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There exists a significant deviation between the most recent lattice quantum chromodynamics (QCD)
simulation and experimental measurement by Belle for Ξ0

c → Ξ−lþνl. In this work, we investigate the
Ξc → Ξ form factors in QCD sum rules. To this end, the two-point correlation functions of Ξc and Ξ, and
the three-point correlation functions of Ξc → Ξ are calculated. At the QCD level, contributions from up to
dimension-6 four-quark operators are considered, and the leading order results of the Wilson coefficients
are obtained. For the form factors, relatively stable Borel windows can be found. Our form factors are
comparable with those of lattice QCD, except for f⊥. The obtained form factors are then used to predict the
branching ratios of Ξc → Ξlþνl, and our predictions are consistent with the most recent data of ALICE
and Belle, and those of lattice QCD within error. Given that the branching ratios only contain limited
information, we suggest the experimentalists directly measure the form factors of Ξc → Ξ.
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I. INTRODUCTION

Semileptonic decays can be used to extract CKM matrix
elements, which are important parameters of the standard
model (SM). In addition, lepton flavor universality
obtained by studying the semileptonic decays of different
leptonic final states is an important tool to test the SM.
Recently, Belle reported the measurement of the branching
ratios of Ξ0

c → Ξ−lþνl [1]:

BðΞ0
c → Ξ−eþνeÞ ¼ ð1.31� 0.04� 0.07� 0.38Þ%;

BðΞ0
c → Ξ−μþνμÞ ¼ ð1.27� 0.06� 0.10� 0.37Þ%; ð1Þ

which are already the highest precision for measuring these
processes. However, most existing theoretical predictions
are more or less larger than these data (see Table III below),
including various quark model calculations [2–5], fittings
based on SU(3) flavor symmetry [6–8], light-cone sum
rules (LCSR) analyses [9–11]. It is particularly worth
pointing out that the most recent lattice QCD simulation
in Ref. [12] shows that:

BðΞ0
c → Ξ−eþνeÞ ¼ ð2.38� 0.30� 0.33Þ%;

BðΞ0
c → Ξ−μþνμÞ ¼ ð2.29� 0.29� 0.31Þ%: ð2Þ

One can see that, there is a significant deviation between
experimental measurement and lattice QCD simulation.
Considering the high precision demonstrated by both, this
issue deserves further investigation.
The authors of Refs. [13–16] suggested that, this tension

can be resolved by considering the Ξc − Ξ0
c mixing on the

theoretical side. However, recent lattice QCD simulation in
Refs. [17,18] and QCD sum rules analysis in Ref. [19] have
shown that this mixing angle is very small, only about 1°.
Such a small mixing angle clearly cannot resolve the
tension between theory and experiment. The tension still
lies there.
A branching ratio itself contains limited information

after all. We suggest the experimentalists directly measure
the form factors of Ξ0

c → Ξ−lþνl, which can be defined as

hΞðp2; s2Þjs̄γμð1 − γ5ÞcjΞcðp1; s1Þi

¼ ūðp2; s2Þ
�
γμf1ðq2Þ þ iσμν

qν

M1

f2ðq2Þ

þ qμ
M1

f3ðq2Þ
�
uðp1; s1Þ

− ūðp2; s2Þ
�
γμg1ðq2Þ þ iσμν

qν

M1

g2ðq2Þ

þ qμ
M1

g3ðq2Þ
�
γ5uðp1; s1Þ; ð3Þ

with M1 ¼ mΞc
. In fact, BESIII has performed a similar

measurement for Λþ
c → Λeþνe in Ref. [20], where the

form factors extracted from experiment is directly com-
pared with those obtained from lattice QCD. The com-
parison between theory and experiment is sharp and
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direct, and a very interesting result was found—there
exists a significant deviation between experimental meas-
urement and lattice QCD simulation for the form factors
of Λþ

c → Λeþνe. We can say that Ref. [20] opened an era
of fine comparison.
In this work, we will investigate the form factors of

Ξc → Ξ in QCD sum rules (QCDSR). At the QCD level,
contributions from up to dimension-6 four-quark operators
are considered; For the Wilson coefficients, the leading
order (LO) results are obtained. QCDSR is a QCD-based
approach to deal with hadronic parameters. It reveals a
direct connection between hadron phenomenology and
QCD vacuum structure via a few universal parameters
such as quark condensate and gluon condensate. In
Refs. [21,22], we systematically applied QCD sum rules
for the first time to study the form factors of doubly heavy
baryons. To further verify our computing technique, we
also investigated the form factors of Λb → Λc, and found
that our results were comparable with those of experiment,
heavy quark effective theory (HQET) at the next-to-leading
power, and lattice QCD [23].
The rest of this paper is arranged as follows. In

Sec. II, we will investigate the two-point correlation
functions of Ξc and Ξ to obtain their pole residues,
which are indispensable inputs when calculating the
form factors. At the same time, the continuum threshold
parameters, which are the most important parameters
in QCDSR in our opinion, are also determined there. In
Sec. III, we will outline how to extract the form factors
of Ξc → Ξ from the three-point correlation functions.
Numerical results of form factors and their phenomeno-
logical applications will be shown in Sec. IV, where our
results are also compared with other theoretical predic-
tions and experimental data. We conclude this paper in
the last section.

II. TWO-POINT CORRELATION FUNCTIONS
AND POLE RESIDUES

To access the Ξc → Ξ form factors, the pole residues
and continuum threshold parameters of initial and final
baryons are indispensable inputs. To this end, in this
section we investigate the two-point correlation func-
tions. In the well-known Ref. [24], Ioffe, perhaps for
the first time, used QCDSR to study the masses of light
flavor baryons. In Ref. [25], the authors investigated the
neutron-proton mass difference, and contributions from
up to dimension-9 operators were included. For the two-
point correlation functions of heavy flavor baryons, Wang
has already done a lot of work, see, for example,
Refs. [26,27]. We also analyzed the two-point correlation
function of Ξc in Ref. [23], but did not consider the
contribution of gluon condensate there. For consistency,
in this work we recalculate the two-point correlation
functions of Ξc and Ξ, with the contribution of gluon
condensate being considered.

Sum rules start from the definitions of interpolating
currents of hadrons. The following currents are respectively
adopted for Ξc and Ξ [28]

JΞQ
¼ ϵabcðqTaCγ5sbÞQc;

JΞ ¼ ϵabcðsTaCγμsbÞγμγ5qc; ð4Þ

where q and Q respectively denote a u=d quark and a
charm quark, a, b, c are color indices, and C is the charge
conjugation matrix.
The two-point correlation function is defined as

ΠðpÞ ¼ i
Z

d4xeip·xh0jTfJðxÞJ̄ð0Þgj0i: ð5Þ

At the hadron level, after inserting the complete set
of hadronic states, the correlation function in Eq. (5) is
written into

ΠhadðpÞ ¼ λ2þ
=pþMþ
M2þ − p2

þ λ2−
=p −M−

M2
− − p2

þ � � � ; ð6Þ

where the contribution from negative-parity baryon is also
considered, and M� (λ�) stand for the masses (pole
residues) of positive- and negative-parity baryons.
At the QCD level, the correlation function in Eq. (5) can

be calculated using OPE technique. In this work, contri-
butions from up to dimension-6 four-quark operators are
considered and the corresponding diagrams for Ξc and Ξ
can be found in Figs. 1 and 2, respectively. The calculation
results of the correlation function at the QCD level can be
formally written as

ΠQCDðpÞ ¼ Aðp2Þ=pþ Bðp2Þ; ð7Þ

FIG. 1. All the diagrams considered for the two-point corre-
lation function of Ξc at the QCD level.
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where the coefficient functions A and B can be further
written into the following dispersion integrals for practical
purpose

Aðp2Þ ¼
Z

ds
ρAðsÞ
s − p2

; Bðp2Þ ¼
Z

ds
ρBðsÞ
s − p2

: ð8Þ

Taking advantage of quark-hadron duality and then
performing the Borel transform, one can arrive at the
sum rule for the 1=2þ baryon

ðMþ þM−Þλ2þ expð−M2þ=T2þÞ

¼
Z

sþ
dsðM−ρ

A þ ρBÞ expð−s=T2þÞ; ð9Þ

where T2þ and sþ are the Borel parameter and continuum
threshold parameter, respectively. Differentiating Eq. (9)

with respect to −1=T2þ, one can obtain the mass of the
1=2þ baryon

M2þ ¼
R
sþ dsðM−ρ

A þ ρBÞs expð−s=T2þÞR
sþ dsðM−ρ

A þ ρBÞ expð−s=T2þÞ
: ð10Þ

In this work, Eq. (10) is viewed as a constraint of Eq. (9),
and is used to fix the continuum threshold parameter sþ,
which is the most important parameter in QCDSR in our
opinion.

III. THREE-POINT CORRELATION FUNCTIONS
AND FORM FACTORS

In practice, the following simpler parametrization is
adopted to extract the analytical expressions of Ξc → Ξ
transition form factors:

hB2ðp2; s2Þjs̄γμð1 − γ5ÞcjB1ðp1; s1Þi ¼ ūðp2; s2Þ
�
p1μ

M1

F1ðq2Þ þ
p2μ

M2

F2ðq2Þ þ γμF3ðq2Þ
�
uðp1; s1Þ

− ūðp2; s2Þ
�
p1μ

M1

G1ðq2Þ þ
p2μ

M2

G2ðq2Þ þ γμG3ðq2Þ
�
γ5uðp1; s1Þ; ð11Þ

where B1;2 denote Ξc and Ξ, respectively. The form factors Fi and Gi are related to fi and gi defined in Eq. (3) through

F1 ¼ f2 þ f3; F2 ¼
M2

M1

ðf2 − f3Þ; F3 ¼ f1 −
M1 þM2

M1

f2;

G1 ¼ g2 þ g3; G2 ¼
M2

M1

ðg2 − g3Þ; G3 ¼ g1 þ
M1 −M2

M1

g2: ð12Þ

In addition, helicity form factors are usually adopted by lattice QCD [12,29], and are related to the form factors in Eq. (3) as
follows

fþ ¼ f1 −
q2

M1ðM1 þM2Þ
f2; f⊥ ¼ f1 −

M1 þM2

M1

f2; f0 ¼ f1 þ
q2

M1ðM1 −M2Þ
f3;

gþ ¼ g1 þ
q2

M1ðM1 −M2Þ
g2; g⊥ ¼ g1 þ

M1 −M2

M1

g2; g0 ¼ g1 −
q2

M1ðM1 þM2Þ
g3: ð13Þ

FIG. 2. All “independent” diagrams considered for the two-point correlation function of Ξ at the QCD level. Here “independent”
means that equivalent diagrams are not shown here.
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In this work, the results of these helicity form factors are presented to make a close comparison with those of lattice QCD.
The following three-point correlation functions are defined to extract the form factors of Ξc → Ξ

ΠV;A
μ ðp1; p2Þ ¼ i2

Z
d4xd4ye−ip1·xþip2·yh0jTfJΞðyÞðVμ; AμÞð0ÞJ̄Ξc

ðxÞgj0i; ð14Þ

where VμðAμÞ ¼ s̄γμðγμγ5Þc is the vector (axial-vector) current for the c → s process. The correlation functions are then
calculated at the hadron level and QCD level.
At the hadron level, after inserting the complete sets of initial and final states and considering the contributions from

negative-parity baryons, the vector current correlation function in Eq. (14) can be written into

ΠV;had
μ ðp1; p2Þ ¼ λþf λ

þ
i

ð=p2 þMþ
2 Þðp1μ

Mþ
1

Fþþ
1 þ p2μ

Mþ
2

Fþþ
2 þ γμF

þþ
3 Þð=p1 þMþ

1 Þ
ðp2

2 −Mþ2
2 Þðp2

1 −Mþ2
1 Þ

þ λþf λ
−
i

ð=p2 þMþ
2 Þðp1μ

M−
1

Fþ−
1 þ p2μ

Mþ
2

Fþ−
2 þ γμF

þ−
3 Þð=p1 −M−

1 Þ
ðp2

2 −Mþ2
2 Þðp2

1 −M−2
1 Þ

þ λ−f λ
þ
i

ð=p2 −M−
2 Þðp1μ

Mþ
1

F−þ
1 þ p2μ

M−
2

F−þ
2 þ γμF

−þ
3 Þð=p1 þMþ

1 Þ
ðp2

2 −M−2
2 Þðp2

1 −Mþ2
1 Þ

þ λ−f λ
−
i

ð=p2 −M−
2 Þðp1μ

M−
1

F−−
1 þ p2μ

M−
2

F−−
2 þ γμF−−

3 Þð=p1 −M−
1 Þ

ðp2
2 −M−2

2 Þðp2
1 −M−2

1 Þ þ � � � : ð15Þ

In Eq. (15),Mþð−Þ
1ð2Þ denotes the mass of initial (final) positive- (negative-) parity baryon, and Fþ−

1 is the form factor F1 with

the positive-parity final state and negative-parity initial state, and so forth. To arrive at Eq. (15), we have adopted the
following definitions of pole residues for positive- and negative-parity baryons

h0jJþjBþðp; sÞi ¼ λþuðp; sÞ;
h0jJþjB−ðp; sÞi ¼ ðiγ5Þλ−uðp; sÞ; ð16Þ

and the following conventions for the 12 form factors F��
i

hBþ
f ðp2; s2ÞjVμjBþ

i ðp1; s1Þi ¼ ūBþ
f
ðp2; s2Þ

�
p1μ

Mþ
1

Fþþ
1 þ p2μ

Mþ
2

Fþþ
2 þ γμF

þþ
3

�
uBþ

i
ðp1; s1Þ;

hBþ
f ðp2; s2ÞjVμjB−

i ðp1; s1Þi ¼ ūBþ
f
ðp2; s2Þ

�
p1μ

M−
1

Fþ−
1 þ p2μ

Mþ
2

Fþ−
2 þ γμF

þ−
3

�
ðiγ5ÞuB−

i
ðp1; s1Þ;

hB−
f ðp2; s2ÞjVμjBþ

i ðp1; s1Þi ¼ ūB−
f
ðp2; s2Þðiγ5Þ

�
p1μ

Mþ
1

F−þ
1 þ p2μ

M−
2

F−þ
2 þ γμF

−þ
3

�
uBþ

i
ðp1; s1Þ;

hB−
f ðp2; s2ÞjVμjB−

i ðp1; s1Þi ¼ ūB−
f
ðp2; s2Þðiγ5Þ

�
p1μ

M−
1

F−−
1 þ p2μ

M−
2

F−−
2 þ γμF−−

3

�
ðiγ5ÞuB−

i
ðp1; s1Þ: ð17Þ

At the QCD level, contributions from up to dimension-6 four-quark operators are considered, as can be seen in Fig. 3. The
calculation results of the vector current correlation function in Eq. (14) can be formally written as

ΠV;QCD
μ ðp1; p2Þ ¼

X12
i¼1

Aieiμ ð18Þ

with
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ðe1;2;3;4Þμ ¼ f=p2; 1g × fp1μg × f=p1; 1g;
ðe5;6;7;8Þμ ¼ f=p2; 1g × fp2μg × f=p1; 1g;

ðe9;10;11;12Þμ ¼ f=p2; 1g × fγμg × f=p1; 1g: ð19Þ

The coefficients Ai in Eq. (18) are then expressed as double
dispersion integrals

Aiðp2
1;p

2
2;q

2Þ¼
Z

∞
ds1

Z
∞
ds2

ρiðs1;s2;q2Þ
ðs1−p2

1Þðs2−p2
2Þ
; ð20Þ

where the spectral functions ρiðs1; s2; q2Þ can be obtained
by applying Cutkosky cutting rules to the diagrams
in Fig. 3.
Equating Eqs. (15) and (18), and using the quark-hadron

duality, one can arrive at 12 equations for 12 unknown form
factors F��

i . Solving these equations, and then performing
the Borel transform, one can obtain the following expres-
sions for Fþþ

i :

λþi λ
þ
f ðFþþ

1 =Mþ
1 Þ exp

�
−
Mþ2

1

T2
1

−
Mþ2

2

T2
2

�
¼ fM−

1M
−
2 ;M

−
2 ;M

−
1 ; 1g:fBA1;BA2;BA3;BA4g

ðMþ
1 þM−

1 ÞðMþ
2 þM−

2 Þ
;

λþi λ
þ
f ðFþþ

2 =Mþ
2 Þ exp

�
−
Mþ2

1

T2
1

−
Mþ2

2

T2
2

�
¼ fM−

1M
−
2 ;M

−
2 ;M

−
1 ; 1g:fBA5;BA6;BA7;BA8g

ðMþ
1 þM−

1 ÞðMþ
2 þM−

2 Þ
;

λþi λ
þ
f F

þþ
3 exp

�
−
Mþ2

1

T2
1

−
Mþ2

2

T2
2

�
¼ fM−

1M
−
2 ;M

−
2 ;M

−
1 ; 1g:fBA9;BA10;BA11;BA12g

ðMþ
1 þM−

1 ÞðMþ
2 þM−

2 Þ
; ð21Þ

where

BAi ≡
Z

s10
ds1

Z
s20

ds2ρiðs1; s2; q2Þ expð−s1=T2
1Þ expð−s2=T2

2Þ; ð22Þ

are doubly Borel transformed coefficients, with s0
1ð2Þ the

continuum threshold parameter of the initial (final) baryon,
and T2

1;2 are the Borel parameters.

A. The leading logarithmic corrections

In this work, we also consider the leading logarithmic
(LL) corrections for the pole residues and form factors.
For this purpose, in the following, we will first briefly

summarize some key points of the operator product
expansion (OPE) technique.
For two operators O1 and O2 separated by a small

distance x, the product of these two operators can be
computed using OPE

O1ðxÞO2ð0Þ ¼
X
n

CnðxÞOnð0Þ; ð23Þ

FIG. 3. All the diagrams considered for the three-point correlation functions of Ξc → Ξ at the QCD level.
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where O1;2;n are defined at some renormalization scale μ.
The calculated Wilson coefficient Cn should be multiplied
by a LL correction factor [30]

�
logð1=jxj2Λ2

QCDÞ
logðμ2=Λ2

QCDÞ
�ðan−a1−a2Þ=2β0

; ð24Þ

where aO is related to the anomalous dimension γO by

γO ¼ −aO
g2

ð4πÞ2 ; ð25Þ

and β0 is the first coefficient of the QCD β function

β0 ¼ 11 −
2

3
nf: ð26Þ

Note that, after performing the Fourier transform as in
Eqs. (5) and (14), the inverse of the squared distance 1=jxj2
is actually ∼p2.
In Ref. [31], we explicitly calculated the LO anomalous

dimensions of the interpolating currents in Eq. (4), and
found that the two anomalous dimensions happen to be the
same, both equal to

γJ ¼ −4
g2

ð4πÞ2 : ð27Þ

The anomalous dimension of ψ̄ψ can be found in any
standard quantum field theory textbook

γψ̄ψ ¼ −8
g2

ð4πÞ2 : ð28Þ

Following Ioffe in Ref. [24], the LL corrections of the
Wilson coefficients for higher-dimensional operators are no
longer considered due to the following reasons:

(i) The contribution of these terms is comparatively
small.

(ii) The numerical values of higher-dimensional con-
densate parameters contain large ambiguity.

Some remarks on the OPE of three-point operator product

O1ðyÞO2ð0ÞO3ðxÞ ¼
X
n

Cnðx; yÞOnð0Þ ð29Þ

are in order. If Eq. (29) is considered to have been
expanded twice using Eq. (23), one can easily check that
in the limit of

jxj ¼ jyj; ð30Þ
the corresponding LL correction factor, similar to that in
Eq. (24), is

�
logð1=jxj2Λ2

QCDÞ
logðμ2=Λ2

QCDÞ
�ðan−a1−a2−a3Þ=2β0

: ð31Þ

For the B → π process, the approximation in Eq. (31) is
bad; However, as long as the mass difference between the
initial and final states is not very large, this approximation
should not be bad. Ξc → Ξ can be attributed to the latter
situation.

IV. NUMERICAL RESULTS AND
PHENOMENOLOGICAL APPLICATIONS

Numerical results will be shown in this section, and our
main results include the pole residues, the continuum
threshold parameters of Ξc and Ξ, and the Ξc → Ξ form
factors. The main inputs include the condensate parameters
and quark masses. The condensate parameters are taken
as [28]: hq̄qið1 GeVÞ ¼ −ð0.24� 0.01 GeVÞ3, hs̄si ¼
ð0.8� 0.2Þhq̄qi, hg2sG2i ¼ ð0.47� 0.14Þ GeV4,
hq̄gsσGqi ¼ m2

0hq̄qi and hs̄gsσGsi ¼ m2
0hs̄si with

m2
0 ¼ ð0.8� 0.2Þ GeV2. The following quark masses are

adopted [32]:

mcðmcÞ ¼ 1.27� 0.02 GeV;

msð2 GeVÞ ¼ 0.093� 0.009 GeV; ð32Þ

and mu=d is taken to be 0.
When calculating the pole residues of Ξc and Ξ, and the

form factors of Ξc → Ξ, we take all the renormalization
scales at μ ¼ mc. The following equation for the QCD
running coupling constant at the one-loop level has been
used

αsðμÞ ¼
4π

β0 logðμ2=Λ2
QCDÞ

; ð33Þ

and αsðmZÞ ¼ 0.118 [32] is taken as a reference point for
renormalization. The continuity of αs allow to find values

ofΛðnfÞ
QCD for different nf. It turns out that:Λ

ð5Þ
QCD ¼ 88 MeV,

Λð4Þ
QCD ¼ 120 MeV, and Λð3Þ

QCD ¼ 143 MeV. Especially,
αsðmcÞ ≈ 0.32 can be obtained. Then, the quark masses
and condensate parameters can be evolved through their
respective one-loop evolution formulas. For example, for
the quark mass, the one-loop evolution formula is

mðμ2Þ ¼ mðμ1Þ
�
logðμ21=Λ2

QCDÞ
logðμ22=Λ2

QCDÞ
�4=β0

: ð34Þ

As can be seen in Figs. 1–3 that, we have only
considered the tree-level diagrams—when cutting rules
are applied, there is no longer a loop diagram. For the
Wilson coefficients, we have only obtained the LO results.
As can be seen in our previous work [33], the error caused
by scale dependence plays an important role. To reduce the
dependence of calculation results on the renormalization
scale, in this work, we also consider the LL corrections to
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the Wilson coefficients. However, numerically these cor-
rections are small, the reason is given as follows.
In Eqs. (24) and (31), the renormalization scale μ ¼ mc,

and the inverse of the distance 1=jxj is exactly or close to
OðmcÞ for the two-point correlation functions of Ξc and Ξ,
and the three-point correlation functions of Ξc → Ξ.
Therefore, all the LL correction factors are all close to 1,
that is, the LL corrections are small (only a few percent).
How to evaluate the contribution from the next-to-

leading order (NLO)? This is certainly a difficult question
to answer, and often only through detailed calculations at
NLO can a clear answer be obtained. The calculation of
the decay constants fBðsÞ in Ref. [34] are excepted to shed
some light on the contributions from higher orders. As
pointed out in Ref. [34], in the pole mass scheme, the
convergence is poor, while in the MS scheme, the
convergence is good. In the MS scheme, the contribution
from NLO is about 10%. Of course, this is only for the
bottom quark case and also limited to the two-point
correlation functions. The NLO correction for the charm
quark case should be larger.
Inspired by the pole mass scheme, in this work, we also

take mc and ms as the pole masses, and expand them to
the NLO [32]

mpole ¼ mðμÞ
�
1þ 4αsðμÞ

3π

�
ð35Þ

to evaluate the contribution from NLO. That is, in this
work, two sets of results will be presented

(i) LOþ LLþMS mass, which is taken as the cen-
tral value;

(ii) LOþ LLþ pole mass@NLO, which is used to
evaluate the contribution from NLO.

We find that, there are respectively about 20%, 15%
uncertainties between these two schemes, for the pole
residue of Ξc, and the form factors of Ξc → Ξ. These
numbers more or less meet the expectation above.
However, it is worth emphasizing again that this is only
a very rough estimate, and more accurate numbers can only
be known after performing the calculation of NLO.

A. The pole residues of Ξc and Ξ
The pole residues of Ξc and Ξ are determined using the

sum rule in Eq. (9) using Eq. (10) as a constraint, and
the corresponding results are shown in Fig. 4 and Table I.
Here is one comment. The experimental masses of Ξþ;0

c are
respectively 2.468 GeVand 2.470 GeV, while those of Ξ0;−

are respectively 1.315 GeV and 1.322 GeV [32]. In Fig. 4
and Table I, we have actually used the experimental masses
of Ξ0

c and Ξ−. Note that our QCDSR analysis is blind to u or
d quark within the hadron.

B. The form factors of Ξc → Ξ
In this subsection, the sum rule in Eq. (21) will be

investigated. As the most important parameters in QCDSR,
the continuum threshold parameters s01;2 of initial and final
states, are taken from corresponding two-point correlation
functions, see Table I.

TABLE I. Our predictions of the pole residues of Ξc and Ξ. Optimal sþ and T2þ are also shown.

Ξc ðsþ=GeV2; T2þ=GeV2Þ λþ=GeV3 Ξ ðsþ=GeV2; T2þ=GeV2Þ λþ=GeV3

MS mass (8.74,4.4) 0.0251 MS mass (3.22,2.4) 0.0424
Pole mass@NLO (8.70,5.0) 0.0203 Pole mass@NLO (3.24,2.4) 0.0426
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3

FIG. 4. The pole residues of Ξc and Ξ as functions of the Borel parameter T2þ. The blue and red curves correspond to the MS scheme
and the pole mass scheme, respectively. The extreme points on these curves correspond to the experimental value of the baryon mass.
The sþ and T2þ corresponding to these extreme points can be found in Table I.
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FIG. 5. The helicity form factors fþ;⊥;0ðq2Þ as functions of the Borel parameter T2
2. The blue dots and red squares respectively

correspond to the results obtained using the MS scheme and the pole mass scheme. q2 ¼ 0.0;−0.1;…;−0.5 GeV2 are considered.
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FIG. 6. Same as Fig. 5, but for gþ;⊥;0.
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Reasonable Borel parameters should satisfy T2
1 ∼OðM2

1Þ
and T2

2 ∼OðM2
2Þ with M1;2 the masses of initial and

final baryons [24,35]. In the following, we consider a
line segment T2

1 ¼ 3.5T2
2 with T2

2 ∈ ½2; 40� GeV2 on the
T2
1 − T2

2 plane. Relatively stable Borel windows can be
found, as can be seen in Figs. 5 and 6.
To access the q2 dependence of the Ξc → Ξ form factors,

we calculate the form factors for q2 ∈ ½−0.5; 0� GeV2, and
then fit the obtained values of ðq2; fðq2ÞÞ to the following
simplified z-expansion:

fðq2Þ ¼ aþ bzðq2Þ
1 − q2=ðmf

poleÞ2
; ð36Þ

where

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ð37Þ

with tþ ¼ ðmD þmKÞ2 and t0 ¼ q2max ¼ ðmΞc
−mΞÞ2.

The pole masses mf
pole are respectively taken as

This work

LQCD
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FIG. 7. Our helicity form factors are compared with those of lattice QCD in Ref. [12]. All our form factors have been multiplied by a
minus sign.
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mfþ;f⊥
pole ¼ 2.112 GeV, mf0

pole ¼ 2.318 GeV, mgþ;g⊥
pole ¼

2.460 GeV, andmg0
pole ¼ 1.968 GeV [12]. The fitted results

of ða; bÞ are given in Table II. In Fig. 7, our helicity form
factors are compared with those of lattice QCD [12]. One
can see that, most of our form factors are consistent with
those of lattice QCD within error, except for f⊥.

C. Phenomenological applications

Our form factors are then used to predict the semi-
leptonic decay widths. The polarized decay widths for
B1 → B2lν are given by

dΓL

dq2
¼ G2

FjVCKMj2q2pð1 − m̂2
l Þ2

384π3M2
1

ðð2þ m̂2
l ÞðjH−1

2
;0j2 þ jH1

2
;0j2Þ þ 3m̂2

l ðjH−1
2
;tj2 þ jH1

2
;tj2ÞÞ; ð38Þ

dΓT

dq2
¼ G2

FjVCKMj2q2pð1 − m̂2
l Þ2ð2þ m̂2

l Þ
384π3M2

1

ðjH1
2
;1j2 þ jH−1

2
;−1j2Þ: ð39Þ

where m̂l ≡ml=
ffiffiffiffiffi
q2

p
, and p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

QþQ−
p

=ð2M1Þ with Q� ¼ ðM1 �M2Þ2 − q2, M1 ¼ mΞc
, M2 ¼ mΞ. The helicity

amplitudes Hλ2;λW ≡HV
λ2;λW

−HA
λ2;λW

, where HV;A
λ2;λW

can be written in terms of the helicity form factors

HV
1
2
;0
¼ −i

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p ðM1 þM2Þfþ; HV
1
2
;1
¼ −i

ffiffiffiffiffiffiffiffiffi
2Q−

p
f⊥; HV

1
2
;t
¼ −i

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p ðM1 −M2Þf0;

HA
1
2
;0
¼ −i

ffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p ðM1 −M2Þgþ; HA
1
2
;1
¼ −i

ffiffiffiffiffiffiffiffiffi
2Qþ

p
g⊥; HA

1
2
;t
¼ −i

ffiffiffiffiffiffiffi
Q−

p
ffiffiffiffiffi
q2

p ðM1 þM2Þg0; ð40Þ

and

HV
−λ2;−λW ¼ HV

λ2;λW
; HA

−λ2;−λW ¼ −HA
λ2;λW

: ð41Þ

Finally, we arrive at:

BðΞ0
c → Ξ−eþνeÞ ¼ ð1.83� 0.45Þ%;

BðΞ0
c → Ξ−μþνμÞ ¼ ð1.77� 0.43Þ%;

BðΞþ
c → Ξ0eþνeÞ ¼ ð5.58� 1.36Þ%;

BðΞþ
c → Ξ0μþνμÞ ¼ ð5.38� 1.31Þ%; ð42Þ

TABLE II. The fitted results of ða; bÞ for the Ξc → Ξ form
factors.

MS mass ða; bÞ Pole mass@NLO ða; bÞ
fþ ð−0.642; 1.358Þ fþ ð−0.730; 1.362Þ
f⊥ ð−1.208; 2.919Þ f⊥ ð−1.267; 2.329Þ
f0 ð−0.524;−0.402Þ f0 ð−0.585;−0.796Þ
gþ ð−0.467;−0.050Þ gþ ð−0.505;−0.628Þ
g⊥ ð−0.493; 0.433Þ g⊥ ð−0.514; 0.050Þ
g0 ð−0.538; 1.017Þ g0 ð−0.596; 0.714Þ

TABLE III. Our decay width of Ξc → Ξeþνe (in units of 10−13 GeV) is compared with experimental data, and
other theoretical predictions including lattice QCD (LQCD), light-cone sum rules (LCSR), light-front quark model
(LFQM), relativistic quark model (RQM), and SU(3) flavor symmetry [SU(3)].

This work LCSR [11] LFQM [5] LCSR [10] LCSR [9] SU(3) [8]

0.79� 0.19 1.21� 0.07 0.74� 0.15 0.80� 0.24 4.26� 1.49 1.6� 0.1

RQM [3] LFQM [2] LQCD [12] ALICE [37] Belle [1]

1.40 0.80 1.02� 0.19 1.04� 0.36 0.563� 0.168
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where τðΞþ
c Þ ¼ ð453� 5Þ fs and τðΞ0

cÞ ¼ ð151.9� 2.4Þ fs
have been used [32]. The central values are obtained using
the MS scheme for the quark masses, and the uncertainties
are obtained by further considering the pole mass scheme at
NLO. One can see from Eq. (42) that, the NLO corrections
for the branching ratios may be around 25%. In addition,
Eq. (42) leads to

BðΞ0
c → Ξ−eþνeÞ=BðΞ0

c → Ξ−μþνμÞ ¼ 1.037� 0.002;

ð43Þ

which is in perfect agreement with the experimental value
1.03� 0.05� 0.07 obtained by Belle [1].
Considering the lifetime of Ξ0

c changing from around
112 fs in PDG2018 [36] to around 152 fs in PDG2022 [32],
in Table III, only the decay width is compared with those
from other theoretical predictions and experimental mea-
surements. It can be seen that, most theoretical predictions
are larger than the most recent experimental data from
Belle, and our result is consistent with those of ALICE and
Belle, and that of lattice QCD.

V. CONCLUSIONS

In this work, the Ξc → Ξ form factors are investigated in
QCD sum rules. To this end, the two-point correlation
functions of Ξc and Ξ, and the three-point correlation
functions of Ξc → Ξ are calculated. At the QCD level,
contributions from up to dimension-6 four-quark operators
are considered, and the leading order results of the Wilson
coefficients are obtained. As the most important parameters
in the calculation of form factors, the continuum threshold
parameters of Ξc and Ξ are determined using the derived
sum rule for baryon mass. For the form factors, relatively

stable Borel windows can be found. In this sense, our entire
calculation has almost no adjustable parameters.
To reduce the scale dependence of our results, the

leading logarithmic approximation is considered. To
roughly estimate the contribution from the next-to-leading
order, we also take the quark masses as the pole masses,
and expand them to the next-to-leading order. The corre-
sponding results are then compared with those obtained in
the MS scheme. Finally, our form factors are then used to
predict the branching ratios of Ξc → Ξlþνl, and we find
that the next-to-leading order corrections for the branching
ratios may be around 25%. Our predictions of the branch-
ing ratios are consistent with those of ALICE and Belle,
and that of lattice QCD.
In fact, a branching ratio itself is not enough for precise

comparison between theory and experiment. The form
factors contain more information. We suggest the exper-
imentalists directly measure the form factors of Ξc →
Ξlþνl, and we believe that our work will also help resolve
the tension between the recent lattice QCD simulation and
Belle’s measurement.
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