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We study the radiative corrections to the stabilization of the complex structure modulus τ in modular
flavor symmetric models. We discuss the possibility of obtaining the vacuum expectation value of τ in the
vicinity of the fixed point where residual symmetries remain unbroken. As concrete examples, we analyze
the one-loop Coleman-Weinberg potential in the A4 modular flavor models. We show that the one-loop
correction may lead to the slight deviation from the tree-level result, which may realize a phenomeno-
logically preferred value of the complex structure modulus τ, particularly when the number of species
contributing to the one-loop correction is large enough.
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I. INTRODUCTION

One of important issues to study in particle physics is to
understand the origin of flavor structure. Quark and lepton
masses are hierarchical. The lepton mixing angles are
large, while the quark mixing angles are small. Modular
flavor symmetry is one of the attractive approaches to
the flavor mysteries in particle physics [1]. Indeed, modular
flavor symmetric models have been studied extensively
(see, for example, earlier works [2–12]).
The modular symmetry is a geometrical symmetry of

compact space, such as a torus. The modulus τ of the
torus transforms nontrivially under the modular symmetry.
Yukawa couplings as well as other couplings and masses
are functions of the modulus in four-dimensional (4D)
low energy effective field theory derived from higher-
dimensional theory such as superstring theory. Thus,
Yukawa couplings as well as others transform nontrivially
under the modular symmetry. Indeed, Yukawa couplings
are modular forms. Matter fields and Higgs fields also
transform nontrivially. They can be representations of finite
modular groups such as S3, A4, S4, A5, etc. The 4D effective
field theory must be invariant under the modular symmetry
including nontrivial transformations of Yukawa couplings
and other couplings. Thus, concrete values depend on the
vacuum expectation value (VEV) of the modulus. Indeed,

the modulus stabilization was studied within the framework
of modular flavor models, Refs. [13–19].
Generically, the modular symmetry is broken completely

when the modulus value is fixed. Some residual symmetries
remain at certain fixed points. The Z2 and Z3 symmetries
remain at τ ¼ i and τ ¼ ω ¼ e2πi=3, respectively, while T
symmetry remains in the limit τ ¼ i∞. The modular forms
behave like Y ∼ εn around the fixed point, where ε ≪ 1 and
n denotes the charge of matter under the residual symmetry.
Such behavior is very interesting to quark and lepton mass
hierarchies without fine-tuning [20–29]. On the other hand,
some mechanisms stabilize the modulus value at an exact
fixed point, e.g., τ ¼ ω [14,15]. Such stabilization at an
exact value does not lead to realistic results in fermion mass
matrices, but small deviation is useful from the phenom-
enological viewpoint. However, we may have some cor-
rections and the stabilized modulus value may shift slightly
from the fixed point. Such deviation would be useful to
realize hierarchical masses as well as mixing angles,
although the deviation depends on the ratio of corrections
to the stabilized modulus mass. Our purpose is to study
radiative corrections on the modulus stabilization due to
heavy modes through the Coleman-Weinberg potential.1

This paper is organized as follows. In Sec. II, we give a
brief review on modular flavor symmetric models and the
behavior of modular forms in the vicinity of fixed points.
In Sec. III, we illustrate our A4 models for stabilizing the
modulus and one-loop effective potential. In Sec. IV, we
study the potential numerically and analytically by some
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1Moduli stabilization only by radiative corrections was studied
in Refs. [30,31].
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approximations. Section V is our conclusion. Group theo-
retical aspects of A4 are reviewed in Appendix A. A4

modular forms are listed in Appendix B. In Appendix C,
we show approximations, which are used in Sec. IV.

II. MODULAR SYMMETRY AS A FLAVOR
SYMMETRY

Here, we briefly review the 4D N ¼ 1, modular-
invariant supersymmetric (SUSY) model. We consider
the following infinite groups:

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ;

�
a b

c d

�
≡
�
1 0

0 1

�
ðmod NÞ

�
; ð1Þ

where N is a positive integer. The action of γ ∈ΓðNÞ,

γτ ¼ aτ þ b
cτ þ d

; ð2Þ

is called modular transformation, under which the upper
half-plane fτ∈CjImτ > 0g is mapped to itself. Since
the transformations generated by γ and −γ on τ are
identified, one often defines Γ̄ðNÞ≡ ΓðNÞ=fI;−Ig. Note
that Γ̄ðN > 2Þ ¼ ΓðNÞ because −I ∉ ΓðN > 2Þ. The group
Γ̄ð1Þ consists of the following two generators:

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
; ð3Þ

which induce

S∶τ → −
1

τ
; T∶τ → τ þ 1: ð4Þ

The finite modular subgroups ΓN are defined as ΓN≡ Γ̄ð1Þ=
Γ̄ðNÞ. For N ≤ 5, we have the following presentations:

ΓN ¼ hS; TjS2 ¼ I; ðSTÞ3 ¼ I; TN ¼ Ii: ð5Þ

It is known that ΓN is isomorphic to the non-Abelian
discrete symmetry groups S3, A4, S4, A5 for N ¼ 2; 3; 4; 5,
respectively [32], which we will identify as flavor
symmetries.2

The matter chiral superfieldsΦI transform as “weighted”
multiplets

ðΦIÞi → ðcτ þ dÞ−kIρIðγÞijðΦIÞj; γ ∈ΓN; ð6Þ

where kI ∈Z and ρIðγÞ is a unitary representation of ΓN .
The 4D N ¼ 1 global SUSY Lagrangian invariant under
the ΓN modular symmetry is given by

L¼
Z

d2θd2θ̄Kðτ; τ̄;ΦI; Φ̄IÞ þ
�Z

d2θWðτ;ΦIÞ þH:c:

�
;

ð7Þ
where K andW are the Kähler potential and superpotential,
respectively. We consider the following Kähler potential:

Kðτ; τ̄;ΦI; Φ̄IÞ ¼ −Λ2
0 log ð−iðτ − τ̄ÞÞ þ

X
I

jΦIj2
ð−iðτ − τ̄ÞÞkI ;

ð8Þ
where Λ0 is a mass parameter. The Kähler potential K
transforms under ΓN, which can be identified as a Kähler
transformation K → K þ log jΛj2 where Λ is a chiral
superfield. Thus, the superpotential W must transform
in such a way that the Kähler-invariant function G ¼
K þ log jWj2 is invariant under the modular transforma-
tion. Such superpotential W is constructed by extracting
trivial singlet 1 terms under ΓN from the products
of holomorphic functions YI1…ImðτÞ and matter chiral
superfields,

Wðτ;ΦIÞ ¼
X
m

X
fI1;…;Img

ðYI1…ImðτÞΦI1…ΦImÞ1: ð9Þ

From the ΓN invariance of W in Eq. (9), we find that
YI1;…;ImðτÞ must be a modular form of level N with a
specific modular weight kY . The modular forms of weight
kY and level N are defined as holomorphic functions of τ
which behave under ΓðNÞ as

YI1…ImðγτÞ¼ðcτþdÞkYYI1…ImðτÞ;
�
a b

c d

�
∈ ΓðNÞ; ð10Þ

where kY is a non-negative even number. Acting γ ∈ ΓN on
the modular forms, we obtain

½YI1…ImðγτÞ�i¼ðcτþdÞkYρðγÞij½YI1…ImðτÞ�j;
�
a b

c d

�
∈ ΓN;

ð11Þ

where ρðγÞ denotes a unitary representation matrix of
γ ∈ΓN . The derivation of Eq. (11) from Eq. (10) is
presented in Appendix B of Ref. [1]. Here, we briefly
comment on the relation between the two equations.
By definition, any elements of ΓðNÞ are identified as the
identity element in the quotient group ΓN . Thus, the
corresponding representation matrix is the identity matrix
ρ ¼ I, if ΓðNÞ actions are considered in Eq. (11). This
recovers Eq. (10) as required. For the ΓN invariance of W,

2See Refs. [33–41] for model building with these non-Abelian
discrete flavor symmetries.
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the modular weight must satisfy kY ¼ kI1 þ � � � þ kIm. In
addition, the tensor product of the representations of
superfields and modular forms need to contain a trivial
singlet 1 to get a nonvanishing superpotential.

A. Behavior of modular forms in the vicinity of τ =ω

When the modulus τ acquires a VEV, the modular ΓN
symmetry is broken, in general. However, at the fixed
points τ ¼ i∞, i;ω ¼ e

2πi
3 , residual symmetries ZN; Z2, and

Z3 remain, respectively. In fact, it is phenomenologically
attractive to have VEVs close to the fixed points when
reproducing hierarchical flavor structures without fine-
tuning. This is due to the fact that the values of modular
forms become hierarchical, depending on the charges of the
residual symmetry [21]. Thus, we will focus on stabilizing
the modulus in the proximity of those fixed points. As we
see in the next section, the one-loop effective potential of τ
will be written in terms of modular forms. This motivates
us to look at the behavior of modular forms in the vicinity
of the fixed point. Here and hereafter, we focus on
τ ¼ ω ¼ e

2πi
3 , where Z3 symmetry generated by ST is

unbroken. A small deviation of δτ ¼ Oð0.01Þ would be
phenomenologically interesting [22,25].
The modular forms of weight kY and level N transform

under ST ∈ΓN as

½YðkYÞ
r ðτÞ�i !ST ½YðkYÞ

r ð−1=ðτ þ 1ÞÞ�i
¼ ð−1 − τÞkYρrðSTÞij½YðkYÞ

r ðτÞ�j; ð12Þ

where r denotes the representation. Since we will only
focus on singlet representations, indices i, j are not relevant
hereafter. The representation matrix corresponding to a
singlet is written as ρrðSTÞ ¼ ωqr , where qr ∈Z denotes

the ST charge of the modular form YðkYÞ
r . For convenience,

we introduce the following complex variable:

u≡ τ − ω

τ − ω2
; ð13Þ

which parametrizes the deviation of τ from the ST-invariant
fixed point ω. Notice that u is transformed to ω2u under
the ST. We can rewrite Eq. (12) as

YðkYÞ
r ðω2uÞ ¼

�
1 − ω2u
1 − u

�
kY
ρ̃rðSTÞYðkY Þ

r ðuÞ; ð14Þ

where ρ̃r ¼ ω−kYρr. Since both sides of Eq. (14) are
holomorphic with respect to u, we expand both sides
in u, which yields

ω2l d
lỸðkY Þ

r ðuÞ
dul

����
u¼0

¼ ρ̃rðSTÞ
dlỸðkYÞ

r ðuÞ
dul

����
u¼0

; ðl¼0;1;2;…Þ;

ð15Þ

where ỸðkYÞ
r ¼ ð1 − uÞ−kYYðkY Þ

r . We obtain

ðω2l − ωqr−kY Þ d
lỸðkY Þ

r ðuÞ
dul

����
u¼0

¼ 0: ð16Þ

This shows that d
lỸ

ðkY Þ
r ðuÞ
dul ju¼0¼0, unless2l≡qr−kY ðmod 3Þ.

Thus, we expect that the modular forms become hierarchical
depending on their ST charges when τ is close to ω. Note
also that

YðkYÞ
r ðτÞ ¼ ð1 − uÞkY ỸðkY Þ

r ; ð17Þ

dYðkYÞ
r ðτÞ
dτ

¼ ð1 − uÞkYþ2ffiffiffi
3

p
i

�
dỸðkYÞ

r

du
−

kY
1 − u

ỸðkYÞ
r

�
; ð18Þ

d2YðkYÞ
r ðτÞ
dτ2

¼ −
ð1 − uÞkYþ4

3

�
d2ỸðkYÞ

r

du2
− 2

kY þ 1

1 − u
dỸðkYÞ

r

du

þ k2Y þ kY
ð1 − uÞ2 Ỹ

ðkYÞ
r

�
; ð19Þ

which will be used in the later discussion.

III. MODULI STABILIZATION IN A4 MODEL

For concreteness, we study the stabilization of the com-
plex structure modulus τ in A4 ≃ Γ3 modular flavor sym-
metric models and discuss the one-loop effective potential
Veffðτ; τ̄Þ within the models.
In order to proceed further, we assume the following

superpotential:

Wðτ;ΦIÞ ¼
1

2
hϕiYð8Þ

r ðτÞ
Xn
I¼1

Φ2
I ; ð20Þ

where hϕi is a mass parameter.3 Yð8Þ
r ðτÞ denotes the

modular form of level 3 with modular weight kY ¼ 8,
which belongs to the representation r. For simplicity, we
will treat modular forms in the singlet representations
r ¼ 1; 10, and 100 of A4 ≃ Γ3. Those A4 modular forms are
explicitly defined in Appendix B and corresponding
representation matrices are summarized in Appendix A.
Note that kY ¼ 8 is the lowest modular weight where
there exist three nonvanishing A4 singlet modular forms

3One of the possible origins of the superpotential in Eq. (20) is
the D-brane instanton effect. In such a case, hϕi corresponds to
∼e−SclMcom, where Scl is the classical action of the D-brane
instanton and Mcom denotes the compactification scale [42]. We
may also regard hϕi as the VEVof a grand unified theory Higgs
superfield.
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of 1; 10, and 100. For later convenience, we show the
behavior of the A4 modular forms in the vicinity of the
fixed point τ ¼ ω,

Yð8Þ
1 ðτÞ¼−

1

6

d2Ỹð8Þ
1 ðuÞ
du2

����
u¼0

ðτ−ωÞ2þOððτ−ωÞ3Þ; ð21Þ

Yð8Þ
10 ðτÞ ¼

1ffiffiffi
3

p
i

dỸð8Þ
10 ðuÞ
du

����
u¼0

ðτ − ωÞ þOððτ − ωÞ2Þ; ð22Þ

Yð8Þ
100 ðτÞ ¼ Ỹð8Þ

100 ð0Þ−
8Ỹð8Þ

100 ð0Þffiffiffi
3

p
i

ðτ−ωÞ þOððτ−ωÞ2Þ: ð23Þ

We assume that the matter chiral superfields ΦI also
belong to one of the three A4 singlet representations with
an integral weight −kI. For the modular invariance of the
superpotential, kI ¼ 4; ð∀IÞ is required. If kI ≠ 4, it
implies that hϕi has a nonzero modular weight, hence
modular symmetry is broken.4

We note that, unless SUSY is spontaneously broken,
the one-loop effective potential identically vanishes, but in
realistic models SUSY must be broken at some scale. In
order to keep the generality of our discussion, we will
introduce soft SUSY breaking terms without specifying
their origins, with which there appears the nonvanishing
one-loop effective potential denoted by V1. In particular, in
the presence of n different matter flavors, V1 would be
multiplied by the flavor number n. Thus, the effective
potential in the one-loop approximation is given by

Veff ¼ V0 þ nV1; ð24Þ

where n denotes the number of chiral superfields and V0

corresponds to the tree-level potential.
Let us comment on the tree-level potential V0. It was

shown that the fixed point τ ¼ ω is favored statistically
with the highest probability [14] within the statistics of
3-form flux superpotential in string theory. Thus, it is
reasonable to assume that the tree-level potential stabilizes
τ near the fixed point ω. For simplicity of our following
analysis, we will approximate the potential as

V0 ¼ m4
τ jτ − ωj2; ð25Þ

where mτ is a mass parameter. We expect that the details of
the tree-level potential lost in our approximation would not
change our conclusion as long as the deviation from the
minimum τ ¼ ω is small enough.

A. Coleman-Weinberg potential

The Coleman-Weinberg potential V1 is straightforwardly
computed as

V1 ¼
1

32π2

�
ðM2 þm2

0Þ2 log
�
M2 þm2

0ffiffiffi
e

p
Λ2

�

−M4 log

�
M2ffiffiffi
e

p
Λ2

��
; ð26Þ

at the one-loop level,5 where M2 is defined as

M2 ¼ ð2ImτÞ2kIhϕi2jYðkYÞ
r j2; ð27Þ

and Λ denotes the cutoff, which we will take to be near
the compactification scale.6 The factor ð2ImτÞ2kI in
Eq. (27) comes from the redefinition of component fields
to normalize their kinetic terms into canonical ones. The
first term on the right-hand side of Eq. (26) corresponds
to the bosonic contributions, while the second term
corresponds to those of fermions. We have introduced
the soft SUSY breaking massm0 to the scalar components
by hand. In particular, we have assumed that m0 is
independent of τ.7 Notice that, for kI ¼ 4, where hϕi is
a modular singlet, M2 and accordingly V1 are modular
invariant as they should be. Moreover, V1 is invariant
under the CP, τ → −τ̄.
For our purpose, we summarize the derivatives of the

potential as follows: The first derivatives of V1 with respect
to x≡ Reτ and y≡ Imτ are given by

∂V1

∂x
¼ 1

32π2
∂M2

∂x
CðM2; m2

0Þ;
∂V1

∂y
¼ 1

32π2
∂M2

∂y
CðM2; m2

0Þ; ð28Þ

where

CðM2; m2
0Þ≡ 2ðM2 þm0

2Þ log
�
M2 þm2

0ffiffiffi
e

p
Λ2

�

− 2M2 log

�
M2ffiffiffi
e

p
Λ2

�
þm0

2: ð29Þ

4Modular T symmetry can remain unbroken even when the
modular weights do not cancel between modular forms and chiral
superfields.

5Terms that vanish when Λ2 goes to infinity are neglected [43].
Thus, we need the condition M2 þm2

0 ≪ Λ2 to trust the
expression in Eq. (26) as a good approximation. In particular,
we require maxðM2; m2

0Þ=Λ2 ⪅ 0.01 for the validity of our
approximation.

6More precisely, we have used the cutoff regularization and
identified the cutoff scale to be the compactification scale. Even if
we use the dimensional regularization, we would find the same
result by imposing appropriate renormalization conditions.

7Such a situation may be realized if the SUSY breaking is
mediated by a field that does not couple to τ; particularly, its
modular weight should be zero. For modular symmetry of soft
SUSY breaking terms, see Ref. [44].
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The second derivatives are given by

∂
2V1

∂x2
¼ 1

32π2

�
∂
2M2

∂x2
CðM2; m2

0Þ þ 2

�
∂M2

∂x

�
2

log
�
M2 þm2

0

M2

��
;

∂
2V1

∂y2
¼ 1

32π2

�
∂
2M2

∂y2
CðM2; m2

0Þ þ 2

�
∂M2

∂y

�
2

log

�
M2 þm2

0

M2

��
;

∂
2V1

∂x∂y
¼ 1

32π2

�
∂
2M2

∂x∂y
CðM2; m2

0Þ þ 2

�
∂M2

∂x

��
∂M2

∂y

�
log

�
M2 þm2

0

M2

��
; ð30Þ

where

∂M2

∂x
¼ 2hϕi2ð2yÞ2kIRefð∂τYÞY�g;

∂M2

∂y
¼ 22kIhϕi2y2kI−1½−2yImfð∂τYÞY�g þ 2kIjYj2�; ð31Þ

and

∂
2M2

∂x2
¼ 2hϕi2ð2yÞ2kI ½Refð∂2τYÞY�g þ j∂τYj2�;

∂
2M2

∂y2
¼ 22kIhϕi2y2kI−2½−2y2ðRefð∂2τYÞY�g − j∂τYj2Þ − 8kIyImfð∂τYÞY�g þ 2kIð2kI − 1ÞjYj2�;

∂
2M2

∂x∂y
¼ 22kIþ1hϕi2y2kI−1½2kIRefð∂τYÞY�g − yImfð∂2τYÞY�g�: ð32Þ

B. Canonical basis of modulus

The kinetic term of the modulus field τ resulting from
Eq. (8) is given by

−
Λ2
0

ð2ImτÞ2 j∂μτj
2 ¼ −

Λ2
0

ð2yÞ2 ½ð∂μxÞ
2 þ ð∂μyÞ2�; ð33Þ

where x ¼ Reτ and y ¼ Imτ, which are not yet canonically
normalized. In order to discuss the stability of the vacua
from the potential analysis, we need to convert the basis to
canonical ones. However, the second derivatives of the
potential evaluated at stationary points do not change signs
under the conversion. This means that a local minimum
(maximum) of a potential V plotted as a function of x and y
is still a local minimum (maximum) of the ones in the
canonical basis.
One may confirm the above statement as follows:

Consider a stationary point of a potential Vðx; yÞ given
by τ� ¼ x� þ iy�. In the vicinity of the stationary point,
we may expand the kinetic term in Eq. (33) as

−Λ2
0

�
1

ð2y�Þ2
þOðΔyÞ

�
· ½ð∂μΔxÞ2 þ ð∂μΔyÞ2�; ð34Þ

where Δx ¼ x − x� and Δy ¼ y − y�. On the other hand, in
terms of canonical basis χ, ψ we have

Lkin ¼ −
1

2
½ð∂μχÞ2 þ ð∂μψÞ2�: ð35Þ

By comparing Eqs. (34) and (35), we obtain

χðΔx;ΔyÞ ¼ Λ0ffiffiffi
2

p
y�

ΔxþOðΔ2Þ;

ψðΔx;ΔyÞ ¼ Λ0ffiffiffi
2

p
y�

ΔyþOðΔ2Þ; ð36Þ

where OðΔ2Þ denotes second or higher order terms of Δx
and Δy. Then we find

∂
2V
∂χ2

����
τ¼τ�

¼ 2y2�
Λ2
0

∂
2V
∂x2

����
τ¼τ�

;

∂
2V
∂ψ2

����
τ¼τ�

¼ 2y2�
Λ2
0

∂
2V
∂y2

����
τ¼τ�

;

∂
2V

∂χ∂ψ

����
τ¼τ�

¼ 2y2�
Λ2
0

∂
2V

∂x∂y

����
τ¼τ�

: ð37Þ

Thus, the second derivatives of potential around the
minimum/maximum are the same up to an overall
factor; therefore, one may simply discuss the stability with
noncanonical variables.
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IV. VACUUM STRUCTURE WITH
RADIATIVE CORRECTIONS

In this section, we analyze the behavior of the one-loop
Coleman-Weinberg potential V1 especially around the
fixed point τ ¼ ω for each model with the A4 modular
form of r ¼ 1; 10; 100. We also discuss the possibility to
obtain stable vacua in the vicinity of ω by considering the
effective potential Veff ¼ V0 þ nV1.

A. r= 1

Here, we study the case when the A4 modular form
of representation r ¼ 1 with weight kY ¼ 8, namely, we

take Yð8Þ
1 in Eq. (27). In the vicinity of τ ¼ ω, we have

M2 ¼ 3kIhϕi2
36

���� d2Ỹ
ð8Þ
1 ðuÞ
du2

����
u¼0

����2jτ − ωj4 þ � � � ; ð38Þ

from Eq. (21).8 It follows from Eqs. (28) and (30) that both
the first and second derivatives of the one-loop quantum
correction V1 with respect to x ¼ Reτ and y ¼ Imτ vanish
at the fixed point,

∂V1

∂x

����
τ¼ω

¼ ∂V1

∂y

����
τ¼ω

¼ 0;

∂
2V1

∂x2

����
τ¼ω

¼ ∂
2V1

∂y2

����
τ¼ω

¼ ∂
2V1

∂x∂y

����
τ¼ω

¼ 0; ð39Þ

while V1ðωÞ ¼ 1
32π2

m4
0 logð m2

0ffiffi
e

p
Λ2Þ.

We have shown a numerical illustration of V1 in Fig. 1,
which clearly shows the instability of the point τ ¼ ω.
Indeed, the fixed point τ ¼ ω is a local maximum of V1

independent of the values of kI; hϕi and m0. We can
understand such a behavior by expanding V1 in M2

m2
0

, which

is a good approximation since M2 → 0 as τ → ω. If τ is
sufficiently close to ω, the bosonic contribution dominates
the potential V1. We may approximate it as

V1 ≃
m4

0

32π2

�
log

�
m2

0ffiffiffi
e

p
Λ2

�
þ 2M2

m2
0

log

�
m2

0

Λ2

��
: ð40Þ

Taking account of logðm2
0=Λ2Þ < 0 and Eq. (38), the

second term becomes an inverted quartic potential maxi-
mized at τ ¼ ω. Thus, the combination of the tree-level
potential V0 ¼ m4

τ jτ − ωj2 and the one-loop correction nV1

would hardly realize the desired small deviation from the
fixed point τ ¼ ω.
We briefly comment on the behavior of the one-loop

potential far from the fixed point τ ¼ ω. From Eq. (28), one
may think that there can be additional minima at the point

satisfying CðM2; m2
0Þ ¼ 0. However, such points are gen-

erally unphysical as they are inconsistent with our effective
field theory description, valid only if M2 ≪ Λ2.

B. r= 10

We proceed to the case where the A4 modular form of

representation r ¼ 10 with weight kY ¼ 8, namely, Yð8Þ
10 in

Eq. (27). In the vicinity of τ ¼ ω, we have

M2 ¼ 3kI jDj2hϕi2
3

jτ − ωj2

×

�
1þ δy

�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p �
þOðjτ − ωj2Þ

�
; ð41Þ

from Eq. (22) where D ¼ dỸð8Þ
10 ðuÞ
du ju¼0 ≃ −10.6þ 18.3i and

we have defined δy ¼ y −
ffiffi
3

p
2
. It follows that the first

derivatives of the one-loop quantum correction V1 with
respect to x ¼ Reτ and y ¼ Imτ vanish at the fixed point,

∂V1

∂x

����
τ¼ω

¼ ∂V1

∂y

����
τ¼ω

¼ 0; ð42Þ

whereas the second derivatives are nonvanishing,

∂
2V1

∂x2

����
τ¼ω

¼ ∂
2V1

∂y2

����
τ¼ω

¼ 1

24π2
3kI jDj2hϕi2m2

0 log

�
m2

0

Λ2

�
;

ð43Þ

∂
2V1

∂x∂y

����
τ¼ω

¼ 0: ð44Þ

We find ∂
2V1

∂x2 jτ¼ω < 0 and ∂
2V1

∂y2 jτ¼ω < 0; hence the fixed

point τ ¼ ω is a local maximum of V1 independent of the

FIG. 1. The one-loop potential V1 with r ¼ 1 and kY ¼ 8 in
the vicinity of τ ¼ ω. The parameters are chosen as kI ¼ 4;
hϕi ¼ 10−2; m0 ¼ 10−1 under

ffiffiffi
e

p
Λ2 ¼ 1. The red line shows

the arc jτj ¼ 1.

8In the vicinity of τ ¼ ω, we findM2 ≪ 1. Thus, the Coleman-
Weinberg potential in Eq. (26) is valid in this region.
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values of kI; hϕi and m2
0.
9 Figure 2 shows V1 in the vicinity

of τ ¼ ω with the parameters kI ¼ 4; hϕi ¼ 10−2, and
m0 ¼ 10−1.
Unlike the previous case with r ¼ 1, the second deriv-

atives are nonvanishing and, therefore, there is a possibility
to realize a small deviation from the fixed point.
Nevertheless, the one-loop effective potential is generally
small, and one of the ways to realize the deviation is to
increase the number of species contributing to the loop
correction. We are able to estimate the number of species n
that makes the one-loop correction to be compatible with
the tree-level potential as

n ≥ nc ≡ −48π2m4
τ

3kI jDj2hϕi2m2
0 log ðm2

0=Λ2Þ ; ð45Þ

where nc satisfies

∂
2

∂x2
ðV0 þ ncV1Þ ¼ 0;

∂
2

∂y2
ðV0 þ ncV1Þ ¼ 0; ðat τ ¼ ωÞ:

ð46Þ

Equation (45) shows that the larger the value ofm0 and hϕi,
the smaller the value of nc.
We emphasize that the compatibility of the “tree-level

potential” and the one-loop potential does not imply the
breakdown of our perturbative approach. This is because
the origin of the tree-level potential we assume here has
generally nothing to do with the one-loop contribution. For
instance, the tree-level potential can originate from non-
perturbative effects, such as gaugino condensation. On the
other hand, the Coleman-Weinberg potential originates
from the loops of matter fields coupling to τ through their

“Yukawa couplings.” Therefore, the tree-level potential and
the one-loop corrections can be compatible without prob-
lems of strong couplings. Indeed, the coupling is small
jYðτÞj ≤ Oð0.1Þ when the modulus is in the vicinity of
τ ¼ ω. Nevertheless, increasing the number of species
may conflict with the perturbativity of gravitational inter-
actions [45], known as the “species bound.” In our case,
thanks to SUSY, we expect that the one-loop correction
to the Newton constant is relaxed. Nevertheless, a naive
application of the species bound requires

Λ <
Mplffiffiffi
n

p ; ð47Þ

where Mpl is the Planck scale. If we take n ∼ 103–107 as
shown in our numerical examples later, that yields roughly
Λ < 1014–1016 GeV. Therefore, the cutoff scale (∼ the
compactification scale) needs to be below such a scale,
which can be satisfied without any problems. On the other
hand, if we take Mpl ≃ 1019 GeV and the cutoff Λ near the
compactification scale Mcom ≃ 1017 GeV, then condition
Eq. (47) requires n < 104. In our numerical examples
shown later, we will see that this species bound is satisfied
if mτ is reasonably small.
We comment on a property of the effective potential. As

a consequence of the CP invariance τ → −τ̄, the effective
potential is invariant under δx → −δx, where δx ¼ xþ 1

2
.

Note that spontaneous CP violation10 would have impor-
tant phenomenological impact, particularly on the flavor
structure. However, as will be shown in Eq. (48), such
violation would not take place within our model near
τ ¼ ω. Thus, our primary interest is in the behavior of the
effective potential along the line x ¼ − 1

2
.

We have shown Veff along x ¼ − 1
2
with ðkI; hϕi; m0Þ ¼

ð4; 10−2; 10−1Þ and n=m4
τ ¼ 3300 (Fig. 3) or n=m4

τ ¼ 3400
(Fig. 4). For those cases, we have numerically derived the

FIG. 2. The one-loop effective potential V1 in the vicinity of
τ ¼ ω for r ¼ 10 with the weight kY ¼ 8. The parameters are
chosen as kI ¼ 4; hϕi ¼ 10−2; m0 ¼ 10−1 under

ffiffiffi
e

p
Λ2 ¼ 1. The

red line shows the arc jτj ¼ 1.

FIG. 3. n=m4
τ ¼ 3300.

9Note that m2
0 ≪ Λ2.

10CP violation is caused by the VEVof τ if it lies neither on the
lines 2x≡ 0 mod 1 nor the arc jτj ¼ 1.
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deviation jδy�j ≃ 0.0273 and jδy�j ≃ 0.0362, respectively,

where δy� ¼ y� −
ffiffi
3

p
2
. Note that we have found the critical

species number to be nc=m4
τ ≃ 3180 in the unit satisfyingffiffiffi

e
p

Λ2 ¼ 1, from which we have chosen the parameters
above. For clarity, we present explicit values of parameters
with e1=4Λ ¼ 1017 GeV. When mτ is 1017, 0.5 × 1017,
0.2 × 1017 GeV, the corresponding critical species number
is given by nc ≃ 3180, 200, 5, respectively. These examples
are consistent with the species bound (47).
In confirmation of the vacuum stability, we also show the

ðx; yÞ dependence of Veff in Fig. 5, where we have used the
same parameters as in Fig. 4. We have confirmed that
the local minimum is on the “CP-invariant” line δx ¼ 0.
The shape of one-loop corrected potential generally takes
the “tilted wine bottle” shape as the one presented in Fig. 5.
We also show the case of a different parameter set,
ðkI; hϕi; m0Þ ¼ ð4; 10−2; 10−3Þ with n=m4

τ ¼ 2.2 × 107

(Fig. 6) or n=m4
τ ¼ 2.5 × 107 (Fig. 7). We have numerically

derived the deviation jδy�j ≃ 0.0244 and jδy�j ≃ 0.0356,
respectively. In this case, we have found nc=m4

τ ≃ 9.8× 106.
As numerical examples, the critical species numbers are

nc≃ 9.8×106, 980, 61 formτ ¼ 1017, 1016, 0.5×1016GeV,
respectively, where we have taken e1=4Λ ¼ 1017 GeV. In
Fig. 8, we have shown the relation between mτ and nc with
the species bound. The blue line represents the relation
nc=m4

τ ¼ 9.8 × 106, while the orange line corresponds to
the upper bound of the species number n ≤ ðΛ2=MplÞ2 ≃
104. Thus, our model is within the bound if mτ is
reasonably small (e.g., mτ ⪅ 1.5 × 1016 GeV).

FIG. 4. n=m4
τ ¼ 3400.

FIG. 5. Three-dimensional plot of Veff=m4
τ in the vicinity of

τ ¼ ω. The chosen parameters are identical to those in Fig. 4,
namely, kI ¼ 4; hϕi ¼ 10−2; m0 ¼ 10−1; n=m4

τ ¼ 3400 in the
unit

ffiffiffi
e

p
Λ2 ¼ 1. The red line shows the arc jτj ¼ 1.

FIG. 6. n=m4
τ ¼ 2.2 × 107.

FIG. 7. n=m4
τ ¼ 2.5 × 107.

FIG. 8. The relation between nc and mτ. We have shown
nc=ðmτÞ4 ¼ 9.8 × 106 (blue curve) and also the upper bound on
the species number ðΛ2=MplÞ2 ≃ 104 (orange line). We have
used e1=4Λ ¼ 1017 GeV.
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As another illustration, we have shown the case
ðkI; hϕi; m0Þ ¼ ð4; 10−3; 10−1Þ and n=m4

τ ¼ 3.3 × 105 in
Fig. 9. In this case, we have found nc=m4

τ ≃ 3.2 × 105.
When mτ is 1017, 0.5 × 1017, 1016 GeV, the corresponding
critical species number is given by nc ≃ 3.2 × 105;
2.0 × 104; 32, respectively, where we have taken
e1=4Λ ¼ 1017 GeV. As seen in Fig. 9, there appears a

new vacuum apart from the original vacuum at τ ¼ ω. We
have confirmed that the VEVof τ at the new vacuum shows
jδτ�j ∼ 0.2, which is phenomenologically unattractive, and
the VEV is almost independent of the strength of the
correction characterized by the species number n. Thus, we
find that the small deviation from the fixed point τ ¼ ω is
not realized in this parameter region. We will clarify such a
behavior analytically in Sec. IV B 1. In fact, we have
numerically found one of the minima at ðx�; y�Þ ≃
ð−0.44; 0.67Þ in Fig. 9. We have found a possibility of
CP violation, although within our model, such CP violat-
ing vacuum is out of the validity of our approximation.
Nevertheless, in general, the radiative correction may cause
a CP violating vacuum, of which its presence would be
highly model dependent, and we will not discuss such a
possibility further.

1. Approximation

We analytically discuss Veff near the critical point τ ¼ ω,
which clarifies the behavior seen in Figs. 4–9. Partially
expanding Eq. (41) in δτ, we obtain

V1 ≃
ðξ2jδτj2 þm2

0Þ
32π2

�
ðξ2jδτj2 þm2

0Þ þ 2ξ2jδτj2δy
�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p ��
log

�
ξ2jδτj2 þm2

0ffiffiffi
e

p
Λ2

�

−
ðξ2jδτj2Þ2
32π2

�
1þ 2δy

�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p ��
log

�
ξ2jδτj2ffiffiffi
e

p
Λ2

�
; ð48Þ

where we have defined ξ2 ≡ 3kI jDj2hϕi2
3

(see Appendix C
for its derivation). As expected, V1 is symmetric under
δx → −δx, which manifests that the local minimum lies on
the line x ¼ − 1

2
. We also find that the value of V1 changes

monotonously if we increase or decrease δy while keeping
jδτj fixed.
Using the approximated expression of Veff (48), we

discuss the behavior of the possible deviation δτ from the
fixed point τ ¼ ω. In particular, we will take two different
parametric regimes M2 ≫ m2

0 and M2 ≪ m2
0.

For M2 ≫ m2
0 corresponding to ones in Figs. 6 and 7,

assuming hϕi2 ≫ m2
0, we are able to further simplify V1 as

V1jx¼−1=2

≃
1

16π2
m2

0ξ
2ðδyÞ2

�
1þ

�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p �
δy

�
log

�
ξ2ðδyÞ2
Λ2

�

∼
1

16π2
m2

0ξ
2ðδyÞ2 log

�
ξ2ðδyÞ2
Λ2

�
: ð49Þ

Substituting the extremum condition ∂yðV0 þ nV1Þ ¼ 0

into the above, the local minimum is found at

jδy�j∼
�

3Λ2

3kI ejDj2hϕi2
�1

2

exp

�
−

24π2m4
τ

3kI jDj2nm2
0hϕi2

�
; ð50Þ

where δy� ¼ y� −
ffiffi
3

p
2
. This analytical expression enables us

to estimate the behavior of the deviation δτ as a function of
various parameters. In particular, from phenomenological
perspectives, jδyj ∼ ½0.01; 0.05� results in a phenomeno-
logically desired hierarchy of modular forms [22,25], and
we can estimate the parameters that lead to the desired
result with our approximate result (50). To confirm the
validity of our approximation, we check the value of
ΔVeff ¼ jVeffðωÞ − Veffðωþ iδy�Þj. The linear order
expansion yields

−ΔVeff ≃ δy� ·
∂

∂y
Veff jðδx;δyÞ¼ð0;δy�

2
Þ: ð51Þ

With the aid of Eq. (50), we obtain

ΔVeff ∼
log 4
16π2e

Λ2nm2
0 exp

�
−

48π2m4
τ

3kI jDj2nm2
0hϕi2

�
: ð52Þ

FIG. 9. Three-dimensional plot of Veff=m4
τ . The parameters are

chosen as kI ¼ 4; hϕi ¼ 10−3; m0 ¼ 10−1; n=m4
τ ¼ 3.3 × 105

under
ffiffiffi
e

p
Λ2 ¼ 1. The red line shows the arc jτj ¼ 1.
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In our numerical examples shown in Figs. 6 and 7, we
numerically obtain ΔVeff ≃ 9.6 × 10−5 and ≃2.3 × 10−4,
respectively, whereas our analytic estimation leads to
ΔVeff ≃ 1.1 × 10−4 and ≃2.6 × 10−4, respectively, which
are in good agreement, and this confirms the validity of our
approximations.
Second, let us consider the caseM2 ≪ m2

0 corresponding
to the one shown in Fig. 9. Then, the potential Veff is
approximated as

Veff ≃
n

32π2
m4

0 log

�
m2

0ffiffiffi
e

p
Λ2

�
þm4

τ

�
1 −

n
nc

�
jδτj2

−m4
τ
n
nc

�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p �
jδτj2δy: ð53Þ

This equation provides us with an approximate behavior at
jδτj ≪ Oð1Þ in Fig. 9.

C. r= 100

Finally, let us consider the case with r ¼ 100 with weight

kY ¼ 8, namely, Yð8Þ
100 . In the vicinity of τ ¼ ω, we have

M2 ¼ 3kI jEj2hϕi2
�
1þ 4kI − 16ffiffiffi

3
p δy −

8

3
ðδxÞ2

þ 2

3
ð4k2I − 34kI þ 68ÞðδyÞ2 þ � � �

�
; ð54Þ

from Eq. (23), where E ¼ Y100 ðωÞ ≃ −2.05 − 3.55i. It
follows that the first derivative of the one-loop quantum
correction V1 with respect to x ¼ Reτ is zero at the
fixed point. However, the derivative of V1 with respect
to y ¼ Imτ does not vanish if kI ≠ 4,

∂V1

∂x

����
τ¼ω

¼ 0;

∂V1

∂y

����
τ¼ω

¼ kI − 4

8
ffiffiffi
3

p
π2

½M2CðM2; m2
0Þ�τ¼ω: ð55Þ

The second derivatives of V1 at τ ¼ ω can be computed as

∂
2V1

∂x2

����
τ¼ω

¼ −
1

6π2
½M2CðM2; m2

0Þ�τ¼ω;

∂
2V1

∂y2

����
τ¼ω

¼ 1

24π2

�
ð4k2I − 34kI þ 68ÞM2CðM2; m2

0Þ

þ 8ðkI − 4Þ2M4 log

�
1þ m2

0

M2

��
τ¼ω

;

∂
2V1

∂x∂y

����
τ¼ω

¼ 0: ð56Þ

If kI ¼4, which corresponds to the case when V1 is modular

invariant,11 we find ∂
2V1

∂x2 jτ¼ω > 0 and ∂
2V1

∂y2 jτ¼ω > 0, hence

τ ¼ ω is a local minimum of V1. One can check this by
differentiating CðM2; m2

0Þ with respect to m2
0,

∂CðM2; m2
0Þ

∂m2
0

¼ 2 log

�
eðM2 þm2

0Þ
Λ2

�
; ð57Þ

which is negative under the condition M2 þm2
0 ≪ Λ2.

Noting that CðM2; 0Þ ¼ 0 from Eq. (29), we find
CðM2; m2

0Þ < 0. We show the behavior of V1 of this case
in Figs. 10 and 11, where we have chosen kI ¼ 2 and

FIG. 10. The one-loop effective potential V1 in the vicinity of
τ ¼ ω for r ¼ 100 with the weight kY ¼ 8. The parameters are
chosen as ðkI; hϕi; m0Þ ¼ ð2; 10−3; 10−1Þ. The red line shows the
arc jτj ¼ 1.

FIG. 11. The one-loop effective potential V1 in the vicinity of
τ ¼ ω for r ¼ 100 with the weight kY ¼ 8. The parameters are
chosen as ðkI; hϕi; m0Þ ¼ ð4; 10−3; 10−1Þ. The red line shows the
arc jτj ¼ 1.

11More precisely speaking, if kI ≠ 4means hϕi has a nontrivial
weight under the modular transformation, then the VEV hϕi
breaks modular symmetry spontaneously. For kI ¼ 4, the modu-
lar invariance holds until τ gets its VEV.

KOBAYASHI, NASU, SAKUMA, and YAMADA PHYS. REV. D 108, 115038 (2023)

115038-10



kI ¼ 4, respectively. We will discuss the case kI ≠ 4 in
detail in Sec. IV C 1.

1. Deviation from τ =ω

The case kI ≠ 4 is potentially important for phenom-
enological applications, as τ ¼ ω is no longer a minimum
of V1, which is a consequence of the spontaneous
breaking of the modular symmetry by hϕi. Indeed, using
Eqs. (55) and (56), the one-loop potential V1ðτÞ is
approximated as

V1ðτÞ≃V1ðωÞ þ δy
∂

∂y
V1ðτÞjτ¼ω

þ 1

2

�
ðδxÞ2 ∂

2

∂x2
þ ðδyÞ2 ∂

2

∂y2

�
V1ðτÞjτ¼ω þOðjδτj3Þ:

ð58Þ

The stationary condition on the total potential V0 þ nV1

reads

δx� ¼ 0;

δy� ¼ −
∂yV1jτ¼ω

2m4
τ=nþ ∂

2
yV1jτ¼ω

þOðjδτj2Þ: ð59Þ

Again, δx� ¼ 0 is a consequence of the CP invariance, and
therefore, the minimum in this model does not break CP
invariance either. We have shown the deviation δy� as a
function of hϕi and m0 in Fig. 12 with parameters kI ¼ 2

and n=m4
τ ¼ 3 × 105. As is clear from the figure, suffi-

ciently large hϕi and m0 may realize a phenomenologically
favored value jδy�j ∼ 0.03.

V. CONCLUSION

We have studied the one-loop effective potential within
A4 modular flavor symmetric SUSY models and its

application to the stabilization of the complex structure
modulus τ. In particular, we have focused on the models in
which A4 modular forms have kY ¼ 8 and belong to one
of the singlet representations r ¼ 1; 10; 100. The one-loop
effective potential originates from supermultiplets ΦI . For
generality of our analysis, we have not specified the origin
of the soft SUSY breaking and parametrized its strength
by the soft scalar mass parameter m0. As expected, the
resultant one-loop potential is always proportional to m2

0 as
it vanishes in the SUSY limit m0 → 0.
In our analysis, we have been concerned with an

ST-invariant fixed point τ ¼ ω at which residual Z3

symmetry exists. Such a fixed point is phenomenologically
interesting, as the slightly broken Z3 symmetry naturally
realizes the hierarchical flavor structures of the standard
model. Thus, we have focused particularly on whether the
one-loop correction can lead to the small deviation from
the fixed point by assuming the tree-level potential V0 of a
simple form (25).
We have found that, depending on the choice of the

representation r ¼ 1; 10; 100 of the A4 modular forms, the
resulting one-loop effective potential shows different
behaviors and accordingly the different minima for each
case. For a trivial singlet choice r ¼ 1, V1 turns out to be
flat near the fixed point τ ¼ ω, and the desired deviation
cannot be realized. Nevertheless, we have found the
possibilities to realize the phenomenologically important
(small) deviation δτ for r ¼ 10; 100. For the former case,
we have found that a large number of flavors contrib-
uting to the effective potential are necessary to make
the one-loop contribution compatible with the tree-level
potential when the modulus mass mτ is as large as the
compactification scale.12 We here emphasize that this
requirement does not conflict with the perturbative
treatment of the theory as the tree-level potential here
has nothing to do with the Yukawa couplings of ΦI .
Nevertheless, one must be careful about the introduction
of too large numbers of species that leads to the
breakdown of the perturbative description of (quantum)
gravity. When the modulus mass is lighter than the
compactification scale, a small number of flavors is
enough. For the r ¼ 100 case, it turns out that the
(spontaneous) modular symmetry breaking situation
kI ≠ 4 makes V1 to be nonstationary at τ ¼ ω, which
leads to a small deviation of the minimum from τ ¼ ω,
whereas the modular symmetric choice kI ¼ 4 fails to
realize a small deviation of the minimum.
We would like to stress that, generally speaking, the

modulus originates from a gravitational degrees of free-
dom, which very weakly couples to matter sector.
Therefore, the (small) deviation from the tree-level vacuum
requires both sufficiently large hϕi and the number of

FIG. 12. The deviation δy� as a function of hϕi and m0. The
parameters are chosen as kI ¼ 2 and n=m4

τ ¼ 3 × 105.

12Generic string compactification leads to a large number of
massless modes at the compactification scale [42].
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species n that strengthen the loop correction, as we have
seen more explicitly. One of the lessons from our work
is that, only when the tree-level potential is sufficiently
small, the one-loop effective potential may lead to a
phenomenologically desired deviation; otherwise, an
extremely large amount of species or too large VEV
hϕi is required, which would be in conflict with the
effective field theory descriptions. Nevertheless, such a
situation is ubiquitous in string theory since moduli fields
are generically light unless p-form fluxes are introduced.
Therefore, relatively small tree-level/nonperturbative
potential can naturally be realized, and then the loop
contribution can compete with it, which may result in
the phenomenologically realistic vacuum as we have
shown in this work.
The radiative corrections would also have some impact

on the dynamical moduli trapping mechanism [46],
by which moduli fields can be trapped at the points that
matter fields become massless and symmetries are
enhanced. In our previous study [47], we have shown
that the complex structure modulus can be trapped at
τ ¼ ω under the assumption that the one-loop effective
potential from matter is canceled by SUSY. However, in
realistic models, SUSY should be spontaneously broken
and the one-loop effective potential arises as in this work.
It would be important to study the effect of the one-loop
effective potential to the moduli trapping mechanism,
which enables us to answer whether the complex structure
modulus can be stabilized even if the modulus is not
stabilized in the very early Universe. We will leave such
issues to future work.
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APPENDIX A: GROUP THEORETICAL
ASPECTS OF A4

The A4 group has two generators S and T satisfying the
following algebraic relations:

S2 ¼ ðSTÞ3 ¼ T3 ¼ I: ðA1Þ

Four irreducible representations exist in A4, which are three
singlets 1, 10, and 100 and one triplet 3. Each irreducible
representation is given by

1 ρðSÞ ¼ 1; ρðTÞ ¼ 1;

10 ρðSÞ ¼ 1; ρðTÞ ¼ ω;

100 ρðSÞ ¼ 1; ρðTÞ ¼ ω2;

3 ρðSÞ ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA; ρðTÞ ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA;

ðA2Þ

where we adopted the T-diagonal basis. Their multiplica-
tion rules are shown in Table I. Further details are
explained in [34,35].

APPENDIX B: A4 MODULAR FORMS

Themodular forms ofA4with evenweights can bewritten
in terms of the Dedekind eta function ηðτÞ and its derivative,

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ e2πiτ; ðB1Þ

η0ðτÞ≡ d
dτ

ηðτÞ: ðB2Þ

Modular forms of weight 2 which transform as a triplet 3 of
A4 can be given by [1]

TABLE I. Multiplication rule in irreducible representations ofA4.

Tensor product T-diagonal basis

100 ⊗ 100 ¼ 10

a1b110 ⊗ 10 ¼ 100 ða1b1Þ
100 ⊗ 10 ¼ 1

100 ⊗ 3 ¼ 3 ða1biÞ
 a1b3

a1b1

a1b2

!

10 ⊗ 3 ¼ 3 ða1biÞ
 a1b2

a1b3

a1b1

!

3 ⊗ 3 ¼ 1 ⊕ 10

⊕ 100 ⊕ 3 ⊕ 3 ðaibjÞ
ða1b1 þ a2b3 þ a3b2Þ

⊕ ða1b2 þ a2b1 þ a3b3Þ
⊕ ða1b3 þ a2b2 þ a3b1Þ

⊕ 1
3

 
2a1b1 − a2b3 − a3b2

−a1b2 − a2b1 þ 2a3b3

−a1b3 þ 2a2b2 − a3b1

!

⊕ 1
2

 a2b3 − a3b2

a1b2 − a2b1

−a1b3 þ a3b1

!
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Yð2Þ
3 ðτÞ ¼

0
B@

Y1

Y2

Y3

1
CA; ðB3Þ

where

Y1ðτÞ ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω2

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
;

Y3ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω2

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
: ðB4Þ

Modular forms with higher weights can be constructed by taking products of Yð2Þ
3 . For example, singlet modular forms of

weight 8 can be constructed as

Yð8Þ
1 ¼ ðY2

1 þ 2Y2Y3Þ2; Yð8Þ
10 ¼ ðY2

1 þ 2Y2Y3ÞðY2
3 þ 2Y1Y2Þ; Yð8Þ

100 ¼ ðY2
3 þ 2Y1Y2Þ2: ðB5Þ

APPENDIX C: APPROXIMATION

From Eq. (41), we approximate

ðM2 þm2
0Þ2 ¼ ðξ2jδτj2 þm2

0Þ
�
ðξ2jδτj2 þm2

0Þ þ 2ξ2jδτj2δy
�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p �
þOðjδτj4Þ

�
; ðC1Þ

and

log

�
M2 þm2

0ffiffiffi
e

p
Λ2

�
≃ log

2
64ξ2jδτj2



1þ δy



4kIffiffi
3

p − 6
ffiffiffi
3

p ��
þm2

0ffiffiffi
e

p
Λ2

3
75

¼ log

�
ξ2jδτj2 þm2

0ffiffiffi
e

p
Λ2

�
þ log

0
B@1þ

ξ2jδτj2δy


4kIffiffi
3

p − 6
ffiffiffi
3

p �
ξ2jδτj2 þm2

0

1
CA: ðC2Þ

The second term is of order jδτj and is negligible compared with the first term. Thus, we obtain

ðM2 þm2
0Þ2 log

�
M2 þm2

0ffiffiffi
e

p
Λ2

�
≃ ðξ2jδτj2 þm2

0Þ
�
ðξ2jδτj2 þm2

0Þ þ 2ξ2jδτj2δy
�
4kIffiffiffi
3

p − 6
ffiffiffi
3

p ��
log

�
ξ2jδτj2 þm2

0ffiffiffi
e

p
Λ2

�
: ðC3Þ

This leads to Eq. (48).
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