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We build a deep neural network based on theMask region-based convolutional neural network framework
to detect theHiggs jets and top quark jets in any event image.We propose an algorithm to assign the top quark
final states at the ground truth level so that the network can be trained in a supervised manner. A new jet
branch is added to the network, which uses constituent information to predict the four-momenta of the
original parton, thus intrinsically implementing the pileup mitigation. The network can predict both the
shapes and the momenta of target jets. We show that the network surpasses the LorentzNet in top and Higgs
tagging and the PELICAN network in momentum regression for certain cases, in terms of reconstruction
efficiency and accuracy. We also show that the performance of the network does not degrade much when
applied to events from a different process from the trained one and to events with overlapping jets.
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I. INTRODUCTION

Because of the color confinement, the quarks and gluons
produced in a hard process cannot be detected individually.
Instead, they will go through parton showering and
hadronization after production, giving rise to a collimated
spray of energetic detectable color singlet hadrons, which
are referred to as jets. Establishing the correspondence
between jets and partons is essential for understanding
the underlying physics of collider events. It requires an
infrared-safe algorithm that can attribute the related final
state hadrons to their partonic ancestors and predict the
four-momentum of the parton.
At the LHC and other collider experiments, the jets are

reconstructed by using sequential recombination algo-
rithms [1], in which the final state hadrons are pairwise
recombined according to some distance measures, such as
the Cambridge/Aachen algorithm [2], anti-kT algorithm [3],
and so on [4–6]. In those jet clustering algorithms, an
appropriate cone-size parameter needs to be taken accord-
ing to the configuration of the detector and the properties of
the target jet. At the LHC, the anti-kT jet algorithm with
cone size R ¼ 0.4 works efficiently in finding quark and

gluon jets in the ATLAS and CMS detectors. Another
origin of a jet is a boosted heavy particle decaying into
hadronic final states, for example, the top quark and the
Higgs boson. As the typical jet cone size of a heavy
resonance is given by R ∼ 2m=pT, a much larger value is
adopted to fully capture the jet constituents. In contrast
to the jet originating from the light quark and gluon, those
fat jets are characterized by a remarkable substructure. A
variety of jet substructure techniques [7–12] have been
proposed for tagging heavy resonant jets, such as mass-
drop tagging [13] for the Higgs boson, the HEPTopTagger
algorithm [14] for the top quark, and N-subjettiness [15,16]
for general fat jets. One practical issue for the fat-jet
reconstruction at hadron colliders would be the heavy
contamination from pileup events as well as underlying
events. The average number of pileup events reaches
hμi¼ 35 for the LHC Run 2 and hμi¼ 140 for the High-
Luminosity LHC. The large cone size of the fat jet renders
many of those background particles to be included as the jet
constituents. Although the jet grooming methods [17,18]
have been found to be very helpful in mitigating the pileup
effects, there are still relatively large errors in obtaining the
original parton momentum when it is calculated by the
vector sum of momenta of the groomed jet constituents.
In terms of fat-jet tagging efficiency, machine-learning

techniques have proven to substantially outperform those
jet substructure techniques [11,19–22]. According to the jet
formation, a jet can be either viewed as sequences/trees
formed through sequential parton showering and hadroni-
zation or viewed as graphs/point clouds with the informa-
tion encoded in the adjacency nodes and edges. Moreover,
the calorimeters inside the detector measure the angular
position and energy of particles on fine-grained spatial
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cells. Considering each calorimeter cell as a pixel and the
energy deposition as the intensity, a jet can be naturally
viewed as a digital image. All three representations of the
jet are common objects in machine learning. They can be
proceeded by different kinds of neural network architec-
tures, i.e., recurrent neural networks [23] and a transformer
network [24] for sequence, graph neural networks (GNNs)
[25–27] for point cloud, recursive neural networks [28,29]
for tree networks, and two-dimensional convolutional
neural networks (CNNs) [30–33] for jet images. Those
delicate deep-learning approaches can better leverage the
fine resolution of detectors and automatically figure out
the complex pattern of a jet from the low-level inputs.
However, those methods rely on traditional jet clustering
algorithms to reconstruct the jet at the first stage. As a
result, a predefined cone-size parameter is required, and the
jet representation could suffer from distortion due to an
inappropriate cone-size parameter or contaminations from
pileup events. ParticleNet [27], Particle Transformer [34],
LorentzNet [35], and PELICAN [36] are among the state-
of-the-art methods for Higgs boson and top tagging in this
field. They achieve typical area under curve (AUC) values
of over 0.98 for top tagging, without considering the pileup
effects. In addition, the momentum reconstruction compo-
nent of the PELICAN network can predict the pT and mass
of a W boson with standard deviations of a few percent.
Several studies [37–40] attempt to propose jet definition

alternatives to the clustering methods, so that the presumed
cone-size parameter is no longer mandatory. Meanwhile,
the techniques of object detection and semantic segmenta-
tion in computer vision provide new ways to label the jet
constituents. In the Monte Carlo simulation of collider
events, the final state hadrons can be attributed to their
ancestor parton without ambiguity, so it will be possible
to build a neural network to label the jet constituents
among final state particles based on supervised learning.
Reference [41] studies the construction of a W boson jet
from final state particles with the supervised GNN. In
Ref. [42], we improve the GNN with a focal loss function,
such that the method can remain efficient when heavy
pileup contaminations are taken into account. Moreover,
we demonstrate that the GNN, which is trained on events of
the H þ jets process, is capable of detecting a Higgs jet in
events of several different processes. The image segmen-
tation with the convolutional network also works well in
detecting the Higgs jets in event images. In Ref. [43], we
take the event information as a digital image and adopt the
Mask region-based convolutional neural network (Mask
R-CNN) framework [44] to reconstruct the Higgs jet in the
event image. Those deep-learning methods reach higher
efficiency of Higgs jet detection and higher accuracy of
Higgs momentum reconstruction than the traditional jet
clustering and substructure tagging methods. However,
those methods have not been tested for detecting different
kinds of multiple jets in an event. In this work, based on the

event image representation, we adopt a modified version of
Mask R-CNN to detect/reconstruct all Higgs boson and top
quark jets in an event. Since the top quark is carrying a
color charge, its energy flow is interconnected with other
colored particles in the production process and with
the beam remnants. There is no unique way to associate
the hadronic final states with it. Based on the rule that the
vector sum of top jet constituents can reproduce the top
quark momentum well, we propose a pattern of attribution
for the top quark final states in the training sample. As a
result, the Mask R-CNN can be trained to detect the top
quark jet in a supervised way, similar to the Higgs jet.
Moreover, the Mask R-CNN can only predict regions with
masks, which will also include a large number of particles
from pileup events. The Higgs boson and top quark
momenta cannot be simply obtained by the vector sum
of momenta of masked pixels (calorimeter cells) in the jet
image. We add a new fully connected network component
to the Mask R-CNN, which takes the input of bounding box
information to predict the Higgs boson and top quark
momenta. Given the Higgs boson and top quark momenta
at the ground truth level, this network component is capable
of pileup mitigation in an automatic way after supervised
learning. It turns out that the modified Mask R-CNN can
not only provide the jet regions (masks) of the Higgs boson
and top jets in an event but also predict the four-momenta
of the Higgs boson and top parton precisely. We compare
the Higgs boson and top jet tagging performance with
LorentzNet and the momentum regression performance
with PELICAN.
This paper is organized as follows. In Sec. II, we describe

the event generation and the event preprocessing. In
Sec. III, we briefly introduce the Mask R-CNN framework
and illustrate how events proceed. The changes to the Mask
R-CNN are discussed in detail. In Sec. IV, the performance
of the network being applied to the Htt̄ process as well as
other processes that have not been used for training is
presented. We summarize our work and conclude in Sec. V.

II. EVENT PREPARATION
AND PREPROCESSING

The proton-proton collision events are simulated by
the MG5_aMC@NLO framework [45] with center-of-mass
energy

ffiffiffi
s

p ¼ 13 TeV. PYTHIA8 [46] is used for the quark
parton showering, hadronization, and hadron decay. The
detector effects are not considered except for the angular
granularity of calorimeters.1 The angular size of the
calorimeter cell is assumed to be 0.02 × 0.02 on the
η × ϕ plane. This is an idealized setup since the hadron
calorimeter at the LHC usually has η=ϕ resolution larger
than ∼0.15. Although the precision of momentum
reconstruction is limited by the cell size, we find that

1The effects of energy smearing will be discussed separately
later.
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the network performance, i.e., the Higgs boson=top detec-
tion efficiency, is barely changing with the cell size. The
event image is built by presenting each calorimeter cell on
the η × ϕ plane as a pixel of an image, and the transverse
momentum of the cell as the intensity (or gray scale color)
of that pixel.
The network is trained on 1 × 106 events of the Htt̄

process, where both the Higgs boson and top quark jets
are marked. It should be noted that training our network on
other processes is certainly possible, and the performance
of the network should be similar. To show the generality of
the network, the performance of various test samples are
studied, includingHtt̄, tt̄tt̄,HHtt̄ production in the Standard
Model (SM) aswell as the neutralino pair production and top
squark pair production with subsequent decay χ̃02 → Hχ̃01
and t̃ → tχ̃01 in the supersymmetric (SUSY) model. The
transverse momenta of the Higgs boson and top quark in
the SM processes are required to be greater than 200 and
300 GeV, respectively. As for the SUSY case, we set the
massesmχ̃0

2
¼450GeV,mt̃¼650GeV, andmχ̃0

1
¼100GeV.

We do not specify the decay modes of the Higgs boson
and top quark in the training sample. However, we find the
network exhibits better performance on events with a
hadronically decayingHiggs boson (H → bb̄) and top quark
(t → bW;W → qq). Therefore the Higgs boson and top
quark in the test sample are forced to decay through those
modes.
Moreover, there are multiple proton-proton collisions

(referred to as pileup) in each bunch crossing at the LHC.
Those collisions are dominated by nondiffractive events
with small transverse momentum transfer. Simulation of the
pileup events requires a perturbative parton shower, Lund-
string hadronization, multiple parton interaction, and color
reconnection, which are usually described by phenomeno-
logical models. The parameters in the models are not
unique and need to be inferred from experimental data. The
set of appropriately chosen parameters is dubbed PYTHIA

tunes [47]. We adopt the A3 tune of PYTHIA8 with
phenomenological parameters provided in Refs. [48,49]
to simulate pileup events. The number of pileup events per
bunch crossing at the LHC follows the Poisson distribution
with an average value around hμi ¼ 35 at the LHC Run 2
and hμi ¼ 200 at the High-Luminosity LHC. We took the
average number of pileup events of hμi ¼ 50 in our
simulation. A detailed study of the effects of different
pileup levels will be given later. Finally, we note that
particles flying into the same calorimeter cell can only be
identified with the summation of their momenta, so the
pileup will increase the momenta of the target jet constitu-
ents, and the pileup mitigation procedure is essential to
obtain a precise parton momentum.

A. Attributions of final state particles

In the training sample, the constituents of the Higgs jets
and top/antitop quark jets need to be assigned beforehand.

However, due to color confinement, some of the top quark
final states could have multiple ancestors other than the
top quark according to the Monte Carlo simulation. In
constructing the top jet, we hope to only include the
constituents whose momenta are mostly inherited from
the top quark.
The final states of an Htt̄ event fall into four categories.

Those who only have a unique ancestor should be assigned
to the H, t, and t̄ categories without ambiguity. The rest of
the final states have multiple ancestors (dubbed the MA
category) and should be assigned as top/antitop with some
criteria. Hadrons in the MA category (one of the ancestors
is the top quark or antitop quark) are ranked according
to their angular distances (ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δy2

p
) to the

top/antitop quark, where ϕ is the azimuth angle, and y is
rapidity. They are assigned to the top/antitop categories in
order until the reconstructed top/antitop jet invariant mass
exceeds 1.05mt with mt being the top quark invariant mass
(which could be off shell) in the event.2 In the left panel of
Fig. 1, we show the distributions of the invariant masses for
the Higgs jet, top quark jet, and antitop quark jet before and
after the assignment. In terms of the invariant mass, we
observe that the selection of hadrons in the MA category is
necessary, and our assignment criterion is appropriate. In
the right panel of the same figure, we illustrate the event
image on the pseudorapidity (η) versus the azimuth angle
(ϕ) plane after applying the assignment. Both the top and
antitop jets have focused shapes since their constituents are
selected according to the angular separation.

B. Data preparation for the network

The images fed to the network represent the transverse
momentum deposited in the η × ϕ plane. Since the pixel
values of typical images are integers ranging from 0 to 255
in each channel, one may consider mapping from pT to
the integer values in red-green-blue (RGB). However, we
instead use pT itself as we find no disadvantages in the
network performance. When the range of ϕ in the images is
from 0 to 2π, the constituents of a jet with ϕ near the
boundary (ϕ ¼ 0) may locate in two regions far apart from
each other, which are susceptible to being considered as
two different objects. In order to incorporate the periodicity
in the network, one may introduce a periodic padding in
convolutional layers, where an input image is padded in the
periodic manner so that convolution kernels can read the
values on the opposite side of the boundary. Another way to
handle the periodicity is to have the images with an
augmented range, for instance, ϕ∈ ½0; 3π�, such that a

2Although this criterion cannot guarantee the total match
between the momenta of the top quark and the top jet, this
method already helps to capture most of the high energy
constituents. Modifying the criterion will change the predicted
mask (or jet shape), but will not have significant effects on the
predicted momenta.
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continuous picture of a jet appears on the image at least
once. In our brief implementation of the two schemes,
we observed better performance from the augmented
images. Therefore, we use the augmentation scheme in
this paper. Considering together network requirements for
image dimensions, the ϕ range is chosen to be from 0
to 2.85π. The spatial size of the input images is then
448 × 448 pixels corresponding to the η × ϕ plane across
½−4.48; 4.48� × ½0; 2.85π� where the resolution is given
as Δη × Δϕ ¼ 0.02 × 0.02. Having three copies along
the channel, the dimension of the input images is
448 × 448 × 3. Having three copies is not just redundant
due to the network requirement, but it has a nontrivial effect
on the network. It implies that the kernel at the first
convolutional stage should also have three channels,
tripling the number of learnable parameters.
Given an input image, the original Mask R-CNN has

three outputs for each candidate object: a class label, a
bounding box, and a mask. Therefore, one needs to provide
the ground truth of them to train the network, but there is an
issue to address here. The mask is a binary image with the
same spatial size as the input image, in which object pixels
have the value 1 and background pixels have 0, and the
smallest rectangle enclosing all the object pixels is the
bounding box. In the jet detection task, it is reasonable to
define the pixels where individual jet constituents are
located as the object pixels. Note that, however, Mask
R-CNN will crop candidate regions in the mask and resize
them into a fixed size to compare to corresponding outputs
of the network. The sparsity of the constituent pixels is not
robust to resizing, in particular, when scattered in a broad
region. Instead, we define a jet area that gives a mask of
connected pixels. First, we preselect constituents which
will compose the jet area. The preselection process is as
follows. Boost along the beam direction to the frame where

pz of the parton is 0, and discard the constituents with
energy lower than 0.1 GeVor with angular separation to the
parton greater than π=2. Then, among the remaining
constituents, select those having at least three others in
the 20 × 20 pixels neighborhood or with pT greater than
5 GeV. The neighborhood condition is imposed since we
want to construct jet areas that do not change drastically
depending on a couple of constituents unless pT is
significantly large, otherwise the bounding box predictions
will fluctuate widely according to whether or not the
network precisely detects a few constituents far from some
clusters. The size of the neighborhood and the number of
neighbors are empirically determined after monitoring the
network performance of several cases. With the selected
constituents, we define two types of jet areas: the convex
hull and the enlargement. The first one is the area bounded
by the convex hull covering all the selected ones, and the
second one is obtained by expanding each selected pixel
into the area of 9 × 9 pixels with the selected one at the
center. Now we define each pixel in the jet area as the object
pixel. The convex hull mask is a simply connected region,
as is usual for object masks in natural images, whereas the
enlargement mask may consist of several regions useful to
identify clusters of constituents more precisely (Fig. 2).
In natural images, the bounding box is an intuitive and

also robust concept since objects have their boundary, and
the deviation of the bounding box depending on specific
choices of boundary pixels is not large. On the contrary,
there is no such thing as a boundary for jets, and instead,
we introduced the jet area in order to alleviate the issues of
the sparse object pixels and the large fluctuation of the
bounding box. Nevertheless, the size and shape of the
bounding box will rely on our preselection rules. It may be
helpful to adjust the bounding box by involving a ground
truth value irrelevant to our definition of jet areas.

FIG. 1. Left: distributions of the invariant masses for the Higgs jet, top quark jet, and antitop quark jet in events of Htt̄ production at
the LHC. The shaded histograms and the solid lines correspond to the distributions before and after including the selected hadrons in
the MA category. Right: the event image after applying the assignment, where the size of each dot indicates the energy of each final
state hadron.
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Therefore, we employ the ground truth coordinates of
partons, i.e., the rapidity y and azimuth ϕ, to be the center
of the bounding box. The bounding box is now the smallest
rectangle enclosing the jet area, while its center is fixed at
the ground truth coordinates of the parton.3 We expect that
the adjustment tells the network consistent information
about the keypoint of a jet around which its features should
be extracted and gathered through convolutions regardless
of our choice of preselection rules. Indeed, we find a
significant improvement in the network performance com-
pared to using the default bounding box.

III. MASK R-CNN AND ITS
MODIFICATIONS

Mask R-CNN [50] is a state-of-the-art framework for
object detection and instance segmentation. It was pro-
gressively developed from R-CNNs that first take candidate
regions from separate region proposal methods, and then
use a convolutional network to extract features for classi-
fications and bounding box regressions. The original
R-CNN [51] was computationally expensive as it performs
a CNN for each region proposal. By extracting a feature
map from the entire input image to share across region
proposals, SPPnet [52] greatly reduced the computational
cost, and Fast R-CNN [53] streamlined a multistage

pipeline of the predecessors, as the classifier and box
regressor are jointly trained with the feature extraction
network. While the previous models take the region pro-
posals from separate region proposal methods, Faster
R-CNN [54] has brought them into one unified network
by introducing region proposal networks (RPNs) that can
share the convolutional feature map, showing remarkable
gains in speed and accuracy. Finally, Mask R-CNN extends
Faster R-CNN by adding a mask branch, for instance,
segmentation in parallel with the classifier and box regressor.
Let us briefly review the structure of Mask R-CNN

(Fig. 3). It can be mainly divided into three modules: a
backbone architecture for feature extraction, an RPN for
region proposal generation, and a detection head for
classification, box regression, and mask segmentation.
The RPN and detection head share the backbone such that
the features are used for both regional proposals and
detections. Although the backbone can be any convolu-
tional architecture, Feature Pyramid Network (FPN) [55] is
commonly used to take advantage of multiscale features in
addition to the base architecture such as residual neural
networks (ResNets) [56]. The ResNet extracts features
from an input image by successively scaling down its
spatial size through convolutions, which in turn produces a
pyramid of outputs at several scales. The FPN then uses a
top-down pathway with lateral connections to the outputs at
each scale in order to build a feature pyramid. The feature
map at each level of the pyramid is fed into the RPN to
propose candidate bounding boxes referred to as regions of
interest (RoIs). An anchor is a reference box whose center

FIG. 2. Top: enlargement areas. Bottom: convex hull areas. Red dots are the constituents constructing the jet areas represented by the
green lines. Gray dots are the ones ruled out by the neighborhood condition. One may see that, without the condition, how drastically
few gray dots could change jet areas. Nevertheless, we spare a constituent with high pT (>5 GeV) as shown in the second example (the
red dot on the top).

3Since the approximation y ≃ η is valid for ultrarelativistic
particles, the coordinates of a parton on the η × ϕ plane should
take its y and ϕ.
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is at a pixel of the feature pyramid. By default, every pixel
has three anchors with aspect ratios of 1∶1, 1:2, and 2∶1,
where the anchor scale is different according to the level
of the feature pyramid. Through a small convolutional
network, the RPN outputs an objectness score and box
regression for each anchor. It is trained so that an anchor
has a high score if its intersection over union (IoU) with a
ground truth box is greater than a threshold, and the box
regression refines the size and location of positive anchors
to fit their ground truth boxes better. The refined positive
boxes are the RoIs that are passed on to RoI pooling. While
the RoIs have variable sizes due to the refinement in the
RPN, the detection head requires a fixed-size input.
Therefore, we pool RoI features of a fixed size by cropping
the RoIs from the feature pyramid and resizing them using
bilinear interpolation.4 The RoI features are then fed to the
detection head that has two branches. The classification
branch consists of two fully connected layers followed
by classification and box regression outputs. The mask
branch is a small fully convolutional network to predict
binary masks.
In the jet reconstruction task, the original Mask R-CNN

can be used to tag jets and predict the jet areas. On the other
hand, the jet areas, especially the convex hull areas, are
susceptible to the pileup contamination since they include
background particles as well. Furthermore, the preselection
process to define jet areas may exclude some constituents
that significantly contribute to the four-momentum of their
parton. Therefore, in order to accurately obtain four-
momenta of partons from jet area predictions, one needs
separate methods carrying out the pileup mitigation as well
as compensating for the preselection. On the contrary,
instead of using separate methods, we bring a pileup
mitigation and compensation network into Mask R-CNN

to facilitate end-to-end jet reconstructions. In other words,
we extendMask R-CNN by adding an additional branch for
predicting the mass pT and coordinates of partons,5 which
we call the jet branch. The jet branch has the same
architecture as the classification branch, i.e., two fully
connected layers, and also shares the RoI inputs with the
classification branch (Fig. 4). It is worth noting that we
predict two boxes and two masks for each RoI (denoted by
“×2” in the figure), although it is usual to predict one box
and mask per class so that the default number of predictions
for each RoI is 3 corresponding to the three classes
(background=Higgs=top). If objects in each class have
their typical shape or ratio, the class-specific prediction
may be more effective. However, the Higgs jets are
indistinguishable from top jets by their bounding box or
mask. Therefore, we predict for two classes (background/
jet) considering Higgs and top as one class. On the other
hand, the jet branch outputs a single four-momentum
(coordinates, pT , and mass) for each RoI regardless of
class. This reflects the fact that it is always possible to
calculate the four-momentum even for a background region
in a consistent way. Furthermore, this approach also can tell
the network that the mass of an RoI is essential to determine
its class. Consequently, the mass and class prediction tasks
will be closely intertwined and enhance each other.
In our implementation of Mask R-CNN, which is based

on the open-source code in [57], we also employed the
Composite Backbone Network (CBNet) [58] as our back-
bone and Cascade R-CNN [59] as an extension of the
detection head, so as to further improve accuracy. We
present a brief introduction to the two architectures while

FIG. 3. Schematic diagram of Mask R-CNN, adapted from [43]. The backbone shows only three convolutional stages of ResNet
instead of five for simplicity. FCN denotes a fully convolutional network, and fc represents fully connected layers.

4We use the crop and resize operation following the source
code [57] for simplicity. The original paper [50] proposed a more
elaborate method called RoIAlign to reduce misalignment be-
tween the RoIs and the extracted features.

5In practice, the vector sum of the constituents momenta is
used as ground truth instead of the momentum of the original
parton in training our network, because the vector sum is more
directly related to the masked constituents. However, in the
training sample, the momentum difference between the vector
sum and the parton is less than 2% for the Higgs class and 5% for
the top class, for more than 90% of events.
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referring readers to the original papers [58,59] for details.
The CBNet groups multiple identical backbones by con-
necting them in parallel. We use CB-ResNet50, which
consists of two ResNet50s, an assisting one and a lead one,
connected in such a way that the features of higher-level
stages in the assisting backbone flow to the lower-level
stages in the lead backbone. Therefore, the lead backbone
can integrate the high-level features into its low-level
convolutional stages for more effective feature extractions.
Cascade R-CNN extends the detection head in order to
have more accurate bounding box predictions. The detector
requires an IoU threshold to decide whether an RoI is
positive or negative, and the commonly used threshold
value is 0.5, which will be robust to poor proposals but also
can be loose, leading to noisy box predictions. To address
the problem, Cascade R-CNN adds detectors and con-
structs a sequence of detectors with increasing thresholds at
each stage. We use three detectors where the first two have

only the classification branch to refine RoIs, while the last
detector has all three branches.

IV. NETWORK PERFORMANCE

In object detection, it is usual to evaluate the network
performance using average precision (AP). Given an IoU
threshold, one can obtain the precision-recall curve by
varying the score threshold as shown in the Fig. 5, and AP
is the area under the curve. In jet detection, however, the
value itself is not directly comparable to that of other
models since AP also heavily depends on the mask scheme.
Nonetheless, it is a useful metric within one mask scheme,
and hence we report the mask AP and box AP in Table I to
show the performance in jet area detection (see also Fig. 6
for an example).
On the other hand, the main goal of the jet reconstruction

task is to calculate the four-momentum of partons, which
are independent of the mask scheme. Therefore, we want to
measure how accurately our extended Mask R-CNN can
predict the mass, pT , and coordinates. In experimental
analyses, we have prior knowledge about the type and
number of jets in selecting the signal events. Let us assume
we have three ground truth Higgs jets on an image for
illustrative purposes. First recall that, since we use the
augmented images, there may be two predictions for the
same jet duplicated along the augmented ϕ coordinate. To
sort this out, we postprocess the output by taking it back to
the ϕ range of one period and eliminating one with a lower
score if two predictions are of the same class and their mask
overlap is large. After the postprocessing, we choose three
predictions of the Higgs boson with the highest scores if
there are more than three Higgs predictions. Otherwise,
we take all available Higgs predictions. A prediction is a
true positive if the distance between the predicted and
ground truth coordinates is less than a threshold (we use
30 pixels ≃ 0.6). We measure the coordinates, mass, and

FIG. 5. Precision-recall curve at IoU ¼ 0.5 for the bounding box (left) and mask (right). Three dots on each curve indicate the points
where the score threshold is 0.9, 0.7, and 0.5 from left to right.

FIG. 4. Detection head together with the jet branch. Numbers
inside boxes denote dimensions. ×4 represents four consecutive
convolutions. The figure of classification and mask branches are
adapted from [50].
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pT differences between the true positive prediction and its
ground truth (obtained by the vector sum of the constituents
momenta).
To gain an intuitive understanding of the network

performance, we contrast our results with those from
existing state-of-the-art object tagging architecture. We
adopt LorentzNet for classification and PELICAN for
momentum regression as an illustration. The validations
for the application of these two networks are provided in
the Appendix. These networks require a jet clustering
algorithm to localize jets for a given event image, as they
use a jet as the input. We retrain these networks on the
Higgs boson and top quark jets from our 0.3 × 106 Htt̄
event sample (with an average number of 50 pileup events
superposed on each signal event), where the Higgs boson
(pTH

> 200 GeV) and top quark (pTt
> 300 GeV) jets are

reconstructed by the anti-kT algorithm with cone-size
parameter R varying from 0.8 to 1.8 in steps of 0.2. The
detector effects have been ignored in this comparison study.

It should be noted that LorentzNet and PELICAN follow
a fixed input format: a set of four momenta of the jet
constituents. To simplify the training, we construct a
training file for the reconstructed anti-kT jets mentioned
above, mainly containing the following information.

(i) Nobj: the count of jet constituents.
(ii) Pmu: the four-momentum of jet constituents

ðE; px; py; pzÞ sorted in descending order of pT .
This part serves as the network input, with a shape of
[N × 4], where Nð¼ 200Þ is the maximum number
of jet constituents for a single input, and the
insufficient parts are padded with zeros.

(iii) label: indicates whether Pmu at a certain position is a
constituent(1) or a padding value(0), with a shape
of [1 × 200].

(iv) truth_Pmu: the four-momentum of the parton to
which the jet belongs, used for momentum pre-
diction.

(v) is_signal: the type of jet determined by the distance
from jet to parton. For example, if it is closest to the
Higgs jet (i.e., when ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δy2

p
is the

smallest), it is classified as a Higgs jet(0), and top
jet(1) is in a similar situation. This value is used for
jet classification.

(vi) mass: the invariant mass of the parton to which the
jet belongs.

The above file format refers to that found in Ref. [60], and
there are some other configurations mentioned in this
reference, which are irrelevant to the training. For more

FIG. 6. Prediction examples. Left: enlargement mask. Right: convex hull mask. Green and red lines represent ground truth and
predicted masks, respectively. Labels include score, pT , and mass predictions. Blue dots denote predicted coordinates.

TABLE I. AP (%) on the Htt̄ test set. AP50 denotes the AP at
IoU ¼ 0.5, and AP denotes the AP averaged across the IoU from
0.5 to 0.95 with a step size of 0.05.

APmask APmask
50 APbox APbox50

Convex hull 24.7 60.7 37.1 68.9
Enlargement 16.0 56.6 43.0 73.5
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details, please refer to Ref. [60]. The hyperparameters for
both networks are set to the default values as shown in
Refs [35,36].
The receiver operating characteristic (ROC) curves of

LorentzNet for the top quark (signal) and Higgs (back-
ground) jet discrimination with different cone sizes are
shown in the left panel of Fig. 7. It can be observed that
the cone-size parameter has non-negligible effects on the
performance of LorentzNet. In particular, the performance
degrades dramatically when the cone size becomes too
small to fully capture the jet constituents. On the other
hand, a larger cone size does not impair jet classification
much, despite distorting the jet shape. The performance of
those classifiers is not directly comparable to that of Mask
R-CNN. However, we may consider only the classification
part of Mask R-CNN to obtain the ROC curve. In Mask
R-CNN, the RPN does a job similar to jet clustering
algorithms. The RPN in our hyperparameter setting pro-
poses up to 500 RoIs for each image,6 which will be passed
to the detection head. To calculate the ROC, we first get all
the RoIs of an event from the RPN and compute the IoUs
between the RoIs and ground truth bounding box. The RoIs
with IoUs greater than 0.5 are selected and fed into the
classifier branch. The RoI with the highest classification
score is chosen for calculating the ROC curve of the Mask
R-CNN. As our network predicts three classes, we provide
two ROC curves, one of which considers the Higgs jet as
the positive class and the top quark jet as the negative class,
while the other considers the opposite. The ROC curves are
presented in Fig. 7. Mask R-CNN achieves higher perfor-
mance than LorentzNet in general, due to its more accurate
jet boundaries. Those features can be quantified in terms of

AUC values, as given in Table II. In addition, Mask R-CNN
can tag the top quark jet more accurately than the Higgs
jet in its trinary classification. The right panel of Fig. 7
illustrates this fact with the classification scores distribu-
tions, where PðHjHÞ, PðHjtÞ, PðtjtÞ, and PðtjHÞ are the
probabilities of tagging a true Higgs boson as a Higgs
boson, a true top as a Higgs boson, a true top as a top, and a
true Higgs boson as a top, respectively.

A. The reconstruction accuracy
for the test sample

The reconstruction accuracies of the Higgs boson and
top four-momenta obtained from applying the PELICAN
and the Mask R-CNN methods to the test sample are
illustrated in Fig. 8 in terms of two-dimensional distribu-
tions on the Δy × Δϕ plane and Δm

m × ΔpT
pT

plane. Here,
Δm;ΔpT;Δy, and Δϕ correspond to the differences of the
invariant mass, transverse momentum, rapidity, and azi-
muth angle between the reconstructed jet and the ground
truth jet. It should be noted that the four-momentum of the
ground truth jet is obtained by the vector sum of its
constituent momenta. The m and pT in the denominator
correspond to the values of the ground truth jet. The
distributions are normalized such that the sum of all
simulated events for each process is equal to 1. In the
figure, the red and pink contours correspond to the
distributions of the PELICAN method with cone size
R ¼ 1.0 and R ¼ 1.4, respectively. The blue contours
and gray shades correspond to the distributions of the
Mask R-CNN methods with the convex hull mask and the
enlargement mask, respectively. Different shades of gray
regions and colored contours from inside out indicate 20%,
40%, and 60% of events, respectively. The closer they are
to the center, the higher accuracy they stand for. It can be
observed that the Mask R-CNN methods with different
definitions of mask can achieve similar accuracies in both

signal

signal

FIG. 7. Left: ROC curves for LorentzNet with different cone-size parameters (the top quark jet is taken as the signal and the Higgs jet
is the background) and for Mask R-CNN (the signal Higgs boson and background top in cyan color; the signal top and background
Higgs boson in blue color). Right: the distributions for the classification scores in Mask R-CNN.

6Overlaps between RoIs are allowed as long as the IoU is less
than a threshold (we use 0.7) such that several RoIs indicate one
jet in general.
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Higgs boson and top jet momenta reconstruction. For
the test sample of the Ht̄t process, about 60% of Higgs
jets can be reconstructed with Δy ∼ Δϕ∈ ½−0.06; 0.06�,
Δm
m ∈ ½−0.08; 0.05�, and ΔpT

pT
∈ ½−0.14; 0.1�, and about

60% of top jets can be reconstructed with Δy∼
Δϕ ∈ ½−0.05; 0.05�, Δm

m ∈ ½−0.07; 0.05�, and ΔpT
pT

∈
½−0.11; 0.08�. The Mask R-CNN method surpasses the
PELICAN method in regressing both Higgs boson and top

FIG. 8. The two-dimensional event distributions of the Htt̄ event sample. Contours/shade from the inside out correspond to the event
fraction of 20%, 40%, and 60%, respectively. Upper panels: reconstructed Higgs jets. Lower panels: reconstructed top quark jets.

TABLE II. AUC values for LorentzNet with different jet cone sizes and for Mask R-CNN with either the Higgs
boson or top being the signal.

LorentzNet Mask R-CNN

R ¼ 0.8 R ¼ 1.0 R ¼ 1.2 R ¼ 1.4 R ¼ 1.6 R ¼ 1.8 Signal Higgs boson Signal top

AUC 0.920 0.953 0.960 0.964 0.962 0.966 0.9723 0.9754
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momenta for any choice of the cone-size parameter, when
60% of most accurate events are considered. Note that the
PELICAN efficiencies of successful Higgs boson and top
tagging on Htt̄ events are around 78% for R ¼ 0.8 and
around 85% for other cone sizes.
To give a quantitative comparison between the perfor-

mance of Mask R-CNN and PELICAN, we calculated the
root-mean-square distance (RMSD) using the following
method. We note that using RMS in the usual way is not
available since many of the predictions are false positives,
which are outliers. From the prediction of two networks, we
first sort the events by the distance of ðΔpT=pT;Δm=mÞ
from the origin (0, 0), i.e., sort the events according to the
pT and m prediction accuracies. Then, we calculate the
RMSD for 10%, 20%, 30%, 40%, and 50% of the most
accurate events. The results of the test sample are given in
Table III. In the sense of RMSD, the fraction of events

when Mask RCNN surpasses PELICAN is 35% for Higgs
momentum reconstruction and 40% for top momentum
reconstruction, respectively. In other words, those two
methods have the same RMSD on Higgs (top) momentum
reconstruction when the first 35% (40%) of events with the
highest accuracy are considered.
Compared to the results in our earlier works [42,43]

where the reconstructed jet momentum is calculated by the
vector sum of momenta of all marked particles so that the
accuracy is highly affected by the pileup contamination,
the method in this work adopts an independent jet branch
to predict the ground truth jet momentum. It turns out that
the jet branch has been trained to implement pileup
mitigation in an automatic and efficient way. No further
pileup mitigation procedures are required.

B. The detector and pileup effects

Although the network is trained on Monte Carlo events
without detector effects, it is supposed to also work well on
events where detector effects are included. For illustration,
we apply our network (which is trained on events without
detector effects) to events where the energy of final state
particles is Gaussian smeared with the standard deviation
varying from 1% to 20% of the total energy. In terms of
RMSD as discussed above, the results of the Higgs boson
and top reconstruction accuracy for events with different
standard deviations are given in Tables IV and V. We find
that the reduction of reconstruction accuracy due to the
detector effect is mild, especially for the top. Given a
specific detector configuration, it is also possible for the
network to learn the dedicated detector effects (which
render the assignment of Higgs boson=top constituents

TABLE V. Same as Table IV, for the predicted top in the Htt̄ process.

Without DS 0.01E 0.02E 0.04E 0.08E 0.1E 0.12E 0.14E 0.18E 0.2E

10% 0.0099 0.0095 0.0100 0.0101 0.0105 0.0101 0.0108 0.0107 0.0112 0.0113
20% 0.0147 0.0144 0.0149 0.0151 0.0154 0.0152 0.0160 0.0162 0.0167 0.0170
30% 0.0192 0.0188 0.0194 0.0196 0.0201 0.0200 0.0210 0.0212 0.0219 0.0224
40% 0.0239 0.0235 0.0243 0.0246 0.0252 0.0251 0.0261 0.0265 0.0275 0.0282
50% 0.0295 0.0292 0.0302 0.0306 0.0312 0.0310 0.0324 0.0330 0.0342 0.0351

TABLE IV. The values of RMSD for given percentages (from 10% to 50%) of the most accurately predicted Higgs boson in the Htt̄
process. Different columns correspond to the different standard deviations that are taken in the Gaussian smearing of the jet constituent
energy E. The second column gives the RMSD values without detector smearing (DS). Results are obtained by the enlarged Mask
R-CNN method.

Without DS 0.01E 0.02E 0.04E 0.08E 0.1E 0.12E 0.14E 0.18E 0.2E

10% 0.0098 0.0098 0.0101 0.0110 0.0129 0.0133 0.0143 0.0152 0.0167 0.0173
20% 0.0150 0.0150 0.0153 0.0165 0.0189 0.0197 0.0214 0.0225 0.0250 0.0260
30% 0.0198 0.0203 0.0202 0.0219 0.0242 0.0258 0.0277 0.0291 0.0325 0.0341
40% 0.0251 0.0261 0.0259 0.0279 0.0302 0.0322 0.0343 0.0362 0.0404 0.0424
50% 0.0322 0.0337 0.0333 0.0354 0.0372 0.0400 0.0421 0.0444 0.0496 0.0520

TABLE III. The values of RMSD for given percentages (from
10% to 50%) of the most accurate events of the Htt̄ process. The
results for the Higgs boson and top obtained from the enlarged
Mask R-CNN method and PELICAN method are shown.

Htt̄

Higgs Top

Enlarge PELICAN Enlarge PELICAN

10% 0.0098 0.0082 0.0100 0.0077
20% 0.0150 0.0132 0.0147 0.0122
30% 0.0198 0.0189 0.0192 0.0173
40% 0.0251 0.0272 0.0240 0.0240
50% 0.0322 0.0424 0.0295 0.0353
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ambiguous) by training the network on particle-gun MC
events (which contain only a single top quark or Higgs
boson in the final state) where the detector effects are
included. This can help to mitigate the detector smearing on
the momentum precision to some extent. However, the
possible drawbacks of such a procedure are that the method
could become detector dependent and may not be able to
learn the feature for the overlapped case as will be
discussed later.
Another important practical issue is the pileup effects

during the collision. At the High-Luminosity LHC, the
average number of pileup interactions per bunch crossing
can reach hμi ∼ 140–200. On the other hand, there are
pileup mitigation algorithms based on vertex and calorim-
eter information, which help to suppress the pileup effects
in the final data. Irrespective of a specific pileup mitigation
method, we apply our network (which is trained on events
with 50 pileups denoted by network@PU50) to events with
pileup levels varying from 5 to 200 (denoted by PU5 to
PU200). The results are given in Table VI. The AUC of
Mask R-CNN is barely changing for events with pileups
smaller than 50, and it decreases steadily with increasing
the pileup for hμi≳ 50. Moreover, we further fine-tune the
network@PU50 on 300 000 events with 200 pileups and
obtain the network@PU200 version of Mask R-CNN. In
terms of AUC values, the upgraded network has stable
performance on events with pileup level up to 200.
Meanwhile, the performance is comparable to that of the
network@PU50 for low pileup events.

C. Tests on different processes

Although the networks have been trained with event
samples of the Htt̄ process, they can be used as general

Higgs boson and top jets taggers for events of many other
processes. For demonstration purposes, we showcase their
capabilities in other processes at the LHC that produce
Higgs bosons and top jets: (1) pp → HHtt̄ in the SM,
(2) neutral Higgsino pair production with subsequent
decay χ̃02 → Hχ̃01 in the SUSY model, (3) top squark
pair production with subsequent decay t̃ → tχ̃01, and
(4) pp → tt̄tt̄ in the SM. The corresponding accuracy
contours are shown in Figs. 9 and 10. In all cases, we find
that the network performance only slightly depends on the
definition of the mask. The accuracies for all of the
variables (m;pT; y;ϕ) are always slightly worse than those
of the Htt̄ process. Generally speaking, about 40% of the
Higgs bosons/top jets in those test samples can be recon-
structed with Δy ∼ Δϕ∈ ½−0.04; 0.04�, Δmm ∈ ½−0.08; 0.05�,
and ΔpT

pT
∈ ½−0.1; 0.07�. The Higgsino pair (χ̃02χ̃

0
2) events

contain the fewest detectable particles in the final state so
that higher accuracies can be obtained for the momentum
variables. For the stop pair process, only the masses of the
stop and neutralino are set. There are Oð10%Þ of events
containing a top quark with momentum less than 300 GeV,
leading to lower reconstruction efficiencies and decreased
accuracies of themomentumvariables. Themass predictions
for theHiggs boson=top are generally lower for all cases, and
the situation is more severe for the stop pair and neutralino
pair processes because the network tends to predict smaller
jet masks, which may drop some jet constituents with non-
negligible energy. In the stop pair and neutralino pair
processes, such an operation happens more frequently,
because there are a certain fraction of events with pTðHÞ <
200 GeV and pTðtÞ < 300 GeV. The quantitative results in
terms of RMSD for those processes are provided in
Table VII. The fraction of events when Mask RCNN

TABLE VI. AUC values of two versions of the enlarged Mask R-CNN being tested on an event sample with different pileup levels.
Besides the version that is used throughout the paper (denoted by network@PU50, because it is trained on events with 50 pileups), the
network@PU200 version of Mask R-CNN is obtained by further training the network@PU50 on 300 000 events with 200 pileups.

PU5 PU10 PU20 PU30 PU50 PU80 PU100 PU120 PU150 PU180 PU200

network@PU50
Signal Higgs boson 0.9724 0.9728 0.9729 0.9732 0.9723 0.9670 0.9589 0.9446 0.9016 0.8051 0.7037

Signal top 0.9743 0.9746 0.9751 0.9756 0.9754 0.9718 0.9659 0.9547 0.9228 0.8732 0.8323

network@PU200
Signal Higgs boson 0.9609 0.9620 0.9636 0.9656 0.9678 0.9691 0.9696 0.9702 0.9705 0.9697 0.9691

Signal top 0.9684 0.9690 0.9701 0.9710 0.9723 0.9737 0.9741 0.9744 0.9744 0.9743 0.9740

TABLE VII. Same as Table III, for the HHtt̄, χ̃02χ̃
0
2, t̃

¯̃t, and tt̄tt̄ processes, respectively.

Higgs boson of HHtt̄ Top of HHtt̄ χ̃02χ̃
0
2 t̃ ¯̃t tt̄tt̄

Enlarge PELICAN Enlarge PELICAN Enlarge PELICAN Enlarge PELICAN Enlarge PELICAN

10% 0.0133 0.0119 0.0127 0.0110 0.0133 0.0080 0.0184 0.0160 0.0143 0.0152
20% 0.0210 0.0221 0.0197 0.0198 0.0207 0.0139 0.0271 0.0261 0.0221 0.0315
30% 0.0292 0.0416 0.0268 0.0342 0.0284 0.0236 0.0364 0.0399 0.0306 0.0938
40% 0.0405 0.0804 0.0359 0.0616 0.0376 0.0504 0.0489 0.0698 0.0413 0.1712
50% 0.0593 0.1497 0.0485 0.1108 0.0508 0.1227 0.0731 0.1254 0.0561 0.2438
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surpasses PELICAN is 18% for Higgs reconstruction in the
HHtt̄ process, 20% for top reconstruction in the HHtt̄
process, 35% for Higgs reconstruction in the χ̃02χ̃

0
2 process,

24% for top reconstruction in the t̃ ¯̃t process, and 7% for top
reconstruction in the tt̄tt̄ process, respectively.
Since there are multiple jets on an image, some of the jet

areas can be very close to each other or even overlap each
other. In such cases, the sequential recombination algo-
rithms with a large cone size will end up with merging
nearby or overlapping jets into one jet. In fact, when two
final state particles are close to each other, it is practically
impossible to tell if they originate from different ancestors.
Therefore, the overlapping jets will also greatly impede the

network accuracy. To see how much it affects the accuracy,
the network is tested on the tt̄tt̄ event sample with a
separation condition in which the ground truth coordinates
are at least 50 pixels (ΔR ≃ 1) away from each other such
that a large overlap almost never occurs. The momenta
reconstruction result is shown as dashed lines in the lower
panels of Fig. 10 for comparison. On the other hand, unlike
the PELICAN method, which requires the jet clustering,
the network is still mostly capable of finding the correct
number of jets. It seems that the network can identify if
there are constituents of multiple jets in an RoI and outputs
the most plausible overlap configuration based on what it
has seen in the training sample, although the prediction is
less accurate as shown in Fig. 11, for instance.

FIG. 9. Similar to Fig. 8 for the reconstructed Higgs jet (upper panels) and top jet (lower panels) in the HHtt̄ event sample.
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FIG. 10. Similar to Fig. 8 for reconstructed Higgs jets in the χ̃02χ̃
0
2 event sample (upper panels), reconstructed top jets in the t̃ ¯̃t event

sample (middle panels), and reconstructed top jets in the tt̄tt̄ event sample (lower panels).
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Finally, we apply our network to events of the QCD
multijet process pp → jjj where each jet in the final state
is required to have pT > 200 GeV. Mask R-CNN predicts
only 14 Higgs jets and zero top quark jets out of 10 000
images proving its high rejection rate for pure QCD jets.
For comparison, the same event sample is tested by the
BDRS Higgs tagging algorithm and the HEPTopTagger
top tagging algorithm. With the default setting of the
jet substructure parameter as given in Refs. [13,14], the
BDRS method predicts ∼600 Higgs jets with mass in
½120 GeV; 130 GeV�, and the HepTopTagger predicts
∼550 top jets with mass in ½150 GeV; 200 GeV�, among
the 10 000 event sample.

V. CONCLUSION

This work aims to build a deep neural network to label
the constituents of target jets among hadronic final state
particles based on supervised learning. In particular, the
hadronic final state of the top quark cannot be identified
unambiguously according to the Monte Carlo simulation
due to the color interconnection in hadronization. We
propose an algorithm based on the ground truth information
as well as the angular distance measure to determine the top
quark jet constituents.
The Mask R-CNN framework is adopted to detect the

Higgs jets and the top quark jets in collision events at the
LHC. The network can predict the shape (or mask) of target
jets of different kinds on event images. The definition of jet
shape/mask is not unique, even from a theoretical perspec-
tive. Two schemes of mask definition are proposed in this
work: enlargement mask and convex hull mask. More
importantly, an additional jet branch is built for predicting
the four-momenta of the original partons, in which the
pileup mitigation is intrinsically implemented.

The network is trained on events of the Htt̄ process at
the LHC, where the transverse momenta of the Higgs
boson and top quarks are required to be pTðHÞ >
200 GeV and pTðt=t̄Þ > 300 GeV. Each event is overlaid
with an average number of hμi ¼ 50 pileup events.
Compared with LorentzNet for jet classification and the
PELICAN network for jet momentum regression, Mask
R-CNN can detect and reconstruct both the Higgs boson
and top jets in a more efficient and accurate way,
mainly because it predicts jets with more accurate boun-
daries. The networks with two different definitions of
the mask have similar performance. In terms of two-
dimensional distributions on the Δy × Δϕ plane and
Δm
m × ΔpT

pT
plane, about 60% of Higgs jets can be recon-

structed with Δy ∼ Δϕ∈ ½−0.06; 0.06�, Δmm ∈ ½−0.08; 0.05�,
and ΔpT

pT
∈ ½−0.14; 0.1�, and about 60% of top jets can

be reconstructed with Δy ∼ Δϕ ∈ ½−0.05; 0.05�, Δm
m ∈

½−0.07; 0.5�, and ΔpT
pT

∈ ½−0.11; 0.08�.
The generality of the method is demonstrated by apply-

ing the Mask R-CNN method to processes different from
the trained one, including (1) pp → HHtt̄ in the SM,
(2) χ̃02χ̃

0
2 production with decay χ̃02 → Hχ̃01 in thet SUSY

model, (3) t̃ ¯̃t production with decay t̃ → tχ̃01, and
(4) pp → tt̄tt̄ in the SM. In all cases, we find the
dependence of the network performance on the mask
definition is little, and the network outperforms the
PELICAN method in the accuracy of momenta
reconstruction, especially for processes with higher visible
final state multiplicity. In general, the performance is
slightly worse than that for the Htt̄ process. About 40%
of the Higgs boson=top jets in those test samples
can be reconstructed with Δy ∼ Δϕ∈ ½−0.04; 0.04�,
Δm
m ∈ ½−0.08; 0.05�, and ΔpT

pT
∈ ½−0.1; 0.07�.

FIG. 11. Solid lines indicate ground truth masks and dashed lines represent predicted masks. Overlapping jet areas make the network
less accurate.
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Moreover, we show that the network is capable of
detecting the target jets even when they overlap each other
on the event image, although the accuracy of the recon-
structed momentum is degraded. The network exhibits high
background jet rejection power when applied to events of
the QCD multijet process.
Although we focus on the generalization capability to

other processes in this work, conversely one may have the
network to specialize in a particular process through the
transfer learning. By training only the detection head with
a small dataset of a certain process, the accuracy on the
process increases while the network becomes rapidly
insensitive to other processes. The Mask R-CNN method
proposed in this work can be used to detect the boosted
Higgs boson=top at the hardware trigger when being loaded
to FPGA. Meanwhile, this method can also supplement the
conventional analysis by detecting the Higgs boson=top
and removing the Higgs boson=top constituent before
applying a usual jet clustering algorithm. In the future,
we will try to generalize this method to detect all kinds of
jets in collider events, then it can simply replace the jet
clustering and identification algorithms in the conventional
data analysis.
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APPENDIX: VALIDATION OF
LORENTZNET AND PELICAN

To validate the applications of LorentzNet and
PELICAN, we try to reproduce the results of Refs. [35,36].
LorentzNet and the classification component of PELICAN
are trained and tested on datasets provided in Ref. [61], and

both models were trained by the commands given on their
github.7,8

The ROC curves of both methods are shown in Fig. 12,
for which the signal is the top quark jet and the background
is the gluon/light-flavor jets. The [accuracy, AUC] are
[0.9417, 0.9865] for LorentzNet and [0.9362, 0.9837] for
PELICAN, respectively. The slight degradation of perfor-
mance for PELICAN is attributed to the limited number of
training samples (60 000 events are used).
We also train PELICAN to predict the four-momentum

of a W boson for the case without detector effects, as
described in Ref. [36]. The regression component of
PELICAN is trained and tested on the dataset provided
in Ref. [60]. The resolutions that we have obtained are
σpT

¼ 1.12%, σm ¼ 1.5%, σΨ ¼ 0.55. Those numbers are
close to the values in Ref. [36].
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