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We calculate, in a systematic way, the general structure of the self-energy of light massive fermions and
the effective propagator in a thermomagnetic medium with the inclusion of anomalous magnetic moment
(AMM) of the fermion in the weak field approximation. It is found that the self-energy of a massive fermion
in this case consists of five nontrivial structure factors in contrast to the massless case where the self-energy
contains only four. We employ the real time formalism (RTF) of thermal field theory within the ambit of
hard thermal loop (HTL) approximation in the evaluation of the structure factors. The collective modes are
obtained from the poles of the effective propagator of the fermion. The investigation of the dispersion
relations for nondegenerate ground state shows that the effect of the magnetic field is more for up quark
than the down quark because of the larger charge of the former. The important observation is that in the first
excited state the degeneracy, which exists for nonzero magnetic field is lifted due to the inclusion of the
AMM. It is also observed that the first excited state becomes less dispersive compared to the case
when AMM is not considered, whereas the second excited state becomes more dispersive when both
the magnetic field and the AMM are nonzero in comparison to the case with vanishing AMM. These effects
are observed in both particle and holelike excitations. Qualitatively similar behavior is also seen in the case
of down quarks.
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I. INTRODUCTION

The investigation of hot and/or dense matter in the
presence of a magnetic field has captivated a broad
spectrum of researchers from both theoretical and exper-
imental domains in recent decades [1–9]. Numerical
estimates indicate that during noncentral or asymmetric
collisions of two heavy nuclei, extremely strong magnetic
fields of the order of ∼1018 Gauss or even larger can be
generated due to the motion of receding spectators [10,11].
Additionally, strong magnetic fields are known to exist in
various other physical environments. For instance, within
the interiors of certain astrophysical objects known as

magnetars [12,13], magnetic fields on the order of 1015

Gauss can be found. Furthermore, there is a conjecture
that primordial magnetic fields as powerful as ∼1023
Gauss might have been generated in the early universe
during the electroweak phase transition driven by chiral
anomaly [14,15]. Given that the strength of these magnetic
fields is comparable to the typical energy scale of Quantum
Chromodynamics (QCD) (eB ∼ Λ2

QCD), various micro-
scopic and bulk properties of strongly interacting matter
could undergo significant modifications (see Refs. [1,2,4]
for recent reviews). Moreover, the existence of a robust
background magnetic field gives rise to a multitude of
intriguing physical phenomena [16–19]. These phenomena
originate from the intricate vacuum structure of the
underlying QCD, e.g. the chiral magnetic effect (CME)
[5,10,20,21], magnetic catalysis (MC) [22–25], inverse
magnetic catalysis (IMC) [26,27], chiral vortical effect
(CVE), vacuum superconductivity and superfluidity [28,29]
and others.
In the context of a hot and dense medium, such as a QED

or QCD plasma, it is well-established that traditional bare
perturbation theory encounters challenges due to the
presence of infrared divergences. To address this problem
originating because of massless particles, a reorganization
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of perturbation theory has been carried out, involving an
expansion around a system of massive quasiparticles [30].
These quasiparticles acquire mass through thermal fluctu-
ations. An essential aspect of this approach is the resum-
mation of a specific class of diagrams known as hard
thermal loop (HTL) resummation [31]. This resummation
becomes necessary when the loop momenta are of the order
of the temperature. An extensive literature can be found on
the modification of the fermion dispersion relation, which
refers to the poles of the fermion propagator, due to high-
temperature effects in chirally invariant gauge theories like
QCD or QED with massless fermions incorporating HTL
approximations [32–38]. This modification arises from the
interaction of a fermion with the thermal background in a
plasma. It is found that in a parity-preserving gauge theory
at finite temperature, the fermion dispersion relation leads
to two solutions. These solutions, both characterized by
positive energy, pertain to the propagation of fermionic
excitations within the thermal medium, often referred to as
quasiparticles. They are commonly known as the particle
and hole/plasmino modes in the literature. Each point along
these branches corresponds to specific energy and momen-
tum values for a quasiparticle. Quasiparticles associated
with the particlelike excitation possess helicity matching
their chirality, while those linked to the holelike excitation
(plasmino) exhibits helicity opposite to their chirality. It is
important to highlight that, the existence of the plasmino
mode as an additional physical solution only arises when
temperature effects are considered. The dispersion proper-
ties in case of a fermion with mass has been studied in
Refs. [39–42]. These studies have revealed that the col-
lective mode experiences suppression as the mass of the
fermion increases.
The magnetic fields produced during heavy-ion colli-

sions are transient but its decay may be substantially
delayed due to the presence of a high electrical conductivity
of the hot and dense medium [43–46]. In spite of this,
by the time the quark gluon plasma (QGP) equilibrates, the
magnetic field strength becomes sufficiently weak so that
an expansion in terms of the magnetic field is relevant
and one can work in the weak field limit. In such case the
relevant energy scale of the system is governed by the
inequality: jqBj ≪ T2 where q is the charge of the fermion,
B is the strength of the magnetic field and T is the
temperature of the system. A substantial body of work
can be found in the literature that explores the properties of
a hot and/or dense medium in the presence of a background
magnetic field using HTL techniques. References [47,48]
have investigated the thermomagnetic correction to the
three and four-point quark-gluon vertices in the presence of
a weak magnetic field employing the HTL approximation.
The general structure of gluon self energy and collective
excitations in a hot magnetized medium has been examined

in Refs. [49–51]. The general structure of one loop self-
energy of a fermion and effective quark propagator for a
chirally invariant theory in a magnetized medium has been
derived in Ref. [52] based on which the pressure [53] and
chiral susceptibility [54] of a weakly magnetized hot and
dense deconfined QCD matter has been evaluated. The soft
contribution to the damping rate of a hard photon in a
weakly magnetized QED medium has also been studied
in Ref. [55].
In all these investigations mentioned above the imagi-

nary time formalism of finite temperature field theory with
HTL approximation has been used. In this article, we will
use the real time formalism (RTF) of thermal field theory to
investigate the properties of a magnetized medium. To the
best of our knowledge, this approach has not been explored
earlier. Our objective is to examine the collective modes of
a massive fermion in a medium with a weak space and
time independent magnetic field in comparison to the
temperature scale of the system. Moreover, we will also
incorporate the finite values of the anomalous magnetic
moment (AMM) of the fermion which appears due to the
quantum corrections when fermions are coupled to the
gauge fields [56–58]. Employing the Schwinger ansatz,
the impact of quark AMM on various properties of strongly
interacting matter has been extensively investigated
using effective models [59–68]. In the current work, we
evaluate the general structure of one loop self-energy of
a massive fermion in a magnetized medium following
Refs. [33,39–41,52,54]. Subsequently, we compute the
explicit expression of one loop self energy using the
weak field expansion of the fermion propagator with finite
values of AMM as obtained in Ref. [69]. All the nontrivial
structure factors are derived employing HTL techniques.
Finally utilizing the Schwinger-Dyson method, the effec-
tive fermion propagator has been calculated and dispersion
relation is investigated by analysing the thermomagneti-
cally modified pole of the propagator. The effective
propagator thus obtained can also be used to evaluate
the photon damping rate and real photon emission from a
magnetized medium with AMM.
The article is organized as follows. In Sec. II, the general

expression of one-loop self-energy of a massive fermion in
a thermomagnetic dense medium is calculated employing
RTF. Next in Sec. III, the general Dirac structure of the
fermion self energy is analyzed in detail followed by the
evaluation of complete interacting/effective propagator by
solving Dyson-Schwinger equation in Sec. IV. Section V
along with its four subsections is devoted for the explicit
evaluation of the structure factors using the HTL approxi-
mation. In Sec. VI, we have shown the numerical results
and finally we summarize and conclude in Sec. VII. A
small Appendix is provided to meet some calculational
gaps of Sec. IV.
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II. ONE-LOOP SELF ENERGY OF A FERMION AT
FINITE TEMPERATURE IN PRESENCE OF

BACKGROUND FIELD

We start this section by specifying our choice of metric
tensor which is given by gμν ¼ diagð1;−1;−1;−1Þ. Any
four vector K is decomposed into Kμ ¼ Kμ

k þ Kμ
⊥ where

Kμ
k;⊥ ¼ gμνk;⊥Kν in which g

μν
k ¼ diagð1; 0; 0;−1Þ and gμν⊥ ¼

diagð0;−1;−1; 0Þ so that gμν ¼ gμνk þ gμν⊥ . Throughout
this article, we will use capital letters to denote four-
momentum and the corresponding small letters will denote
the absolute values of the spatial component of the four
vector (i.e. magnitude of three-momentum) e.g. Kμ ≡
ðk0; k⃗Þ and k ¼ jk⃗j. The translationally invariant part of
the propagator of a fermion with charge q (for example, a
up (down) quark will have a charge q ¼ 2=3e (q ¼ −1=3e)
where e > 0 is the charge of a proton) and AMM κ in the
presence of a background magnetic field B⃗ ¼ Bẑ (i.e. along
the positive z-direction) in weak field approximation up to
first order in B is given by [69]

SBðP;mÞ ¼ −ð=PþmÞ
P2 −m2 þ iϵ

þ ðqBÞ iγ1γ2ð=Pk þmÞ
ðP2 −m2 þ iϵÞ2

þ ðκqBÞ ð=PþmÞiγ1γ2ð=PþmÞ
ðP2 −m2 þ iϵÞ2 þOðB2Þ

¼ F ðP;m;m1ÞΔFðP;m1Þ
���
m1¼m

; ð1Þ

where, F ðP;m;m1Þ ¼ ð=PþmÞþ ðqBÞiγ1γ2ð=Pk þmÞÂ1þ
ðκqBÞð=PþmÞiγ1γ2ð=PþmÞÂ1þOðB2Þ, with

Ân ¼ ð−1Þn ∂

∂ðm2
1Þn

and ΔFðP;m1Þ ¼
−1

P2 −m2
1 þ iϵ

:

ð2Þ

In Eq. (1), m is the mass and κ is the AMM of the fermion
respectively; also the propagator SBðP;mÞ contains an
identity matrix in the gauge group space which is sup-
pressed for brevity. Note that m1 is a parameter which we
set equal to the massm after the calculation. Few comments
about the propagator of a charged particle in a magnetic
field are in order here. The propagator in this case
separately depends upon the transverse and longitudinal
components of the momentum implying that it is not
translationally invariant in the configuration space due to
the presence of a phase factor. The latter can be made unity
by choosing an appropriate gauge transformation [47].
Now, the 11-component of the fermion propagator in

weak magnetic field approximation corresponding to
Eq. (1) in the RTF of thermal field theory is given by [69]

S11B ðP;m;m1Þ ¼ SBðP;m;m1Þ − ηðP · uÞ�SBðP;m;m1Þ
− γ0S†BðP;m;m1Þγ0

�
¼ F ðP;m;m1Þ

�
ΔFðP;m1Þ − 2πiηðP · uÞδ

× ðP2 −m2
1Þ
����

m1¼m
: ð3Þ

In the above equation, u is the four-velocity of the heat bath
and in the local rest frame uμ ≡ ð1; 0⃗Þ. Note that, here F̂
operates on both ΔFðP;m1Þ and the argument of the delta
function containing m1. In Eq. (3), ηðP · uÞ is distribution
like function and is given by ηðxÞ ¼ θðxÞfþðxÞ þ
θð−xÞf−ð−xÞ where, θðxÞ is the unit step function and

f�ðxÞ ¼ 1

eðx∓μÞ=T þ 1
ð4Þ

is the Fermi-Dirac distribution function.
In the presence of a background magnetic field, the

11-component of one loop self-energy (see Fig. 1) of the
fermion can be written as

Σ11
B ðPÞ ¼ ig2CðRÞ

Z
d4K
ð2πÞ4D

11
μνðKÞγμS11B ðQ;m;m1Þγν; ð5Þ

where, g is the gauge-fermion coupling, CðRÞ is the
Casimir invariant of the respective gauge group and
D11

μνðKÞ represents the 11-component of the gluon propa-
gator and is given by

D11
μνðKÞ ¼ −gμν

�
−1

K2 þ iϵ
þ 2πiNðK · uÞδðK2Þ

�
; ð6Þ

in which NðxÞ ¼ θðxÞnðxÞ þ θð−xÞnð−xÞ with nðxÞ ¼
1

ex=T−1 being the Bose-Einstein distribution function.
Now using Eqs. (3) and (6) one can simplify Eq. (5) to

arrive at

Σ11
B ðPÞ ¼ Σ11

vac þ Σ11
I þ Σ11

II ; ð7Þ

where,

quark quarkquark

gluon

FIG. 1. Typical Feynman diagram contributing to the one loop
self-energy of a fermion.
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Σ11
vac ¼ g2CðRÞ

Z
d3k
ð2πÞ3

�
N̂ ðk0 ¼ −p0 − ωq;1Þ

�
1

p0 þ ωk þ ωq;1 − iϵ

�

− N̂ ðk0 ¼ −ωkÞ
�

1

p0 − ωk − ωq;1 þ iϵ

��
1

4ωkωq;1

����
m1¼m

; ð8Þ

Σ11
I ¼ −g2CðRÞ

Z
d3k
ð2πÞ3

�
N̂ ðk0 ¼ −p0 þ ωq;1Þfþðωq;1Þ

�
1

p0 − ωk − ωq;1 þ iϵ
−

1

p0 þ ωk − ωq;1 − iϵ

�

þ N̂ ðk0 ¼ −p0 − ωq;1Þf−ðωq;1Þ
�

1

p0 − ωk þ ωq;1 þ iϵ
−

1

p0 þ ωk þ ωq;1 − iϵ

�

− N̂ ðk0 ¼ ωkÞnðωkÞ
�

1

p0 þ ωk − ωq;1 þ iϵ
−

1

p0 þ ωk þ ωq;1 − iϵ

�

− N̂ ðk0 ¼ −ωkÞnðωkÞ
�

1

p0 − ωk − ωq;1 þ iϵ
−

1

p0 − ωk þ ωq;1 − iϵ

��
1

4ωkωq;1

����
m1¼m

; ð9Þ

Σ11
II ¼ −2πig2CðRÞ

Z
d3k
ð2πÞ3

�
N̂ ðk0 ¼ ωkÞfþðωq;1ÞnðωkÞδðp0 þ ωk − ωq;1Þ

þ N̂ ðk0 ¼ −ωkÞf−ðωq;1ÞnðωkÞδðp0 − ωk þ ωq;1Þ
� 1

4ωkωq;1

����
m1¼m

ð10Þ

in which ωk ¼ k, ωq;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp⃗þ k⃗Þ2 þm2

1

q
and

N̂ ðQÞ ¼ γμF̂ ðQ;m;m1Þγμ
¼ 4m − 2=Q − iγ1γ2



2qBþ 4mκqB

�
=QkÂ1: ð11Þ

Note that Eq. (11) contains derivative with respect to the
mass parameter m1 and the nontrivial Dirac structure of
the self-energy. While evaluating Eq. (9) we have used the
following identities:

ηðQ · uÞ ¼ 1

2ωq;1

�
fþðωq;1Þδ



q0 − ωq;1

�

þ f−ðωq;1Þδ


q0 þ ωq;1

��
; ð12Þ

NðK · uÞ ¼ 1

2ωk

�
nðωkÞδðk0 − ωkÞ þ nðωkÞδðk0 þ ωkÞ

�
:

ð13Þ

Since we aim to study the dispersive properties of the
fermion, the relevant contribution will come from the real
part of the self-energy. Now from the Eq. (10), one can
observe that Σ11

II being purely imaginary will not contribute
to the dispersion relation of the fermion. Moreover, in the
RTF of thermal field theory the real part of the self-energy
ΣB is equal to real part of its 11-component i.e. ReΣBðPÞ ¼
ReΣ11

B ðPÞ [33,36,70]. Thus simplifying Eqs. (8) and (9),
we obtain

ReΣB ¼ g2CðRÞ
Z

d3k
ð2πÞ3

�
N̂ ðk0 ¼ −p0 − ωq;1ÞP

�
1

p0 þ ωk þ ωq;1

�
− N̂ ðk0 ¼ −ωkÞP

�
1

p0 − ωk − ωq;1

�

− N̂ ðk0 ¼ −p0 þ ωq;1Þfþðωq;1ÞP
�

1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

− N̂ ðk0 ¼ −p0 − ωq;1Þf−ðωq;1ÞP
�

1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�

þ N̂ ðk0 ¼ ωkÞnðωkÞP
�

1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

þ N̂ ðk0 ¼ −ωkÞnðωkÞP
�

1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

; ð14Þ
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where P denotes Cauchy principal value integration. In the
next section we will evaluate the general structure of the
fermion self-energy where we will use Eq. (14) to calculate
the nontrivial structure factors.

III. GENERAL STRUCTURE OF FERMION
SELF-ENERGY IN A MAGNETIZED MEDIUM

In this section we discuss the general structure of the
self-energy of a massive fermion in a hot magnetized
medium following Refs. [39–41,52,54,71]. Note that the
fermion self-energy ΣB in Eq. (14) is a 4 × 4 matrix in the
Dirac space and it is a Lorentz scalar. At finite temperature
and in the presence of a background magnetic field, ΣBðPÞ
is a function of four-momentum P of the corresponding
fermion, medium four-velocity u and an additional four-
vector nμ corresponding to the magnetic field direction. It is
well known that any 4 × 4matrix can be expressed in terms

of sixteen basis matrices: f1; γ5; γμ; γμγ5; σμνg where γ5 ¼
iγ0γ1γ2γ3 and σμν ¼ i

2
½γμ; γν�. Now, as argued in Ref. [52],

terms involving σμν will not arise due to its antisymmetric
nature in any loop order in the self-energy. Moreover, any
term proportional to γ5 will not contribute as it will break
the parity invariance. Thus, for the massive fermion we
arrive at the following general covariant structure of the
fermion self-energy

ΣBðPÞ ¼ −α − a=P − b=u − c=n − a0γ5=P − b0γ5=u − c0γ5=n;

ð15Þ

where, α, a, b, c, a0, b0 and c0 are the seven form/structure
factors. Multiplying Eq. (15) with different basis vectors
and then taking the trace, one obtains all the form factors in
terms of ΣBðPÞ. They are expressed as follows:

α ¼ −
1

4
Tr½ΣB�; ð16Þ

a ¼ 1

4

Tr½=PΣB� − ðP · uÞTr½=uΣB�
ðP · uÞ − P2

; ð17Þ

b ¼ 1

4

−ðP · uÞTr½=PΣB� þ P2Tr½=uΣB�
ðP · uÞ − P2

; ð18Þ

c ¼ 1

4

ðP · nÞTr½=PΣB� − ðP · uÞðP · nÞTr½=uΣB� þ fðP · uÞ − P2gTr½=nΣB�
ðP · uÞ − P2

; ð19Þ

a0 ¼ 1

4P2⊥

�
Tr½γ5=PΣB� − ðP · uÞTr½γ5=uΣB� þ ðP · nÞTr½γ5=nΣB�

�
; ð20Þ

b0 ¼ 1

4P2⊥

�
−ðP · uÞTr½γ5=PΣB� þ fðP · nÞ þ P2gTr½γ5=uΣB� − ðP · uÞðP · nÞTr½γ5=nΣB�

�
; ð21Þ

c0 ¼ 1

4P2⊥

�ðP · nÞTr½γ5=PΣB� − ðP · uÞðP · nÞTr½γ5=uΣB� þ fðP · uÞ − P2gTr½γ5=nΣB�
�
; ð22Þ

where, P2⊥ ¼ −p2
x − p2

y. Note that the structure factor
α is not included in Ref. [54], however as argued in
Refs. [39–41,71], it should be present in the case of a
massive fermion which results in explicit breaking of chiral
symmetry. Now since N̂ ðQÞ defined in Eq. (11) involves a
nontrivial Dirac structure, by direct calculation from
Eq. (14), one can show that the structure factors c and
a0 are exactly zero for one loop self energy in the weak
magnetic field limit. Although, in this article we have
considered only terms linear in B in the thermomagneti-
cally modified fermion propagator defined in Eq. (1), we
have checked that this argument is valid upto OðB2Þ (note
that, in Ref. [54] it was shown that c and a0 are zero in
absence of finite values of AMM of the fermion upto

OðB2Þ). Once a0 ¼ 0, it can be shown that b0 and c0 take the
following simpler forms:

b0 ¼ 1

4
Tr½γ5=uΣB�; ð23Þ

c0 ¼ −
1

4
Tr½γ5=nΣB�: ð24Þ

Therefore the general structure of one loop self-energy of
a thermomagnetically modified massive fermion with non-
zero AMM contains five nontrivial structure factors defined
in Eqs. (16)–(18), (23), and (24) and it is given by
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ΣBðPÞ ¼ −α − a=P − b=u − b0γ5=u − c0γ5=n: ð25Þ

We will derive analytical expressions for all these structure
factors in Sec. V using hard thermal loop approximation.

IV. EFFECTIVE FERMION PROPAGATOR

Employing Dyson-Schwinger equation, the effective
fermion propagator can be expressed as SðPÞ ¼

1

=P−m−ΣBðPÞ
so that its inverse is given by

S−1ðPÞ ¼ =P −m − ΣBðPÞ: ð26Þ

To proceed further it is useful to introduce chiral projection
operators P� ¼ 1

2
ð1� γ5Þ where Pþ (P−) is the right (left)

chiral projection operator. Using these projection operators,
one can rewrite Eq. (15) (note that coefficients c and a0 are
zero) [33,52] as

ΣBðPÞ ¼ −α − PþΣþP− − P−Σ−Pþ; ð27Þ

where, Σ� ¼ a=Pþ ðb ∓ b0Þ=u ∓ c0=n. Now using the iden-
tity =P ¼ Pþ=PP− þ P−=PPþ, we can write the inverse of the
effective propagator S−1 of Eq. (26) as Ref. [33] as

S−1ðPÞ ¼ Pþ=LP− þ P−=RPþ − CPþ − CP−; ð28Þ

where,

C ¼ m − α; ð29Þ

L ¼ ð1þ aÞPþ ðb − b0Þu − c0n; ð30Þ

R ¼ ð1þ aÞPþ ðbþ b0Þuþ c0n: ð31Þ

Now S−1ðPÞ as given in Eq. (26) can be inverted following
Ref. [33] to arrive at the expression for effective propagator
for a massive fermion in magnetized medium and is
given by

SðPÞ ¼ 1

D

�
PþðL2=R − C2=LÞP− þ P−ðR2=L − C2=RÞPþ

þ CPþ

�
L · R − C2 þ 1

2
½=L; =R�

�
Pþ

þ CP−

�
L · R − C2 −

1

2
½=L; =R�

�
P−

�
; ð32Þ

where the denominator of the propagator reads

D ¼ L2R2 − 2C2ðL · RÞ þ C4: ð33Þ

The denominator D can be factorized as shown in the
Appendix and can be put in a more useful form like

D ¼ Dþðp0; pÞD−ðp0; pÞ; ð34Þ

where

D�ðp0; p; eBÞ ¼ ðAp0 þ BÞ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − D2 þ A2p2

q
; ð35Þ

in which the quantities A, B, C and D are functions of the
structure factors α, a, b, c, a0, b0 and c0 whose explicit
expressions are provided in the Appendix. The poles of the
propagator in Eq. (32) give the dispersion relations ω ¼
ωðpÞ of the fermion which essentially requires solving
Dðp0 ¼ ω; pÞ ¼ 0; or in other words solving the following
set of transcendental equations for ω:

Dþðp0 ¼ ω; pÞ ¼ 0; ð36Þ

D−ðp0 ¼ ω; pÞ ¼ 0: ð37Þ

V. EVALUATION OF THE STRUCTURE
FACTORS

In this section we will derive the nontrivial structure
factors appearing in Eq. (25) within the ambit of HTL
approximation. We will consider the loop momentum K as
hard (∼T) and the external momentum (∼gT) will be
considered negligible compared to K. General remarks on
the HTL approximation can be found in Refs. [36–38,72].
Note that, the medium independent part of Eq. (14) will
renormalize the vacuum. So we need to work with only
medium-dependent part.

A. Evaluation of α

Considering only the medium dependent part of Eq. (14)
in Eq. (16) we get
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α ¼ −g2CðRÞ
Z

d3k
ð2πÞ3

�
1

4
Tr½N̂ ðk0 ¼ −p0 þ ωq;1Þ�fþðωq;1ÞP

�
1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

þ 1

4
Tr½N̂ ðk0 ¼ −p0 − ωq;1Þ�f−ðωq;1ÞP

�
1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr½N̂ ðk0 ¼ ωkÞ�nðωkÞP

�
1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr½N̂ ðk0 ¼ −ωkÞ�nðωkÞP

�
1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

¼ 4mg2CðRÞ
Z

d3k
ð2πÞ3

�
fþðωqÞP

�
1

p0 − ωk − ωq
−

1

p0 þ ωk − ωq

�
þ f−ðωqÞP

�
1

p0 − ωk þ ωq
−

1

p0 þ ωk þ ωq

�

− nðωkÞP
�

1

p0 þ ωk − ωq
−

1

p0 þ ωk þ ωq

�
− nðωkÞP

�
1

p0 − ωk − ωq
−

1

p0 − ωk þ ωq

��
1

4ωkωq
; ð38Þ

where we have used the fact that Tr½N̂ � ¼ −16m. Next we
will consider the scenario where the chemical potential of
the fermion is zero in which case the Fermi-Dirac distri-
bution functions become f�ðxÞ → fðxÞ ¼ ½ex=T þ 1�−1
(say). In the HTL approximation we can thus write

ωq ≃ ωk þ p⃗ · k̂; ð39Þ

fðωqÞ ≃ fðωkÞ þ p⃗ · k̂
dfðωkÞ
dωk

; ð40Þ

1

p0 � ðωk − ωqÞ
≃

1

p0 ∓ p⃗ · k̂
; ð41Þ

1

p0 � ðωk þ ωqÞ
≃

1

�2ωk
: ð42Þ

Making use of Eqs. (39)–(42) in Eq. (38), we obtain

α ≃ 4mg2CðRÞ
Z

d3k
ð2πÞ3

1

4ωkωq

��
fðωkÞ þ nðωkÞ




×

�
1

p0 þ p⃗ · k̂
−

1

p0 − p⃗ · k̂

�

þ dfðωkÞ
dωk

�
p⃗ · k̂

p0 þ p⃗ · k̂
−

p⃗ · k̂

p0 − p⃗ · k̂

��

≃ −8mg2CðRÞ
Z

d3k
ð2πÞ3

1

4ωkωq

dfðωkÞ
dωk

p⃗ · k̂

p0 − p⃗ · k̂

≃ −
8mg2CðRÞ

8π2

Z
∞

0

dk
dfðωkÞ
dωk

Z
dΩ
4π

p⃗ · k̂

p0 − p⃗ · k̂
: ð43Þ

Here to arrive at the second line we have changed the
integration variable from k⃗ → −k⃗ in all the terms that contain
p0 þ p⃗ · k̂ in the denominator and observed that only the last
term survives. Defining a four vector K̂μ ¼ ð1; k̂Þ such that

P · K̂ ¼ p0 − p⃗ · k̂, the integral with respect to k can be
evaluated exactly and we get in the HTL approximation

α ≃
8mg2CðRÞ

16π2

Z
dΩ
4π

p⃗ · k̂

P · K̂
: ð44Þ

B. Evaluations of a and b

To calculate the coefficients a and b defined in Eqs. (17)
and (18) respectively, one needs to use the following values
of the traces:

Tr½=PN̂ ðQÞ� ¼ 8P ·Q ð45Þ

Tr½=uN̂ ðQÞ� ¼ −8Q · u: ð46Þ

Thus, it is evident from Eqs. (45) and (46), the coefficients
a and b do not receive any correction due to the presence of
background magnetic field. So, in the HTL approximation,
they will have the same expression as obtained in
Refs. [33,36,38,72]

a ≃ −
M2

th

p2

Z
dΩ
4π

p⃗ · k̂

P · K̂
; ð47Þ

b ≃
M2

th

p2

Z
dΩ
4π

ðP · uÞðp⃗ · k̂Þ − p2

P · K̂
; ð48Þ

whereM2
th ¼ g2CðRÞT2=8. Note that, the background field

independence of the structure factors a and b is a
manifestation of the fact that we are working up to first
order in B. However, if one goes to higher order in B, the
expressions for a and b will depend on the magnetic
field [54].
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C. Evaluation of b0

To evaluate b0, we again use the temperature dependent part of Eq. (14) in Eq. (23) to arrive at

b0 ¼ −g2CðRÞ
Z

d3k
ð2πÞ3

�
1

4
Tr½γ5=uN̂ ðk0 ¼ −p0 þ ωq;1Þ�fþðωq;1ÞP

�
1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

þ 1

4
Tr½γ5=uN̂ ðk0 ¼ −p0 − ωq;1Þ�f−ðωq;1ÞP

�
1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr½γ5=uN̂ ðk0 ¼ ωkÞ�nðωkÞP

�
1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr½γ5=uN̂ ðk0 ¼ −ωkÞ�nðωkÞP

�
1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

¼ 4mg2CðRÞ
Z

d3k
ð2πÞ3 ð2qBþ 4κqBmÞqzÂ1

�
fþðωq;1ÞP

�
1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

þ f−ðωq;1ÞP
�

1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�
− nðωkÞP

�
1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

− nðωkÞP
�

1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

: ð49Þ

Notice that Tr½γ5=uN̂ � receives contributions only from
the background field dependent part of the one loop self-
energy which is evident from the expression of N̂ given in
Eq. (11). Thus, the structure factor b0 arises purely due to
the presence of background magnetic field. Here also we
will work with a system at zero chemical potential.
Furthermore, we will assume that the Bose-Einstein

distribution depends on the quark mass i.e. ωk → ωk;1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
. This nonzero quark mass works as an infrared

regulator that allows one to calculate the leading temper-
ature behavior [47]. Moreover, in the HTL approxi-
mation we can write qz ≃ kz. Incorporating these along
with the general HTL results expressed in Eqs. (39)–(42)
we get

b0 ≃ ð2qBþ fκqBmÞg2CðRÞ ∂

∂m2
1

Z
d3k
ð2πÞ3

�
ffðωk;1Þ þ nðωk;1Þg

�
kz

p0 þ p⃗ · k̂
−

kz
p0 − p⃗ · k̂

�

þ dfðωkÞ
dωk

� ðp⃗ · k̂Þkz
p0 þ p⃗ · k̂

−
ðp⃗ · k̂Þkz
p0 − p⃗ · k̂

��
1

4ωkωk;1

����
m1¼m

≃ −ð4qBþ 8κqBmÞg2CðRÞ ∂

∂m2
1

Z
d3k
ð2πÞ3

1

4ωkωk;1
ffðωk;1Þ þ nðωk;1Þg

kz
p0 − p⃗ · k̂

����
m1¼m

≃
ð4qBþ 8κqBmÞ

8π2
∂

∂m2
1

Z
∞

0

k2dk
ωk;1

ffðωk;1Þ þ nðωk;1Þg
Z

dΩ
4π

K̂ · n

P · K̂

����
m1¼m

: ð50Þ

Here, in the first line we have neglected terms subleading in
T appearing due to derivative with respect to m2

1 which will
contain higher powers of p0 � ωk � ωq;1 in the denomi-
nator [47,52]. To arrive at the third line we use the same
trick as done while deriving α and change the variable
from k⃗ → −k⃗ in all the terms containing p0 − p⃗ · k̂ in the
denominator. Here only the first term within square bracket
is nonzero. In the fourth line we have used K̂ · n ¼
− cos θk, where θk is the angle between k⃗ and z-axis.

Defining new variables x ¼ k=T and y ¼ m1=T, Eq. (50)
can be rewritten as

b0 ≃
qBþ 2κqBm

2π2
∂

∂y2

Z
∞

0

dxx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p n
f
�
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �

þ n
�
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q �oZ
dΩ
4π

K̂ · n

P · K̂

����
m1¼m

ð51Þ
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which can now be expressed in terms of the following
standard integrals [47,73,74]

h�n ðyÞ ¼
1

ΓðnÞ
Z

∞

0

dxxn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p 1

e
ffiffiffiffiffiffiffiffiffi
x2þy2

p
∓ 1

; ð52Þ

as

b0 ≃ −
qBþ 2κqBm

4π2
�
f1ðyÞ þ h1ðyÞ


Z dΩ
4π

K̂ · n

P · K̂

����
m1¼m

;

ð53Þ

where we have used the relations
∂h�nþ1

∂y2 ¼ − h�n−1
2n satisfied by

the functions h�n ðyÞ. Now using the high temperature
expansion for h�1 ðyÞ given in Refs. [47,73,74], we arrive

at the final expression for the structure factor b0 in the HTL
approximation as

b0 ≃ 4g2CðRÞM2ðqB; κ;TÞ
Z

dΩ
4π

K̂ · n

P · K̂
ð54Þ

where the magnetic mass is given by

M2ðqB; κ;TÞ ¼ qBþ 2κqBm
16π2

�
ln 2 −

πT
2m

�
: ð55Þ

Note that, the above expression is different from the
previously obtained magnetic mass in Refs. [47,48,52]
due to the presence of AMM.

D. Evaluation of c0

Again from Eq. (24) we get

c0 ¼ −g2CðRÞ
Z

d3k
ð2πÞ3

�
1

4
Tr
�
γ5=nN̂ ðk0 ¼ −p0 þ ωq;1Þ

�
fþðωq;1ÞP

�
1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

þ 1

4
Tr
�
γ5=nN̂ ðk0 ¼ −p0 − ωq;1Þ

�
f−ðωq;1ÞP

�
1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr
�
γ5=nN̂ ðk0 ¼ ωkÞ

�
nðωkÞP

�
1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

−
1

4
Tr
�
γ5=nN̂ ðk0 ¼ −ωkÞ

�
nðωkÞP

�
1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

¼ 4mg2CðRÞ
Z

d3k
ð2πÞ3 ð2qBþ 4κqBmÞÂ1

�
ωq;1fþðωq;1ÞP

�
1

p0 − ωk − ωq;1
−

1

p0 þ ωk − ωq;1

�

− ωq;1f−ðωq;1ÞP
�

1

p0 − ωk þ ωq;1
−

1

p0 þ ωk þ ωq;1

�
− ðp0 þ ωkÞnðωkÞP

�
1

p0 þ ωk − ωq;1
−

1

p0 þ ωk þ ωq;1

�

− ðp0 − ωkÞnðωkÞP
�

1

p0 − ωk − ωq;1
−

1

p0 − ωk þ ωq;1

��
1

4ωkωq;1

����
m1¼m

: ð56Þ

Here we have used the fact that Tr½γ5=nN̂ � ¼
2q0ð2qBþ 4κqBmÞ ¼ 2ðk0 þ p0Þð2qBþ 4κqBmÞ. Using
similar steps as described after Eq. (49), one can show that
in the HTL approximation

c0 ≃ −4g2CðRÞM2ðqB; κ;TÞ
Z

dΩ
4π

K̂ · u

P · K̂
: ð57Þ

Notice that c0 will be finite only in a magnetized medium.
Finally, we note that all the expressions of the structure

factors obtained in Eqs. (44), (47), (48), (54), and (57)
contain angular integrals yet to be evaluated. Following
Refs. [33,36,38,52,72], one can explicitly perform these
integrals. Here we note the final results:

α ≃ −4g2CðRÞ 2m
16π2

Q1ðp0=pÞ; ð58Þ

a ≃ −
M2

th

p2
Q1ðp0=pÞ; ð59Þ

b ≃
M2

th

p

�
p0

p
Q1ðp0=pÞ −Q0ðp0=pÞ

�
; ð60Þ

b0 ≃ −4g2CðRÞM2ðqB; κ;TÞ pz

p2
Q1ðp0=pÞ; ð61Þ

c0 ≃ −4g2CðRÞM2ðqB; κ;TÞ 1
p
Q0ðp0=pÞ; ð62Þ
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where Q0ðxÞ ¼ 1
2
lnð1þx

1−xÞ and Q1ðxÞ ¼ xQ0ðxÞ − 1 are the
Legendre functions of second kind. One should note that all
these structure factors for one loop self energy of a massive
fermion in a magnetized medium derived in the weak field
approximation are valid in the range M2

thð∼g2T2Þ ≪
jqfeBj ≪ T2 [47,52].

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the numerical results for
the collective oscillations of quarks in a hot magnetized
medium with explicit breaking of chiral symmetry.
Throughout this section we will consider a system of
low lying quarks (i.e. up and down quarks). The numerical
values of medium temperature and strength of the strong
coupling constant will be taken as T ¼ 200 MeV and

αs ¼ g2

4π ¼ 0.3 [52]. Moreover, the value of Casimir in
variant CðRÞ is taken to be CðRÞ ¼ 4=3 for the SUð3Þ
group. Thus with the current choice of parameters
Mth ∼ 160 MeV. It should be noted that, all the numerical
results are obtained using m ¼ Mth.
Before showing the results in presence of background

magnetic field, we first discuss dispersive properties of a
massive fermion in a strongly interacting thermal medium.
In Fig. 2 we have shown the quasiparticle dispersion modes

of a fermion at finite temperature when the chiral symmetry
is explicitly broken. For comparison free particle dispersion
relation with thermal mass Mth is also plotted. To get these
results one has to solve the magnetic field independent
versions of Eqs. (36) and (37) for the poles which are
given by [33]

Dþðp0; pÞ ¼ fð1þ aÞp0 þ bg −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ2p2 þ C2

q
¼ 0 ð63Þ

and D−ðp0; pÞ ¼ fð1þ aÞp0 þ bg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ2p2 þ C2

q
¼ 0: ð64Þ

Note that in both the equations above, if ω is a solution, so
is −ω. Here only positive energy solutions are plotted. As
evident from the plot, the presence of finite temperature
significantly modifies the dispersive property of the fer-
mion as its collective oscillation splits into two different
modes. The solution of Eq. (63), represented by red solid
line and denoted as “ωþ,” corresponds to the in-medium
propagation of a particlelike excitation. This is because it
will resemble the free particle dispersion if the medium

effects are turned off (i.e. structure factors a; b → 0).
On the other hand, the mode shown by the blue dotted
line and labeled as “ω−,” is purely a medium effect which
we get by solving Eq. (64). This mode corresponds to
holelike excitation. These results are consistent with
previous observations in Refs. [41,71]. Furthermore, fol-
lowing Ref. [41], one can derive the analytical results for
the dispersion relations given by Eqs. (63) and (64) for
small values of p. They are given by

ωþ ¼ Mþ þ 1

M2
th þM2þ

�
M2

th

3Mþ
þ 1

2m

�
3M2þ −M2

th

3Mþ

��
p2 þOðp4Þ ð65Þ

and ω− ¼ M− þ 1

M2
th þM2

−

�
M2

th

3M−
þ 1

2m

�
3M2

− −M2
th

3M−

��
p2 þOðp4Þ ð66Þ

where M� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ4M2

th

p
�m

2
. To obtain these results, one has

to note the fact that the expression for α given by Eq. (44)
does not contain any T-dependent term and therefore can
be neglected in the first approximation. Note that, under

these assumptions, the gap at p ¼ 0 between particle and
holelike excitations is exactly given by m. As the mass
parameter m increases from small to large values, the
coefficient of the p2 term in Eq. (66) changes from negative

FIG. 2. Collective modes of quarks with explicit chiral sym-
metry breaking in an plasma. The solid red line represents the
particlelike excitation, while the blue dotted line represents the
holelike excitation.
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to positive. Consequently for extremely light masses, this
collective mode branch shows a minimum [33,36–38,72].
One can easily check this numerically by taking the limit
C → 0 which will be discussed later in the Sec. VI A.
However, as the mass m increases, this minimum vanishes,
and the solution transforms into a monotonic function of p.
Now, we study the collective modes in the limit Mth ≪
p ≪ T and analytical expression for particle and holelike
excitations are given by [41]

ωþ ¼ pþM2
th

p
þm2

2p
þ � � � ; ð67Þ

ω− ¼ pþ 2p exp

�
−
�
2p2

M2
th

þ 1

��
exp

�
−

m2

M4
th

p2

�
þ � � � :

ð68Þ

In the chiral limit, these expressions are same as obtained in
Refs. [35,38]. Notably, for large momenta the particlelike
excitations closely resemble free particles in vacuum.

Conversely, in the solution for holelike excitations given
by Eq. (68), we observe the presence of the first exponential
term which is akin to the massless case at large momenta.
However, this is now accompanied by a new exponential
factor that significantly accelerates the asymptotic behavior
as the mass parameter m increases. This phenomenon
becomes more apparent on comparing Figs. 2 and 5(c),
where in the former case the holelike excitation approaches
the light cone for smaller values of momentum compared to
the latter case as discussed later. Finally, at small momenta
both collective modes are equally important, but at large
momenta the collective mode corresponding to the holelike
excitations decouples from the plasma.
Now we move on to show the results for the scenario

when finite background field is present. Since we are
working in the weak field limit, we will assume eB ¼ 0.5
m2

π throughout the rest of the discussions. Moreover,
we will consider qu ¼ 2=3e for the charge and κu ¼
0.29 GeV−1 as a parametric value of the AMM of up
quark. Similarly we will choose qd ¼ −1=3e and κd ¼
0.36 GeV−1 for down quarks. These values for AMM of up

FIG. 3. Dispersion of up quark in hot magnetized medium with finite values of AMM at T ¼ 200 MeV and eB ¼ 0.5m2
π in the weak

field limit. In figures (a) and (b) at the top panel we have plotted the ground state for particle and holelike solutions respectively. The
excited state for particle and holelike solutions are shown figures (c) and (d) at the bottom panel. “ES1” and “ES2” refer to
nondegenerate excited states with fn; s ¼ 1; 1g and fn; s ¼ 0;−1g respectively. Here fn; sg labels the quantized values of the energy
eigenvalues of Dirac equation with finite values of AMM as given in Eq. (69).
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and down quarks are considered following constituent
quark model such that they reproduce the AMMs of proton
and neutron [59].
In Figs. 3(a)–3(d) we have presented in-medium collec-

tive modes of an up quark in the presence of a back-
ground magnetic field considering the finite values of the
AMM at T ¼ 200 MeV. To arrive at these results we have
solved Eqs. (36) and (37) in a self-consistent manner. In
all the plots particle (hole) like solutions are shown in the
left (right) panel. It is well known that, in the presence of
external magnetic field the energy eigenvalues of Dirac
equation with finite values of AMM can be expressed
as [59,63,75]

E2
nfs ¼ p2

z þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ð2nþ 1 − sξfÞjqfeBj
q

− sξfkfjqfeBj
�
2
; ð69Þ

where ξf ¼ sgnðqfÞ. Note that from Eq. (69) it is evident
that the ground state of a positively (negatively) charged

fermion is n ¼ 0 and s ¼ 1 (s ¼ −1) which is well known
result for Landau quantization of a charged particle in a
magnetic field. Hence, it becomes evident that the intro-
duction of a finite AMM has the effect of lifting the
degeneracy that exists in the excited states in the absence
of AMM. Specifically, it lifts the degeneracy that exists
among the doubly degenerate excited states. Now to
evaluate the dispersive properties of low lying quarks in a
magnetized medium one needs to solve Eqs. (36) and (37).
For this one requires the knowledge of the momentum
component transverse to the magnetic field which is
Landau quantized and can be expressed as

−P2⊥ ¼ p2
x þ p2

y ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ð2nþ 1 − sξfÞjqfeBj
q

−sξfkfjqfeBj
�
2
−m2: ð70Þ

Figure 3(a) shows the dispersive properties of the particle-
like excitation i.e. solution of Eq. (36) for up quark in a
hot magnetized medium in the ground state i.e. for

FIG. 4. Dispersion of down quark in a hot magnetized medium with finite values of AMM at T ¼ 200 MeV and eB ¼ 0.5m2
π is

depicted in the weak field limit. In figures (a) and (b) at the top panel we have plotted the ground state for particle and holelike solutions
respectively. The excited state for particle and holelike solutions are shown figures (c) and (d) at the bottom panel. “ES1” and “ES2”
refer to nondegenerate excited states with fn; s ¼ 1;−1g and fn; s ¼ 0; 1g respectively. Here fn; sg labels the quantized values of the
energy eigenvalues of Dirac equation with finite values of AMM as given in Eq. (69).
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fn; s ¼ 0; 1g with and without considering finite values of
AMM. For comparison we have also plotted the in-medium
(T ≠ 0, eB ¼ 0) dispersion for up quarks considering
p ¼ pz in Eq. (63) to explicitly show the effect of the
presence of a background magnetic field. As evident from
the figure, the results for thermomagnetic medium are
higher in magnitude compared to the thermal medium.
Moreover, consideration of finite AMM of up quarks
slightly decreases the particlelike solution in the whole
range of momentum. Qualitatively similar effects are
observed in case of holelike excitation in the ground state
as shown in Fig. 3(b). Note that both the results for particle
and holelike excitations previously discussed are non-
degenerate. We now turn our attention to the results for
collective oscillations in the excited states. In Figs. 3(c)
and 3(d), we illustrate the in-medium dispersion relations
for both particlelike and holelike excitations of up quarks in
the presence of a background magnetic field. As is apparent
from the plots their magnitudes are clearly higher compared
to the ground states. In the absence of AMM, the results
for particle and holelike excitations, depicted by the blue
dashed lines, exhibit a twofold degeneracy. These states

correspond to fn; s ¼ 0;−1g and fn; s ¼ 1; 1g. However,
the introduction of AMM lifts this degeneracy. The green
dot-dashed line corresponding to the quantum numbers
fn; s ¼ 1; 1g, depicts the first excited state and has a
slightly lower magnitude compared to the doubly degen-
erate excited states observed in the absence of AMM.
Similarly, the black dotted line represents the second
excited state with fn; s ¼ 0;−1g, and its magnitude is
slightly higher than that of the degenerate excited states.
In Figs. 4(a)–4(d) we have displayed the in-medium

collective modes of a down quark in the presence of a
background magnetic field taking into account finite values
of the AMM at T ¼ 200 MeV. In the case of the ground
states of particle and holelike excitations shown in the
upper panel, the results exhibit qualitatively similar behav-
ior as observed in the case of up quarks. However, it is
important to note that in this scenario, the ground state
corresponds to the quantum number fn; s ¼ 0;−1g.
Additionally, due to the smaller magnitude of the charge
of a down quark, the relative increase in the magnitude
of the collective oscillations in the magnetized medium,
compared to the thermal medium, is less pronounced when

FIG. 5. Collective modes of a fermion with explicit chiral symmetry breaking in an isotropic plasma for different values of C defined
in Eq. (29). The solid red line represents the particlelike excitation, while the blue dotted line represents the holelike excitation. For very
small values of C we recover the well known results in the chiral limit.
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compared to the up quark. The results for the collective
oscillations of the down quarks in the excited states also
exhibit a similar qualitative behavior as observed in the case
of up quarks. Here also the presence of finite AMM lifts the
twofold degeneracy which is present in the excited states in
the absence of AMM. However, it should be noted that in
the case of down quarks the states with quantum numbers
fn; s ¼ 1;−1g and fn; s ¼ 0; 1g, represented by the green
dot-dashed line and black dotted line, respectively, corre-
spond to the first and second excited states when finite
values of AMM are considered. These two states are
degenerate in the absence of AMM, as depicted by the
blue dashed line.

A. Recovering the results in the chiral limit

In Figs. 5(a)–5(d), we have shown the collective oscil-
lations for both particle and holelike modes of a fermion in
a thermal medium. This was achieved by solving Eqs. (63)
and (64) while considering various values of C, as defined
in Eq. (29). Ultimately, these results recover the well-
known outcomes in the chiral limit. These plots also
highlight the presence of a critical value of m beyond
which there is no longer a minimum in the holelike
excitation. Instead, it becomes a monotonic function of
momentum p, as previously argued in Ref. [41].

VII. SUMMARY AND CONCLUSION

In this work, the general structure of the fermion self-
energy at one loop order is obtained in a magnetized
medium considering the finite values of AMM in the
scenario when chiral symmetry is explicitly broken. It is
found that the self-energy of a thermomagnetically modi-
fied massive fermion contains five nontrivial structure
factors. These structure factors have been evaluated in a
weak magnetic field within the HTL approximation using
the real time approach of thermal field theory which has
not been explored previously. It is well known that the
collective modes of a fermion at finite temperature leads to
particle and holelike excitations. It is observed that, at small
momenta, both collective modes are equally important,
whereas at large momenta, the collective mode associated
with holelike excitations decouples from the plasma. The
dispersion in nondegenerate ground state shows that the
magnitude is greater than that of the zero magnetic field
case. This effect is more pronounced in the case of up
quarks, mainly due to the higher magnitude of their charge
compared to the down quarks. We have also investigated
the effects of inclusion of finite values of AMM of the
quarks. First we see that the presence of finite AMM
modifies the magnetic mass. In such a scenario the most
significant effect is observed in the dispersion relation of
the excited states. For up quarks, which are positively

charged, the states corresponding to the quantum numbers
fn; s ¼ 0;−1g and fn; s ¼ 1; 1g are doubly degenerate in
the absence of AMM. However, when finite values of AMM
are taken into consideration, this degeneracy is lifted. The
state with quantum numbers fn; s ¼ 1; 1g corresponds to
the first excited state and has a slightly lower magnitude in
energy compared to the doubly degenerate excited states
observed in the absence of AMM. Similarly, the state
represented by fn; s ¼ 0;−1g becomes the second excited
state and its magnitude is slightly higher than that of the
degenerate excited states. This effects are observed in both
particle and holelike excitations. Qualitatively similar effects
are also observed in the dispersion of down quarks. In this
case, the ground state corresponds to the quantum number
fn; s ¼ 0;−1g. Additionally, the states with quantum num-
bers fn; s ¼ 1;−1g and fn; s ¼ 0; 1g correspond to the
first and second excited states when finite values of AMM
are considered. These two states are degenerate in the
absence of AMM.

ACKNOWLEDGMENTS

N. C. would like to express gratitude to Dr. Aritra Das,
Prof. Munshi Golam Mustafa, and Dr. Nazmul Hauque
for valuable discussions regarding the HTL method and
related subjects. N. C., P. R., and S. S. are funded by the
Department of Atomic Energy (DAE), Government of
India. S. G. is funded by the Department of Higher
Education, Government of West Bengal, India.

APPENDIX: FACTORIZATION OF D

Using the definitions of Lμ and Rμ from Eqs. (30)
and (31), one can write

L2 ¼ ðAp0 þ B−Þ2 − �ðApz − c0Þ2 − A2P2⊥


; ðA1Þ

R2 ¼ ðAp0 þ BþÞ2 − �ðApz þ c0Þ2 −A2P2⊥


; ðA2Þ

L · R ¼ ðAp0 þ bÞ2 − A2p2 − b02 þ c02; ðA3Þ

where A ¼ 1þ a and B� ¼ b� b0. Using the explicit
expressions for L2, R2 and L · R from Eqs. (A1)–(A3) we
can rewrite D from Eq. (33) as the following manner

D ¼ C2 − D2 − B2 − A2P2 − 2ABp0

¼ C2 − D2 þ A2p2 − ðAp0 þ BÞ2
¼ Dþðp0; pÞD−ðp0; pÞ; ðA4Þ

where

D�ðp0; p; eBÞ ¼ ðAp0 þ BÞ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − D2 þ A2p2

q
: ðA5Þ
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In the above equations
A ¼ −2Ac; ðA6Þ

B ¼ −2bc; ðA7Þ

D ¼ 2½Ab0p0 þ bb0 −Ac0pz�; ðA8Þ

C ¼ A2P2 þ b2 þ b02 − c02 þ c2 þ 2Abp0: ðA9Þ
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