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Recent years, multiphoton pair production has become one of the most promising approaches to
investigate the Schwinger effect. However, the production and evolution of chirality, a key topic in the
study of this effect, has not been thoroughly considered in the context of multiphoton pair production. In
this work, as the first step of filling this gap, we used the Dirac-Heisenberg-Wigner formalism to study the
production and evolution of chirality in vacuum under the excitation of the spatially homogeneous electric
and magnetic fields EðtÞ and BðtÞ that satisfy EðtÞkBðtÞ and are only nonzero in a short time span
0 < t < τ, which serve as a simplified model of the laser beams in multiphoton pair production
experiments. Based on analytical calculation, we discovered that, after the external fields vanish, an
oscillation of pseudoscalar condensate occurs in the system, which leads to the suppression of the chirality

of the produced fermion pairs; at the same time, it introduces a special fermion energy ϵp ¼ ffiffiffi
3

p
m at which

the chiral charge distribution of the fermions maximizes. This novel phenomenon could help us identify
different types of products in future multiphoton pair production experiments.

DOI: 10.1103/PhysRevD.108.116009

I. INTRODUCTION

In modern physics, quantum electrodynamics (QED)
stands as one of the most precise theories. Nonetheless,
numerous nonlinear aspects of the theory still remain
untested. Among these, one profound phenomenon is the
Schwinger effect. Discovered by J. Schwinger at 1951 and
also discussed by several earlier scholars [1–3], this effect
shows that, in the presence of an external electric field, the
vacuum in QED becomes unstable, leading to the produc-
tion of fermion-antifermion pairs [4]. The Schwinger effect
is captivating because of its nonperturbative nature, which
arises since the coupling constant times the external field
strength becomes so large that the vacuum at infinite past
and infinite future becomes significantly different. In this
way, the effect exhibits the nontrivial properties of quantum
vacua [5,6], providing valuable insights into the mystery of
the chiral magnetic effect [7–9] and the Floquet vacuum
engineering [9,10], among others. In addition to its theo-
retical importance, this effect also plays a key role in high-
energy heavy-ion collisions, particularly ultraperipheral
collisions [11–14]. Hence, pursuing the direct measure-
ments of Schwinger effect is of crucial importance.

Despite this, due to the high field strength threshold
(Ecr ¼ m2c3=ðeℏÞ ¼ 1.3 × 1016 V=cm), measuring the
Schwinger effect in a pure gauge field setup still remains
a challenge [15,16]. (By “pure,” we mean that contrary to
the ultraperipheral collisions, etc., there are only photons
without other particles in the system.) To tackle this
problem, special approaches need to be applied, and one
possibility is multiphoton pair production. The basic idea
is that although the field strength threshold is still a
few orders of magnitude out of the reach of the current
facilities [15,17], dynamic fields can drastically reduce the
required field strength [18–21]. Hence, the collision
between strong laser beams and the resulting pair produc-
tion process that involves more than two photons becomes
an effective way to study the Schwinger effect [22–24].
This idea was tested at the beginning of this century and
a few pairs are observed [25,26]. Recent years, with the
development of high intensity laser technology, multiphoton
pair production has received more and more attention
[15,16,18], and current study shows that apart from the
field strength, different degrees of the freedom of photons,
such as spin [16], pulse length [15], and spatial profiles [4],
could influence the vacuum in different interesting ways.
Thus, compared with the static field Schwinger effect, the
process with dynamic photons exhibits additional informa-
tion, which allows us to investigate the nonlinear regime of
QED from a wider variety of aspects.
In addition to multiphoton pair production, the produc-

tion and evolution of chirality is another widely discussed
topic in the context of Schwinger effect. Chirality, or chiral
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charge, is defined as zeroth component of the fermion axial
current jμ5 ¼ ψ̄γμγ5ψ (ψ is the Dirac field, γμ and γ5 are the
Dirac matrices with μ ¼ 0, 1, 2, 3), and can be intuitively
understood as the number density difference between the
right-handed and left-handed fermions. According to the
famous axial Ward identity ∂μj

μ
5 ¼ e2=ð2π2ÞE · Bþ

2mψ̄iγ5ψ (E and B are the electric and magnetic field
strength, e is the coupling constant, and m is the mass of
the fermions), if the electromagnetic field that induces
the Schwinger effect satisfies E · B ≠ 0, the fermion-
antifermion pairs emerging from vacuum would have
nonzero chirality. This, in turn, would induce the chiral
magnetic effect, which is a macroscopic quantum transport
phenomenon that allows the excitation of electric current
by magnetic field [27,28]. In recent years, the observation
of the chiral magnetic effect in high-energy systems has
been a hot topic [29–31]. Thus, chirality production via
Schwinger effect has attracted much attention of the com-
munity. The discussions about the resulting pseudoscalar
condensate and chiral chemical potential [32], the difference
between equilibrium and out-of-equilibrium observables
[6,8], the influence of magnetic helicity [33], the regulari-
zation schemes [9,33], and the worldline formalism treat-
ment beyond the constant background fields [34], to name
but a few, are actively underway. These investigations may
provide us with a chance to observe chiral magnetic effect in
vacuum, which would lead to a more clear signal than those
from heavy ion collisions [29].
Despite the importance of chirality production and

evolution, to the best of our knowledge, they have never
been thoroughly investigated in the multiphoton pair
production setup. So far, when discussing chirality pro-
duction, the most frequently assumed external fields are
static fields [6,8,32]. Even in the few cases when dynamic
fields are considered, published works often assumes fixed
B [33], or simply uses the perturbative approach [19].
However, chirality production in multiphoton pair produc-
tion is both possible and important. As an argument of
possibility, the E · B ≠ 0 field configurations can be easily
realized in laser based experiments, for example, by
colliding two laser beams with different polarization
together, which will be discussed in detail in Sec. II [19].
As an argument of importance, multiphoton pair production
is one of the most promising approaches to observe
Schwinger effect, so it would be interesting to consider
chirality production, which is an important topic of
Schwinger effect, in this setup. Moreover, in multiphoton
pair production, both the electric and magnetic fields are
short pulses, so the magnetic helicity HM ¼ R

d3xA · B (x
is the spatial coordinate, A is the vector potential) will
vanish in the infinite past and future, which is consid-
erably different from the usual case where the magnetic
fields are constant such that HM does not vanish in the
future [33]. To account for the difference, a new theo-
retical analysis is necessary.

Considering the above possibility and importance, in this
paper, as the first step towards understanding the chirality
production and evolution in multiphoton pair production,
we performed analytical computation to predict the exci-
tation of fermion pairs by electric and magnetic pulses
with EkB, as well as the evolution of the pairs after the
excitation. We derived the chiral charge distribution at
different time t and discussed the characteristics of this
distribution that could be observable in future experiments
and decipher interesting information about the process.
The paper is organized as follows: Sec. II introduces the

external field that induces multiphoton pair production;
Sec. III reviews the Dirac-Heisenberg-Wigner (DWH)
formalism, which is the tool to analyze the evolution of
the system; Sec. IV derives the formal solution of the DHW
equation of motion which we would like to use for latter
computation; Sec. V analyzes the evolution of this system
before the vanishing of the external fields; Sec. VI analyzes
the evolution afterwards; Sec. VII presents and discusses
the calculation results; finally, Sec. VIII summarizes the
findings and presents future perspectives.

II. THE EXTERNAL FIELDS

To start with, we follow the suggestion of [19] and
consider two counter-propagating laser beams, character-
ized by the following vector potentials in the Coulomb
gauge: A1¼Asinðkx−ktÞe1, A2 ¼ A sinð−kx − ktÞe2, with
e1 ¼ ð1; 0; 0ÞT , e2 ¼ ðcosϕ; sinϕ; 0ÞT as the polarization
vectors, ϕ as an arbitrary angle, k as the photon momentum,
and A as the field amplitude.
From this setup, we can show that at the kx ≪ 1; kt ≪ 1

space-time region, where the pair production occurs,
the magnetic field and electric field satisfies B ¼
cosϕ=ð1þ sinϕÞE. Hence, we obtain a EkB field with
the ratio jEj=jBj depends on ϕ, with which we can study
chirality production.
Also, we need to take into account the finite length of the

beams, so the E and B discussed above should be EðtÞ and
BðtÞwhich is only nonzero in the time span 0 < t < τ, with
τ as a small time value that characterizes the length of
the beam.
Finally, for latter convenience, we rotate the yOz plan

such that the electric field points at the z direction, then the
time-dependent electric and magnetic fields becomes

EðtÞ ¼ EðtÞez; ð1Þ

BðtÞ ¼ BðtÞez; ð2Þ

with ez is the z-oriented unit vector. This is the external
field we would use for latter computation. Furthermore, we
define E0 ¼ 1

τ

R
τ
0 EðtÞdt, B0 ¼ 1

τ

R
τ
0 BðtÞdt.
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III. REVIEW OF DIRAC-HEISENBERG-WIGNER
FORMALISM

The pair production under strong background fields
can be studied either by the DHW formalism [35] or the
worldline formalism [34,36–38]. As the DHW formalism is
particularly suitable for studying the real-time evolution
of the system induced by time-dependent fields, in this
paper we would like to use this approach [18]. Hence, the
basic aspect of the DHW formalism would be reviewed in
this section.
With the DHW formalism, the fermions produced in

the system is described by the gauge-covariant Wigner
function, defined as

Wαβðx; pÞ ¼ −
1

2

Z
d4 se−ip·se

−ie
R

1=2

−1=2
dλs·AðxþλsÞ

× hΩj
�
ψα

�
xþ s

2

�
; ψ̄β

�
x −

s
2

��
jΩi: ð3Þ

Here, ðx; pÞ are the four-dimensional coordinates and
momentum, AðxÞ is the four-dimensional potential of the
background electromagnetic gauge field, jΩi is the ground
state of the fermion, ψðxÞ is the Dirac field operator with α
and β as the Dirac indices. In this expression, all operators
are in the Heisenberg picture.
To study the problem in which we are interested, it is

more convenient to deal with a Wigner function that
depends on the three-dimensional spatial coordinates,
momentum, and time wðx; p; tÞ. This is called the equal-
time approach, and can be derived by integrating out the
zeroth component of p in Wðx; pÞ.
Since both wðx; p; tÞ and Wðx; pÞ are Dirac bispinors, it

is straightforward to decompose it as

wðx; p; tÞ ¼ 1

4
½sðx; p; tÞ þ iγ5spðx; p; tÞ þ γμvμðx; p; tÞ

þ γμγ5aμðx; p; tÞ þ σμνtμνðx; p; tÞ�; ð4Þ

with γμ as the Dirac Matrices, γ5 ¼ iγ0γ1γ2γ3, σμν ¼
ði=2Þ½γμ; γν�, and μ, ν ¼ 0, 1, 2, 3.
Based on this decomposition, in the remaining part of

the paper, we will discuss wðx; p; tÞ in the following
representation:

w ¼ ðs; sp; v0; a0; v; a; t1; t2ÞT; ð5Þ

where v0 and v are the temporal and spatial components of
vμ; a0 and a is the temporal and spatial components of aμ;
since tμν is antisymmetric, t1 and t2 is defined such that
ðt1Þi ¼ 2t0i, ðt2Þi ¼ ϵijktjk, i, j, k ¼ 1, 2, 3, and ϵijk as the
Levi-Civita symbol. In the below part, we would frequently
refer s; sp; v0; a0; v; a; t1; t2 as the components of w.

After some algebra with the Dirac equation (see [39]
for detail), we can obtain the equation of motion under this
representation:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Dts − 2P · t1 ¼ 0

Dtsp þ 2P · t2 ¼ −2ma0
Dtv0 þDx · v ¼ 0

Dta0 þDx · a ¼ 2msp
DtvþDxv0 þ 2P × a ¼ −2mt1
DtaþDxa0 þ 2P × v ¼ 0

Dtt1 þDx × t2 þ 2Ps ¼ 2mv

Dtt2 −Dx × t1 − 2Psp ¼ 0

; ð6Þ

where the operators Dt, Dx, P are defined as

Dtfðx;p;tÞ¼ ∂tfðx;p;tÞ

þe
Z

1=2

−1=2
dλEðxþ iλ∇p;tÞ ·∇pfðx;p;tÞ; ð7Þ

Dxfðx;p;tÞ¼∇xfðx;p;tÞ

þe
Z

1=2

−1=2
dλBðxþ iλ∇p;tÞ×∇pfðx;p;tÞ; ð8Þ

Pfðx;p;tÞ¼pfðx;p;tÞ

− ie
Z

1=2

−1=2
dλλBðxþ iλ∇p;tÞ×∇pfðx;p;tÞ: ð9Þ

Here, m is the mass of the produced fermion, f∈ fs; sp;
v0; a0; v; a; t1; t2g, E, B are the electric and magnetic fields
of AðxÞ, ∇x ¼ ∂=∂x, ∇p ¼ ∂=∂p.
To solve the equation of motion, boundary condition is

required. If we assume that there is no field in the system
before t ¼ 0, then at t ¼ 0 we can apply the vacuum
boundary condition [40]:

sðx; p; 0Þ ¼ −
2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p ; ð10Þ

vðx; p; 0Þ ¼ −
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p ; ð11Þ

while other components of wðx; p; 0Þ vanishes.
Finally, once wðx; p; tÞ is solved, we can extract the

expectation values of the fermion-related observable.
Suppose we have an observable O defined as

Oðx; tÞ ¼ 1

2
Oab½ψ̄aðx; tÞ;ψbðx; tÞ�; ð12Þ
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with Oab as some Dirac matrices, then, using the definition
of the Wigner function, Eq. (3), we have

hOðx; tÞi ¼
Z

d3p
ð2πÞ3 tr½O

abwbcðx; p; tÞ −Oabwbcðx; p; 0Þ�:

ð13Þ

Here, the trace is taken over the Dirac indices, and the
wðx; p; 0Þ term is introduced to subtract the vacuum
contribution.
With this result, if we choose Oab ¼ ðγμÞab, we would

find the expectation value of number current density of the
produced pairs:

hJμðtÞi ¼
Z

d3p
ð2πÞ3

Z
d3x½vμðx; p; tÞ − vμðx; p; 0Þ�; ð14Þ

if we choose Oab ¼ ðγμγ5Þab, then we would find the
expectation value of the axial current density:

hJμ5ðtÞi ¼ −
Z

d3p
ð2πÞ3

Z
d3xaμðx; p; tÞ; ð15Þ

if we choose Oab ¼ ðiγ5Þab, we would find the expectation
value of the pseudoscalar condensate [8]:

hψ̄iγ5ψiðtÞ ¼
Z

d3xhψ̄ðx; tÞiγ5ψðx; tÞi;

¼ −
Z

d3p
ð2πÞ3

Z
d3xspðx; p; tÞ: ð16Þ

Finally, through a more complicated discussion (see [41]
for detail), we have the number of the fermions:

hNðtÞi ¼
Z

d3p
ð2πÞ3

Z
d3x

1

ϵp
½msðx; p; tÞ þ p · vðx; p; tÞ

−msðx; p; 0Þ − p · vðx; p; 0Þ�; ð17Þ
with ϵp ¼ ðp2 þm2Þ1=2.

IV. GENERAL SOLUTION OF THE EQUATION
OF MOTION

In the equation of motion, Eq. (6), the operators Dt, Dx,
and P [Eqs. (7)–(9)] has ∇p operator in the spatial
coordinates of E and B, which makes solving the equations
rather complex. To simplify these operators, we perform
the following Fourier transformation f̃ðq; p; tÞ ¼R
d3ye−ip·y½R d3xe−iq·x

R
d3p=ð2πÞ3eip·yfðx; p; tÞ� on each

side of the equation of motion. The result is a matrix
equation for the Fourier transformed Wigner function
w̃ðq; p; tÞ:

∂tw̃ðq; p; tÞ þ Aðq; pÞw̃ðq; p; tÞ ¼ SðtÞw̃ðq; p; tÞ; ð18Þ
with Aðq; pÞ defined as

Aðq;pÞ≡

0
BBBBBBBBBBBBBBB@

0 0 0 0 0 0 −2p· 0

0 0 0 2m 0 0 0 2p·

0 0 0 0 iq· 0 0 0

0 −2m 0 0 0 iq· 0 0

0 0 iq 0 0 2p× 2m 0

0 0 0 iq 2p× 0 0 0

2p 0 0 0 −2m 0 0 iq×

0 −2p 0 0 0 0 −iq× 0

1
CCCCCCCCCCCCCCCA

;

ð19Þ

and SðtÞ defined as

Aðq; pÞ≡

0
BBBBBBBBBBBBBBB@

−St 0 0 0 0 0 2Sp· 0

0 −St 0 0 0 0 0 −2Sp·
0 0 −St 0 −Sx· 0 0 0

0 0 0 −St 0 −Sx· 0 0

0 0 −Sx 0 −St −2Sp× 0 0

0 0 0 −Sx −2Ŝp× −St 0 0

−2Sp 0 0 0 0 0 −St −Sx×
0 2Sp 0 0 0 0 Sx× −St

1
CCCCCCCCCCCCCCCA

; ð20Þ

Stf̃ðq; p; tÞ ¼ e
Z

d3s
ð2πÞ3

Z
1=2

−1=2
dλẼðs; tÞ · ∇pf̃ðq − s; p − λs; tÞ; ð21Þ

Sxf̃ðq; p; tÞ ¼ e
Z

d3s
ð2πÞ3

Z
1=2

−1=2
dλB̃ðs; tÞ ×∇pf̃ðq − s; p − λs; tÞ; ð22Þ
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Spf̃ðq; p; tÞ ¼ −ie
Z

d3s
ð2πÞ3

Z
1=2

−1=2
dλλ

× B̃ðs; tÞ ×∇pf̃ðq − s; p − λs; tÞ; ð23Þ

where f̃ðq;p;tÞ is some components of w̃ðq;p;tÞ; meanwhile,
Ẽðs; tÞ ¼ R

d3xEðx; tÞe−is·x, B̃ðs; tÞ ¼ R
d3xBðx; tÞe−is·x.

The initial condition of this Fourier transformed equation
of motion becomes

s̃ðq;p;0Þ¼ −2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p ð2πÞ3δðqÞ≡sðp;0Þð2πÞ3δðqÞ; ð24Þ

ṽðq;p;0Þ¼ −2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

p ð2πÞ3δðqÞ≡vðp;0Þð2πÞ3δðqÞ: ð25Þ

Up to this step, Eq. (18) is completely general for any
field configuration. Now, we apply the homogeneous field
setup Eqs. (1) and (2) such that wðx; p; tÞ becomes x
independent. In this situation, we can define the spatially
averaged Wigner function wðp; tÞ ¼ ð1=VÞ R d3xwðx; p; tÞ
(where V is the volume of the system) and proof the
equation of motion of wðp; tÞ is

∂twðp; tÞ þ AðpÞwðp; tÞ ¼ SðtÞwðp; tÞ; ð26Þ

AðpÞwðp; tÞ ¼

0
BBBBBBBBBBBBB@

−2p · t1ðp; tÞ
2ma0ðp; tÞ þ 2p · t2ðp; tÞ

0

−2mspðp; tÞ
2p × aðp; tÞ þ 2mt1ðp; tÞ

2p × vðp; tÞ
2psðp; tÞ − 2mvðp; tÞ

−2pspðp; tÞ

1
CCCCCCCCCCCCCA

; ð27Þ

SðtÞwðp;tÞ¼−eEðtÞ∂pz
wðp;tÞ

−eBðtÞ

0
BBBBBBBBBBBBBBBB@

0

0

ðey∂px
−ex∂py

Þ ·vðp;tÞ
ðey∂px

−ex∂py
Þ ·aðp;tÞ

ðey∂px
−ex∂py

Þv0ðp;tÞ
ðey∂px

−ex∂py
Þa0ðp;tÞ

ðey∂px
−ex∂py

Þ× t2ðp;tÞ
−ðey∂px

−ex∂py
Þ× t1ðp;tÞ

1
CCCCCCCCCCCCCCCCA

: ð28Þ

Here, ex, ey are the unit vector in x and y direction.
From the above equation, it is straightforward to see that

½Sðt1Þ; Sðt2Þ� ¼ 0, so with T ½·� as the time-order product,

we can write down T ½Sðt1ÞSðt2Þ� ¼ Sðt1ÞSðt2Þ. Then, the
formal solution of the equation of motion becomes

wðp; tÞ ¼ e−½tAðpÞþ
R

t

0
dt̄Sðt̄Þ�wðp; 0Þ; ð29Þ

with wðp;0Þ¼ðsðp;0Þ;0;0;0;vðp;0Þ;0;0;0ÞT as those given
in Eqs. (24) and (25).
Furthermore, based on the definition of wðp; tÞ and

Eqs. (14)–(17), it is straightforward to define the charge
current distribution, the axial current distribution, the
pseudoscalar condensate distribution, and the particle
number distribution on the momentum space, respectively,
which are

jμðp; tÞ ¼ vμðp; tÞ − vμðp; 0Þ; ð30Þ
jμ5ðp; tÞ ¼ −aμðp; tÞ; ð31Þ

hψ̄ iγ5ψiðp; tÞ ¼ −spðp; tÞ; ð32Þ

nðp;tÞ¼mðsðp;tÞ−sðp;0ÞÞþp ·ðvðp;tÞ−vðp;0ÞÞ
ϵp

: ð33Þ

With these definitions, the expectation values of the
corresponding observable can be obtained from the follow-
ing integral:

hXðtÞi ¼ V
Z

d3p
ð2πÞ3 xðp; tÞ; ð34Þ

with x ¼ j; j5; hψ̄iγ5ψi; n, X ¼ J; J5; hψ̄iγ5ψi; N,
respectively.

V. THE EXCITATION STAGE

In this section, we discuss the time span 0 < t < τ, when
the external fields have not vanished, and refer to it as the
excitation stage. In the excitation stage, since τ is small, we
can expand the function expð� � �Þ in Eq. (29) with respect to
different orders of t. The result shows that, at t ¼ τ, there is

sðp; τÞ − sðp; 0Þ ¼ 2m
ϵ3p

eE0τpz

þ m
ϵ5p

e2E2
0τ

2ðϵ2p − 3p2
zÞ þOðτ3Þ; ð35Þ

vðp; τÞ− vðp; 0Þ ¼ 2

ϵ3p
eE0τ

0
B@

pxpz

pypz

p2
z − ϵ2p

1
CA

þ 1

ϵ5p
e2E2

0τ
2

0
B@

pxðϵ2p − 3p2
zÞ

pyðϵ2p − 3p2
zÞ

3pzðϵ2p − p2
zÞ

1
CAþOðτ3Þ:

ð36Þ
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Then, according to Eq. (33), the particle number distribu-
tion becomes

nðp; τÞ ¼ e2E2
0τ

2
1

ϵ2p

�
1 −

p2
z

ϵ2p

�
þOðτ3Þ: ð37Þ

Similarly, we can derive the axial charge distribution
ρ5ðp; tÞ ¼ j05ðp; tÞ that is defined by Eq. (31), which is

ρ5ðp; τÞ ¼
2

3

1

ϵ3p
e2E0B0τ

3ðϵ2p þ p2
z þm2Þ þOðτ4Þ: ð38Þ

Therefore the electromagnetic pulses satisfying EkB
indeed produces chirality as expected.
On the other hand, the pseudoscalar condensate distri-

bution hψ̄iγ5ψiðp; tÞ defined by Eq. (32) is

hψ̄iγ5ψiðp; τÞ ¼ −
2m
3ϵp

e2E0B0τ
4 þOðτ5Þ: ð39Þ

Hence, hψ̄iγ5ψiðp; τÞ ∼Oðτ4Þ, while ρ5ðp; τÞ ∼Oðτ3Þ. For
short electromagnetic pulses, the excited chiral charge is
significantly larger than the pseudoscalar condensate. As
we would see in Sec. VII, this property leads to very
interesting outcomes.
For other components of wðp; τÞ, the results up to the

fourth order of τ are listed in Appendix A.

VI. THE EVOLUTION STAGE

In this section, we discuss the time span t > τ, when the
external fields vanish and the system evolves freely, and
refer to it as the evolution stage. At the evolution stage, the
equation of motion, Eq. (26), decouples into three groups of
independent equations, which are as follows:
(1) The charge conservation equation:

∂tv0 ¼ 0: ð40Þ

From Eq. (30), we can immediately show that this
equation guarantees that the electric charge distri-
bution of the fermions ρðp; tÞ does not change during
the evolution stage. Combining this fact with

vðnÞ0 ðp; τÞ ¼ 0, n ¼ 1, 2, 3, 4 (see Appendix A),
we would know that no net electric charge is
produced in multiphoton pair production, which is
expected since the fermions are produced as particle-
antiparticle pairs that have opposite charge.

(2) The particle number evolution equations:

8>>><
>>>:

∂ts − 2p · t1 ¼ 0

∂tvþ 2p × aþ 2mt1 ¼ 0

∂taþ 2p × v ¼ 0

∂tt1 þ 2ps − 2mv ¼ 0

: ð41Þ

These equations give the particle number distribu-
tion nðp; tÞ.

(3) The chirality evolution equations:

8<
:

∂tsp þ 2ma0 þ 2p · t2 ¼ 0

∂ta0 − 2msp ¼ 0

∂tt2 − 2psp ¼ 0

: ð42Þ

These equations give the chiral charge distribution
ρ5ðp; tÞ and the pseudoscalar condensate distribu-
tion hψ̄iγ5ψiðp; tÞ.

First, let us solve Eq. (41) using sðp; τÞ, vðp; τÞ, aðp; τÞ,
t1ðp; τÞ as initial conditions. After some simplification
based on Laplace transformation, we found out that

nðp; tÞ ¼ nðp; τÞ ¼ e2E2
0τ

2
1

ϵ2p

�
1 −

p2
z

ϵ2p

�
þOðτ3Þ; ð43Þ

so the particle number does not change after the external
fields are switched off. Considering that the vacuum
becomes stable again and no new pairs can be produced
afterwards, and that we ignore the interaction among the
produced pairs, this conclusion is completely natural.
Therefore, later we will denote nðpÞ≡ nðp; tÞ.
Next, we switch to the chirality evolution equations,

Eq. (42), that will lead much more nontrivial results.
We use the initial condition a0ðp; τÞ, spðp; τÞ, t2ðp; τÞ,
and solve the equations by the Laplace transformation. The
resulting spðp; tÞ, a0ðp; tÞ is

spðp; tÞ ¼ spðp; τÞ cosð2ϵptÞ

−
1

ϵp
ðma0ðp; τÞ þ p · t2ðp; τÞÞ sinð2ϵptÞ; ð44Þ

a0ðp; tÞ ¼ a0ðp; τÞ þ
m
ϵp

spðp; τÞ sinð2ϵptÞ

þ m
ϵ2p

ðma0ðp; τÞ þ p · t2ðp; τÞÞðcosð2ϵptÞ − 1Þ:

ð45Þ

Therefore, in the evolution stage, spðp; tÞ, a0ðp; tÞ experi-
ence oscillation of frequency 2ϵp and do not reach the
maximum value at the same time. This oscillating behavior
occurs because in Eq. (42), a0, sp, and t2 are coupled with
each other by their first-order time derivatives.
In the first glimpse, this oscillation may seem strange,

as the intuitive expectation is that after the external fields
vanish, the chiral charge will undergo a monotonic decay
with respect to time if the particles are massive. However,
the existence of this oscillating behavior can be predicted
even without the DHW formalism, since ∂ta0 − 2msp ¼ 0

is the obvious consequence of the axial Ward identity
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∂μj
μ
5 ¼ e2=ð2π2ÞE · Bþ 2mψ̄ iγ5ψ , and ∂tspþ2ma0þ

2p · t2¼0 can be derived directly from the free-particle
Dirac equation as what we have done in Appendix B.
Now, let us compute the time average of spðp; tÞ and

a0ðp; tÞ, denoted as spðpÞ and a0ðpÞ, respectively. We find
spðpÞ ¼ 0 and

a0ðpÞ ¼ a0ðp; τÞ −
m
ϵ2p

ðma0ðp; τÞ þ p · t2ðp; τÞÞ: ð46Þ

This result shows that when m → 0, a0ðpÞ → a0ðp; τÞ;
when m → ∞, a0 → 0. Thus, during the evolution stage,
the chiral charge is suppressed by the mass fermion, as
expected.
Finally, we substitute the explicit expression of a0ðp; τÞ

and t2ðp; τÞ in Appendix A in Eq. (46), and find out that the
time-averaged value of ρ5ðp; tÞ to be

ρ5ðpÞ ¼
2

3

1

ϵ3p
e2E0B0τ

3ðϵ2p þ p2
z −m2Þ þOðτ4Þ: ð47Þ

As we will see in the next section, this result will lead to an
interesting spectrum structure of ρ5ðpÞ.

VII. RESULTS AND DISCUSSION

First, we discuss the particle number distribution. Taking
into account the rotational invariance of the system in z
direction, we make the contour plot of nðpÞ with respect
to the transverse momentum pT ¼ ðp2

x þ p2
yÞ1=2 and the

longitudinal momentum pz, as shown in Fig. 1(a).
Similarly, nðpÞ with respect to θ ¼ arctan ðpT=pzÞ and
particle energy ϵp are plotted in Fig. 1(b).
From these figures we can see, the amount of pairs drops

with the increase of the particle energy ϵp. This is quite
natural because the external fields that excite the pairs are
pulses, which do not favor any particular energy, so the

distribution with respect to ϵp exhibits a shape similar to the
initial distribution in Eqs. (24) and (25). Also, the pairs are
emitted anisotropically, with more pairs emitted along the
transverse (xOy) direction.
Then, we discuss the distribution of the axial charge

ρ5ðpÞ given by Eq. (47), see Fig. 2(a) for the contour plot of
ρ5ðpÞ with respect to pT and pz, and Fig. 2(b) for ρ5ðpÞ
with respect to θ and ϵp.
These figures show two interesting characteristics: First

of all, the distribution of the chiral charge does not drop
monotonically with the increase of ϵp; on the contrary,
there is a nonzero energy value at which the production of
chirality is maximized. Furthermore, this energy value does
not depends on either the direction of emission θ, or the
profile of the external electromagnetic fields. Instead, we
can derive from Eq. (47) that up to the third order of τ, the
energy value is always ϵp ¼ ffiffiffi

3
p

m. This relation establishes
that the nonmonotonic behavior is an intrinsic property of
fermions themselves. In the later part of this section, we
will discuss this behavior in detail.
Apart from nonmonotonic behavior discussed above,

Fig. 2 also tells us that the chirality production is maxi-
mized in the z direction. On the other hand, Fig. 1 shows
that at z direction, the number of produced pairs is
minimized, so the chiral charge per particle would be quite
high. In the future experiments, we may be able to find
highly chiral particles in this direction.
In the remaining part of this section, let us focus on

discussing the mechanism of the nonmonotonic behavior
in Fig. 2. For this purpose, we plot the chiral charge
distribution at the end of the excitation stage, ρ5ðp; τÞ, given
by Eq. (38), as well as the time-averaged chiral charge
distribution in the evolution stage ρ5ðpÞ, given by Eq. (47),
in the same figure, Fig. 3.
This figure shows that the nonmonotonic behavior

does not occur just after the vanishing of the external

(a) (b)

FIG. 1. Particle number distribution nðpÞ. (a) The contour plots of nðpÞ with respect to pT ¼ ðp2
x þ p2

yÞ1=2 and pz, with the magnitude
normalized by ðeE0τ=mÞ2. (b) nðpÞ with respect to ϵp ¼ ðp2 þm2Þ1=2 in different θ ¼ arctan ðpT=pzÞ. The Oðτ3Þ part of the results in
(a), (b) is neglected.
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electromagnetic field, but emerges during the latter evolu-
tion of the system. This remind us of an observable that
exhibits similar behavior—the pseudoscalar condensate
pðp; tÞ. As discussed in Sec. V, at the end of the excitation
stage, the pseudoscalar condensate is much smaller than the
chiral charge. On the other hand, as calculated in Eq. (44),
in the evolution stage, an oscillating pseudoscalar con-
densate whose magnitude is comparable to that of the chiral
charge density would occur.
The interesting thing is, as shown by the equation

∂ta0 − 2msp ¼ 0 in Eq. (42), the increase of pseudoscalar
condensate is actually made possible by transforming
part of the chiral charge into the pseudoscalar condensate.
As a result of this transformation, in Fig. 3, at all values of

ϵp and θ, the average magnitude of the chiral charge ρ5ðpÞ
is suppressed comparing with that at the end of the
excitation stage, ρ5ðp; τÞ.
In fact, it is this suppression of chiral charge that leads to

the nonmonotonic behavior in Fig. 2. The reason is this:
according to ∂ta0 − 2msp ¼ 0 and the fact that a0 is
oscillating with frequency 2ϵp, the coupling between a0
and sp is proportional tom=ϵp, so, for low energy particles,
a large portion of the chirality will be transformed into
peseudoscalar condensate, while for high energy particles,
the ratio is much less; on the other hand, since the external
fields are pulse shaped, more fermion pairs and hence more
chiral charge will be produced at low energy during the
excitation stage, as shown in Fig. 3. These two mechanisms
would compete with each other. As a result, an optimized
energy value for chirality production must be achieved in
the intermediate energy regime.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the production and
evolution of the chiral charge in vacuum excited by
spatially homogeneous external electromagnetic pulses that
satisfies EkB, which is a simplified model for the laser
pulses in multiphoton pair production experiments. Based
on the DHW formalism, we analytically solves the model to
obtain the Wigner function of the fermion pairs excited by
the fields, and discovered the following:
(1) The largest portion of the chiral charge is owned by

the fermions propagating in the direction parallel
to the electric and magnetic fields, whereas the
number of produced fermions minimizes in the
same direction.

(2) After the external fields vanish, if the fermions
are massive, then part of the chiral charge will be
transformed into a rapidly oscillating pseudoscalar
condensate.

(a) (b)

FIG. 2. Chiral charge distribution ρ5ðpÞ. (a) The contour plots of ρ5ðpÞ with respect to pT ¼ ðp2
x þ p2

yÞ1=2 and pz, with the magnitude
normalized by e2E0B0τ

3=m. (b) ρ5ðpÞwith respect to ϵp ¼ ðp2 þm2Þ1=2 at different θ ¼ arctan ðpT=pzÞ. TheOðτ4Þ part of the results in
(a), (b) are neglected.

FIG. 3. The chiral charge distribution at the end of the
excitation stage, ρ5ðp; τÞ, and the time-averaged chiral charge
distribution in the evolution stage, ρ5ðpÞ, at different θ ¼
arctan ½ðp2

x þ p2
yÞ1=2=pz� and ϵp ¼ ðp2 þm2Þ1=2. The Oðτ4Þ part

of the results are neglected.
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(3) As a result of the oscillation, the average chiral
charge will be suppressed comparing with the
amount the fermions have obtained from the external
fields before the fields vanish.

(4) Most interestingly, this suppression would lead to a
nonmonotonic behavior on the ϵp − ρ5 spectrum. An
optimized energy value ϵp ¼ ffiffiffi

3
p

m, which is irrel-
evant to both the field profile and the direction of
particle emission, would allow particles with this
energy to own the largest amount of chirality.

To our knowledge, findings 2–4 have never been discussed
in literature.
For findings 2–4, our intuitive physics picture is this:

the chiral charge and pseudoscalar condensate are mutu-
ally coupled to the first-order time derivative of each
other, just like the kinetic and potential energy of a
harmonic oscillator, hence the oscillation occurs. At the
same time, the oscillation starts at a initial state where
chiral charge is much larger than pseudoscalar conden-
sate, so after taking the time-average, the chiral charge is
suppressed. Furthermore, the particles with large m=ϵp
are more likely to lose chirality; however, pulsed E and B
also excites more low-energy particles than the high-
energy ones. These two tendencies compete with each
other, thus nonmonotonic behavior occurs in the inter-
mediate energy regime.
These findings could lead to interesting applications in

the future multiphoton pair production experiments that
involve the production of chirality. For example, in the
experiments, different types of particles might be produced
in the same event; but since we know for each type of
product, a peak ϵp ¼ ffiffiffi

3
p

m would occur on the chirality
spectrum, we can use the peaks to identify different types of
products with different masses, even before separating the
products with experimental measures. This would allow us
to extract more information about the multiphoton pair
production process.
Because of its usefulness, in the future, we plan to extend

our model to include spatially inhomogeneous Eðx; tÞ and
Bðx; tÞ. At this situation, one possible new phenomenon is
that the oscillation of pseudoscalar condensate and chiral
charge would become a wave. If this is true, then the wave
may produce interesting outcomes in the future photon pair
production experiment, which is worth further investiga-
tion. Also, the relation between this wave and the chiral
magnetic wave, which is under wide discussion in the
context of high energy heavy ion collision and neutron star
physics [42–44], is another direction that could lead to
fruitful outcomes.
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APPENDIX A: wðp;τÞ UP TO THE FOURTH
ORDER OF τ

After conducting expansion over τ, Eq. (29) at t ¼ τ can
be written as

wðp; τÞ ¼
X∞
n¼0

wðnÞðp; τÞ; ðA1Þ

with wðnÞðp; τÞ ∝ τn.
The zeroth order result wð0Þðp; τÞ is the initial condition,

whose nonzero components are sðp; 0Þ and vðp; 0Þ, given in
Eqs. (24) and (25).
The first order result is

sð1Þðp; τÞ ¼ 2m
ϵ3p

eE0τpz; ðA2Þ

vð1Þðp; τÞ ¼ 2

ϵ3p
eE0τ

0
B@

pxpz

pypz

p2
z − ϵ2p

1
CA: ðA3Þ

Other components are zeros.
The second order result is

sð2Þðp; τÞ ¼ m
ϵ5p

e2E2
0τ

2ðϵ2p − 3p2
zÞ; ðA4Þ

vð2Þðp; τÞ ¼ 1

ϵ5p
e2E2

0τ
2

0
B@

pxðϵ2p − 3p2
zÞ

pyðϵ2p − 3p2
zÞ

3pzðϵ2p − p2
zÞ

1
CA; ðA5Þ

að2Þðp; τÞ ¼ 2

ϵp
eE0τ

2

0
B@

py

−px

0

1
CA; ðA6Þ

tð2Þ1 ðp; τÞ ¼ −
2m
ϵp

eE0τ
2

0
B@

0

0

1

1
CA: ðA7Þ

Other components are zeros.
The third order result is

sð3Þðp; τÞ ¼ −
m
ϵ3p

eE0τ
3pz

�
1

ϵ4p
e2E2

0ð3ϵ2p − 5p2
zÞ þ

4

3
ϵ2p

�
;

ðA8Þ

að3Þ0 ðp; τÞ ¼ −
2

3

1

ϵ3p
e2E0B0τ

3ðϵ2p þ p2
z þm2Þ; ðA9Þ
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vð3Þðp; τÞ ¼ −
1

ϵ3p
eE0τ

3

0
BBB@

pxpz

h
1
ϵ4p
ð3ϵ2p − 5p̄2

zÞe2E2
0 þ 4

3
ϵ2p
i

pypz

h
1
ϵ4p
ð3ϵ2p − 5p̄2

zÞe2E2
0 þ 4

3
ϵ2p
i

1
ϵ4p
e2E2

0ð6ϵ2pp2
z − 5p4

z − ϵ4pÞ þ 4
3
ϵ2pðp2

z − ϵ2pÞ

1
CCCA; ðA10Þ

að3Þðp; τÞ ¼ 2

ϵ3p
e2E2

0τ
3pz

0
B@

−py

px

0

1
CA; ðA11Þ

tð3Þ1 ðp; τÞ ¼ 2m
ϵ3p

e2E2
0τ

3pz

0
B@

0

0

1

1
CA; ðA12Þ

tð3Þ2 ðp; τÞ ¼ −
2

3

m
ϵ3p

e2E0B0τ
3

0
B@

px

py

0

1
CA: ðA13Þ

Other components are zeros.
The fourth order result is

sð4Þðp; τÞ ¼ −
m

12ϵ9p
e2E2

0τ
4½3e2E2

0ð35p4
z − 30p2

zϵ
2
p þ 3ϵ4pÞ þ 4ϵ6pðϵ2p − 4p2

zÞ�; ðA14Þ

sð4Þp ðp; τÞ ¼ 2m
3ϵp

e2E0B0τ
4; ðA15Þ

að4Þ0 ðp; τÞ ¼ 2

3ϵ5p
e3E2

0B0τ
4pzð3m2 þ 3p2

z − ϵ2pÞ; ðA16Þ

vð4Þðp; τÞ ¼ 1

12ϵ9p
e2E2

0τ
4

0
B@

px½−3e2E2
0ð35p4

z − 30p2
zϵ

2
p þ 3ϵ4pÞ þ 4ϵ6pð4p2

z − ϵ2pÞ�
py½−3e2E2

0ð35p4
z − 30p2

zϵ
2
p þ 3ϵ4pÞ þ 4ϵ6pð4p2

z − ϵ2pÞ�
−pz½15e2E2

0ð7p4
z − 10p2

zϵ
2
p þ 3ϵ4pÞ þ 16ϵpðϵ2p − p2

zÞ�

1
CA; ðA17Þ

að4Þðp; τÞ ¼ eE0τ
4

�
−

1

ϵ5p
e2E2

0ð3p2
z − ϵ2pÞ þ

1

6ϵ5p
e2B2

0ð3m2 þ 3p2
z þ ϵ2pÞ þ

2

3
ϵp

�0B@
−py

px

0

1
CA; ðA18Þ

tð4Þ1 ðp; τÞ ¼ eE0τ
4m

�
−

1

ϵ5p
e2E2

0ð3p2
z − ϵ2pÞ þ

1

6ϵ5p
e2B2

0ðτÞð3m2 þ 3p2
z − ϵ2pÞ þ

2

3
ϵp

�0B@
0

0

1

1
CA; ðA19Þ

tð4Þ2 ðp; τÞ ¼ 2m
ϵ5p

e3E2
0B0τ

4pz

0
B@

px

py

0

1
CA: ðA20Þ

Other components are zeros.
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APPENDIX B: DERIVATION OF THE FIRST
EQUATION OF EQ. (42) FROM DIRAC

EQUATION

Apart from the derivation based on Dirac-Heisenberg-
Wigner formalism given in the main text, in this section, we
also provide a derivation of the equation ∂tsp þ 2ma0 þ
2p · t2 ¼ 0 based on the Dirac equation.
As the external fields vanish at t > τ, we would use the

Dirac equation for free particles:

∂tψðxÞ ¼ −γ0ðγi∂iψðxÞ þ imψðxÞÞ; ðB1Þ

∂tψ̄ðxÞ ¼ −ð∂iψ̄ðxÞγi − imψ̄ðxÞÞγ0: ðB2Þ

What we want to compute is the time derivative of the
pseudoscalar condensate:

∂thψ̄iγ5ψiðtÞ ¼
Z

d3x∂tψ̄ðxÞiγ5ψðxÞ

þ
Z

d3xψ̄ðxÞiγ5∂tψðxÞ: ðB3Þ

After substituting Eqs. (B1) and (B2) into Eq. (B3), and
use the integration by parts, we arrive at

∂thψ̄iγ5ψiðtÞ ¼ i
Z

d3x∂iψ̄ðxÞðγ5γ0γi − γiγ0γ5ÞψðxÞ

þm
Z

d3xψ̄ðxÞ½γ5; γ0�ψðxÞ: ðB4Þ

After doing someDirac algebra using fγμ; γνg ¼ 2ημν (ημν

as the Minkovskii metric with η00 ¼ þ1), we would have

½γ5; γ0� ¼ −2γ0γ5; ðB5Þ

γ5γ
0γi − γiγ0γ5 ¼ 2ϵijkσjk: ðB6Þ

Using these relations, Eq. (B4) becomes

∂thψ̄iγ5ψiðtÞ ¼ 2

Z
d3xi∂iψ̄ðxÞϵijkσjkψðxÞ

− 2m
Z

d3xψ̄ðxÞγ0γ5ψðxÞ: ðB7Þ

As the final step, recalling that for the Fourier trans-
formation defined as fðxÞ¼R

d3k=ð2πÞ3f̃ðkÞeik·x, we have
Z

d3xf�ðxÞfðxÞ ¼
Z

d3k
ð2πÞ3 f̃

�ðkÞf̃ðkÞ: ðB8Þ

This would transform Eq. (B7) as

∂thψ̄iγ5ψiðtÞ ¼
Z

d3p
ð2πÞ3 ½−2piψ̄ðp; tÞϵijkσjkψðp; tÞ

− 2mψ̄ðp; tÞγ0γ5ψðp; tÞ�: ðB9Þ

In the same time, from Eq. (34), we know

hψ̄iγ5ψiðtÞ ¼ −V
Z

d3p
ð2πÞ3 spðp; tÞ; ðB10Þ

Z
d3p
ð2πÞ3 ψ̄ðp; tÞϵ

ijkσjkψðp; tÞ ¼ −V
Z

d3p
ð2πÞ3 ðt2ðp; tÞÞ

i;

ðB11Þ
Z

d3p
ð2πÞ3 ψ̄ðp;tÞγ

0γ5ψðp;tÞ¼−V
Z

d3p
ð2πÞ3a0ðp;tÞ: ðB12Þ

This shows that Eq. (B9) is nothing more than
∂tsp þ 2ma0 þ 2p · t2 ¼ 0.
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