjlk q
2
k: ð51Þ

Therefore, substituting this reduced expression into the
secular equation (40), we obtain

det
	
ΔBMþ q2kCk



¼ 0: ð52Þ

Furthermore, using elementary matrix properties and
given that the matrixM is nonsingular, we can manipulate
the expression above as follows:

det
	
ΔBMþq2kCk



¼ detðΔBMÞ

· det
	
13þq2kΔ

−1
B M−1Ck



¼ 0: ð53Þ

Given that M is nonsingular, the above expression implies
the secular condition

det
	
13 þ q2kΔ

−1
B M−1Ck



¼ 0: ð54Þ

Our analysis to this point is consistent up to second
order powers in the components of the order parameter.
Therefore, applying the elementary identity det ð1þ ϵXÞ ¼
1þ ϵtrX þOðϵ2Þ, we expand Eq. (54) to obtain
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q2k ¼ −
ΔB

trðM−1CkÞ

¼ −
ΔB

− 1
2
M33trðM−1Þ þ e2ΔBtr

	
M−1M̃ð33Þ



¼ χkΔB

1þKkΔB
; ð55Þ

where we defined the parameters

χk ¼
2

M33trðM−1Þ ;

Kk ¼
−2e2tr

	
M−1M̃ð33Þ



M33trðM−1Þ ; ð56Þ

as well as the reduced matrix

h
M̃ð33Þ

i
jl ≡Mjl33: ð57Þ

Figure 1 illustrates the nontrivial solutions of Eq. (52)
for case 1, as a function of the external magnetic field and
various values of Δ. It can be observed that there exists a
region where the discrete solutions exhibit a monotonically
increasing pattern with a smooth envelope, abruptly
terminated at a point beyond which only the trivial solution
qk ¼ 0 exists. We refer to this point as the “critical
magnetic field” Bc. A similar scenario arises when the
magnitude of Δ is increased, as demonstrated in Fig. 2.
Furthermore, it is worth noting that, for higher values of Δ,
the solutions become approximately identical, and the Bc
converges toward a specific limit as is shown in Fig. 3.
In line with the results presented above, it is worth

emphasizing that a specific combination of parameters
ðΔ;BÞ plays a pivotal role in giving rise to a discrete set of
nontrivial solutions characterized by qk ≠ 0, or in the
context of Eq. (31), resulting in purely imaginary values

FIG. 1. Nontrivial solutions of Eq. (52) for case 1 as a function of B forΔ∈ ½0.1; 0.04�. The dashed line represents the smooth envelope
connecting the discrete nontrivial solutions.

FIG. 2. Nontrivial solutions for q3 of Eq. (52) as a function of eB for ΔB ∈ ½0.1; 4�.
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for qj. This behavior is depicted in Fig. 4, offering valuable
insights into the system’s dynamics. Figure 4 illustrates a
spectrum of these parameters, revealing that for fixed
values of B not all the values of Δ produce nontrivial
solutions (those are discrete). We have also shown in Fig. 4,
by a dashed line, the smooth envelope of those discrete
points. Nevertheless, for higher values of Δ the solutions
become a quasicontinuum and saturate to the value q2kð∞Þ
defined as

q2kð∞Þ ¼ lim
Δ→∞

q2k ¼
χk
Kk

; ð58Þ

where q2k is given in Eq. (55). In the opposite limit, for
very small values of Δ, Eq. (55) shows that the order
parameter follows an approximately linear trend with a
slope defined by

χk ¼ lim
ΔB→0

∂

∂ΔB
q2k: ð59Þ

B. Case 2: q21 = q
2
2 ≡ q2⊥, with q3 = 0

In this case, the matrix Eq. (39) reduces to

h
M̃½q⊥�

i
jl¼

�
−
1

2
δjlðM11þM22þM12þM21Þ

þe2ΔBðMjl11þMjl22þMjl12þMjl21Þ
�
q2⊥

≡Cjl⊥q2⊥: ð60Þ

For this case, the secular Eq. (40) reduces to

det ðΔBMþ q2⊥C⊥Þ ¼ 0; ð61Þ

and repeating the same procedure as described in case 1,
we obtain

det ð13 þ q2⊥Δ−1
B M−1C⊥Þ ¼ 0: ð62Þ

Finally, just as in case 1, we retain only second order
powers of q⊥ in Eq. (62) to arrive at the explicit algebraic
solution

q2⊥ ¼ −
ΔB

trðM−1C⊥Þ
¼ χ⊥ΔB

1þK⊥ΔB
; ð63Þ

where we defined the parameters

χ⊥ ¼ 2	P
m;n¼1;2M

mn


trðM−1Þ

;

K⊥ ¼
−2e2

P
m;n¼1;2tr

	
M−1M̃ðmnÞ



	P

m;n¼1;2M
mn


trðM−1Þ

; ð64Þ

and the reduced matricesh
M̃ðmnÞ

i
jl ¼ M̃jlmn: ð65Þ

As already discussed in Eq. (31), the order parameter qj
(for j ¼ 1, 2, 3) is a pure imaginary number.
Figure 5 illustrates the nontrivial solutions for q⊥ in case

2, considering various values of Δ. Similar to case 1, these
solutions are discrete and highly dependent on the magnetic

FIG. 4. Discrete solutions for the order parameter (normalized
by its asymptotic limit) as a function of Δ, for fixed B (filled
squares). The continuous line represents the envelope function
defined by Eq. (55) before the conditions of Eq. (31) have been
applied.

FIG. 3. Critical magnetic field Bc of Fig. 2 as a function of Δ, in two different ranges of such parameter.
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field and noise parameter. Notably, the critical magnetic field
in this scenario is lower compared to case 1. Furthermore,
Fig. 6 demonstrates the behavior of the critical magnetic
field Bc, which exhibits a distinct functional form from that
shown in Fig. 3. The relationship between q2⊥ andΔ, with an
envelope given by Eq. (63), is depicted in Fig. 7, where
discrete nontrivial solutions at particular values of Δ are
permissible for a constant magnetic field.
Here, we can also identify the value at which the

sigmoidal equation (63) saturates as a function of the
noise ΔB,

q2⊥ð∞Þ ¼ lim
Δ→∞

q2⊥ ¼ χ⊥
K⊥

: ð66Þ

In the opposite limit, for very small values of Δ, Eq. (63)
shows that the order parameter follows an approximately
linear trend with a slope defined by

χ⊥ ¼ lim
ΔB→0

∂

∂ΔB
q2⊥: ð67Þ

Consequently, we can infer that the underlying physics in
both cases is closely related, and the mechanism leading to
the emergence of a nontrivial value of the order parameter
maintains a consistent nature and interpretation, regardless
of the specific values of ðq1; q2; q3Þ.

C. Physical interpretation of the order parameter Qj

The physical interpretation of the order parameter
components can be obtained from the functional represen-
tation (22), before we integrate out the fermions, to obtain
via saddle point the mean expectation value

Qj ¼ ieΔB⟪ψ̄γjψ⟫Δ ¼ −Q�
j ; ð68Þ

where here the double bracket stands for the statistical
average over the classical noise in the background field, as
well as the quantum expectation value of the corresponding

FIG. 6. Critical magnetic field Bc of Fig. 5 as a function of Δ
for case 2.

FIG. 7. Discrete solutions for the order parameter (normalized
by its asymptotic limit) as a function of Δ, for fixed B (filled
squares). The continuous line represents the envelope function
defined by Eq. (63) before the conditions of Eq. (31) have
been applied.

FIG. 5. Nontrivial solutions of Eq. (52) for case 2 as a function of B for Δ∈ ½0.1; 0.04�. The dashed line is the smooth envelope
connecting those discrete nontrivial solutions.
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observable, which clearly is a component of the vector
current for the fermions, j ¼ 1, 2, 3.
It is important to remark upon the physical effect that this

order parameter, at the mean-field level, produces in the
disorder-averaged fermion propagator, which is given by

iS−1F;Δðx − yÞ ¼ ði=∂ − e=ABG −mf − e=qÞxδð4Þðx − yÞ; ð69Þ

where we defined =q ¼ γjqj, for qj ¼ Qj −Q�
j the order

parameter. Clearly then, the differential equation for the
propagator in the presence of the magnetic noise is given by

ði=∂ − e=ABG −mf − e=qÞxSF;Δðx − yÞ ¼ iδð4Þðx − yÞ: ð70Þ

It is straightforward to verify that, if SFðx − yÞ represents
the Schwinger propagator in the presence of the average
background magnetic field, then the function

SF;Δðx − yÞ ¼ e−ieq·ðx−yÞSFðx − yÞ ð71Þ

is a solution to Eq. (70). Indeed, by direct substitution,
we have

ði=∂ − e=ABG −mf − e=qÞxSF;Δðx − yÞ
¼ ði=∂ − e=ABG −mf − e=qÞx

h
e−ieq·ðx−yÞSFðx − yÞ

i
¼ e−ieq·ðx−yÞði=∂ − e=ABG −mfÞxSFðx − yÞ ¼ iδð4Þðx − yÞ;

ð72Þ

where in the last step we applied the definition (24) for the
Schwinger propagator in the absence of noise.
Therefore, we conclude that at the level of the disorder-

averaged propagator, Eq. (71) introduces an exponential
damping effect given that the order parameter qj is a pure
imaginary number.

VI. SUMMARY AND CONCLUSIONS

In this work, we considered a system of QED fermions
submitted to an external, classical magnetic field. In
particular, we studied the effects of white noise in this
magnetic field with respect to an average uniform value
hBiΔ ¼ ê3B, as a function of the standard deviation ΔB,
over the fermion propagator. As we discussed in the
Introduction, this represents a statistical model for the
actual scenario in heavy-ion collisions, where strong
magnetic fields emerge for very short times within small
spatial regions, whose size is of the order of the scattering
cross section. Since several such collisions occur at differ-
ent points in space, the physical situation can be repre-
sented by a statistical ensemble, for different realizations of
the magnetic field fluctuations, which are then described as
a random variable.
We analyzed our model by applying the replica formal-

ism that led us to an effective action in terms of auxiliary

bosonic fields. A mean-field analysis of the corresponding
effective action reveals that the magnetic noise effects can
be captured by an order parameter, whose physical inter-
pretation is the statistical ensemble average of the expect-
ation value of the fermion vector current components.
Therefore, nontrivial solutions where this order parameter
acquires a nonzero value break the U(1) gauge symmetry in
the system, as a consequence of the statistical noise in the
background magnetic field. An interesting feature of such
nontrivial solutions is that they exist only for certain discrete
values of the average background magnetic field. Such
discrete values can be identified to be in correspondence
with the quantized Landau levels associated with the
average background field. This feature is then consistent
with the interpretation of the order parameter as the
ensemble average of the fermion current. In addition, for
a fixed value of the disorder strength characterized by ΔB,
we find an upper critical value of the average background
magnetic field Bc, beyond which the nontrivial solutions
cease to exist in favor of a vanishing order parameter. This
region of parameter space is then characterized by a
dominance of the average background field over noise,
whose effect then becomes negligible. In contrast, in the
limit of very strong magnetic noise ΔB → ∞, we observe
that the order parameter asymptotically saturates to a
constant finite value q2k;⊥ð∞Þ that depends on the field,
but is independent of ΔB, as can be clearly seen from
Eqs. (55) and (63), respectively.
Remarkably, in the context of the fermion propagator,

we showed that the order parameter, which is strictly
imaginary, represents a finite screening length that leads to
weak localization effects. Our present analysis is restricted
to the fundamental level of the fermion propagator, but its
consequences could manifest themselves in physical
observables, such as effective collision rates for certain
processes.
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APPENDIX A: TRACES INVOLVED
IN THE DEFINITION OF THE MATRICES M

In this appendix, we provide an explicit example of the
method used to calculate the traces of products of operators
involved in the definition of the matrices Mij and Mijkl.
For definiteness, let us consider the following expression:

MjlmnðkÞ≡ Tr½SFðkÞγjSFðkÞγlSFðkÞγmSFðkÞγn�: ðA1Þ

CASTAÑO-YEPES, LOEWE, MUÑOZ, and ROJAS PHYS. REV. D 108, 116013 (2023)

116013-10



To calculate the traces over Dirac matrices, note that the propagator product yields to several terms for Mjlmn, so that we
can define

MjlmnðkÞ ¼
X3
a¼1

X3
b¼1

X3
c¼1

X3
d¼1

AaðkÞAbðkÞAcðkÞAdðkÞTr½saðkÞγjsbðkÞγlscðkÞγmsdðkÞγn�

≡X3
a¼1

X3
b¼1

X3
c¼1

X3
d¼1

AaðkÞAbðkÞAcðkÞAdðkÞMjlmn
abcdðkÞ; ðA2Þ

where

s1ðkÞ≡ =kk þm;

s2ðkÞ≡ iγ1γ2
	
=kk þm



;

s3ðkÞ≡ =k⊥: ðA3Þ

Note that, for the cyclic property of the trace, the elements satisfy

Mjlmn
abcd ¼ Mnjlm

abcd ¼ Mmnjl
abcd ¼ Mlmnj

abcd; ðA4Þ

and, therefore, just a few traces need to be computed explicitly, so that the whole expression can be reached by adding terms
with the convenient indexes. The needed elements Mjlmn

αβσρðkÞ can be straightforwardly computed,

Mjlmn
1111 ¼ 4

�
8kjkk

l
kk

m
k k

n
k þ 2ðm2 − k2kÞ

	
gjnklkk

m
k þ gmnkjkk

l
k þ glmkjkk

n
k þ gjlkmk k

n
k



þ ðm2 − k2kÞ2ðgjnglm − gjmglnÞ þ ðm4 þ k4kÞgjlgmn
i
; ðA5Þ

Mjlmn
3333 ¼ 4

�
8kj⊥kl⊥km⊥kn⊥ þ k4⊥ðgjngmn − gjmgln þ gjnglmÞ − 2k2⊥

	
kj⊥kl⊥gmn þ kl⊥km⊥gjn þ kj⊥kn⊥glm þ km⊥kn⊥gjl


i
; ðA6Þ

Mjlmn
1112 ¼ 4iðk2k −m2Þϵ⊥ab

h
2
	
gan⊥ gbm⊥ kjkk

l
k þ gan⊥ gbj⊥ klkk

m
k þ gal⊥gbm⊥ kkkk

n
k þ gaj⊥ gbl⊥kmk knk



þ ðk2k −m2Þ

	
gam⊥ gbn⊥ gjl þ gan⊥ gbl⊥gjm þ gam⊥ gbl⊥gjn þ gaj⊥ gbn⊥ glm þ gaj⊥ gbm⊥ gln þ gal⊥g

bj
⊥ gmn


i
; ðA7Þ

where ϵ⊥ab is given by ϵ⊥12 ¼ −ϵ⊥21 ¼ 1.
The element Mjlmn

1122 is conveniently split in two pieces, i.e.,

Mjlmn
1122 ¼ Tr

h
ð=kk þmÞγjð=kk þmÞγliγ1γ2ð=kk þmÞγmiγ1γ2ð=kk þmÞγn

i
¼ Tr

h
ð=kk þmÞγjð=kk þmÞγlð=kk þmÞγmk ð=kk þmÞγn

i
− Tr

h
ð=kk þmÞγjð=kk þmÞγlð=kk þmÞγm⊥ð=kk þmÞγn

i
≡Mjlmn

1122ðaÞ þMjlmn
1122ðbÞ; ðA8Þ

where we have used

γ1γ2γμγ1γ2 ¼ −γμk þ γμ⊥; ðA9Þ

and we defined

Mjlmn
1122ðaÞ ¼ Tr

h
ð=kk þmÞγjð=kk þmÞγlð=kk þmÞγmk ð=kk þmÞγn

i
; ðA10aÞ
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and

Mjlmn
1122ðbÞ ¼ −Tr

h
ð=kk þmÞγjð=kk þmÞγlð=kk þmÞγm⊥ð=kk þmÞγn

i
; ðA10bÞ

so that

Mjlmn
1122ðaÞ ¼ 4

�
8kjkk

l
kk

m
k k

n
k þ

	
k2k −m2



2
	
glmk gjn − gjmk gln þ gmn

k gjl



þ 2
	
m2 − k2k


	
kjkk

l
kg

mn
k þ klkk

m
k g

jn þ kjkk
n
kg

lm
k þ kmk k

n
kg

jl

�

; ðA11aÞ

and

Mjlmn
1122ðbÞ ¼ 4ðk2k −m2Þ

h
2kjk
	
klkg

mn⊥ þ knkg
lm⊥


þ ðk2k −m2Þ

	
gjm⊥ glm − glm⊥ gjn − gmn⊥ gjl


i
; ðA11bÞ

Mjlmn
1133 ¼ 4

�
4kjkk

n
kk

l⊥km⊥ þ 4kjkk
l
kk

m⊥kn⊥ − 2k2⊥k
j
k
	
klkg

mn − kmk g
ln þ knkg

lm



þ ðk2k −m2Þ
h
k2⊥ðgjlgmn − gjmgln þ glmgjnÞ þ 2km⊥

	
kj⊥gln − kl⊥gjn − kn⊥glj


i�
: ðA12Þ

By following the same procedure, the term Mjlmn
2233 is split into

Mjlmn
2233ðaÞ ¼ Tr

h
ð=kk þmÞγjkð=kk þmÞγl=k⊥γm=k⊥γn

i
¼ 4

�
ðm2 − k2kÞ

h
2kj⊥km⊥g

jn
k þ 2km⊥kn⊥g

jl
k þ k2⊥

	
gjmk gln − gjnk glm − gjlk g

mn

i

þ 2kjk
h
k2⊥
	
kmk g

ln − knkg
lm


þ klkð2km⊥kn⊥ − k2⊥gmnÞ þ 2knkk

l⊥km⊥
i�

ðA13aÞ

and

Mjlmn
2233ðbÞ ¼ −Tr

h
ð=kk þmÞγj⊥ð=kk þmÞγl=k⊥γm=k⊥γn

i
¼ 4ðm2 − k2kÞ

h
2km⊥

	
kj⊥gln − kn⊥g

jl
⊥ − kl⊥g

jn
⊥


þ k2⊥

	
gjl⊥gmn − gjm⊥ gln þ gjn⊥ glm


i
: ðA13bÞ

APPENDIX B: MOMENTUM INTEGRALS

In the calculation of the matrix coefficients, such as the example provided in Appendix A, we need to obtain momentum
integrals of the general form

Iα;β;γδ;σ ¼
Z

d4k
ð2πÞ4 ½A1ðkÞ�α½A2ðkÞ�β½A3ðkÞ�γ½k2⊥�δ

h
k2k
i
σ
: ðB1Þ

Here, we recall the representation we obtained in Ref. [12] for the function

A1ðkÞ ¼
ie−

k2⊥
eB

2eB
e−

iπ
2eBðk2k−m2

fþiϵÞΓ
�
−
k2k −m2

f þ iϵ

2eB

�
U

�
−
k2k −m2

f þ iϵ

2eB
; 0;

2k2⊥
eB

�
; ðB2Þ

where ΓðzÞ is the Gamma function, while Uða; b; zÞ is Tricomi’s confluent hypergeometric function.
As a first step, let us perform a Wick rotation to recover the Euclidean metric k0 → ik0, which implies d4k → id4k and

k2k → −k2k (here we avoid adding further subindexes to keep the notation simple). Moreover, let us define the following
auxiliary variables:
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a ¼
k2k þm2

f

2eB
;

z ¼ 2k2⊥
eB

: ðB3Þ

In terms of these new variables, we can write

A1ða; zÞ ¼
ie−z=2

2eB
eiπaΓðaÞUða; 0; zÞ; ðB4Þ

and the integration measure id4k ¼ id2k⊥d2kk, with

d2k⊥ ¼ πdðk2⊥Þ ¼
πeB
2

dz;

d2kk ¼ πd
	
k2k


¼ 2πeBda: ðB5Þ

Therefore, Eq. (B1) reduces to the expression

Iα;β;γδ;σ ¼ π2ðeBÞ2þδ

2δð2πÞ4
Z

∞
m2
f

2eB

dað2eBaþm2
fÞσ

×
Z

∞

0

dzzδ½A1ða; zÞ�α½A2ða; zÞ�β½A3ða; zÞ�γ: ðB6Þ

In order to calculate the integrals in this last form, we
shall apply the identity

ΓðaÞUða; ϵ; zÞ ¼ 1

a
Mða; ϵ; zÞ þ Γð−1þ ϵÞMð1þ a; 2; zÞ

∼
1

a
Mða; ϵ; zÞ þ ðγe − 1ÞzMð1þ a; 2; zÞ;

ðB7Þ

where Mða; b; zÞ represents Kummer’s confluent hyper-
geometric function, and ΓðzÞ is the Gamma function. In the
second line, we have removed the 1=ϵ divergence of the
Γð−1þ ϵÞ function. Finally, we regularize by subtracting
the divergent term Mða; ϵ; zÞ as ϵ → 0, to arrive at the
prescription

ΓðaÞUða; ϵ; zÞ ≃ ðγe − 1ÞzMð1þ a; 2; zÞ

¼ ðγe − 1Þz
�
1þ 1þ a

2
z

�
þOðz3Þ: ðB8Þ

From this expansion, we obtain

A1ða; zÞ ≃ ðγe − 1Þ ie
−z=2

2eB
eiπaz

�
1þ 1þ a

2
z

�
: ðB9Þ

The other functions are expressed by the following
expansions at the same order:

A2ða; zÞ ¼ 2i
∂A1ða; zÞ

∂z

¼ 2ðiÞ2ðγe − 1Þ e
iπa

2eB
e−z=2

�
1þ

�
aþ 1

2

�
z

−
1þ a
4

z2
�

ðB10Þ

and

A3ða; zÞ ¼ A1ða; zÞ þ ð2iÞ2 ∂
2A1

∂z2

¼ −4iðγe − 1Þ e
iπa

2eB
e−z=2½a − ð1þ aÞz�: ðB11Þ

Inserting into the integral expression, we obtain

Iα;β;γδ;σ ¼ π2ðeBÞ2þδ

2δð2πÞ4 ð2iÞβð−4Þγ
�
i
ðγe − 1Þ
2eB

�
αþβþγ

×
Z

∞
m2
f

2eB

daeiπðαþβþγÞað2eBaþm2
fÞσ

×
Z

∞

0

dze−
ðαþβþγÞz

2 zδþα

�
1þ 1þ a

2
z

�
α

×

�
1þ

�
aþ 1

2

�
z −

1þ a
4

z2
�
β

× ½a − ð1þ aÞz�γ: ðB12Þ

Now, let us expand the binomials and trinomials in the
integrand as follows:

�
1þ 1þ a

2
z

�
α

¼
Xα
m¼0

α!

m!ðα −mÞ!
�
1þ a
2

�
m
zm; ðB13Þ

�
1þ

�
aþ 1

2

�
z −

1þ a
4

z2
�
β

¼
Xβ
q¼0

Xq
j¼0

β!

j!ðβ − qÞ!ðq − jÞ!

×

�
aþ 1

2

�
j
�
−
ð1þ aÞ

4

�
q−j

z2q−j; ðB14Þ

½a− ð1þaÞz�γ ¼
Xγ
n¼0

γ!

n!ðγ−nÞ!a
γ−nð−ð1þaÞÞnzn: ðB15Þ
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Inserting these expansions into Eq. (B13), we obtain

Iα;β;γδ;σ ¼ π2ðeBÞδþσð2iÞβð−4Þγ
2δ−σð2πÞ4
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2 zδþαþnþmþ2q−j: ðB16Þ

We further expand the binomials in the variable a as follows:

�
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f

2eB
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ak; ðB17Þ
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Inserting these expansions into Eq. (B17), we obtain

Iα;β;γδ;σ ¼ π2ðeBÞ2þδþσð2iÞβð−4Þγ
2δ−σð2πÞ4
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It is now trivial to show the identities
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and

Z
∞

m2
f

2eB

daeiπðαþβþγþiϵÞa ¼ i
πðαþ β þ γÞ e

iπðαþβþγÞ
m2
f

2eB; ðB22Þ

Z
∞

m2
f

2eB

daeiπðαþβþγþiϵÞaan ¼ inþ1

½πðαþ β þ γÞ�nþ1
Γ
�
nþ 1;−iπðαþ β þ γÞ m2

f

2eB

�
: ðB23Þ

CASTAÑO-YEPES, LOEWE, MUÑOZ, and ROJAS PHYS. REV. D 108, 116013 (2023)

116013-14



Inserting these identities, we finally obtain

Iα;β;γδ;σ ¼ π2ðeBÞ2þδþσð2iÞβð−4Þγ
2δ−σð2πÞ4
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