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The Casimir friction phenomenon involves the excitation of microscopic degrees of freedom in a medium,
as a result of the relative motion of another object. When we consider a planar medium in the presence of a
moving atom, excitations are expected to have a nontrivial spatial dependence, given the preferential
direction set up by the atom’s trajectory. Here, for a medium consisting of planar graphene, we evaluate the
spatial (angular) dependence of such an effect. Using the Dirac field description, that phenomenon appears
as the creation of electron-hole pairs, namely, in quantum electrodynamics terms, to pair creation. We
present explicit results on the angular dependence of the fermion emission probability, as a function of the
atom’s velocity, and the distance of the trajectory to the sheet. This microscopic, i.e., local aspect,
complements previous work on global features, like the total frictional force, which we also evaluate.
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I. INTRODUCTION

Quantum fluctuations produce macroscopic effects
under the appropriate circumstances, with the Casimir
effect [1] being the most celebrated example. A related
kind of effect, also due to vacuum fluctuations, may arise
when the bodies move, or the boundary conditions they
impose become time dependent. This can lead to dissipa-
tion, via real photons excited out of the quantum vacuum,
leading to what is known as the dynamical Casimir effect
[2–4]. Yet another remarkable situation occurs when a
purely quantum, dissipative frictional force arises between
bodies moving at a constant relative velocity [5]. Here, the
effect is due to the quantum degrees of freedom of
the media which are excited from the vacuum, and the
electromagnetic (EM) field acting as mediator. This
Casimir friction effect has been studied extensively, though
some calculational issues have prompted debate [6–8].
Here, we study this effect for an atom moving close to a

graphene sheet, evaluating the momentum distribution of
the fermion pair which is created, as a function of the
parameters of the system. This study complements and
extends previous work [9] in two ways: the first is that,
rather than evaluating the total probability of vacuum
decay, we focus on the angular aspects of the phenomenon:
how the probability of detecting the fermions on the plate
depends on the direction of emission, measured with
respect to the trajectory of the atom. The atom moves
along a trajectory which is parallel to the graphene plate,
with a constant velocity. For the graphene system, we use
its 2þ 1 dimensional Dirac field description (see, for
example [10,11]), and the atom by an electron bounded
to the nucleus by a three-dimensional harmonic potential.
The second way in which we introduce a novel ingredient is

that the atom, in the model we use, couples to the EM field
through a dipole term, plus a Röntgen term. The second
term accounts for the fact that a moving electric dipole
carries also a magnetic dipole moment. This term can
become significant in certain scenarios, in particular in
situations where there is quatum radiation, as shown in
[12]. Quantum friction for two graphene sheets has been
studied in [13]; note that in that situation there is no
information (due to the geometry of the system) about the
spatial dependence of the pair production effect.
Knowledge of that dependence should, we believe, be
relevant to the future design of nanodevices involving
graphene.
The structure of this paper is as follows: In Sec. II, we

describe the system and present the basic ingredients of our
approach. Then, in Sec. III, we evaluate the probability
amplitudes for the relevant elementary process contributing
to friction, presenting a detailed study of its geometric
(i.e., directional) properties. In Sec. IV we present our
conclusions.

II. THE SYSTEM

The real-time action S for the system that we consider,
may be conveniently written as follows:

S½ψ̄ ;ψ ; A;q; rðtÞ� ¼ Sg½ψ̄ ;ψ ; A� þ Sa½q� þ Sem½A�
þ Sa-em½A;q; rðtÞ�; ð1Þ

where Sg denotes a Dirac field action in 2þ 1 dimensions,
including its coupling to the EM field, while the terms Sa
and Sem denote the free actions for the atom and the EM
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field, respectively. Sa-em is the coupling between the atom
and the EM field.
It is worth pointing out the following: graphene is, in the

continuum version description which we are using here,
described by a number N of flavors of four-component
Dirac fields. Each one of these flavors may be thought of as
composed of two spinors transforming under an irreducible
representation of the 2þ 1 dimensional Lorentz group,
while the two flavors are mixed by parity. We recall that, in
2þ 1 dimensions, a parity transformation corresponds to a
reflection, rather than a spatial inversion (which is a
rotation in π). For the process we study here, it will not
make any difference which one of the 2N two-component
Dirac fields is considered. Thus, we deal with just one of
them and to find the result in the general case one simply
multiplies the result by 2N (see last paragraph of Sec. III).
In this work, we adopt the following conventions: both ℏ

and the speed of light are set equal to 1, space-time
coordinates are denoted by xμ, μ ¼ 0; 1; 2; 3, x0 ¼ t, and
we use the Minkowski metric gμν ≡ diagð1;−1;−1;−1Þ.
Dirac’s γ-matrices, on the other hand, are chosen to be in
the representation γ0 ≡ σ1, γ1 ≡ iσ2, γ2 ≡ iσ3, where

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; ð2Þ

and

σ3 ¼
�
1 0

0 −1

�
; ð3Þ

where σi (i ¼ 1; 2; 3) denote the usual Pauli’s matrices.
Let us now describe the structure of each term in the

action (1), beginning with the one corresponding to the
atom: the position of its center of mass, which to a very
good approximation coincides with that of its nucleus,
is assumed to be externally driven, and described by
rðtÞ ¼ ðvt; aÞ. We have adopted a reference system fixed
to the graphene plane, which occupies the x3 ¼ 0 plane, v
denotes the (constant) velocity of the atom, which moves at
a distance a from the plate. On the other hand, we assume
that there is only one relevant (valence) electron in the
atom, and that its position with respect to its center of mass
is given by the vector: q. In our description, therefore, the
three components of this vector are the only relevant degrees
of freedom in the atom.Assuming that only single transitions
are relevant to the process that we are studying, the physics
should be characterized by a single energy (scale). It is
sufficient to take, as the classical action accounting for the
free dynamics of the electron, a harmonic one:

Sa½q� ¼
Z

dt

�
1

2
Mq̇2 − VðjqjÞ

�
≈
Z

dt
M
2
ðq̇2 −Ω2q2Þ;

ð4Þ

whereM is the mass of the electron and Ω characterizes the
effective harmonic potential.
The free electromagnetic field has its dynamic given by

the usual action, together with a gauge-fixing term

Sem½A� ¼
Z

d4x

�
−
1

4
FμνFμν −

λ

2
ð∂μAμÞ2

�
; ð5Þ

where Fμν ¼ ∂μAν − ∂νAμ.
Graphene is a sheet of carbon atoms with a flat hexagonal

crystal structure. This makes it effectively be described as a
two-dimensional material. Furthermore, their electronic
degrees of freedom can be described, at low energies, as
Dirac fermions, and they satisfy a linear dispersion relation.
That is, they behave like massless fermions that propagate
with the Fermi velocity vF ≈ 0.003 [14]. Its action is

Sg½ψ̄ ;ψ ; A� ¼
Z

d3xkψ̄ðxkÞ
�
iραβγ

βDα −m
�
ψðxkÞ; ð6Þ

where ραβ ¼ diagð1; vF; vFÞ and Dα ¼ ∂α þ ieAαðxk; 0Þ.
The solution to the free part takes the form

ψðxÞ ¼
X
s¼�

Z
d2p
2π

ffiffiffiffiffi
m
p0

r �
bðp; sÞuðp; sÞe−ip·x þ d†ðp; sÞ

× vðp; sÞeip·x
�
; ð7Þ

where uðp; sÞ and vðp; sÞ satisfy
X
s¼�

uðp; sÞūðp; sÞ ¼ ραβγ
βpα þm

2m
; ð8Þ

X
s0¼�

vðq; s0Þv̄ðq; s0Þ ¼ ραβγ
βqα −m

2m
: ð9Þ

m is the mass gap parameter, which is almost zero for
graphene. Taking the limit m → 0, the dispersion relation
for fermions in graphene turns out to bep0 ≡ EðpÞ ¼ vFjpj.
On the other hand, the interaction action for the full

system is

Sint½ψ̄ ;ψ ;A;q;rðtÞ� ¼ e
Z

d4x

�
ρσωψ̄ðxkÞγωψðxkÞAσðxÞδðx3Þ

þqðx0ÞðEðxÞþv×BðxÞÞ

×δð3Þðx− rðx0ÞÞ
�
: ð10Þ

The first term accounts for the coupling between the
graphene, that lives in the plane z≡ x3 ¼ 0, and the
electromagnetic field, present in all space but evaluated
in the plane of the graphene. The second term gives the
coupling of the dipolar momentum of the atom, localized at
rðtÞ, with the electromagnetic field, taking into account
relativistic corrections up to order jvj=c due to the move-
ment of the dipole [15].
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III. PROBABILITY AMPLITUDES FOR
QUANTUM FRICTION

The only role that the vacuum EM field plays in the
processes that we study is to mediate the excitations of the
microscopic degrees of freedom belonging to the two
material objects involved in the phenomenon. Thus, there
will not be photons in the initial and final states. Therefore,
we shall consider the normalized initial (jii) and final (jfi)
quantum states given by

jii ¼ j0ai ⊗ j0emi ⊗ j0gi; ð11Þ

jfi¼ â†i j0ai⊗ j0emi⊗
�
2π

L

�
2

b̂†ðp;sÞd̂†ðq;s0Þj0gi; ð12Þ

respectively. That is, the system is initially at rest, while in
the final one the atom is in an excited state, corresponding
to an electron excitation for one of the three harmonic
oscillator modes: the one in the direction given by the index
i. For graphene, we assume a fermion-antifermion pair; the
fermion having momentum p and spin s, while for the
antifermion those quantum numbers are q and s0.
For the states above, the first nontrivial contribution to

the amplitude for the transition between them appears to the
second order in the interaction action in (10), as it stems
from the usual perturbative expansion for the evolution
operator. Besides, for the states that we are using, the only
nonvanishing contractions, via Wick’s theorem, follow
from the “crossed” contributions. Namely, contributions
involving the coupling of the atom to the EM field and also
the interaction between the Dirac field and the EM field.
The resulting matrix element of the S-matrix to this order

then becomes

Miðp;q; s; s0Þ ¼
i
2!
hfjT

�
Ŝ2int
�
jii ¼ ie2hfj

Z
d4x

Z
d4y

× T
h
ρσωψ̄ðxkÞγωψðxkÞAσðxÞδðx3Þqðy0Þ

·
�
EðyÞ þ v ×BðyÞ

�
× δð3Þðy − rðy0ÞÞ

i
jii: ð13Þ

Wick’s theorem also requires the knowledge of the
contractions:

ajqkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2MΩ

p eiΩtδjk ð14Þ

bðp; sÞψ̄ðxkÞ ¼
1

2π

ffiffiffiffiffi
m
p0

r
eip·xk ūðp; sÞ ð15Þ

dðq; s0ÞψðxkÞ ¼
1

2π

ffiffiffiffiffi
m
q0

r
eiq·xkvðq; s0Þ: ð16Þ

We also need, as another ingredient to construct the
amplitude, the contraction between the gauge field Aσ

and Ci ≡ ðEþ v ×BÞi. This can be computed by using the
free propagator of the gauge field, which in the Feynman
gauge is

AμðxÞAνðyÞ¼Gμνðx−yÞ¼
Z

d4k
ð2πÞ4

−igμν
k2þ iϵ

e−ik·ðx−yÞ: ð17Þ

Putting together the previous elements, after a lengthy
but otherwise straightforward calculation we find that the
transition amplitude becomes

Miðp;q; s; s0Þ ¼ δ
�
χðp;qÞ

�
KσIσiðpþ qÞ; ð18Þ

where we have introduced

Kσ ¼
�
2π

L

�
2 ie2m
ð2πÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MΩp0q0
p ρσωūðp; sÞγωvðq; s0Þ; ð19Þ

Iσiðpþ qÞ ¼ πe−a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðpþqÞ2

p
8>><
>>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðpþqÞ2

p
�
Ωησi þ ðpþ qÞiðησ0 þ vσÞ

�
for i ¼ 1; 2

iðησ0 þ vσÞ for i ¼ 3

ð20Þ

and
χðp;qÞ≡ Ωþ vFðjpj þ jqjÞ − ðpþ qÞ · v: ð21Þ

Note that the last object, being the argument of a Dirac’s
δ function, provides important kinematic information
about the process. Firstly, the total momentum that
appears in graphene, as a consequence of the created

pair, has a positive component in the direction of the
atom’s velocity. Another observation is that, for this
process to happen, the velocity of the atom should be
greater than Fermi’s velocity in graphene, i.e., jvj > vF.
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Besides, ðpþ qÞ2 < 0, so that pþ q must be a spacelike
momentum. In other words, the Coulombian part of the
EM interaction is prevalent. At this point, it is worth
mentioning some relevant observations regarding
Lorentz invariance. It is well known that fermions in
graphene have a “relativistic” dispersion relation, with
vF playing the role of the speed of light, and with
spacetime reduced to 2þ 1 dimensions. They behave
like massless particles moving with a velocity vF on the
plane. Since vF is less than the speed of light in the
vacuum, they can have a total spacelike momenta with-
out involving nonphysical superluminical particles. That
reconciles the fact that the momentum pþ q is spacelike
with the creation of real particles. Furthermore, ðpþ
qÞ2 < 0 is consistent with the fact that the final state
contains no real photons.
The transition we have up to now corresponds to a final

state in which the spin of the fermions, their momenta, and
the orientation of the excitation of the atom have a specific
value. One is usually interested in the knowledge of the
probability as a function of momentum, regardless of the
spin of the fermions, and of the direction of the harmonic

excitation on the electron in the atom. This amounts to
adding the probability densities jMiðp;q; s; s0Þj2 for every
value of s and orientation i. The resulting probability per
unit time is then a function of the two momenta p and q:

Pðp;qÞ ¼ 1

T

X
s;s0

X3
i¼1

jMiðp;q; s; s0Þj2: ð22Þ

The sum over spins and oscillator directions allows one to
produce a more explicit expression for that probability per
unit time. Indeed, by using (8), (9) plus the 2þ 1 dimen-
sional Dirac matrices trace relation,

trfγσγμγλγνg ¼ 2ðησμηλν − ησλημν þ ησνηλμÞ; ð23Þ
the result for P may be put in the form

Pðp;q;Ω; aÞ ¼ e−2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðpþqÞ2

p

Ωv2Fjpjjqj
δ
�
χðp;q;ΩÞ

�
Fðp;q;ΩÞ;

ð24Þ

with

Fðp;q;ΩÞ ¼ 1

−ðpþ qÞ2
	
ðjpþ qj2 − ðpþ qÞ2Þððp0 − v2Fp · vÞðq0 − v2Fq · vÞ

þ −ð1 − v2Fv
2Þðp0q0 − v2Fp · qÞ=2Þ þ Ω2v2Fp0q0

þΩv2Fðpþ qÞ · ððq0 − v2Fq · vÞpþ ðp0 − v2Fp · vÞq − ðp0q0 − v2Fp · qÞvÞ

�����

on shell

: ð25Þ

We have used the “on shell” expression to mean that the
fermion satisfies the dispersion relations of real particles
in graphene: p0 ¼ vFjpj and q0 ¼ vFjqj. In order to
further clarify the dependence of the result on all of
the relevant parameters of the model, we have also made
explicit the dependence on the dimensional parameters a
and Ω.
In spite of its cumbersome appearance, it is not

difficult to verify (as a consistency check) analytically
that Fðp;q;ΩÞ ≥ 0 when the Röntgen term coupling
is ignored. One should use, in order to verify that
inequality, the relation Ω ¼ −vFðjpj þ jqjÞ. With the
Röntgen term included, we have verified numerically that
Fðp;q;ΩÞ ≥ 0.
In order to have a more explicit knowledge of the

angular dependence of the effect, we begin by introduc-
ing modules and angles for the relevant vectors. First, we
note that

Fðp;q;ΩÞ ¼ v2Fjpjjqjfðp;q;ΩÞ; ð26Þ

so that

Pðp;q;Ω; aÞ ¼ Ω−1δ
�
χðp;q;ΩÞ

�
e−2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðpþqÞ2

p
fðp;q;ΩÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gðp;q;Ω;aÞ

ð27Þ
and

χðp;q;ΩÞ¼ΩþjpjðvF−vcosθpÞþ jqjðvF−vcosθqÞ¼ 0:

ð28Þ
The δ-function may then be used to fix the value of jqj,
since

δðχðp;q;ΩÞÞ ¼
δ
�
jqj − q0ðp; θq;ΩÞ

�
jvF − v cos θqj

; ð29Þ

where we have introduced

q0ðp; θq;ΩÞ ¼
Ωþ jpjðvF − v cos θpÞ

v cos θq − vF
≡ sðp;ΩÞ

v cos θq − vF
:

ð30Þ
Just positive values of q0 are physical. Imposing

q0ðp; θq;ΩÞ > 0 determined the allowed region R for
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the angle between q and v. Defining cos α≡ vF=v, R is
given by

θq ∈

8>><
>>:

½0; αÞ ∪ ð2π − α; 2πÞ if sðp;ΩÞ > 0

ðα; 2π − αÞ if sðp;ΩÞ < 0:

ð31Þ

For the probability of detecting any given particle of
the pair, with momentum p, we compute (note that the
probability is symmetric under the exchange of particle by
antiparticle)

Pðp;Ω; aÞ ¼
Z

d2qPðp;q;Ω; aÞ ¼
Z
R
dθq

Z∞
0

djqjjqj

× Pðp; jqj; θq;Ω; aÞ: ð32Þ
Taking into account (31), the angular integral becomes

Z
R
dθq¼Θ½sðp;ΩÞ�

 Zα
0

dθqþ
Z2π
2π−α

dθq

!

þΘ½−sðp;ΩÞ�
Z2π−α
α

dθq: ð33Þ

By using (29), we obtain

Pðp;Ω; aÞ ¼ Ω−1sðp;ΩÞ
(
Θ½sðp;ΩÞ�

 Zα
0

dθq þ
Z2π
2π−α

dθq

!

− Θ½−sðp;ΩÞ�
Z2π−α
α

dθq

)

×
gðp; q0ðp; θq;ΩÞ; θq;Ω; aÞ

jv cos θq − vFj2
¼ Pðp=Ω; 1; aΩÞ: ð34Þ

The last equality above follows from the homogeneity
properties of the functions involved. This will allow us to
get expressions and plots, in terms of fewer parameters than
one might have expected a priori.
An exact relation that one can see from the previous

expression corresponds to finding the angle for which the
probability vanishes, which sets the angular width for the
production of pairs. It follows from the observation that

sðjpj;θ0p;ΩÞ¼ 0 ⇒ θ0p¼ arccos

�
1

v

�
vFþ

Ω
jpj
��
⟶
jpj≫Ω

α:

ð35Þ
This also implies jqj ¼ 0, and the probability (34) vanishes.
Another probability per unit time follows by just asking

for the probability density per unit angle of detecting any
particle, regardless of their momentum:

Pðθp;Ω;aÞ¼
Z

∞

0

djpjjpjPðp;Ω;aÞ¼Ω2Pðθp;1;aΩÞ:

ð36Þ
This distribution has been plotted in Fig. 1.
We see that, for velocities close to vF, the probability

becomes highly concentrated around the direction along
which the atom moves. On the other hand, it widens
up as the velocity increases. The area inside each curve
is proportional to the total probability of this process to
happen, and we see that it reaches its maximum around
v ¼ 4.5 × 10−3 ∼ 1.5vF.
Another interesting quantity is the power dissipated W,

which is related to the friction force by W ¼ vFfr. The
dissipated power is the energy per unit time transmitted
from the mechanical system that moves the atom to the
graphene through the electromagnetic field. The energy
that the graphene is receiving when a fermionic pair of
momenta p and q is created is E ¼ vFðjpj þ jqjÞ, so the
power transmitted to graphene is proportional to

WðΩ; aÞ ¼
Z

d2p
Z

d2qðjpj þ jqjÞPðp;q;Ω; aÞ ð37Þ

¼
Z

2π

0

dθp

Z
∞

0

djpjjpjsðp;ΩÞ
	
Θ½sðp;ΩÞ�

×

�Z
α

0

dθq þ
Z

2π

2π−α
dθq

�
− Θ½−sðp;ΩÞ�

×
Z

2π−α

α
dθq


�
jpj þ sðpÞ

v cos θq − vF

�

×
gðp; q0ðp; θq;ΩÞ; θq;Ω; aÞ

jv cos θq − vFj2
¼ Ω3Wð1; aΩÞ:

ð38Þ

We have not written it explicitly but this is a function of
the velocity of the atom [appearing also in α; sð· · ·Þ and

FIG. 1. Polar distribution of the probability for different
velocities of the atom.
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gð· · ·Þ], so we could see the dependence of the friction force
on the velocity.
All our calculations have been made for a two-component

Dirac field.Graphene, however, does correspond toN flavors
of four-component Dirac fields, with each one of those N
flavors in a reducible representation of the Lorentz group in
2þ 1 dimensions. The coupling between each flavor and the
EM field is the same; therefore, in this kind of process, all the
results for the probabilities should be multiplied by a factor
2N (we assume one is interested in the probability of creating
fermions of any flavor).

IV. CONCLUSIONS

We have presented a detailed calculation of the process
that drives Casimir friction when an atom moves close to
a graphene plate, presenting the angular dependence of
the probability of detecting fermions, as a function of the
parameters of the system. All our calculations have been
presented for a single two-component Dirac flavor. Results
corresponding to N four-component Dirac flavors can be
obtained by multiplying our results for the probability by a
global factor 4N.
This probability of detection is a local aspect, as opposed

to a global one, like for example the total probability of
detection.
Besides the known fact that there is a velocity threshold

for the effect to occur, we have found a relation which

restricts, for particles with a given momentum, the angular
region where they could be detected.
We have also obtained the angular probability distribu-

tion, namely, the probability density (per unit time) of
detecting a given particle regardless of its momentum.
A related but different observable is the power dissipa-

tion on the graphene plate, for which we could obtain
expressions depending on the velocity v and the other
parameters a, Ω, vF.
We think it is worth mentioning the following observa-

tion: since the fermion and antifermion have opposite
electric charges, and the probability of detecting a fermion
is identical to the one of detecting an antifermion (for
the same momenta), the processes described here do not
amount to the production of a net electric current. However,
we suggest that a possible way to allow for the production
of a net current on the sample would be to study friction in
the presence of a constant and uniform magnetic field,
normal to the graphene plane. Under this external con-
dition, the particle and antiparticle will experience opposite
forces when they are produced along a given direction, with
the same velocity.
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