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A fluid-dynamic approach to charm-quark diffusion in the quark-gluon plasma (QGP) is developed for
the first time. Results for integrated yields and momentum distributions of charmed hadrons obtained with a
fluid-dynamic description for the dynamics of the QGP coupled to an additional heavy-quark-antiquark
current are shown. In addition to the thermodynamic equation of state, this description uses a heavy-quark
diffusion constant which we take from lattice QCD calculations. The results describe the experimental data
measured at the LHC at the center-of-mass energy of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV up to pT ∼ 4–5 GeV=c, showing
that charm quarks undergo a very fast hydrodynamization in the medium created by ultrarelativistic heavy-
ion collisions.

DOI: 10.1103/PhysRevD.108.116011

I. INTRODUCTION

Heavy quarks, i.e., charm and bottom, are produced in
heavy-ion collisions (HICs) via hard partonic scattering
processes. Due to their largemass and early production, they
are suitable probes for studying the quark-gluon plasma
(QGP). Their in-medium dynamics is tackled employing a
Boltzmann/Langevin description in several transport mod-
els [1–10]. However, recent experimental measurements
[11,12] showed that J=ψ and D mesons display a positive
elliptic flow, suggesting an early local thermalization or
“hydrodynamization” of charm quarks within the QGP. The
idea of charm thermalizationwas suggested by the statistical
hadronizationmodel for charm [13] and supported by lattice
QCD (LQCD) calculations [14]. In our recent work [15], the
question of charm thermalizationwas addressed by studying
the hydrodynamization time of charm quarks in the context
of an expandingmedium. Itwas shown that the time required
for charm quark to hydrodynamize, and therefore to be
included in the fluid-dynamic description of the QGP, is
shorter than the typical expansion time scale of the medium.
This result served as motivation to develop a fluid-dynamic
description of charm quarks, which is the subject of the
current work.We expect such a description to be relevant for

the low-transverse momentum (pT) region, as it is for the
light-flavor particles. At high momentum, the path-length-
dependent energy-loss mechanisms, are more important in
defining the shape of the pT spectra.

II. FLUID-DYNAMIC EQUATIONS

The fluid-dynamic equations to solve are mainly given
by the system of equations

∇μTμν ¼ 0; ð1Þ

∇μNμ ¼ 0; ð2Þ

which expresses the conservation of the energy-momentum
tensor Tμν and of an additional conserved current Nμ. The
latter is associated with conserving the number of charm-
anticharm pairs [15]. The Landau frame is chosen such that
Tμν and Nμ can be decomposed as

Tμν ¼ ðϵþ PÞuμuν þ ΔμνðPþ ΠÞ þ πμν; ð3Þ

Nμ ¼ nuμ þ νμ; ð4Þ

where ϵ, P, uμ, Π and πμν are the energy density,
thermodynamic pressure, fluid four-velocity, bulk viscous
pressure, and shear-stress tensor of the fluid, respectively.
The charm-quark fields are the heavy-quark density n and
the diffusion current νμ. The local temperature T and the
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chemical potential to temperature ratio α are determined by
the Landau matching conditions,

ϵðTÞ≡ ϵequilibriumðTÞ; ð5Þ

nðT; αÞ≡ nequilibriumðT; αÞ: ð6Þ

We assume that the energy density is approximately
independent of the heavy-quark contribution, such that
any energy density dependence on α is negligible. The
thermal equilibrium heavy-quark density is taken to be one
of the hadron-resonance gas, including all measured charm
states (HRGc),

nðT; αÞ ¼ T
2π2

X
i∈HRGc

qiM2
i e

qiαK2ðMi=TÞ; ð7Þ

where Mi is the mass of each charm hadron, and qi is its
charm charge. The HRGc is expected to give the correct
limit for the thermodynamics of the charm density at
temperatures close to the phase transition. This relation
is assumed to also hold at high temperatures. In the
temperature regime reached by the fireball in most central
collisions, the HRGc yields larger values (of about a
factor 5) than the density of the free charm quarks.
Nevertheless, due to the absence of first principle calcu-
lations for the equation of state of charm quarks at physical
QGP temperatures, we assume this relation to hold also at
high temperatures. In the future, a more realistic equation of
state will be developed.
The equations of motion for each of the dissipative

currents in a second-order hydrodynamic formalism are
solved,

τΠuμ∂μΠþ Πþ ζ∇μuμ ¼ 0; ð8Þ

Pμρ
νσ

�
τπ

�
uλ∇λπ

σ
ρ − 2πσλωρλ þ

4

3
∇λuλπσρ

�

þ2η∇ρuσ þ πσρ

�
¼ 0; ð9Þ

τnΔα
βu

μ∇μν
β þ να þ κnΔαβ

∂βα ¼ 0; ð10Þ

where one defines the projector Pμν
ρσ ¼ 1

2
½Δμ

ρΔν
σ þ Δμ

ρΔν
σ −

2
3
Δμ

ρΔν
σ� and the vorticity tensor ωμν ¼ ð∇μuν −∇νuμÞ=2.

Here we introduced the transport coefficients for the bulk
viscosity ζ, shear viscosity η, and the heavy-quark diffusion
coefficient κn, with the corresponding relaxation times τΠ; τπ
and τn. The values of the viscosities are taken fromRef. [16],
while the expression for the diffusion coefficient was
derived in Ref. [15]. We remark that κn and τn are propor-
tional to the heavy-quark spatial diffusion coefficient Ds.
The equations are solved inBjorken coordinates assuming

boost and azimuthal rotation invariance, restricting

effectively to 1þ 1 dimensions. We organize the fluid fields
for theQGP into a Nambu spinorΦ ¼ ðT; uμ; πμν;ΠÞ, which
satisfies the hyperbolic equation of motion. We assume
that none of these fields or transport coefficients depend on
the heavy-quark variables. Equations (1), (8), and (9),
can be used to determine the time derivatives of the
fluid fields explicitly. Let us now consider another
Nambu spinor including also the heavy-quark fields
Ξ ¼ ðT; uμ; πμν;Π; α; νμÞ. The new system of hyperbolic
equations satisfied by Ξ can be numerically solved by
setting the fluid fields contained in Φ on shell. This is
equivalent to neglecting the back reaction of the heavy-
quark field on the fluid background evolution. More
details regarding our approach to solve the fluid-dynamic
equations, the numerical implementation and the validation
of our fluid-dynamic framework can be found in the
Appendixes A–C.

III. INITIAL CONDITIONS
FOR THE FLUID FIELDS

The initial condition for the entropy density is computed
with TRENTo [17] simulating Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The TRENToparameters are set based
in Refs. [18,19]; the TRENTo output is used as entropy
density. The nucleon-nucleon cross section for Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV is taken from [20], i.e.
x ¼ 67.6 mb. The nucleons in the Pb ion are sampled from
a spherically symmetric Woods-Saxon distribution with
radius R ¼ 6.65 fm and surface thickness a ¼ 0.54 fm.
Using this set of parameters, the transverse density TRðx; yÞ
is generated for 1.5 × 106 minimum-bias collisions, among
which the ones belonging to the 10% most central are
selected. The normalization of the TRENTo profile is
computed by fixing the multiplicity of protons to the
measured one [21]. The proton multiplicity in our calcu-
lation is obtained by employing a Cooper-Fryeþ FastReso
approach at the end of the fluid-dynamic evolution as in
Refs. [16,22,23]. In the future, when performing a Bayesian
analysis to fit the experimental measurements, the nor-
malization will be left as a free parameter of our model as in
Ref. [23]. The initial conditions for the temperature field
are then obtained through the thermodynamics EOS
described in Ref. [24]. Radial fluid velocity, shear-stress
tensor components, and bulk viscous pressure are initial-
ized at zero.

IV. INITIAL CONDITIONS FOR CHARM FIELDS

The midrapidity density of charm quarks at the initial-
ization time of the hydrodynamic evolution τ0 comes from
the initial hard production,

nQQ̄
hardðτ0; x⃗⊥; y ¼ 0Þ ¼ 1

τ0

d3NQQ̄

dx⃗⊥dy

����
y¼0

: ð11Þ
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In the above expression, the QQ̄ rapidity distribution in
nucleus-nucleus collisions is set by the pQCD QQ̄ cross
section

dNQQ̄

dy
¼ hNcolli

1

σin
dσQQ̄

dy
; ð12Þ

where σin is the inelastic proton-proton cross section and
σQQ̄ is the hard production cross section. The average
number of collisions Ncoll is computed with a Glauber
model and depends on the impact parameter of the
collision, providing:

nQQ̄
hardðτ0; x⃗⊥; y ¼ 0Þ ¼ 1

τ0
ncollðx⃗⊥Þ

1

σin
dσQQ̄

dy
; ð13Þ

where ncoll is assumed to be distributed according to the
fluid-energy density ncoll ∝ T4. As a future development,
one could evaluate the radial distribution of binary colli-
sions directly from TRENTo, not to neglect space-momen-
tum correlations that are important for flow observables.
The integral of the density in the transverse plane provides
the total number of heavy quarks to be conserved through-
out the QGP evolution. As discussed in [15], we remark
that the current associated with the number of heavy quark-
antiquark pairs is accidentally conserved. The heavy-quark
mass is too large for them to be produced thermally
throughout the QGP evolution; moreover, the annihilation
rate of a QQ̄ pair is negligible within the lifetime of the
plasma.
To fix at each point the initial value for α for theQQ̄ pair,

nðT; αÞ ¼ nQQ̄
hard: ð14Þ

Taking the central prediction by FONLL [25] for collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, one gets, at y ¼ 0, dσQQ̄=dy ¼
0.463 mb, with σin ¼ 67.6 mb [20]. At the beginning of
the system evolution, the thermal distribution at zero
chemical potential overshoots the density of charm quarks
in the middle of the fireball. Therefore, α assumes negative
values initially to match the hard production. This is not
expected to happen at the fireball evolution’s end, where
the charm species’ thermal abundance will be strongly
suppressed. The total multiplicity of QQ̄ pairs per unit of
rapidity is given by the integrated density profile, e.g. at
τ ¼ τ0,

NQQ̄ ¼ τ02π

Z
drrnQQ̄

hard: ð15Þ

In terms of fluid variables, due to the conservation of the
charm current, the conserved charge is rewritten as

NQQ̄ ¼
Z

d3x
ffiffiffiffiffi
jgj

p
N0ðx⃗Þ ¼ 2πτ

Z
rðnuτ þ ντÞdr; ð16Þ

where jgj is the determinant of the metric. Besides the
density, we can initialize the heavy-quark diffusion current.
The assumed symmetries would allow a nonvanishing
radial component, but we set it to zero in the absence of
a more detailed initial state model.

V. EVOLUTION OF THE FIELDS

The initial conditions for the fields are set on a hyper-
surface at constant proper time τ0 ¼ 0.4 fm. In Fig. 1
(upper panel), the time evolution of the charm density times
the longitudinal proper time as a function of the radial
coordinate is reported for different values of τ. This is
shown for a nondiffusive (Ds ¼ 0) and temperature-de-
pendent Ds case obtained by linearly fitting results from
LQCD calculations [14]. As expected, the density becomes
more diluted when the temperature decreases. In the
diffusive case, the density evolution is concurrent with
developing the radial component of the diffusion current
(Fig. 1, lower panel). Its values are always negative, thus
negatively contributing to the conserved current Nμ. This
results in a higher density n in the diffusive case, as shown
in Fig. 1. Comparing it to the equilibrium composition of
the heavy-quark density n, one finds that the condition of
jνrj ≪ n is not satisfied in the entire radial region. This
indicates that the out-of-equilibrium components of the

FIG. 1. Charm density times the longitudinal proper time
(upper panel) and diffusion current (lower panel) as a function
of radius for different times. Solid lines correspond to an ideal
hydrodynamic evolution, with Ds ¼ 0. Dashed lines correspond
to a diffusive hydrodynamic evolution, with 2πDsT taken from
LQCD [14].
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heavy-quark distribution remain large throughout the evo-
lution of the plasma. However, the magnitude of the
diffusion current strongly depends on the spatial diffusion
coefficient and its correspondent relaxation time. LQCD
computations [14] favor a fast hydrodynamization of charm
quarks and, thus, a reduction of the out-of-equilibrium
correction. Around freeze-out we decompose the single-
particle distribution functions, fi ¼ fi;eq þ δfi, where the
equilibrium part fi;eq is given by the ideal gas distribution
and δfi represents the out-of-equilibrium correction. In
general, the δfi correction receives a contribution from
all the dissipative stresses Π, πμν and νμ, such that
δfi ¼ δfi;bulk þ δfi;shear þ δfi;diffusion. In our case, the
open-charm hadrons distribution function includes both
light and heavy components. To properly describe it, one
should derive its expression in a multispecies fluid setup.
As for now, we neglect out-of-equilibrium corrections to
the fluid variables at the freeze-out surface. In the future,
we will address the inclusion of nonlinear terms in the
evolution equation for the dissipation current and the
derivation of a more consistent expression of the total
distribution function.

VI. INTEGRATED YIELDS

The charmed-hadron production is assumed to occur on
a freeze-out hypersurface at a constant temperature. This
chosen temperature is Tfo ¼ 156.5 MeV [13,26]. The
freeze-out hypersurface in the plane of Bjorken time τ
and radius r is parametrized by a parameter γ ∈ ð0; 1Þ.
According to the Cooper-Frye prescription, a sudden
decoupling is assumed at the freeze-out temperature, and
the thermal momentum distribution of the particles is
computed according to

dNhc

pTdϕdpTdy
¼ ghc

ð2πÞ3
Z
Σfo

dγdϕdyτðγÞrðγÞ

× eqα
�
∂r
∂γ

mTK1

�
mT

ur

T

�
I0

�
pT

ur

T

�

−
∂τ

∂γ
K0

�
mT

ur

T

�
I1

�
pT

ur

T

��
; ð17Þ

where ghc accounts for the degeneracy of the produced
charmed hadron and q accounts for the charm content of
the hadron. The total integrated yield dNhc=dy per unit
rapidity for charmed and anticharmed hadrons is measured
by integrating Eq. (17). The feed-down from resonance
decays is calculated using the FastReso package [22]. The list
of resonances is taken from the PDG [27]. In Fig. 2, the
comparison between the obtained integrated yields and
experimental measurements [28–31] is shown for the
0–10% centrality interval. The yields and the pT spectra
correspond to the sum of particle and antiparticle divided
by two, as reported by experiments. The pT integration

range is from 0 to 10 GeV=c. These results are computed
for Ds ¼ 0 since the integrated yield should not depend on
the spatial diffusion coefficient. However, since out-of-
equilibrium corrections to the single-particle distribution
function at freeze-out are neglected, there can be a
nonphysical dependence of the yields on Ds. While the
relative abundance of each charmed-hadron species
depends mainly on the mass of the hadron, the absolute
value of the integrated yields strongly depends on the EOS
for the charm density as a function of T and α. The HRGc
as EOS is the most suitable choice to estimate the thermal
production of the hadrons and resonances included in the
HRGc. The role played by the resonance decays is then to
reshuffle the relative abundance of the hadrons while
keeping the total number of charm quarks fixed. The
agreement between the model and the measurements is
quantified in the lower panel of Fig. 2. We observed that the
mesons are compatible with the experimental uncertainties,
computed as the sum in quadrature of the statistical and
systematic uncertainties. A deviation of 2.4σ is observed
for the Λþ

c baryons. This deviation might be caused by
missing higher resonance states in the PDG [13,32,33].
Due to the resonances decay, the yield of the D0 increases
by a factor 4.3, while the one of the Λþ

c of a factor 5.
Another factor 2.3 would be needed to reproduce the
experimentally measured yield. Estimates for the yields
of the Ξþ

c and Ω0
c , whose experimental measurements are

not yet available, are provided. Most likely, these values
will underestimate the actual yields due to the lack of
knowledge of higher-resonance states. In other phenom-
enological models, the charmed-baryon enhancement is

FIG. 2. Charmed-hadron integrated yields with and without
feed-down contributions from resonance decays and comparison
with experimental data from the ALICE Collaboration.
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attributed to a recombination process between the heavy
quark and light thermal partons [34–37].

VII. MOMENTUM DISTRIBUTIONS

In Fig. 3, the pT-differential spectra for the same hadron
species are reported and compared with the experimental
measurements [28–31]. A ratio plot with the data to model
comparison can be found in Appendix D. The bands
correspond to a spread of the input value of the spatial
diffusion coefficient Ds going from a nondiffusive case
(Ds ¼ 0) to a temperature-dependent 2πDsT [14]. The
fluid-dynamic description seems to capture the physics of
Dmesons up to pT ∼ 4–5 GeV=c. This implies that, even if
the charm does not move collectively with the rest of the
fluid in the early stage of the evolution, it relaxes to the
same radial flow of the QGP before the freeze-out occurs.
As observed for the integrated yield, the Λþ

c calculation
underestimates the experimental measurement. The J=ψ pT
distribution describes the experimental measurements for
pT < 3 GeV=c, while it overpredicts the yield for higher
pT. This discrepancy for pT > 3 GeV=c might be attrib-
uted to the dominant contribution from primordial J=ψ ,

which is not accounted for in our model since it is not
expected to reach thermal equilibrium [38–40], but ismainly
sensitive to path-length-dependent effects, like survival
probability and energy loss. It is also important to note that
the experimental measurements consist of J=ψ directly
produced in the collisions plus the contribution from beauty
hadron decays. Including the out-of-equilibrium corrections
in themodel at the freeze-out surfacewill influence the shape
of the momentum distributions. They would modify the
spectra at intermediate/high pT. When adequately included,
we do not expect such a strong dependence on Ds in the
spectra but rather only a tilt in themomentumdistribution. A
further remark regards the dependence of the final momen-
tumdistribution on the initial conditions for the charm fields.
In particular, a broader initial distribution for the charm
density results in a larger average pT at freeze-out. A more
thorough study of the charm initial conditions will improve
the description of the transverse momentum distribution of
the charm hadrons, without of course impacting the results
for the integrated yields.

VIII. CONCLUSIONS

A fluid-dynamic description of the charm quark is
developed for the first time, unveiling that low-pT charm
quarks undergo a very fast hydrodynamization in the QGP
created during ultrarelativistic heavy-ion collisions. The
developed model describes the charmed-hadron yield and
the pT-differential distribution up to pT ∼ 4–5 GeV=c. The
calculations are carried out for a nondiffusive case and
a temperature-dependent Ds. The derivation of out-of-
equilibrium corrections in a multispecies setup will be
addressed. Additional constraints on the spatial diffusion
coefficient will be set in future works via a Bayesian
analysis using both pT-differential spectra and anisotropic
flow coefficients. In addition, this study paves the way for a
fluid-dynamic description of the beauty quark, which,
despite its larger mass, might still reach a partial local
equilibrium allowing further constraining QGP parameters
using heavy quarks as probes.
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APPENDIX A: FLUID-DYNAMIC EQUATIONS

The equations are solved effectively in 1þ 1 dimensions
with Bjorken coordinates ðr; τÞ supplemented by azimuthal
angle ϕ and rapidity η. The metric tensor is defined as

FIG. 3. Results for the momentum distributions of D0, Dþ,
D�þ, Dþ

s , Λþ
c , and J=ψ are shown in comparison with exper-

imental measurements from the ALICE Collaboration [28–31].
Predictions for Ξ0

c and Ω0
c baryon states, which have not been

measured yet, are also shown.
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gμν ¼ diagð−1; 1; r2; τ2Þ. The independent components of
the fluid fields in the azimuthally symmetric and boost-
invariant case are, for the energy-momentum tensor Tμν

T; ur; πηη; π
ϕ
ϕ;Π; ðA1Þ

where u2 ¼ −1 and πμν is a symmetric, traceless tensor
transverse to the four-velocity. The independent charm
fields are

α; νr; ðA2Þ

where the diffusion current is orthogonal to the fluid velocity
u · ν ¼ 0, and α is the conjugate variable of the density n, i.e.,
α ¼ μ=T. A generic Nambu spinor, whose components are
the background fluid fields Φbg ¼ ðT; uμ; πηη; πϕϕ;ΠÞ, is
considered. The general hyperbolic equations for the back-
ground fluid field can be written as

Abgðr; τ;ΦbgÞ∂τΦbg þ Bbgðr; τ;ΦbgÞ∂rΦbg

¼ Sbgðr; τ;ΦbgÞ; ðA3Þ

whereAbg andBbg are 5 × 5matrices andSbg is a source-term
vector depending nonlinearly on the fluid fields Φbg. This
equation is used to derive the expressions for the time
derivatives of the fields in Φbg,

∂τΦbg ¼ −A−1
bgBbg∂rΦbg þ A−1

bg Sbg: ðA4Þ

We can now define another Nambu spinor ΦHQ ¼ ðα; νrÞ.
The equation of motion for ΦHQ is given by

AHQ∂τΦHQ þBHQ∂rΦHQ þCHQ∂τΦbg þDHQ∂rΦbg ¼ SHQ;

ðA5Þ

where the 2 × 2matrices AHQ, BHQ, CHQ,DHQ and the two-
component vector SHQ are generic nonlinear functions of the
fluid fields Φbg and the heavy quarks variables ΦHQ. We
substitute the equation of motion Eq. (A4) in Eq. (A5),
leading to

AHQ∂τΦHQ þ BHQ∂rΦHQ þ ðDHQ − CHQA−1
bgBbgÞ∂rΦbg

¼ SHQ − CHQA−1
bg Sbg: ðA6Þ

In this formulation, the evolution of the background Φbg is
not influenced by the dynamics of the diffusion current and
density in ΦHQ. The equations of motion read

�
Abg 0

0 AHQ

�
∂τ

� Φbg

ΦHQ

�
þ
�

Bbg 0

Bmix BHQ

�
∂r

� Φbg

ΦHQ

�

¼
� Sbg

S̃HQ

�
; ðA7Þ

where the mixing matrix is given by Bmix ¼ DHQ −
CHQA−1

bgBbg and S̃HQ ¼ SHQ − CHQA−1
bg Sbg. Using that the

equations are hyperbolic, and therefore thematrix of the time
derivative ðAbg

0
0

AHQ
Þ is invertible, the equations of motion can

be written explicitly as

∂τ

� Φbg

ΦHQ

�
þ
� A−1

bgBbg 0

A−1
HQBmix A−1

HQBHQ

�
∂r

� Φbg

ΦHQ

�

¼
� A−1

bg Sbg

A−1
HQS̃HQ

�
: ðA8Þ

APPENDIX B: NUMERICAL SCHEME

The equations of motion for relativistic fluid dynamics
with the conservation of a heavy-charm pair current are
hyperbolic equations of motion due to the inclusion of the
evolution equation of the dissipative currents πμν;Π and νμ.
Schematically, the equations can be written as quasilinear
partial differential equations (PDEs). We will restrict
ourselves to discussing the equations in one spatial dimen-
sion for simplicity. However, the extension to a higher
number of dimensions is trivial. We consider a collection of
independent variables called ϕ, whose equations of
motion are

∂tϕþ AðϕÞ∂xϕþ SðϕÞ ¼ 0; ðB1Þ

where AðϕÞ is a matrix in field space that depends non-
linearly on the fields themselves, and SðϕÞ is a vector
containing the source term in the equation. Usually, the
numerical solutions of the fluid dynamic equations are
discussed in a conservative form since the ideal limit of the
equations is the divergence of a current—typically the
energy-momentum and particle density current. Let

∇μJ μ ¼ 0

be the conservation equation, where J μ represents generi-
cally the conserved current. However, including the dynam-
ics of the dissipative current like diffusion and shear/bulk
viscous stress spoils this property for Israel-Stewart-Müller
theory [41]. For this type of theory, the equations are
nonconservative by construction, and it is impossible to
cast them in a conservative form. In the relativistic viscous
fluid dynamic literature, the equations are solved with a
splitting algorithm. First, solve using a finite volume
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conservative scheme, then correct the intermediate solution
using a central approximation of the dissipative equations,
as in the so-called SHASTA algorithm [42], or some
variations of it like KT [43]. This type of algorithm
performs well if the dissipative currents are minor correc-
tions to the ideal step and do not modify the ideal evolution
substantially. However, this is not always the case, espe-
cially when the system is far from the ideal approximation,
meaning the nonequilibrium effects are important. In this
work, we implement a different strategy. Instead of using
the ideal-viscous splitting, we solve the equations together
as a quasilinear system of PDEs. The naive discretization of
equations like Eq. (B1) can be obtained by replacing the
first derivative with its central approximation. Denoting xi
the central position of a cell of size Δx, the central
derivative approximation is

∂xϕjxi ≃
1

2Δx
ðϕiþ1 − ϕi−1Þ; ðB2Þ

where ϕi ¼ ϕðxiÞ. The semidiscretized version of the
equations is

∂tϕi þ AðϕiÞ∂xϕjxi þ SðϕiÞ ¼ 0: ðB3Þ

This naive discretization, however, is unstable since there is
no dissipation mechanism in the discretization to reduce the
high-frequency mode of the discretized solution. The
physical motivation for this instability can be understood
considering the nature of the PDE. The system of hyper-
bolic equations is a collection of propagating waves that
interact nonlinearly and with a nonconstant velocity. The
waves are usually (except in simple cases) a complicated
combination of the primary variables ϕ, defined as the left
eigenvector of the matrix AðϕÞ. The eigenvalue is charac-
teristic of the hyperbolic PDE and represents how fast the
wave propagates. Each of the waves propagates at a
different speed and direction. In a one-dimensional case,
there will be right- and left-moving waves. To have a stable
discretization, the numerical derivative should respect—up
to some degree of accuracy—the direction of propagation
of the different waves. If a wave is right-moving, the correct
derivative discretization should involve only points in the
past of the wave (i.e. on its left) and vice versa. This
mechanism is called upwinding [44]. Therefore, the central
approximation of the first derivative goes against this
principle since it does not distinguish the direction of
propagation of the waves.
A natural solution is to separate right-moving and left-

moving waves and discretize them accordingly. By calling
λi the eigenvalues, one can separate them into positive and
negative ones (λþi and λ−i , respectively),

1

Aþ ¼U

2
64
λþ1

. .
.

0

3
75U−1; A− ¼U

2
64
0

. .
.

λ−1

3
75U−1:

ðB4Þ

Each matrix has only information about the left and right
propagating waves, respectively. With this construction, it
is then easy (in principle) to construct an upwinding
discretization as

∂tϕi þ AþðϕiÞ∂xϕj−xi þ A−ðϕiÞ∂xϕjþxi þ SðϕiÞ ¼ 0; ðB5Þ

where the derivatives are taken from the left or the right,
respectively,

ϕj−xi ¼
1

Δx
ðϕi − ϕi−1Þ; ϕjþxi ¼

1

Δx
ðϕiþ1 − ϕiÞ: ðB6Þ

The proposed discretization is sometimes called the flux-
splitting technique and was already introduced in [44–46].
The drawback of this scheme is that it relies on the
complete knowledge of the spectrum of the characteristic
matrix. Only in a few cases is this achievable due to the
complexity of the nonlinearities of the characteristic
matrix A.
The discretization reported in Eq. (B5) can be expressed

in terms of the absolute value of the matrix A,

jAj ¼ Aþ − A−; ðB7Þ

such that

Aþ ¼ 1

2
ðAþ jAjÞ; A− ¼ 1

2
ðA − jAjÞ: ðB8Þ

Therefore, Eq. (B5) becomes

∂tϕi þ
1

2
Að∂xϕj−xi þ ∂xϕjþxiÞ

þ 1

2
jAjð∂xϕj−xi − ∂xϕjþxiÞ þ SðϕiÞ ¼ 0: ðB9Þ

The derivative operators now become

1

2
ð∂xϕj−xi þ ∂xϕjþxiÞ ¼

1

2Δx
ðϕiþ1 − ϕi−1Þ ¼ ∂xϕjxi ; ðB10Þ

∂xϕj−xi−∂xϕjþxi ¼
1

Δx
ðϕiþ1þϕi−1−2ϕiÞ¼Δx∂2xϕjxi ; ðB11Þ

leading to a discretized equation of the form

∂tϕi þ A∂xϕjxi −
1

2
jAjΔx∂2xϕjxi þ SðϕiÞ ¼ 0: ðB12Þ

1For hyperbolic systems of partial differential equations, it is
always possible to left-diagonalize the characteristic matrix and
the corresponding eigenvalues are real.
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The extra contribution introduced to upwind the derivative
acts like a viscous terms into the equation, with an
amplitude proportional to the lattice spacing Δx.
A standard approximation for the absolute value of the

matrix is jAj ¼ λI where λ ¼ maxðjλijÞ, which is the fastest
characteristic speed in the system. Under this assumption,
the scheme can be considered a nonconservative version of
the Lax-Friedrichs scheme. However, this requires knowl-
edge of the characteristic structure, which is possible only
for exceptional cases.
An appealing alternative is to approximate jAj with a

suitable expansion, as discussed in [46,47]. Among the
possible expansion choices that one can make, the simplest
is a polynomial approximation around maxðjλijÞ ¼ 1,

jAj ≃ 1

2
ðI þ A2Þ þOðA4Þ; ðB13Þ

assuming that all the jλij < 1, such that the fastest wave
speeds are modified correctly. Different and more perform-
ing possibilities are Chebyshev polynomials and rational
functions. However, in this work, we restrict ourselves to
the simplest choice and will study these possibilities in the
future.
For the evolution, we use the explicit Runge-Kutta

with adaptive time step as described in [48,49] and
with the proportional-integral-derivative (PID) controller
as described in [50–52]. For the integration on the freeze-
out surface we used [53–56].

APPENDIX C: VALIDATION AGAINST
GUBSER FLOW

Comparing it against a known analytic (or semianalytic)
solution is useful to verify and validate the numerical
scheme. For Israel-Stewart-type theories, such a solution
with azimuthal rotation symmetry, longitudinal boost
invariance, and an additional conformal symmetry has
been found by Gubser [57]. For symmetry reasons, the
evolution of the diffusion current in this setup is trivial. So
we will leave it out of the discussion in the rest of this
section. The set of equations for the evolution of temper-
ature, fluid velocity, shear stress, number density in the
presence of a conformal symmetry reads,

uλ∇λT
T

þ∇μuμ

3
þ πμνσμν

3sT
¼ 0; ðC1Þ

uλ∇λuμ þ
Δμ

λ∇λT
T

þ Δμ
λ∇απ

αλ

sT
¼ 0; ðC2Þ

τπ
sT

�
Δμ

αΔν
βu

λ∇λπ
αβþ4

3
∇λuλπμν

�
þπμν

sT
¼−

2η

sT
σμν; ðC3Þ

uλ∇λn ¼ −nθ −∇μν
μ; ðC4Þ

where θ ¼ 2 tanh ρ is the scalar expansion rate for Gubser
flow. In de Sitter space, by applying the Gubser flow profile
ûμ ¼ ð1; 0; 0; 0Þ, the equations read

1

T̂
∂ρT̂ þ 2

3
tanh ρ ¼ 1

3
π̄ηη tanh ρ; ðC5Þ

c

T̂

η

ŝ

�
∂ρπ̄

η
η þ 4

3
ðπ̄ηηÞ2 tanh ρ

�
þ π̄ηη ¼ 4

3

η

ŝ T̂
tanh ρ; ðC6Þ

∂ρn̂þ 2 tanh ρn̂ ¼ 0; ðC7Þ

where ρ is the Gubser conformal time variable and
π̄μν ¼ πμν=ðŝ T̂Þ. The transformation rules to obtain the
fluid variables in Milne coordinates are given by

Tðτ; rÞ ¼ T̂ðρðτ; rÞÞ=τ; ðC8Þ

FIG. 4. Temperature (upper panel) and chemical potential to
temperature ratio α (lower panel) as a function of radius r at
Bjorken times τ ¼ 1.5 fm=c and τ ¼ 2 fm/c. The solid lines
correspond to the semianalytic Gubser solution, while the dashed
lines are the numerical result with N ¼ 200 discretization points.
We have here chosen the maximal radius to be 10 fm.
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uμðτ; rÞ ¼ τ
∂x̂ν

∂x̂μ
ûνðρðτ; rÞÞ; ðC9Þ

πμνðτ; rÞ ¼
1

τ2
∂x̂α

∂x̂μ
∂x̂β

∂x̂μ
π̂αβðρðτ; rÞÞ; ðC10Þ

nðτ; rÞ ¼ 1

τ3
n̂ðρðτ; rÞÞ: ðC11Þ

The conformal equation of state at finite α can be written as

e ¼ 3p; s ¼ hðαÞT3; n≡ gðαÞαT3; ðC12Þ

where one defines the dimensionless coefficients

f ¼ 3p0 þ
Nf

6
α2 þ Nf

108π2
α4; ðC13Þ

h ¼ 4p0 þ
Nf

9
α2; ðC14Þ

g ¼ Nf

9
αþ Nf

81π2
α2: ðC15Þ

Here we use p0 ¼ ð16þ 10.5NfÞπ2=90 and the number of
flavors Nf ¼ 2.5. In this setup, the equations for the charge
current are decoupled from the rest of the system. In Fig. 4
the comparison between the semianalytical solution by
Gubser and the one obtained numerically is presented.
The initialization time is τ0 ¼ 1 fm, the shear viscosity to
entropy ratio is 0.2; the shear relaxation time is
τS ¼ 5η=ðsTÞ. The overall agreement is good for all fields
in the full radial range.

In Fig. 5, the percent deviation of the numerical solution
for the temperature field with respect to Gubser’s solution is
shown for different numbers of discretization points at
τ ¼ 2 fm. As one can see, the finer the spatial grid is,
the smaller the deviation. In particular, the deviation around
2 fm, corresponding to the maximum of the temperature
profile, is progressively suppressed.

APPENDIX D: DETAILS ON THE RESULTS
OF CHARM-HADRON MOMENTUM

DISTRIBUTIONS

In Fig. 6 the results for the ratio between the exper-
imental measurements of charm-hadron momentum distri-
butions and the results from our fluid-dynamic model are
shown. The bands correspond to a spread of the input
value of the spatial diffusion coefficient Ds going from a
non-diffusive case (Ds ¼ 0) to a temperature-dependent

FIG. 5. Percent deviation of the absolute value of ΔT ¼
Tnumerical=Tsemianalytical − 1 of the temperature at τ ¼ 2 fm as a
function of radius and the number of discretization point N. The
numerical solution converges to the semianalytical one as the
number of points increases.

FIG. 6. Data-to-model ratios for D0, Dþ, D�þ, Dþ
s , Λþ

c , and J=ψ
momentum distributions. Experimental measurements are taken
from [28–31].
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2πDsT obtained by linearly fitting results from LQCD
calculations [14]. The fluid-dynamic descriptions captures
the behavior to D0 and J=Ψ up to pT ∼ 2 GeV. At
intermediate transverse momentum, our calculation for
the D mesons deviates of 25% from the experimental
measurements for the Ds ¼ 0 case. A larger deviation is
hereby observed for J=Ψ attributed to the dominant con-
tribution from primordial J=ψ , which is not accounted for
in our model since it is not expected to reach thermal
equilibrium [38–40], but is mainly sensitive to path-length-
dependent effects, like survival probability and energy
loss. As observed for the integrated yield, the Λþ

c calcu-
lation underestimates the experimental measurement.

This deviation might be caused by missing higher reso-
nance states in the PDG [13,32,33]. At pT larger than
5 GeV, the fluid-dynamic model seems no longer appli-
cable since it’s not able to capture the behavior of the
particle spectra.
A further remark regards the dependence of the final

momentum distribution on the initial conditions for the
charm fields. In particular, a broader initial distribution for
the charm density results in a larger average pT at freeze-
out. A more thorough study of the charm initial conditions
will improve the description of the transverse momentum
distribution of the charm hadrons, without of course
impacting the results for the integrated yields.
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