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Interband transitions of electrons in a gapped graphene monolayer are highly stimulated near the Fermi
surface when a high-frequency electric wave of weak intensity and a strong constant electric field are
superposed in the plane of the flake. We consider this phenomenon equivalent to the Franz-Keldysh effect,
paying particular attention to the regime where the photon energy linked to the fast-oscillating field is just
below the graphene gap, so that the quantum transitions still occur through tunneling effects while being
facilitated by the one-photon absorption channel. In the considered parameter regime the photocatalyzed
current linked to the described setup is shown to exceed the one driven by the strong field solely by several
orders of magnitude. Conditions to relieve the impact of the field’s finite extension are discussed, and a
formula for the residual current density is derived. The robustness of our assessment supports the viability
of detecting this phenomenon in graphene, thus providing a simulation of the dynamically-assisted
Schwinger mechanism in QED.
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I. INTRODUCTION

A strong, homogenous electric background renders
the ground state of QED unstable, allowing quantum
vacuum fluctuations of the electron-positron field to
spontaneously materialize into their mass shells [1–4].
The pair production rate R ∼ exp½−πm2

ec3=ðeℏEÞ� related
to this emblematic phenomenon—widely known as the
Schwinger mechanism—has a tunneling nature and exhib-
its, in addition to a nonlinear dependence on the external
field E, an essential singularity in the electric charge
e > 0 which transfers to the process a nonperturba-
tive feature [5–7]. So far, the observation of this field-
induced vacuum instability has been prevented by the
unavailability of field strengths comparable to the char-
acteristic QED scale Ecr ¼ m2

ec3=ðeℏÞ ∼ 1016 V=cm, at
which the exponential suppression of R turns out to be
mitigated.1 Although fields of the order of E ∼ 10−2Ecr are
aimed for by the next generation of multipetawatt
laser facilities such as the Extreme Light Infrastructure
(ELI) [8] and the Exawatt Center for Extreme Light
Studies (XCELS) [9], it is generally believed that an

experimental realization of this yet hypothetical vacuum
breakdown might represent a major challenging task by
the time when both ELI and XCELS become operational.
The challenge is that at the envisaged field strengths the
production rate remains very small, a fact that calls for
alternative routes which relieve the described issue.
While in the last two decades theoretical endeavors

toward this goal have provided significant insight about the
nontrivial nature of the quantum vacuum [10–17], most
notably the scenario first investigated in Refs. [18,19] has
raised the hope of observing the vacuum instability for the
first time. In contrast to the traditional single-field scheme,
the promising setup relies on a temporal overlapping of a
strong homogenous electric field and a weak but high-
frequency ω≲ 2me electric pulse. This so-called dynami-
cally-assisted Schwinger mechanism retains the tunneling
feature while the absorption of quanta induces a reduction
of the effective barrier width that an electron has to traverse
from the negative to the positive Dirac continuum. This
reduction, in turn, should facilitate the production of pairs
at a rate R ∼ exp½−κπEcr=E� that enhances substantially as
compared to the case of the standard Schwinger mechanism
because the positive parameter κ could be much smaller
than unity. Improvements of various field configurations
sharing the described idea have been proposed, including
the combination of a static electric field and pulses with
or without subcycle structures [20–28], the situation in
which two Sauter waves are superposed [29,30], as well as
scenarios in which both the strong and the fast-oscillating
fields hold subcycles while being modulated by pulse
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1Hereme refers to the electron mass and c to the speed of light.

From now on the Planck constant and the vacuum permittivity are
set to unity ℏ ¼ ϵ0 ¼ 1.
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profiles [31–38]. Furthermore, analogous upgrades have
been reported theoretically in both the Bethe-Heitler
[39,40] and Breit-Wheeler [41] pair production process.2

Despite the described advantage, gathering adequate
experimental conditions for implementing the dynamically
assisted Schwinger mechanism is not an easy task because
strong fields E ∼ Ecr are required anyway for having a
sizable production of pairs. Notwithstanding, emergent
condensed-matter systems with optoelectronic features that
resemble those linked to the QED vacuum might constitute
solid state playgrounds for simulating the vacuum insta-
bility via transitions of electrons from valence to conduc-
tion bands of Landau-Zener nature [49,50]. However, an
essential requirement for assessing a plausible enhancement
caused by the absorption of photons of a weak but fast-
oscillating electric mode, i.e., the solid state analog of the
dynamically assisted Schwinger mechanism, is the existence
of massive charge carriers. A graphene monolayer [51–53]
with a tiny electronic band gap Δ ∼ 1 meV acquired—for
instance—by elastic strain engineering [54,55], via sub-
strate-induced superlattices [56,57] or through Rashba
spin splittings on magnetic substrates [58], is perhaps the
best-suited platform for this purpose. Mainly, because the
charge carriers—with mass m ¼ Δ=ð2v2

FÞ—in this two-
dimensional honeycomb lattice of carbon atoms possess a
Diraclike dispersion relation near the neutrality points in
which the Fermi velocity vF ≈ c=300 plays the role of the
speed of light [59]. Hence, their behavior can be effectively
described by a (2þ 1)-dimensional Dirac model and their
coupling to an electromagnetic field suitably simulates a
planar QED with the particularization that the creation of
electron-hole pairs in band-gapped graphene varieties is
predicted to occur at a rate Rg ∼ exp½−πEg=E� that closely
resembles the exponential dependence occurring in the
Schwinger mechanism [60,61]. However, in contrast to
Ecr, the characteristic electric field in graphene with
Δ ≈ 1 meV, Eg ¼ Δ2=ð4evFÞ ≈ 3.9 V=cm is rather easy
to access or even overpass, opening in this way an enticing
window for emulating the dynamically assisted vacuum
breakdown via Landau-Zener transitions catalyzed by the
absorption of photons of a fast-oscillating electric mode [62].
It is worth remarking that graphene flakes with tiny band
gaps have also been put forward as toy environments to test
intriguing low-dimensional effects in the perturbative non-
linear regime of the Breit-Wheeler-like process [63,64].
Conceptually, the dynamically-assisted Landau-Zener

effect must be understood as a relativisticlike generalization

of the Franz-Keldysh effect occurring in semiconductors
[65,66]. So far, the microscopic study of this phenomenon
has been carried out by adopting a nonrelativistic descrip-
tion based on the Schrödinger-band structure for holes and
electrons. Its main phenomenological aspect is the modi-
fication of the bulk optical properties brought about by a
strong, slowly varying electric field. These deviations
become noticeable in the quasiparticle spectrum, which
turns out to be finite even below the bandgap and
oscillatory when the energy of the absorbed photon lies
above it. The described modifications are immediate
consequences of the nonperturbative interplay between
the valence and conduction bands and the strong electric-
field background, all together playing the role of the
polarized QED vacuum. While the Franz-Keldysh effect
has been experimentally verified in three-dimensional
ordinary semiconductors [67–71], we are aware neither
of theoretical studies nor experimental investigations aim-
ing to determine its inherent electronic properties when the
material has low dimensionality and its description admits
a Dirac model, i.e., where holes and electrons are not
independent. With its exceptional conductive properties,
graphene provides, perhaps, the most direct access to this
scenario [72,73]. From this perspective, the study of the
Franz-Keldysh phenomenon in gapped graphene is worth-
while on its own, offering in this way a practical method for
injecting free-of-contact ultrafast currents with subcritical
fields and for controlling the conductivity of the material by
adjusting the fast-oscillating laser wave’s parameters.
We should stress at this point the substantial efforts

devoted to simulate various relativistic processes in gra-
phene layers with gapless band structures [Δ ¼ 0]. See for
instance Refs. [74,75] and references therein. Indeed,
the first theoretical Landau-Zener studies in graphene
were carried out by considering massless electronic exci-
tations [60,76–82]. Subsequent measurements of optical
radiation—emitted presumably by the recombinations of
residual electron-hole pairs produced via the aforemen-
tioned mechanism [83] (see also Refs. [84,85])—and
currents induced by two-cycle laser pulses [86,87] con-
firmed the phenomenon. Besides, the detection of the
current turned out to be sensitive to the carrier envelope
phase of the driving field which facilitates a coherent
control of massless electron dynamics and emulates a
prediction expected within the Schwinger mechanism [11].
Clearly, similar setups could be implemented to probe field-
induced interband transitions of massive quasiparticles
stimulated by the absorption of photons of a weak but
fast-oscillating wave. As in this scenario the transition rate
is enhanced, the yielded electron-hole pairs would have a
density higher than in the absence of the weak field,
provided Eg ≫ E. It is then likely that the recombination
and thus the emission of photons become noticeable, or
alternatively, that a sizable current can be measured to
verify the solid-state analog of the dynamically assisted

2In contrast to the vacuum decay, there exists an experimental
confirmation of the nonlinear Breit-Wheeler pair production
channel in the few photon regime, where the rate follows a
power-law scaling with the applied field strength [42]. New
campaigns aim to verify the fully nonperturbative regime of this
process (see Refs. [43–48]).
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Schwinger mechanism. This paper is devoted to theoreti-
cally investigating the latter possibility. We propose a
realistic graphene-based setup to examine the analog of
the dynamically assisted Schwinger effect. Unlike earlier
studies [62,88], which mostly dealt with the associated
transition rate, our emphasis is primarily focused on the
field-induced current caused by the transition of electrons
from valence to conduction band, and the impact of the
field’s finite-size on this observable. Particularly, we reveal
that the detection of the process benefits when the field’s on
and off switching occurs through smooth ramping and
deramping sectors. Our effort is oriented toward optimizing
the amplification that the current undergoes when a strong
electric field is active, and quanta from a fast-oscillating
wave are absorbed in the meantime.
This paper is organized as follows. In Sec. II, we describe

the model to be analyzed and briefly summarize the main
aspects linked to the quantum kinetic equation to be used,
addressing in this way similarities with the pair production
process in QED [89–91]. Properties of the quasiparticle
spectrum are elucidated in Sec. III. Particular attention is
paid to the impact on the quasiparticle spectrum of strong
backgrounds characterized by abrupt versus smooth turn-
on/off sectors. A compact asymptotic formula for the
current density related to the residual number of excitations
is derived in Sec. IV. Later on, we compare numerical and
analytical predictions and identify the parameters that
ensure an optimal current due to the photocatalyzation
of Landau-Zener transitions. We conclude the paper in
Sec. V with an overview of our main results.

II. GENERAL ASPECTS

Let us consider the spontaneous production of electron-
hole pairs taking place in a time-dependent but homo-
geneous electric field combining a strong static mode with
strength Es and a perturbative monochromatic wave with
amplitude Ew [Ew ≪ Es] and frequency ω. Hereafter we
will assume both fields localized temporally between
−T=2 ≤ t ≤ T=2, so that the pulse length of the wave T ¼
2πN=ω can be written in terms of the number of cycles N.
The corresponding four-potential reads

AμðtÞ ¼ ♭μ
�
−cEst −

cEw
ω sinðωtÞ; jtj ≤ 1

2
T

0; otherwise
ð1Þ

where ♭μ is the polarization four-vector. In practice, the
strong field might result from a capacitor with a dc voltage
in which the graphene sheet is placed [see Fig. 1(a)].
Conversely, a fast-oscillating electric wave can be success-
fully generated from an incident laser beam with a
polarization parallel to the strong field direction. Observe
that, to fit with our theoretical treatment, the waist size w0

of the linearly polarized laser wave has to be much larger
than the length of the graphene surface, which we take here

of the order of l≳ 100 μm. The described mechanism
does not provide a pure electric wave as it is required by
Eq. (1). Indeed, the incident wave—which can be thought
as a plane wave—is not homogeneous and, thus, a mag-
netic field parallel to the graphene surface would be
present. However, the two-dimensional confinement of
the quasiparticles prevents any influence of this field
component on their dynamics. Hence, what they undergo
actually is nothing but the combination of a weak elec-
tric field oscillating in time and the strong field linked to
the capacitor.3 Clearly, this will be the case whenever the
used graphene monolayer is perfectly plane shaped. In
practice, however, free-standing flakes are rippled and
contain distortions. These problems can be mitigated to

FIG. 1. (a) Scheme of an experimental set-up allowing the
simulation of the dynamically-assisted Schwinger mechanism in
band-gapped graphene via the production of electron-hole pairs.
A graphene flake—grown on top of a substrate—is placed within
the plates of a capacitor which holds a strong electric field Es.
Simultaneously, the graphene sheet is irradiated with a linearly
polarized plane wave with frequency ω, the amplitude of which
Ew is supposed to be weaker than the field generated by the
capacitor [Ew ≪ Es]. The field-induced current in the graphene
flake is then measured with the help of an ammeter. To this end,
two electrodes are deposited on the stripe. (b) The tilt that the
relativisticlike dispersion relation undergoes owing to the strong
electric field makes it possible for electrons—blobs colored in
cyan—to tunnel from the valence band to the initially empty
conduction band. The absorption of a photon of energy slightly
below the band gap [ω < Δ] reduces the effective distance
needed to reach the latter.

3Let us briefly mention that the source of the strong field could
alternatively be generated from an additional laser beam with a
frequency Ω ≪ ω and intensity higher than those associated with
the fast-oscillating wave. The upcoming study must be then
understood in such a situation as the leading-order contribution of
an adiabatic approximation.
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a large extent if the graphene sample is grown on top of
a hBN substrate, enabling one to obtain an almost ideally
flat surface while simultaneously inducing the required
band gap Δ. To suitably simulate the dynamically assisted
Schwinger mechanism, this gap has to simultaneously
satisfy two conditions: Δ2 ≫ 4eEsvF and Δ≳ ω. For a
band gap Δ ≫ ω, the effective reduction of the barrier
width [see Fig. 1(b)] between the valence and conducting
bands leff ∼ ðΔ − ωÞ=ðeEsÞ approximates to the formation
length lform ∼ Δ=ðeEsÞ associated with the production of
electron-hole pairs when the strong field is present only. We
remark that the generation of the gap Δ through a substrate-
induced mechanism implies that, because of the hBN
dielectric constant εhBN ≈ 3.4 [92], the field strength that
the graphene sheet experiences is diminished by a factor of
2=ð1þ εhBNÞ ≈ 0.4 when compared to the vacuum situa-
tion. Consequently, both Es and Ew are supposed to take
this reduction into account.
Here, the interband transitions of electrons will be

investigated by adopting a quantum kinetic approach.
This formulation—which is equivalent to other well-known
approaches based on QED in unstable vacuum [1–4]—
comprises the dynamical information of the pair-production
process in the single-quasiparticle distribution function
Wgðp; tÞ, which refers to fixed spin and valley quantum
numbers and relaxes to those linked to the electrons and
holes only when the total external field is switched off
Eð�∞Þ → 0, i.e., formally at t → �∞. In this context, the
quantum Boltzmann-Vlasov equation which dictates the
time evolution of Wgðp; tÞ reads [61,62,93,94]:

Ẇgðp; tÞ ¼ Qðp; tÞ
Z

t

−∞
dt̃Qðp; t̃Þ

�
1

2
−Wgðp; t̃Þ

�

× cos

�
2

Z
t

t̃
dt0wpðt0Þ

�
; ð2Þ

where the initial conditionWgðp;−∞Þ ¼ 0, i.e., an initially
empty conduction band is assumed. This formula is char-
acterized by the function Qðp;tÞ≡eEðtÞvFϵ⊥=w2

pðtÞ,
which depends on the quantity ϵ⊥ ¼ ½1

4
Δ2 þ π2⊥v2

F�1=2
and the respective total energy wpðtÞ ¼ ½ϵ2⊥þ
π2kðtÞv2

F�1=2. Hereafter, π⊥ ¼ p⊥ and πkðtÞ ¼ pk þ
eAðtÞ=c will refer to the components of kinetic momentum
πðtÞ ¼ ðπ⊥; πkÞ of the quasiparticle perpendicular and
parallel to the direction of the electric field EðtÞ ¼
−∂A=∂ðctÞ ¼ Es þ Ew cosðωtÞ [A0ðtÞ ¼ 0], respectively.
At this point, it is worth noting that πðtÞ has to be understood
relative to either K or K0 points, satisfying the condition
jπðtÞj ≪ jKð0Þj ≈ 3 eV=vF. To avoid the electric field caus-
ing a shift in the quasiparticle momentum Δπ ¼ eEsT
comparable to jKð0Þj and thus to prevent the wave packet
from crossing the Brillouin zone boundary, we shall consider
field operating times T much below the timescale [78,95]

TBloch ¼
jKj
eEs

ð3Þ

on which the Bloch oscillations come into play. On the other
hand, T is expected to be much longer than the characteristic
formation time of an electron-hole pair, i.e., leff=vF with
leff ∼ ðΔ − ωÞ=ðeEsÞ denoting the effective reduction of
the barrier width between the valence and conduction bands
[see Fig. 1(b)]. The constraints on the operating time can be
summarized by the following relation:

Δ
eEsvF

≪ T ≪
jKj
eEs

: ð4Þ

We remark that, as no dependence on temperature is
manifested in Eq. (2), any outcome resulting from it must
be interpreted within the zero-temperature limit. Therefore,
at asymptotically earlier times t → −∞ for which EðtÞ
vanishes, the system behaves as a degenerate Fermi gas.
In line with this limit, the quasiparticle energy wpð−∞Þ ¼
½p2v2

F þ 1
4
Δ2�1=2 has to be understood relative to the Fermi

level, here assumed at εF ¼ 0. We emphasize that back-
reaction effects [96] are neglected throughout the paper.
There is a tight parallelism between the process under

consideration and the spontaneous production of pairs from
the vacuum polarized by a similar background field setup
[see Eq. (1)]. It is therefore not surprising that, after some
modifications, corresponding QED findings can be directly
applied to the interband transitions of electrons in a gapped
graphene monolayer. In this sense, we should mention that
an analytic expression for the single-particle distribution
function in the dynamically assisted field configuration
has been derived in Ref. [38]. For its establishment, the
author carried out a calculation in which the interaction
caused by the strong field was considered through the
retarded Green’s function method without any approxima-
tion, whereas the interplay with the fast-oscillating wave
was handled perturbatively. Such a formula can be readily
adapted to the graphene scenario by applying the recipe
given in Ref. [61] and reads,

WgðpÞ ≈ e−
πϵ2⊥

eEsvF

����1þ ε
π

2

ϵ2⊥
eEsvF

e−
i
2
γðωΔþ4

pkvF
Δ Þ

× 1F̃1

�
1 −

i
2

ϵ2⊥
eEsvF

; 2; iγ
ω

Δ

�����
2

: ð5Þ

Here, ε ¼ Ew=Es parametrizes the relative weakness of the
fast-oscillating mode, 1F̃1ða; b; zÞ is the regularized hyper-
geometric function [97], and γ ¼ ωΔ=ð2eEsvFÞ denotes
the combined Keldysh parameter. Noteworthy, no matter
how fast or slow the oscillating mode is, Eq. (5) applies
whenever its amplitude is significantly weaker than the
strong field strength, i.e., Ew ≪ Es. Besides, there is no
restriction on the frequency of the fast-oscillating wave;
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it can be either below or above the energy gap. The important
point here is that it is valid whenever the interaction time
is larger than any characteristic time scale linked to the
pair production process, including 2jp⊥;kj=ðeEsÞ ≪ T. The
field-stimulated transitions of electrons from valence to
conduction bands can be studied using the formula above
if T, in addition, satisfies the restriction given in Eq. (4).
We note that, for γ ≪ Δ=ω, i.e., for small frequencies

ω ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eEsvF

p
, Eq. (5) reproduces the Landau-Zener

formula

WgðpÞ ≈ e−
πϵ2⊥

eEsvF

����1þ επ

2

ϵ2⊥
eEs

����
2

ð6Þ

up toOðε2Þ. In the opposite regime γ ≫ Δ=ω, i.e., for high
frequencies ω ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eEsvF

p
, Eq. (5) combines both pertur-

bative ∼ε and nonperturbative ∼ exp½−πϵ2⊥=ðeEsvFÞ� con-
tributions. However, following the asymptotic study made
in Ref. [38], if eEsvF ≪ ϵ2⊥, the absorptive perturbative
contribution dominates and

WgðpÞ ≈ Tε2
π

8

ϵ2⊥v2
F

w2
pð−∞Þ

ðeEsÞ2
w2

pð−∞Þ δðω − 2wpð−∞ÞÞ; ð7Þ

where wpð−∞Þ ¼ ½p2v2
F þ 1

4
Δ2�1=2 is the free dispersion

relation of the quasiparticles. We note that the estimated
solution to the transport equation [see Eq. (2)] that results
when the low-density approximation 1 ≫ 2Wgðp; tÞ is
used, makes it simple to verify both Eqs. (6) and (7).

III. PROPERTIES OF THE
QUASIPARTICLE SPECTRUM

In this section, we will address how to enhance the
likelihood of observing dynamically assisted Landau-Zener
transitions in the proposed setting. A first step toward this
aim is to understand how the solution to Eq. (2) responds
to changes in the parameter space. However, to deal with
numerical evaluations, an equivalent system of ordinary
differential equations rather than the integrodifferential form
of the quantum Boltzmann-Vlasov equation will be used:

iḟðp; tÞ ¼ apðtÞfðp; tÞ þ bpðtÞgðp; tÞ;
iġðp; tÞ ¼ b�

pðtÞfðp; tÞ −apðtÞgðp; tÞ; ð8Þ
where fðp; tÞ and gðp; tÞ are Bogoliubov coefficients
[31,60,61,98,99] and Wgðp; tÞ ¼ jfðp; tÞj2. The initial con-
ditions gðp;−T=2Þ ¼ 1 andfðp;−T=2Þ ¼ 0 are then chosen.
The remaining elements contained in the equations above are

apðtÞ ¼ wpðtÞ þ
eEðtÞp⊥v2

F

2wpðtÞðwpðtÞ þ 1
2
ΔÞ ;

bpðtÞ ¼
1

2

eEðtÞϵ⊥
w2

pðtÞ
exp

�
−itan−1

�
p⊥πkv2

F

ϵ2⊥ þ 1
2
wpðtÞΔ

��
: ð9Þ

By changing the momentum components within the range
−0.18 eV ≤ p⊥;kvF ≤ 0.18 eV, the system of differential
equations described above have been solved. In this
assessment, a band gap Δ¼ 7 meV and frequency ω ¼
0.98Δ were utilized. Separately, three distinct strong field
strengths Es ¼ ð0.1; 0.2; 0.3ÞEg were applied, with Eg ¼
Δ2=ð4evFÞ ≈ 0.19 kV=cm denoting the critical electric field
strength. Besides, the number of cycles of the fast-oscillating
wave was chosen as N ¼ 50 to guarantee that the field
operating time T ¼ 30 ps is much shorter than the minimum
Bloch scale TBloch¼ 0.54 ns, corresponding to Es ¼ 0.3Eg.
The results of this investigation are displayed in the

upper panel of Fig. 2. Both pictures show the long-term
dependence of the quasiparticle spectrum

WgðpÞ≡ lim
t→T=2

Wgðp; tÞ ð10Þ

on the longitudinal momentum pk of the produced exci-
tation at p⊥ ¼ 0. The upper left picture takes into account a
rapidly oscillating mode with strength Ew ¼ 2 × 10−3Eg,
whereas the one on its right considers solely the influence
of the strong field (Ew ¼ 0). In both panels, the solid curves
exhibit two maxima symmetrically spaced from pk ¼ 0.
Their positions pmax

k ¼ � 1
2
eEsT match up with the quasi-

particle vanishing kinetic momentum [πkð�T=2Þ ¼ 0].
We note that the electron and hole distribution functions
share the same shape because the charge conjugation,
space inversion, and time reversal symmetries are naturally
included in the Dirac model. Hence, if an electron is
promoted to the conduction band in a state characterized by
any of the peaks exhibited in Fig. 2, a hole will likewise be
produced at the peak of its spectrum, where its momentum is
opposite to that of the electron. This indicates that the
creation of pairs is most likely to occur with their constitu-
ents occupying low-energy states 2wpð�T=2Þ ¼ Δ. For a
specific strong field strength, a comparison of the left- and
right-upper pictures in Fig. 2 renders it readily evident that
neither the peak heights nor their widths are influenced by
the assisting fast-oscillating mode. Therefore, the origin
and phenomenology linked to these maxima are attribut-
able to the finite extension of the strong field only. Indeed,
both peaks result from the sharp behavior of the electric
field at its edges.
Experimentally, the field can be continuously varied

from a situation in which the turn-on is very quick—almost
abrupt—to one in which the turn-on is slow and smooth. In
such a situation, the height of the peaks drops and may even
vanish completely. To assure the latter scenario, the time
interval needed to turn the field on or off must be longer
than the characteristic formation period for an electron-hole
pair. Otherwise, the electron is promoted almost instantly to
the conduction band without having changed practically its
initial state [see below Eq. (4)]. Observe that this viewpoint
enables us to interpret the peak on the right (left) of the
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spectrum as being due to the abrupt turn-on (off). The lower
panel of Fig. 2 is meant to support this statement. There we
assess the impact of incorporating turning on and turning
off field phases on the quasiparticle spectrum. For this, the
external field was modulated with a ramping (deramping)

function with a sin2½1
2
πð1 − 6t=TÞ�-shape during a sixth

of the total interacting time T, while for the remaining
2T=3-period it is driven by the field EðtÞ ¼ Es þ
Ew cosðωtÞ. To make a fair comparison, we have adjusted
this modified background such that the energy delivered
to the graphene sample is the same as the one provided by
the background in Eq. (1). The correction is implemented
by multiplying the field and related potential by a constant
coefficient R ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
24=19

p ¼ 1.12. Figure 3 depicts the
field’s shape both with and without the ramping and
deramping components. It is worth mentioning that the
sin2 − functions used in the implementation of the latter
do not imply that the corresponding gauge potential is
smoothly switched on and off when t → �T=2. Indeed,
throughout the calculations, this one has been taken
continuously within the interacting time T, but with sharp
turn-on/off sectors. We remark that the sin2 choice yields a
distribution function that is devoid of the maxima pre-
viously discussed while retaining the oscillatory sectors
that are in between them.4FIG. 3. Time-dependence of the electric field with abrupt turn-

on/off sectors (in red) and smooth ramping and deramping phases
with sin2½1

2
πð1 − 6t=TÞ� shape (in blue). To ensure that the energy

of the two pulses is equal, the curve associated with the latter
scenario has been multiplied by the factor R ¼ 1.12. Here, the
time is given in units of τ ¼ Δ−1 and Ew ¼ 5 × 10−3Eg.

FIG. 2. Long-time behavior of the single-quasiparticle distribution function. The dependence of the spectrum on the momentum
parallel pk to the external electric field at p⊥ ¼ 0 and without ramping and deramping sectors (i.e., sudden turn on and off) is
depicted in the upper panel. The lower panel shows the results associated with the scenario that includes smooth turn-on and turn-off
phases. The electric amplitude of the rapidly oscillating wave Ew ¼ 2 × 10−3Eg was used to generate the left upper pictures. In
contrast, the one on its right, which serves as a comparison, considers the situation in which the weak mode is turned off. The fields
used in the lower panel have been adjusted with the parameter R ¼ 1.12. Curves sharing the same color have been obtained by using
the same parameters. The numerical outcomes have been obtained by setting the number of cycles N ¼ 50, which corresponds to a
time period T ¼ 30 ps if the band gap is chosen as Δ¼ 7 meV and ω ¼ 0.98Δ. The latter was adopted to prevent Bloch’s oscillations
from being caused by the field. The corresponding scales [see Eq. (3)] are TBloch¼ 0.54 ns for Es ¼ 0.3Eg, TBloch¼ 0.82 ns for
Es ¼ 0.2Eg and TBloch¼ 1.6 ns for Es ¼ 0.1Eg. Here, the critical field strength is Eg ¼ Δ2=ð4evFÞ ¼ 0.19 kV=cm, whereas the
mass of the carriers is m ¼ Δ=ð2v2

FÞ ¼ 0.32 keV=c2.

4We have checked that the discontinuous behavior of the
potential AðtÞ at t ¼ �T=2 does not affect the outcome of our
numerical calculations.
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Comparing the left and right panels in Fig. 2, one notices
that the exhibited pk-region is indeed sensitive to the fast-
oscillating mode. However, the modifications will be
noticeable depending on how strong Es is. For instance,
at Es ¼ 0.1Eg (curves in light gray) and pk ¼ 0, the value
on the left lower panel exceeds by seven orders of
magnitude the one on its right. Yet, if pk ∈ ½5; 10�mvF,
for example, this difference is smaller due to contiguous
peaks that the spectrum without the fast-oscillating wave
exhibits. The appearance of these maxima—originated
by side-band terms due to the ramping (deramping)
functions—contrasts with the known Landau-Zener for-
mula Wg ≈ exp½−πϵ2⊥=ðeEsvFÞ�, which is independent of
the parallel momentum of the yielded quasiparticles. This
fact provides another evidence that the distribution function
Wg, and thus, its associated observables, are sensitive to the
field profile. We note, however, that as the interaction time
grows, the height of these side-band-induced peaks gradu-
ally decreases. Under such circumstances, it could be
difficult to visualize their impact.
A distinctive property of the spectrum assisted dynami-

cally (see lower left picture in Fig. 2) is that its highest
portion oscillates along pk, and that the amplitudes of these
oscillations diminish as the strong field weakens. Besides,
the findings in the left panel display a nonmonotonic
trend with the decreasing strength of the strong field.

Indeed, for Es ¼ 0.1Eg the associated spectrum’s oscil-
latory sector exceeds the one linked to Es ¼ 0.2Eg. This
behavior does not occur in the right panel and can thus be
attributed to the presence of the fast-oscillating wave. All
these features are clearly illustrated in Fig. 4. Its picture
at the top corresponds to the case in which the field has
abrupt on/off edges, while the one at the bottom comprises
smooth functions in these initial and final phases of the
field configuration. The corresponding outcomes resulting
from the analytic formula given in Eq. (5) are included.
They are exhibited in dashed-light color style, whereas the
numerical outcomes are shown by solid lines. Indeed, the
numerical and approximate curves obtained at a strong field
strength share the same color, although with a different
color intensity. Almost no difference is discernible between
the exact outcomes and those resulting from Eq. (5); for
each strong electric field, both curves overlap one on top
of the other. This analysis indicates that the ridges of
the oscillatory sector are reached at pk ¼ eEsτrid with
τrid ¼ 2πK=ω, K∈Z and jKj < 1

2
N. Besides, the region

containing these maxima extends over Δpk ≈ 2
3
eEsT,

which indicates that the yielded pair is most likely to
be localized within a spatial interval Δxk ≳ 1=Δpk ¼
ð2
3
eEsTÞ−1 ¼ 180 Å if Es ¼ 0.1Eg. To put the uncertainty

into perspective, it is seventy times greater than the lattice
constant of graphene (a0 ¼ 2.46 Å).

FIG. 4. Comparison between the numerical and analytical dependence of Wg on the momentum parallel to the external electric
field pk at p⊥ ¼ 0 (left panel). The dependence on the momentum perpendicular to the external electric field at pk ¼ 0 is shown
on the right. The results in the top band were obtained by considering a background with sharp edges, while those in the lower
band included smooth on/off sectors. The behavior resulting from the analytical formula [see Eq. (5)] is depicted in dashed
light color style. Curves sharing the same color have been obtained by using the same parameters. The numerical outcomes
have been obtained by setting the number of cycles N ¼ 200, which corresponds to a time T ¼ 0.12 ns if the band gap is
chosen as Δ¼ 7 meV.
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Further insight into the quasiparticle spectrum can
be inferred from the right panel of Fig. 4. There, the
behavior of Wgðp⊥Þ with the momentum perpendicular to
the external electric field at pk ¼ 0 is depicted for the
case in which the transitions are driven by a sharply edged
field (top) and one in which the field switching occurs
smoothly (bottom). The picture indicates clearly that
the quasiparticles promoted to the conduction band are
more likely to appear either at rest or moving along
the strong field direction. The described trend is reproduced
by the approximated expression in Eq. (5), the results
of which deviate from the exact result as p⊥ increases.
Such a behavior becomes noticeable when the external field
is characterized by abrupt on/off edges. Indeed, in this
scenario, the solid curves obtained from solving the
Boltzmann-Vlasov equation show pronounced oscillatory
tails for p⊥ > mvF, which are absent from the outcomes
linked to the case in which the field comprises smooth
ramping and deramping phases. We remark that the width
Δp⊥ ¼ 2mvF can be used to obtain a glimpse of the
transversal extension Δx⊥ ≳ Δp−1⊥ of the wave packet.
Indeed, by taking Δ¼ 7 meV, one finds Δx⊥ ≳ 93 nm.
The fact that the longitudinal and transversal widths

Δpk and Δp⊥ differ from each other evidences that the
quasiparticle spectrum has a remarkable anisotropic char-
acter, a fact that is verified in Fig. 5. The behavior of the
spectrum for a field with sharp edges is depicted in the
upper panel, while the counterpart with smooth ramping
and de-ramping sectors is shown in the lower panel.
The left density plots have been generated by setting the
strong field strength to Es ¼ 0.1Eg, whereas the remaining
parameters coincide with those used for Fig. 4. Here, the
right pictures correspond to the case in which the fast-
oscillating wave is turned off (Ew ¼ 0). In the upper panel,

the most intensely colored regions show the characteristic
peaks linked to the field given by Eq. (1). The previously
described oscillatory sector corresponds to a less intense
colored band that lies between the most bright zones
(peaks) in the upper left figure. This sector is, however,
absent in the picture on the right. A remarkable feature
exhibited in the upper panel of Fig. 2 is that the areas
surrounding the peaks with and without the fast-oscillating
mode are comparable. This provides evidence that the
difference between observables linked to the respective
distribution functions could be much less sensitive to the
finite-size effects of the field background.
Observables, such as the number of transitions per unit

area from the valence to the initially empty conduction
band, are directly influenced by the spectrum properties:

N g ¼ gsgv

Z
BZ

d2p
ð2πÞ2WgðpÞ: ð11Þ

Here, gs ¼ 2 (gv ¼ 2) accounts for the spin (valley)
degeneracy and the integration is limited by the
Brillouin zone. As we will see shortly, under particular
circumstances, the observable above determines the long-
term current excited by the external field configuration
[see Eq. (14)]. Conceptually, N g is nothing else but the
volume below the surfaces exhibited by any of the pictures
in Fig. 5. Observe that in the case driven by a sharp-edge
field, the height of the peaks is roughly two orders of
magnitude larger than the mean altitude of the region
between them. As a consequence, one can anticipate a
dominance of the side peaks in the problem’s phenom-
enology unless the extent of the middle part is sufficiently
large to mitigate their impact. In other words, as the volume
bounded by the oscillatory sector grows, the likelihood of

FIG. 5. Density plots showing the quasiparticle spectrum associated with a sharply edged field (upper panel). The lower panel displays
results linked to a field background with smooth on/off sectors. All pictures were generated by taking the number of cycles N ¼ 50
(T ¼ 30 ps). The remaining parameters have been taken as in Fig. 2. The color legends of both WgðpÞ are given in logarithmic scales.
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detecting the effect will rise. For a given strong field, this
condition can be achieved by increasing the operating time
T while the restriction in Eq. (4) is fulfilled.

IV. RESIDUAL FIELD-INDUCED CURRENT

A. Characterizing the Franz-Keldysh current
in a semiconductor graphene monolayer

The mean current density along the applied electric field
direction, induced by the creation of electron-hole pairs,
splits into two contributions [78,100]:

jðtÞ ¼ jconðtÞ þ jpolðtÞ ð12Þ

identified as the conduction jconðtÞ and polarization jpolðtÞ
currents [96,101,102]. Explicitly,

jconðtÞ ¼ 2egsgv

Z
BZ

d2p
ð2πÞ2

∂wpðtÞ
∂pk

Wgðp; tÞ;

jpolðtÞ ¼ 2egsgv

Z
BZ

d2p
ð2πÞ2

wpðtÞ
eEðtÞ Ẇgðp; tÞ: ð13Þ

The factor 2 in these expressions is due to the contribution
of both the quasiparticles and holes. Even while the
formulas above serve as the starting point for the following
numerical investigation, we are also driven to derive an
analytical expression for the current density that will allow
us to determine how it scales with various external field
parameters. To this end, let us first consider the residual
conduction current jcon ≡ limt→T=2 jconðtÞ. Observe that,
in this scenario, if the condition 1

2
eEsT ≫ jpk;⊥j is satis-

fied [see below Eq. (6)], the carriers’ velocity saturates
at the Fermi velocity, i.e., limt→T=2∂wpðtÞ=∂pk → vF.

Under such circumstances the residual conduction current
approximates jcon ≈ 2evFN g, where N g is the density of
electrons that occupies the initially empty upper Dirac
cone [see Eq. (11)]. Now, electric dipoles are created in
conjunction with each electron-hole pair that is produced
in the course of the transitions. In a semiclassical picture,
this dipole moment becomes separated by an instantane-
ous barrier width LeffðtÞ ¼ 2wpðtÞ=½eEðtÞ� and has a
magnitude pðtÞ ¼ 2eLeffðtÞ. The polarization current is
therefore caused by the rate at which these dipoles
are created. Observe that, at a time for which the electric
field has been switched off, the dipole is limt→T=2 pðtÞ ¼
2eTvF and jpol ≡ limt→T=2jpolðtÞ ≈ evFTṄ g. It is worth
remarking that limt→T=2 Ẇgðp; tÞ ∝ Qðp; T=2Þ ∼ T−2, pro-
vided the condition T ≫ 2jp⊥;kj=ðeEsÞ applies [see below
Eq. (5)]. As a result, the residual polarization current jpol ∝
T−1 is suppressed and can, thus, be safely ignored in our
calculation. Consequently, Eq. (12) approaches to

j≡ jðT=2Þ ≈ 2evFN g: ð14Þ

An approximated expression for the current density
can be established by inserting Eq. (5) into Eq. (11) and
integrating pk and p⊥ out. To be consistent with both the
application range of the Dirac model [see discussion below
Eq. (2)] and the condition under which Eq. (5) was derived,
the integration domains have to be limited by � 1

2
eEsT.

Nevertheless, observe that, from a practical prospect, the
fast damping of the integrand in p⊥ allows us to extend the
corresponding integration limits to �∞ without introduc-
ing an appreciable error. Considering the periodicity of
WgðpÞ in pk, as well as its even character in both pk and p⊥
we end up with

j ≈ 2ev1=2
F T

ðeEsÞ3=2
π2

e−π
Eg
Es

8<
:1þ ε2π2

4
eπ

Eg
Es

Z
∞

Eg
Es

dss2ffiffiffiffiffiffiffiffiffiffiffiffi
s − Eg

Es

q e−πs
����1F̃1

�
1 −

i
2
s; 2;

i
2
γ
2ω

Δ

�����
2

9=
;; ð15Þ

where the change of variables s ¼ ϵ2⊥=ðeEsvFÞ has been
carried out. In a scenario where the graphene flake has a
trivial band gap [Δ ¼ 0], the second term of the expres-
sion above is negligible as compared to its leading-order
contribution jΔ¼0 ≈ 2ev1=2

F TðeEsÞ3=2=π2. We remark that
Eq. (15) applies whenever Es ≫ Ew and for T ≪ TBloch.
As no further restriction is required on the strong electric
field, this expression can be a priori utilized to explore the
over-critical field regime where Es ≫ Eg. However, care
has to be taken in such a situation because the circum-
stances are favorable for a large number of transitions, and
the internal field created by electrons and holes might

deplete considerably the external field strength. This
backreaction effect is, however, not taken into account,
neither in the transport equation [see Eq. (2)] nor in the
approximated formulas in Eqs. (5) and (15). Because of
this limitation, our efforts are focused on investigating the
subcritical regime of the strong field Es ≲ Eg. Still, if the
strong field is close to the critical field, Eq. (15) can be
used for obtaining a glimpse of the Franz-Keldysh current.
Observe that, in the scenario characterized by the con-
dition γ ≪ Δ=ω, i.e., when ω=Δ ≪ ðEs=EgÞ1=2 the third
argument of the regularized hypergeometric function is
much smaller than unity. In such a case, 1F̃1 ≈ 1 and the
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current density is mainly driven by the tunneling from
valence to conduction band:

j ≈ 2ev1=2
F

ðeEsÞ3=2
π2

e−π
Eg
Es T

�
1þ ε2π2

4

�
Eg

Es

�
2

×
�
1þ 1

π

Es

Eg
þ 3

4π2

�
Es

Eg

�
2
�	

: ð16Þ

In the particular case where ε ¼ 0, this formula reduces to
the Landau-Zener current [78],

jLZ ≈ 2ev1=2
F

ðeEsÞ3=2
π2

e−π
Eg
Es T; ð17Þ

which turns out to be the leading-order contribution when
ε ≠ 0 and Es < Eg. We note that this will be the case
whenever ω=Δ ≪ ðEs=EgÞ1=2 < 1.
Now, when γ ≫ Δ=ω, and Es=Eg ≪ 1 the current is

induced by the absorption of one photon from the fast-
oscillating wave [see Eq. (7)]. In this case,

j ≈ eξ2wT
Δ2ω

16vF

�
1þ Δ2

ω2

�
Θðω − ΔÞ; ð18Þ

where ξw ¼ eEw=ðωmvFÞ ≪ 1 is the laser intensity
parameter, and ΘðxÞ is the unit-step function. We remark
that, unlike its three-dimensional counterpart, this current
does not vanish at the pair production threshold [see cyan
curve in Fig. 7]. Such a behavior—due to graphene’s low
dimensionality—is completely analogous to the one found
in the perturbative regime of the Breit-Wheeler process,
where nonvanishing rates at the energy threshold arise
when odd numbers of photons are absorbed [63,64]. The
Breit-Wheeler process, however, manifests this unusual
behavior in the third order in perturbation theory, which
makes its experimental verification difficult. Measuring the
current in Eq. (18) provides, therefore, an efficient way to
confirm this low-dimensional effect. Indeed, in a scenario
characterized by Ew ¼ 2 × 10−3Eg, Δ¼ 2 meV, and an
interacting time T ¼ TBloch=3 with Es → Ew [see Eq. (3)],
we found j ≈ 2.4 × 10−8 A=μm. Hence, the current to be
measured as a result of the rate’s lifting at the threshold is
I ¼ jl > 2.4 μA, if a graphene sample with characteristic
length l > 100 μm is used.

B. Current density in the combined subthreshold
and subcritical regimes

This section will focus on the subcritical field regime
(Es ≪ Eg) where the Franz-Keldysh current combines the
tunneling effect with the absorption of one photon having
energy just below the bandgap (ω≲ Δ). We will begin our
analysis by first considering an electric field with sharp
edges, as provided by Eq. (1). In order to assess the
enhancement induced by the fast-oscillating wave as

compared to the case in which it is turned off (solid gray
style), we show in Fig. 6 (solid curves) the dependence of j
and Δj≡ jðT=2Þ − jLZðT=2Þ with respect to the strong
electric field strength Es within the range Es ∈ ½4 × 10−3;
4 × 10−1�Eg. We have chosen a gap Δ¼ 2 meV as refer-
ence value for our assessment, leading to the characteristic
field scale Eg ¼ Δ2=ð4evFÞ ≈ 15.6 V=cm. To optimize the
enhancement and minimize the impact of the finite-size
effect of the external field, the interacting time has been
adjusted for each field strength in such a way that it
accounts for one third of the characteristic Bloch’s scale.
This means for instance that, at ω ¼ 0.98Δ and Es ¼
0.004Eg, the interacting time T ≈ 1.7 × 102 ns, whereas
T ≈ 1.7 ns for Es ¼ 0.4Eg. In both panels, the results have
been obtained by setting the weak field strength to
Ew ¼ 2 × 10−3Eg. In the course of the numerical compu-
tations, we have noted that the polarization current in the
domain under consideration is insignificant compared to
the corresponding conduction current. Each solid curve
there is linked to a particular laser frequency, and as this
parameter increases, it becomes clear that the results differ
significantly from the ones associated with the standard
Landau-Zener transitions (solid gray style). This enhance-
ment is attributed to the absorption of photons from the
fast-oscillating wave in the presence of the strong field, and
it becomes particularly noticeable in the range of Es
exhibited in Fig. 6. It confirms that there are two paths
to boost the interband transitions of electrons in a photo-
catalyzed system. Namely, by strengthening the strong field
or through absorption of quanta from the fast-oscillating
beam. The former channel rules the process as Es increases,
while the latter dominates as the contrary condition occurs.
Manifestly, the left panel in Fig. 6 exhibits a nonlinear

dependence of the current j on the strong field Es.
According to Ohm’s law [j ¼ σEs], this implies a field-
dependent conductivity σ which can be read off from
Eq. (15). In the left panel of Fig. 6 the outcome resulting
from the analytical formula [see Eq. (15)] has been
included in dashed style. These curves, however, differ
from the numerical ones in some portions along the electric
field sector that is displayed. The situation is more
pronounced in the case where the weak field is turned
off (compare the solid and dashed gray curves), where the
result deviates substantially from the exponential damping
linked to the standard Landau-Zener current [see Eq. (17)].
This mismatch is due to the strong field’s sharp edges,
which practically control the phenomenology via the side
peaks that arise in Wg (see Fig. 2, upper panel). Although
less severe, the impact of these maxima is also visible in
the assisted scenario, particularly for field strengths
Es > 5 × 10−2Eg. In order to mitigate their influence, it
is feasible to measure the currents with and without the
fast-oscillating field separately, as is done in modula-
tion spectroscopy, a technique traditionally employed for
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measuring the Franz-Keldysh effect [103]. The difference
between these currents Δj≡ jðT=2Þ − jLZðT=2Þ consti-
tutes a testable indicator for the dynamically assisted
Landau-Zener transitions, and its behavior is shown in
the right panel of Fig. 6. Because the effects of the peaks
in WgðpÞ are practically canceled out, it is visible that
there is good agreement between the numerical and
analytical results.
For a frequency ω ≈ 0.98Δ, the black curves in both

pictures tend to exhibit a local maximum at Es ≈
1.5 × 10−2Eg. Indeed, for this parameter combination
the current amounts to jmax ≈ Δjmax ≈ 2.4 × 10−9 A=μm,
which improves the unassisted scenario by three orders
of magnitude approximately. The emergence of this local
peak is a remarkable feature that would allow us to verify
the process with a field strength Es which is two orders
of magnitude weaker than Eg and almost an order of
magnitude larger than the weak field strength. We remark
that if the previous conditions are met experimentally, the
current to be measured in samples with characteristic length
l ¼ 100 μm will be I ¼ jmaxl≳ 0.24 μA at the stage in
which the assisted field configuration is turned off.
Noteworthy, this prediction could be measurable with
presently available technology. Indeed, in graphene layers
with gapless band structures [Δ ¼ 0], photoexcited cur-
rents ∼pA have already been detected via Landau-Zener-
Stückelberg interferometry [86,87]. It is worth remarking

that, since there is a good agreement between the analytical
and numerical results at the maximum, the change in slope
from positive to negative around this field strength can
be directly related to the number of produced quasiparticles
[see Eq. (14)]. The aforementioned peak has been numeri-
cally verified to remain essentially unchangedwhen a carrier
envelope phase ϕCEP is inserted into the fast-oscillating
wave, and it is varied continuously within ½0; π�. Moreover,
a comparison between the black and red curves in Fig. 6
reveals that the location of the maximum varies with
changes in frequency and strong field strength. Indeed,
for ω ≈ 0.97Δ, the maximum current is reached at
Es ≈ 0.04Eg. We remark that for the strong fields at which
the maxima arise, the Landau-Zener contribution in Eq. (15)
is exponentially suppressed compared to its second con-
tribution, i.e.,

j ≈ Δj

≈
1

2
ev1=2

F T
ðeEwÞ2ffiffiffiffiffiffiffiffi

eEs
p

Z
∞

Eg
Es

dss2ffiffiffiffiffiffiffiffiffiffiffiffi
s − Eg

Es

q e−πs

×

����1F̃1

�
1 −

i
2
s; 2;

i
2
γ
2ω

Δ

�����
2

ð19Þ

with Ew ≪ Es ≪ Eg. This is why the left sectors of each
picture in Fig. 6 coincide quantitatively and qualitatively.

FIG. 6. Current density and its difference with respect to the case driven by the strong field solely at the stage in which the field is
turned off. In both panels, the plot markers show the numerical results, which have been obtained by adjusting the interacting time to one
third of the corresponding Bloch’s scale, i.e., the time is not fixed along a colored curve but rather varies from one marker to another. For
comparisons, the outcomes resulting from the analytical formula (15) have been included [dashed curves]. In each panel, curves sharing
the same color have been obtained by using the same parameters. Particularly, the curves in gray correspond to Ew ¼ 0. All curves have
been generated by setting a gap Δ¼ 2 meV leading to a critical field Eg ¼ Δ2=ð4evFÞ ≈ 15.6 V=cm.
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According to this analysis, the locations of themaximum are
unaffected by the amplitude Ew of the fast-oscillating wave,
but their heights scale quadratically with it.
Figure 7 provides a further overview of the peaks’ rise

with the fast-oscillating mode’s frequency ω. The picture
covers an interval, ranging from the subthreshold domain
ω < Δ to the over-threshold regime ω ≥ Δ, and includes
the result associated with Eq. (18) (cyan solid curve). The
current density linked to this case exhibits the jump at the
threshold ω ¼ Δ (cyan dashed line) discussed previously in
Sec. IVA. By setting the strong field at the values for which
the maxima of the black, red, and orange curves in the left
panel of Fig. 6 are hit, respectively, the results colored in
black, red, and orange in Fig. 7 have been generated.
Conversely, the gray and yellow curves were obtained
by setting Es ¼ 0.4Eg and Es ¼ 0.1Eg, respectively. We
observe that, below the threshold ω < Δ, the curves tend to
stick closer to the vertical line as both Es → 0 and ω → Δ.
As this occurs, the absorption channel becomes more and
more efficient in inducing electron transitions from the
valence to the conduction band, and the current density
tends to saturate to the nontrivial perturbative value j ≈
2.4 × 10−8 A=μm dictated by Eq. (18). For frequencies
above the threshold ω ≥ Δ, j exhibits the characteristic
oscillatory behavior of the Franz-Keldysh effect. Indeed,
Fig. 7 reveals the hallmarks of this process in graphene by
illustrating how the current solely associated with the
perturbative absorption channel varies when a nonpertur-
bative electric field is turned on.

Coming back to the combined sub-threshold and sub-
critical regime, Figure 8 is intended to provide insight about
the trend of the current density with the change of Es in the
case where the external background is characterized by
smooth turning on and off phases. The picture shows the Es
region where the numerical findings related to abrupt
ramping and de-ramping functions differ from the corre-
sponding analytical results. In contrast to the left panel in
Fig. 6, the agreement is noticeably good in both the assisted
and unassisted scenarios, the latter one [dotted gray curve]
exhibiting the known exponential falling for small field
strength. The fact that the Landau-Zener trend is less
sensitive in the present situation to the field’s finite size
can be understood as a direct consequence of the chosen
interaction time, which makes the resonances linked to
the side-band terms negligible as we pointed out in Sec. III.
We note that, compared to the situation dealing with
abrupt turn-on/off phases, the enhancement caused by
the assisting fast-oscillating wave is increased by several
orders of magnitude in the current field configuration.
For instance, at Es ¼ 0.1Eg and ω ¼ 0.98Δ the improve-
ment with smooth ramping and deramping phases with
sin2½1

2
πð1 − 6t=TÞ�-shape exceeds the one exhibited in the

left panel of Fig. 6 by a factor ∼108. This is unambiguous
proof that measurements of the induced current in this
situation are less sensitive to the effects of the field’s
finite size.

V. CONCLUSIONS

Summarizing, we have investigated the Franz-Keldysh
effect in semiconductor graphene. Our study, based on the
Dirac-like model, indicates that the electronic transitions

FIG. 7. Dependence of the residual current density on the
frequency of the fast-oscillating wave. The curves colored in
black, red, orange yellow and gray are based on the analytical
formula given in Eq. (15), whereas the one in cyan corresponds to
Eq. (18). The absorptive threshold is represented by the dashed
line for reference. The benchmark parameters and notation used
in Fig. 6 have also been adopted here.

FIG. 8. Dependence of the current density on a strong field with
smooth turn-on/off sectors. The benchmark parameters and
notation used in Fig. 6 have also been adopted here.
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are strongly influenced by the turn-on/off stages of the
field background, being less affected when these phases
occur smoothly on time scales larger than the forma-
tion time needed to create an electron-hole pair. A
general expression for the associated current density
was derived, and its various asymptotic regimes of field
strength and frequency have been explored. In the
scenario in which the strong field effect is suppressed
as compared to the one induced by the fast-oscillating
wave, the current shows the characteristic threshold
jump that other perturbative absorptive channels mani-
fest when a band gap is induced in graphene. It has been
argued that measurements made using the proposed
setup can benefit the detection of this anomalous
behavior rooted in the low dimensionality. We have
verified that in the combined subcritical field and
subthreshold regimes, where the absorption process
competes against the tunneling effect induced by the

strong field, the interband transitions of electrons are
highly stimulated as compared to the prediction linked
to the standard Landau-Zener effect. We have estab-
lished further conditions that would ensure process
optimization and pointed out that measurements of
the generated current can verify the solid-state analog
of the dynamically assisted Schwinger mechanism
in QED.
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