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We consider a (2þ 1)-dimensional modified electrodynamics endowed with terms that are either Lorentz
invariant or Lorentz violating and involve an ever-increasing number of derivatives. Our construction relies
on Uð1Þ gauge invariance, and the Abelian Chern-Simons term poses the starting point. The structure of the
nonminimal Standard-Model Extension (SME) in (3þ 1) spacetime dimensions serves as an inspiration for
our pursuit. For elaborate studies and applications we particularly focus on the second term of the operator
series in the general framework, which is the first contribution with additional derivatives. The latter forms
the essential ingredient for several models of modified planar electrodynamics to be examined. The
propagators of the models constitute the foundation for us deriving the physical propagating modes as well
as for drawing conclusions on unitarity in the quantum regime. We are also interested in identifying
parameter regions of sub- and superluminal mode propagation and determining classical solutions of the
field equations for the planar models introduced. Moreover, a duality between an extended Chern-Simons
theory and a subset of the fermion sector coefficients in the nonminimal SME is pointed out as well. Finally,
the integer quantum Hall effect is chosen as a test bed to demonstrate the applicability of our findings to real
physical systems. Predictions on momentum- and direction-dependent corrections of the Hall resistivity are
made at the level of effective field theory, which could be tested in experiments. Thus, the (2þ 1)-
dimensional models proposed are potentially applicable to model electromagnetic phenomena in certain
planar condensed-matter systems.
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I. INTRODUCTION

Pioneering developments on higher-derivative electro-
dynamics due to Bopp [1] in 1940 and Podolsky [2,3] in
1942 opened a rich line of research that has remained
fruitful until today. Podolsky’s second-order derivative
term, θ2∂αFαβ

∂σFσ
β, with the electromagnetic field

strength tensor Fμν ¼ ∂μAν − ∂νAμ of the Uð1Þ vector field
Aμ and the dimensionful parameter θ, when included in the
Maxwell Lagrangian, provides two distinct dispersion
relations for electromagnetic waves. After quantization,

one corresponds to an Abelian, massless vector boson,
which can be interpreted as the usual Maxwell photon, and
the other describes a massive vector boson whose mass is
proportional to θ−1. The Maxwell-Podolsky model has
been addressed in several respects, including its constraint
structure [4], its quantization based on different procedures
[5], the problems of self-force and self-interaction [6,7], its
Green’s functions and classical solutions [8], the multipole
expansion for fields in the static regime [9], the conserva-
tion of the energy-momentum tensor [10], its consistency
based on the BRST approach [11], its quantum field
theoretic properties [12,13], and other aspects [14].
Lee-Wick electrodynamics, which is another higher-

derivative model, is characterized by the dimension-6 term
Fμν∂α∂

αFμν [15]. Incorporating this modification into the
Maxwell Lagrangian implies energy instabilities at the
classical level and negative-norm states in the Hilbert space
at the quantum level. Therefore, this kind of term requires a
decoupling mechanism that separates the negative-norm
states from the physical Hilbert space to assure unitarity.
The latter is reestablished in the context of the Lee-Wick
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Standard Model (SM) [16,17], which has always been of
vast interest to the scientific community [18–23].
Field theories with higher-derivative terms play a rel-

evant role in quantization attempts of gravity, too, where
their inclusion assures renormalizability [24]. However, the
drawback is then that ghosts and an indefinite Hilbert space
metric emerge [25].
Higher-derivative models have also been investigated

systematically in the context of Lorentz-violating theories
in the absence of gravity. First of all, the minimal non-
gravitational Standard-Model Extension (SME) as a com-
prehensive field theory framework for parameterizing
Lorentz violation was constructed in Ref. [26]. The latter
is endowed with gauge invariance, translation invariance,
and power-counting renormalizability; i.e., it only involves
field operators of mass dimensions 3 and 4. Dynamical SM
fields are coupled to nondynamical, tensor-valued back-
ground fields, which guarantees coordinate invariance of
the Lagrange density. The background fields are tensors
under coordinate transformations, whose components are
frequently denoted as controlling coefficients in the SME
literature.
The SME involves all particle sectors of the SM. Its Dirac

fermion sector has a spin-degenerate part with a single
dispersion relation for both spin-up and spin-down fer-
mions. The complementary spin-nondegenerate piece is
equipped with two distinct dispersion relations dependent
on the spin projection [27]. The electromagnetic sector of
the SME exhibits a CPT-odd piece, represented by the
Carroll-Field-Jackiw (CFJ) term, which has been studied
extensively due to its variety of peculiar properties [28–34].
One of the most intriguing features of this setting is vacuum
birefringence, which makes the rotation plane of linearly
polarized light rotate in vacuo. There are also CPT-even
contributions [35–38] that decompose into a birefringent
sector and a nonbirefringent one at leading order in the
coefficients. The latter have been subject to broad exper-
imental searches implying strict constraints [39]. Several
aspects of Lorentz-violating versions of quantum electro-
dynamics (QED) have been studied as well; see, e.g.,
Ref. [40]. Finally, we would like to highlight projects
pursued on Lorentz-violating modifications of scalar field
theories, which are based on the SME Higgs sector, such as
those on Bose-Einstein condensation [41] and several other
aspects [42].
Myers and Pospelov were the first to introduce a

dimension-5 higher-derivative model [43–46] describing
Lorentz violation for scalars, photons, and Dirac fermions.
In the aftermath, higher-derivative extensions of the min-
imal SME including terms of mass dimensions greater than
four were constructed generically [47–50], which gave rise
to the nonminimal SME in Minkowski spacetime. The latter
comprises an infinite number of such contributions. Over
recent years, a subset of the lowest-dimensional terms has
been investigated thoroughly. In particular, the focus was on

classical aspects of the modes, e.g., causality and stability as
well as certain indispensable properties of the corresponding
quantized theories such as unitarity.
For example, Ref. [51] rests upon a CPT-even

dimension-6 term of the electromagnetic sector of the
SME. The latter analysis is complemented by Ref. [52],
which is focused on a CPT-odd dimension-5 CFJ-type
structure. The dimension-5 term can be constrained by
radiative corrections arising in other sectors [53]. It has
also been used to evaluate the interaction energy between
electromagnetic sources [54] and to examine optical
effects in a continuous dielectric medium [55]. From a
phenomenological viewpoint, higher-derivative theories
have been tightly constrained recently via optical-polari-
zation data from active galactic nuclei [56]. There is further
literature on classical solutions [57], the thermodynamic
properties of electrodynamic systems [58], radiative cor-
rections [59], and developments in QED [60].
Our particular interest in the current paper is on modified

electrodynamics in (2þ 1) spacetime dimensions. In this
realm one highly fascinating class of theories beyond
conventional Maxwell electrodynamics emerges, related to
a concept known as the Chern-Simons (CS) form. The origin
of the latter is found in the study of topological invariants of
manifolds such as the Euler characteristic, which are of great
significance in pure and applied mathematics. Chern-Simons
forms originally arose in an attempt made by Simons to
obtain a combinatorial formula for another topological
invariant for 4n-dimensional manifolds (n∈N), which is
called the signature. The starting point of this endeavor was a
four-dimensional manifold and—to Simons’s surprise—it
turned out to be futile due to the emergence of a three-
dimensional boundary term that was intractable. Simons
discovered that the latter had intriguing properties in its
own right, whereupon Chern and Simons generalized
these results to manifolds of any odd number of dimen-
sions [61]. In the early 1980s physicists adopted these
findings [62,63], and since then they have found hitherto
unexpected applications in a large number of different
arenas such quantum field theory [64], string theory [65],
and condensed-matter physics [66–68], to mention a few.
By considering a Uð1Þ bundle over (2þ 1)-dimensional

Minkowski spacetime, the celebrated CS action reads

SCS ¼
k
2

Z
A ∧ dA ¼ k

2

Z
d3x εμνρAμ∂νAρ; ð1Þ

with the vector potential 1-form A, its exterior derivative
dA, and the wedge product ∧. Thus, the integrand of the
latter corresponds to an Abelian version of the CS form. In
the physics literature, this CS action is often written in
components with the completely antisymmetric Levi-
Civita symbol εμνρ in (2þ 1) spacetime dimensions.
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The parameter k is dimensionful and remains unspecified
at this moment, although it will later be subject to a set
of conditions when gauge invariance is imposed. As the
vector potential has mass dimension 1=2 in (2þ 1) space-
time dimensions, a contribution of the form Aμ∂νAρ has
mass dimension 2. Therefore, we conclude that ½k� ¼ 1
in Eq. (1).
The particular term of Eq. (1) yields a planar electrody-

namics. Since it also has topological characteristics, the
associated electrodynamics is remarkably different from
planar Maxwell theory. When coupled to an external current
density, the CS term connects the charge density ρ to the
magnetic field B via the relationship ρ ¼ kB [69]. The latter
is crucial for magnetic-flux quantization, which provides an
appealing description of the Aharonov-Bohm effect. Due to
this property, Eq. (1) also plays a significant role as an
effective theory for the integer quantum Hall effect [68] and
is even capable of effectively describing quasiparticles that
obey a fractional statistics and are known as anyons [70,71].
This makes CS theory applicable to the fractional quantum
Hall effect, too.
Chern-Simons electrodynamics has been extensively

studied in both the classical and the quantum regime
[72–75]. The construction of topological defects in the
context of CS-Higgs electrodynamics was also examined
with great interest [76,77]. Another intriguing feature is that
the CS term is of first order in spacetime derivatives,
rendering its canonical structure significantly different from
that of Maxwell theory.
At first glance, it is not obvious that the CS term is gauge

invariant since it explicitly depends on Aμ. In fact, by
applying a gauge transformation A ↦ Aþ dω, or in com-
ponent form, Aμ ↦ Aμ þ ∂μω, to Eq. (1), the action changes
by a total derivative:

SCS ↦ SCS þ δSCS; ð2aÞ

δSCS ¼
k
2

Z
dω ∧ dA ¼ k

2

Z
dðω ∧ dAÞ

¼ k
2

Z
d3x∂μðωεμνρ∂νAρÞ: ð2bÞ

The latter does not contribute as long as the fields vanish
sufficiently fast far from the origin, whereupon gauge
invariance is established. However, if the gauge group
has nontrivial topology, i.e., if there are noncontractible
loops, ω can be multivalued [68,69]. This does not pose a
problem per se, as ω is a gauge degree of freedom, and the
wave functions and fields should be single-valued. In our
conventions, this requirement then leads to the essential
finding that 2πk∈Z, i.e., k must be quantized in units
of 1=ð2πÞ.

In 1999 Deser and Jackiw (DJ) proposed an extension of
CS theory with higher-order derivatives [78] by including a
term in the action that contains the d’Alembertian
□≡ ∂μ∂

μ:

SDJ ¼
ϑ

2

Z
A ∧ dð□AÞ ¼ ϑ

2

Z
d3 x εμνρAμ

∂
ν
□Aρ; ð3Þ

which is SOð2; 1Þ invariant and has mass dimension 4, so
that ½ϑ� ¼ −1. Adding the DJ term to the Maxwell term in
(2þ 1) spacetime dimensions results in a modification of
Maxwell theory that could be coinedMaxwell-Deser-Jackiw
(MDJ) theory. This altered electrodynamics exhibits two
modes. One of the modes is massless and can be associated
with the standard photon after quantization. The other is
massive, originates from the presence of the higher-
derivative term, and corresponds to a ghost.
An additional important aspect to be highlighted is on

the nature of the integrand in Eq. (3). While the CS term is
topological, the DJ term involves the metric tensor [78].
This nonstandard contribution can be generated in the
context of a noncommutative massive planar QED by
integrating out the fermionic fields in the effective action
[79–81].
Since DJ electrodynamics was first proposed, it has

been addressed from several perspectives, including its
Lagrangian and Hamiltonian formulations [82], dualities
between different higher-derivative theories [83,84], con-
servation laws and stability [85,86], as well as classical
stationary solutions in the presence of sources describing
pointlike charges and Dirac points [87]. Having in mind
that MDJ electrodynamics exhibits a ghost mode that
implies an indefinite metric in the Hilbert space, the
canonical quantization and Hamiltonian structure of this
theory had to be examined in detail, which was accom-
plished in Ref. [88]. The latter article also provides
additional analyses of microcausality and unitarity.
In the recent paper [89], a nonminimal Lorentz-violating

planar electrodynamics containing field operators of arbi-
trary mass dimensions was constructed by applying a
procedure known as dimensional reduction to the non-
minimal electromagnetic sector of the SME [90]. The
corresponding Lagrange density is composed of a CPT-
even sector parametrized by the tensor-valued operator
ðk̂FÞκλμν. Moreover, it contains a CPT-odd piece, which is a
generalization of the CFJ term and depends on the vector-
valued background field operator ðk̂AFÞκ. Note that the
latter as well as its (3þ 1)-dimensional counterpart are
sometimes also called Maxwell-Chern-Simons (MCS)
terms. It should be emphasized, though, that they are not
genuine CS terms, as they require the presence of a vector-
valued background field. Such theories are substantially
different from the modified electrodynamics that we will be
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referring to as MCS theories, which do not incorporate any
violation of Lorentz invariance:

SMCS ¼
Z �

−
1

4
F ∧ ð�FÞ þ k

2
A ∧ dA

�

¼
Z

d3x

�
−
1

4
FμνFμν þ k

2
εμνρAμ

∂
νAρ

�
; ð4Þ

where � is the Hodge dual.
The framework presented in Ref. [89] involves a planar

electromagnetic field Aμ and a scalar field ϕ, where the
latter originates from dimensional reduction. Both fields
couple to each other. The procedure applied also gives rise
to five classes of distinct Lorentz-violating operators that
can be understood as infinite sums over suitable contrac-
tions of controlling coefficients and additional derivatives,
whose number successively increases by 2. The general
structure of this theory and some its properties were
scrutinized in the latter paper.
In principle, extensions of the CS term of Eq. (1) that

involve minimal SOð2; 1Þ-violating terms can be studied;
see, e.g., Ref. [91]. Our interest is in different kinds of
extensions, though. We propose a nonminimal planar
electrodynamics by including higher derivatives in the
CS term of Eq. (1). To do so, the third-rank tensor kεμνϱ

is generalized to a tensor-valued background operator, say
Q̂μνρ, which implies the violation of SOð2; 1Þ invariance.
The latter is suitably contracted with an increasing number
of additional derivatives. In the following, after examining
basic aspects of the higher-derivative structures, we propose
a general extended Lagrange density, which encompasses
several new possibilities of planar models and contains the
usual Maxwell and CS terms as special cases. From the
gauge field propagator, we obtain the dispersion relations
that allow us to analyze whether or not the velocity of signal
propagation exceeds the speed of light. One interesting
observation is that the higher-derivative CS term provides
dynamics to the planar theory even in the absence of the
kinetic Maxwell term. Our ultimate goal is to level the
ground for studies of electromagnetic aspects in (2þ 1)-
dimensional condensed-matter systems. First applications
are to be found in the quantum Hall effect.
This paper is organized as follows. In Sec. II, the basic

aspects of the higher-derivative operator constructed from
the CS structure are presented, including its symmetries. In
Sec. III, we intend to review important properties of several
versions of planar electrodynamics modified by higher-
derivative terms, but with Lorentz invariance intact.
Section IV is dedicated to extended models of planar
electrodynamics that not only involve higher derivatives
but also Lorentz-violating contributions. Section V presents
an intriguing duality between a higher-derivative Lorentz-
violating electrodynamics and a modified Dirac theory in

(2þ 1) spacetime dimensions. These rather technical find-
ings culminate in an application to the quantum Hall effect
in Sec. VI. Finally, Sec. VII provides a conclusion of all the
results obtained. Worthwhile calculational details are rel-
egated to Appendixes A–C. Natural units with ℏ ¼ c ¼ 1
are employed unless otherwise stated. The Minkowski
metric ημν has signature ðþ;−;−Þ in our conventions.

II. EXTENDED HIGHER-DERIVATIVE
CHERN-SIMONS TERM

In this section, we introduce a higher-derivative exten-
sion of the (2þ 1)-dimensional CS term by following the
systematic procedure employed for constructing nonmi-
nimal Lorentz-violating theories [47–50,89]. Such non-
minimal terms arise in replacing kεμνϱ in Eq. (1) by a
tensor-valued operator in (2þ 1) spacetime dimensions,
which contains arbitrary powers of spacetime derivatives.
This operator will be denoted as Q̂μνρ and will be
implemented into the bilinear CS action as follows. We
obtain an extended, nonminimal CS action that we
indicate by a prime:

S0CS ¼ 1

2

Z
d3xAμQ̂

μνρ
∂νAρ; ð5Þ

where the operator Q̂μνρ is defined as a sum of terms with a
number of derivatives successively increasing by 1:

Q̂μνρ ¼
X∞
d≥2

QðdÞμνρα1…αðd−2Þ∂α1…∂αðd−2Þ ; ð6Þ

in accordance with the pattern of similar operators that
occur in nonminimal Lorentz-violating theories, such as
ðk̂AFÞκ in the electromagnetic sector of the nonminimal
SME [47]. Here, theQðdÞμνρα1…αðd−2Þ are frequently referred
to as controlling coefficients. Note that in Ref. [89] we
took over the notation from the electromagnetic sector of
the SME in (3þ 1) spacetime dimensions, which served
as the very base of the paper. Therefore, the label d in the
latter article does not relate to the mass dimension of field
operators but is simply inherited from the SME. However,
since the current construction in (2þ 1) spacetime dimen-
sions is independent of the SME, d now stands, in fact, for
the mass dimension of the field operator in (2þ 1)
spacetime dimensions, which includes all derivatives
and is contracted with a particular coefficient.
By counting the mass dimensions properly, the operator

Q̂μνρ is deduced to have mass dimension 1, for consistency:
½Q̂μνρ� ¼ 1. In the sum of Eq. (6), the tensor-valued
coefficients of d ¼ 2 do not come with additional deriv-
atives. Hence, this sector represents the conventional CS
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term of Eq. (1), i.e., Qð2Þμνρ ¼ kεμνρ. Now, the operator of
Eq. (6) can be further decomposed as follows:

Q̂μνρ ¼ K̂μνρ þ T̂ μνρ; ð7aÞ

K̂μνρ ¼
X∞
d≥2
even

KðdÞμνρα1…αðd−2Þ∂α1…∂αðd−2Þ ; ð7bÞ

T̂ μνρ ¼
X∞
d≥3
odd

T ðdÞμνρα1…αðd−2Þ∂α1…∂αðd−2Þ ; ð7cÞ

where the first operator is endowed with an even number of
derivatives and the second with an odd number. The latter
are contracted with an ever rising number of additional
Lorentz indices of the controlling coefficients with mass
dimensions

½KðdÞμνρα1…αðd−2Þ � ¼ ½T ðdÞμνρα1…αðd−2Þ � ¼ 3 − d: ð8Þ

Thus, to maintain ½Q̂μνρ� ¼ 1, the mass dimensions of the
coefficients decrease when additional derivatives are con-
tracted with the latter. In principle, we do not impose any
symmetry on the tensor operator Q̂. However, we need to
require that the action be invariant under the gauge trans-
formation Aμ ↦ Aμ þ ∂μω, whose application to Eq. (5)
provides

S0CS ↦
1

2

Z
d3xðAμQ̂

μνρ
∂νAρ þ ∂μωQ̂

μνρ
∂νAρ

þ AμQ̂
μνρ

∂ν∂ρωþ ∂μωQ̂
μνρ

∂ν∂ρωÞ: ð9Þ

Imposing that Q̂ be antisymmetric in the last two indices,
we obtain

S0CS ↦
1

2

Z
d3xðAμQ̂

μνρ
∂νAρ þ ∂μωQ̂

μνρ
∂νAρÞ

¼ S0CS þ
1

2

Z
d3x∂μωQ̂

μνρ
∂νAρ: ð10Þ

Furthermore, it is beneficial to introduce a total derivative
via

∂μðωQ̂μνρ
∂νAρÞ ¼ ∂μωQ̂

μνρ
∂νAρ þ ωQ̂μνρ

∂μ∂νAρ; ð11Þ

which allows us to rewrite Eq. (10) as

S0CS ↦ S0CS þ
1

2

Z
d3x½∂μðωQ̂μνρ

∂νAρÞ − ωQ̂μνρ
∂μ∂νAρ�:

ð12Þ

Now we assume that Q̂ is also antisymmetric in the first
two indices, which implies Q̂μνρ

∂μ∂νAρ ¼ 0. Then,

S0CS ↦ S0CS þ
1

2

I
dSμðωQ̂μνρ

∂νAρÞ; ð13Þ

where the second term on the right-hand side of Eq. (12) has
been recast into a surface integral. This finding assures
gauge invariance of the action of Eq. (5) in analogy to how it
is demonstrated in CS theory. Note that the antisymmetry in
the first two and last two indices of Q̂μνρ, when considered
simultaneously, guarantees that the operator is completely
antisymmetric with respect to the interchange of any
neighboring indices. This can be inferred from the proper-
ties of the three-dimensional representation of the permu-
tation group. Thus, the symmetry of Q̂μνρ is directly
inherited from that of the (2þ 1)-dimensional Levi-Civita
symbol, as it is the essential property that guarantees gauge
invariance of the CS action of Eq. (1)—at least for gauge
transformations that do not wind around the gauge group.
Using the parametrization of Eq. (7a), the higher-

derivative Lagrange density of Eq. (5) reads

L0
CS ¼

1

2
AμQ̂

μνρ
∂νAρ ¼

1

2
AμðK̂μνρ þ T̂ μνρÞ∂νAρ: ð14Þ

The equation of motion for this model is obtained through
the general Euler-Lagrange equation for Uð1Þ gauge
theories with higher-order derivatives described by the
Lagrange density L:

0 ¼ ∂L
∂Aβ

− ∂σ

�
∂L

∂ð∂σAβÞ
�
þ ∂γ∂σ

�
∂L

∂ð∂γ∂σAβÞ
�
−…

þ ð−1Þn∂μ1…∂μn

�
∂L

∂ð∂μ1…∂μnAβÞ
�
; ð15Þ

which, applied to Eq. (14), provides

0 ¼ 1

2
ðT̂ βνρ þ K̂βνρÞ∂νAρ þ

1

2
ðT̂ ρνβ − K̂ρνβÞ∂νAρ; ð16aÞ

or equivalently,

0 ¼ 1

2
ðT̂ βνρ þ T̂ ρνβÞ∂νAρ þ

1

2
ðK̂βνρ − K̂ρνβÞ∂νAρ: ð16bÞ

The reversed sign of the fourth term in Eq. (16a), in
comparison to the second, originates from K̂βνρ and T̂ βνρ

being associated with an even and odd number of deriv-
atives, respectively. Since the operators K̂βνρ and T̂ βνρ are
completely antisymmetric, the outcome of Eq. (16b)
simplifies as

K̂βνρFνρ ¼ 0; ð17Þ
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which is obviously gauge invariant, as expected. We also
notice that the operator T̂ βνρ does not contribute to the
equations of motion, suggesting that it can be rewritten as a
total derivative in the action. As a consequence, the higher-
derivative operator in Eq. (6) can now be recast into

Q̂μνρ ¼ K̂μνρ ¼
X∞
d≥2
even

KðdÞμνρα1…αðd−2Þ∂α1…∂αðd−2Þ : ð18Þ

Considering that K̂μνρ is totally antisymmetric, its simplest
form corresponds to the term with the label d ¼ 2 in the
sum on the right-hand side, that is, the product of the
(2þ 1)-dimensional Levi-Civita symbol and a scalar
operator K̂:

K̂βνρ ¼ εβνρK̂; ð19aÞ

such that

K̂ ¼ 1

3!
εαβγK̂

αβγ ð19bÞ

contains an even number of additional derivatives as does
K̂βνρ. Inserting Eq. (19a), the field equations stated in
Eq. (17) are rewritten as

εβνρK̂Fνρ ¼ 0; ð20Þ

which have a form analogous to the field equations of CS
theory, as expected. For d ¼ 4, the operator K̂μνϱ involves
two additional derivatives and represents a DJ-like term to
be examined in the forthcoming sections. It is worthwhile
to mention that the operator of Eq. (18) is more general
than that of Eq. (19a), as it exhibits an additional index
structure starting from d ¼ 4.
Finally, we point out that the operator K̂ of Eq. (19a)

provides a contribution to the Lagrange density of the type
AμK̂

μνρ
∂νAρ ¼ Aμε

μνρK̂∂νAρ. The latter exhibits the same
structure as the term Aρε

ρμνðk̂AFÞFμν with the operator

k̂AF ¼
X
d≥3
odd

ðkðdÞAFÞα1…αðd−3Þ∂α1…∂αðd−3Þ ; ð21Þ

which is part of the planar modified electrodynamics
obtained in Ref. [89] via dimensional reduction from the
electromagnetic sector of the nonminimal SME in (3þ 1)
spacetime dimensions. Note that d in Eq. (21) is, indeed,
the mass dimension inherited from the field operators of
the SME. Thus, our present construction is contained in
the generic (2þ 1)-dimensional framework of Ref. [89],
as expected.

A. Higher-derivative Deser-Jackiw-like term

The higher-derivative operator of lowest order identified
within Eq. (14) is dominant at low energies. Therefore, with
our attention restricted to the latter, we propose the
following gauge-invariant higher-derivative (hd) CS-like
structure, which exhibits SOð2; 1Þ violation:

ShdCS ¼
ϑ1
2

Z
A ∧ dðK̂AÞ ¼

Z
d3xLhdCS; ð22aÞ

LhdCS ¼
ϑ1
2
εμνρAμ

∂
νK̂Aρ; ð22bÞ

with

K̂ ¼
X
d≥2
even

K̂ðdÞ; K̂ðdÞ ¼ KðdÞα1…αðd−2Þ∂α1…∂αðd−2Þ : ð22cÞ

The latter is expressed in terms of tensor-valued controlling
coefficients KðdÞα1…αðd−2Þ and a dimensionful parameter ϑ1
whose mass dimension is chosen properly after restricting
the action to a specific subset of operators. Being interested
in the lowest-order operator and recalling that K̂ has an
even number of additional derivatives suitably contracted
with the indices of the controlling coefficients, the simplest
operator contained in Eq. (22c) carries the label d ¼ 4 and
involves two derivatives:

K̂ð4Þ ¼ Kð4Þαβ
∂α∂β ≡ Kαβ

∂α∂β; ð23Þ

where, for simplicity, we will drop the mass dimension
label from the controlling coefficients, which are symmet-
ric by construction. Thus, the lowest-order extension of the
conventional CS term includes the operator in Eq. (23) as
follows:

Lð4Þ
hdCS ¼ ϑ1

2
Aμε

μνρKαβ
∂α∂β∂νAρ; ð24Þ

such that the field operator is of mass dimension 4. This
Lagrange density represents a Lorentz-violating and gauge-
invariant CS-like higher-derivative term. For consistency,
½ϑ1Kαβ� ¼ −1, which can be fulfilled by supposing
that ½ϑ1� ¼ −1, while ½Kαβ� ¼ 0. With such a choice, the
operator of Eq. (23) has mass dimension 2. It is worthwhile
to identify the latter within the generic higher-derivative
operator of Eq. (6). By doing so, we obtain

K̂ð4Þμνρ ¼ εμνρKαβ
∂α∂β ¼ εμνρK̂ð4Þ: ð25Þ

Eventually, it is easy to note that the Lagrange density of
Eq. (24) provides the usual DJ contribution, if the
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background is chosen to be equal to the metric tensor:
Kαβ ¼ ηαβ. In fact,

Lð4Þ
hdCSjK¼η ¼

ϑ1
2
Aμε

μνρ
□∂νAρ: ð26Þ

In other words, this equivalence states that the Lagrange
density of Eq. (24) is a Lorentz-violating extension of the
DJ term, which may even be anisotropic. This fact also
motivates the convention ½ϑ1� ¼ −1, which corresponds to
½ϑ� ¼ −1 for DJ theory in Eq. (3).
For now, wewill bring these more technical deliberations

to a close and focus on phenomenological aspects of a
modified electrodynamics in (2þ 1) spacetime dimen-
sions. Our ultimate goal will be to find suitable models
having potential applicability in condensed-matter systems
of two spatial dimensions.

III. MODIFIED ð2 + 1Þ-DIMENSIONAL
ELECTRODYNAMICS WITH LORENTZ

INVARIANCE

In this section we review some aspects of a planar
electrodynamics that involves the CS term and higher-
derivative CS-type contributions, including the DJ term,
where Lorentz invariance is to be maintained. In particular,
we will state the corresponding gauge field propagators,
whose poles provide the dispersion relations, which will
allow for further investigations. Another goal is to examine
static solutions of the magnetic field for a pointlike charge
in pure CS theory endowed with an additional DJ term.
Note that stationary classical solutions in the context of a
higher-derivative extension of planar MCS theory have
been in the spotlight recently [87].

A. Maxwell-Chern-Simons-Deser-Jackiw
electrodynamics

The starting point is the MCS Lagrange density endowed
with the DJ term, which we call Maxwell-Chern-Simons-
Deser-Jackiw (MCSDJ) electrodynamics [78]:

SMCSDJ ¼
Z �

−
1

4
F ∧ ð�FÞ þ k

2
A ∧ dAþ ϑ

2
A ∧ dð□AÞ

þ 1

2ξ
� ði∂AÞ2

�

¼
Z

d3xðLMCSDJ þ LgfÞ; ð27aÞ

LMCSDJ ¼ −
1

4
FμνFμν þ k

2
εμνρAμ

∂
νAρ þ ϑ

2
εμνρAμ

∂
ν
□Aρ;

ð27bÞ

Lgf ¼
1

2ξ
ð∂μAμÞ2; ð27cÞ

where iV stands for the interior product with a vector
field V. The last term, Lgf , is added to fix the gauge
freedom, where ξ is a real gauge fixing parameter taken as
arbitrary. The Lagrange density of Eq. (27b) can be
reformulated as

L̃MCSDJ ¼
1

2
AμΛμνAν; ð28aÞ

with the following tensor operator sandwiched between
gauge fields,

Λμν ¼ □Θμν þ ðkþ ϑ□ÞLμν −
1

ξ
□Ωμν; ð28bÞ

containing the CS operator Lμν as well as longitudinal
and transverse projectors Θμν and Ωμν, respectively. In
particular,

Lμν ¼ εμρν∂
ρ ¼ −Lνμ; ð28cÞ

Ωμν ¼
∂μ∂ν

□
; Θμν ¼ ημν − Ωμν: ð28dÞ

These form the closed algebra of Table I. To obtain the
propagator of Eq. (27b), we need to invert Λμν of
Eq. (28b). The following ansatz for the inverse, which
is expressed in terms of the operators in Table I, is
valuable:

Δμ
α ¼ aΘμ

α þ bLμ
α þ cΩμ

α; ð29aÞ

with parameters a, b, c to be determined from the identity

ΛμαΔα
ν ¼ ημν: ð29bÞ

Solving the resulting system of equations for the param-
eters results in the propagator of MCSDJ theory:

Δμα¼
□Θμα−ðkþϑ□ÞLμα−ξ½□þðkþϑ□Þ2�Ωμα

□½□þðkþϑ□Þ2� ; ð30Þ

TABLE I. Algebra of tensor operators.

Θμ
α Lμ

α Ωμ
α

Θνμ Θνα Lνα 0
Lνμ Lνα −□Θνα 0
Ωνμ 0 0 Ωνα
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which in momentum space with ∂μ ¼ −ipμ reads

ΔμαðpÞ ¼ −
1

p2½p2 − ðk − ϑp2Þ2�

×

�
p2ΘμαðpÞ − iðk − ϑp2Þεμσαpσ

− ξ½p2 − ðk − ϑp2Þ2�pμpα

p2

�
: ð31Þ

Note that this propagator is not symmetric in its indices,
which is a property attributed to CS and CS-like theories
such as those considered in Ref. [52]. As we commented
in the latter paper, such propagators are symmetric under
the combined operations of switching the indices and
reversing the direction of the four-momentum, i.e.,
pμ ↦ −pμ. Thus, ΔμαðpÞ ¼ Δαμð−pÞ.
The dispersion equations can be read off the poles of the

propagator. Poles occurring in terms proportional to at least
one uncontracted four-momentum are related to gauge
degrees of freedom and are discarded in the study of
physical-signal propagation. By taking this into account,
we obtain the dispersion equations

p2 ¼ 0; p2 − ðk − ϑp2Þ2 ¼ 0; ð32Þ

associated with two modes of the theory. The first
dispersion relation represents a massless mode,

p2
0 ¼ p2; ð33Þ

and it occurs twice, in fact, which is a point that we will
come back to later. The second, rewritten as

ϑ2p4 − ð1þ 2kϑÞp2 þ k2 ¼ 0; ð34Þ

represents two massive modes:

p2
0 ¼ p2 þm2

�ðϑ; kÞ; ð35aÞ

with the squared masses

m2
�ðϑ; kÞ ¼

1

2ϑ2
ð1þ 2kϑ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kϑ
p Þ: ð35bÞ

These depend on the two parameters k, ϑ. As long as
kϑ ≥ −1=4, which is what we will assume to be the case,
m2

� are not only real but also manifestly positive definite.
The masses themselves can be expressed as

m� ¼ 1

2jϑj j1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4kϑ

p j: ð36Þ

Expansions in the parameters k and ϑ are worthwhile to
consider. On the one hand, for jkj ≪ 1=jϑj we have

mþ ¼ 1

jϑj þ sgnðϑÞkþ…; ð37aÞ

m− ¼ ð1 − ϑkÞjkj þ…; ð37bÞ

with the sign function sgnðxÞ, which shows that both modes
are perturbative in k. On the other hand, for ϑ ≪ 1=jkj with
ϑ > 0 we obtain

mþ ¼ 1

ϑ
þ kð1 − kϑÞ þ…; ð38aÞ

m− ¼ jkjð1 − kϑÞ þ…; ð38bÞ

whereupon the first massive mode is nonperturbative in ϑ.
Hence, the latter strongly deviates from the CS modes
when ϑ ↦ 0.
Now, an interesting discovery can be made based on

Eq. (36). Let MCS theory be coupled to a scalar Higgs field
in (2þ 1) spacetime dimensions, which gives rise to
Maxwell-Chern-Simons-Higgs (MCSH) theory given by

LMCSH ¼ −
1

4
FμνFμν þmCS

2
εμνϱAμ∂νAϱ

þ ðDμϕÞ�Dμϕ − VðjϕjÞ; ð39Þ

with the CS mass mCS, the complex Higgs field ϕ, the
gauge-covariant derivative Dμ, and the Higgs potential V.
Then, the gauge field becomes massive by spontaneous
symmetry breaking. Two massive modes emerge [69]
whose masses are given by

M� ¼ mCS

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

H

m2
CS

s
� 1

!
; ð40Þ

with the Higgs mass m2
H ¼ 2v2, where v is the vacuum

expectation value of the Higgs field. The similarities
between the latter and Eq. (36) are evident. An identification
between these and our parameters of the MCSDJ model
provides jkj ¼ m2

H=mCS and jϑj ¼ 1=mCS. Therefore, there
is an intriguing relationship between MCSH and MCSDJ
theories. In fact, the possibility exists that both settings are
dual to each other, which could be an interesting project to
be studied elsewhere. Having pointed this out, we will
dedicate ourselves to further relevant questions.

1. Sub- and superluminal signal propagation

The setting of a modified electrodynamics in (2þ 1)
spacetime dimensions is envisioned to find applications in
two-dimensional condensed-matter systems. While, in
principle, Lorentz invariance is explicitly broken in such
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systems due to the presence of the lattice background, there
are materials such as graphene that exhibit what is called an
emergent Lorentz invariance. For example, near the Γ
point, i.e., for vanishing momentum, the dispersion relation
of electrons may have a conelike structure, which makes
these particles behave like massless Weyl or Dirac fer-
mions. Thus, they can be described by a relativistic field
theory, and the corresponding fields transform under
suitable representations of the Lorentz group. The invariant
velocity of the latter is not the speed of light c in vacuo but
the Fermi velocity vF ≪ c. Similarly, electromagnetic
waves propagate through materials with the speed of light
in the medium, cm < c.
In general, Lorentz-violating electromagnetisms can

exhibit regions in parameter space with a propagation
velocity ≶ cm, which we refer to as subluminal and super-
luminal regimes, respectively. As the emergent Lorentz
symmetry in condensed-matter systems is not fundamental,
superluminal propagation is not expected to imply issues
with classical causality. Nevertheless, it is worthwhile to
identify and distinguish between sub- and superluminal
regimes, as these are characterized by vastly different
physical behaviors.
We will call a theory subluminal when neither the group

nor the front velocity exceeds the speed of light, and
superluminal if the opposite holds true. In this context we
refer to the medium speed of light cm ¼ 1 in natural units.
Based on the dispersion relation p0 ¼ p0ðpÞ of a mode,
these characteristic velocities are defined by [92]

ugr ≡ ∂p0

∂p
; ufr ≡ lim

jpj↦∞

p0

jpj ; ð41Þ

respectively. On the one hand, the massless dispersion
relation of Eq. (33) obviously yields ugr ¼ 1 ¼ ufr, as
expected. On the other hand, the group velocities of the
massive modes read

uð�Þ
gr ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
�ðϑ; kÞ

p ; ð42aÞ

with magnitudes

uð�Þ
gr ¼ jpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
�ðϑ; kÞ

p ; ð42bÞ

which are typical of massive modes. Since the masses
squared are always positive—at least in the regime
kϑ < −1=4, where the square root in Eq. (35b) is real—
the norms of ugr are always < 1. As for the front velocity,
we obtain ufr ¼ 1, independently of any parameters. Thus,
we conclude that MCSDJ theory is subluminal.

2. Unitarity of the quantum theory at tree level

Another point of interest is the presence of states of
negative norm in the Hilbert space of the quantized theory,
which usually appear in higher-derivative theories and spoil
unitarity. For a tree-level examination, we can consider a
scalar quantity composed of the propagator in Eq. (31),
contracted with suitable external currents, which is often
called the saturated gauge propagator in the literature:

SP≡ JμiΔμνJ�;ν: ð43Þ

Here, Jμ is an external conserved current, which is
generically taken as complex; i.e., J�;μ is the complex
conjugate of the latter. This current satisfies the continuity
equation ∂μJμ ¼ 0 or pμJμ ¼ 0 in momentum space. Now,
Eq. (43) is one possibility of stating a generic forward-
scattering amplitude at tree level without resorting to a
particular scattering process. The outgoing current is then
directly related to the incoming one by a time-reversal
transformation, i.e., a complex conjugation in the context
of quantum theory. Contracting the propagator with
conserved currents eliminates contributions that were
proportional to uncontracted momenta initially. Thus,
all gauge-dependent pieces are eliminated by doing so.
Unitarity is assured whenever the imaginary part of the

residue of the saturation SP, evaluated at the poles of the
propagator, is non-negative [93]. For the propagator of
Eq. (31), the saturation reads

SP ¼ −i
p2jJj2 þ ðk − ϑp2ÞΩ
p2½p2 − ðk − ϑp2Þ2� ; ð44Þ

with the quantities

jJj2 ¼ JμJ�;μ ¼ ημνJμJ�ν; ð45aÞ

Ω ¼ εμσνpσImðJμJ�;νÞ; ð45bÞ

which will occur in all analyses of this kind. Note that jJj2
can be interpreted as the Lorentzian norm squared of a
complex three-current, and clearly jJj2 ≠ jJ2j. Furthermore,
Ω is a kind of Lorentzian scalar triple product of the three-
vectors fJμ; Jμ;�; pμg. Both jJj2 and Ω are manifestly real
quantities. For a dispersion relation that satisfies p0 ≥ jpj,
current conservation implies that

jJj2 ¼ jJ · pj2
p2
0

− jJj2 ≤
�
p2

p2
0

− 1

�
jJj2 ≤ 0; ð46Þ

i.e., jJj2 < 0 when J and p are not (anti)parallel. In contrast,
the sign ofΩ is unclear and depends on the orientation of the
vectors with respect to each other.
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Now, Ω can be evaluated explicitly as follows. First of
all, let us define the following set of three-component
vectors:

P≡
0
B@
p0

p1

p2

1
CA; V≡Re

0
B@
J0

J1

J2

1
CA; W≡ Im

0
B@
J0

J1

J2

1
CA: ð47Þ

Then, it is possible to recast Eq. (45b) into

Ω ¼ 2 det

0
B@

P1 P2 P3

V1 V2 V3

W1 W2 W3

1
CA: ð48Þ

Note that the components of P, V, andW correspond to the
components of the contravariant four-vectors pμ, ReðJμÞ,
and ImðJμÞ, respectively. From the alternative of writing Ω
via Eq. (48), it is obvious that the latter does not require any
metric. In particular, it is independent of the Minkowski
metric. The scalar triple product is a geometric concept that
provides the volume of a parallelepiped spanned by three
vectors having three components each. Even if we con-
sidered the CS term on a curved-spacetime manifold, the
quantity Ω, as it stands, would be taken over to the tangent
bundle of this curved manifold. After all, the three vectors
are contracted via the three-dimensional Levi-Civita
symbol.
Clearly, Ω ¼ 0 when the current is assumed to be real.

Moreover, whenV andW are linearly dependent or when P
lies in the plane spanned by linearly independent V andW,
thenΩ ¼ 0, too. However, whetherΩ > 0 orΩ < 0 cannot
be deduced in a straightforward manner from a generic
form of the external current, which will render the analysis
of tree-level unitarity nontransparent compared to similar
studies [51,52] carried out in the past.
The result of Eq. (44) can be suitably rewritten as

SP¼ i
1

ϑ2ðp2 −m2þÞðp2 −m2
−Þ
�
jJj2 þ k− ϑp2

p2
Ω
�
; ð49Þ

with m2
� given in Eq. (35b). Observe that the pole p2 ¼ 0

cancels in the first contribution of Eq. (44), but it is still
present in the second. Our interpretation of this observation
is as follows. In the propagator of MCSDJ theory, Eq. (31),
the massless dispersion equation p2 ¼ 0 occurs to the first
power in the denominator of the CS contribution but to the
second power in the denominator of the gauge-dependent
part. Thus, this theory is equipped with two massless
modes: one is unphysical, and the other is physical but
related to phenomena in the infrared. The first is eliminated
in the saturated propagator, whereas the second remains in
the term proportional to Ω.

Now, the residues of Eq. (49) at the poles f0; m2
�g are

ResðSPÞjp2¼0 ¼ i
k

ϑ2m2þm2
−
Ωjp2¼0 ¼

iΩjp2¼0

k
; ð50aÞ

ResðSPÞjp2¼m2
þ
¼ i
ϑ2ðm2þ−m2

−Þ
�
jJj2− sgnðϑÞ Ω

mþ

�
p2¼m2

þ

;

ð50bÞ

ResðSPÞjp2¼m2
−
¼ i
ϑ2ðm2

− −m2þÞ

×

�
jJj2þ sgn

�
ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4kϑ
p

−1

�
Ω
m−

�
p2¼m2

−

:

ð50cÞ

As mentioned above, for a real current, the CS term does
not affect unitarity at all, which renders the behavior of the
above residues rather straightforward. Specifically,

Im½ResðSPÞj Ω¼0

p2¼m2
�
� ≶ 0; ð51Þ

in accordance with m2
� −m2∓ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4kϑ
p

=ϑ2. Note that
the massless pole does not even exist in this case. For a
complex current, though, it is the CS term that makes the
behavior more involved. Depending on the sign and size of
Ω, the imaginary part of each of the three residues can be
positive, zero, or negative. The latter outcome suggests
unitarity violation for the corresponding excitations.
However, excitations with such properties may be split
from the physical modes of the theory by using a field
redefinition as usually done in the context of the Lee-Wick
theories [15]. For a detailed investigation of such questions
in DJ electrodynamics at tree and one-loop level, the
interested reader should consult Ref. [88].
Let us also emphasize that jJj2 of Eq. (45a) is a

geometric quantity, as it involves the metric. Unlike the
latter, Ω of Eq. (45b) does not depend on the metric
explicitly, as we explained in the paragraph under Eq. (48).
It can be interpreted as a generalized “volume form” for a
set of three partially complex vectors. Thus, the CS term
governs unitarity via an additional geometric, but metric-
independent quantity, which does not have an obvious
analog in (3þ 1)-dimensional theories.

B. Maxwell-Deser-Jackiw electrodynamics

In the absence of the CS term, the action of Eq. (27b)
recovers the MDJ model,

SMDJ ¼
Z �

−
1

4
F ∧ ð�FÞ þ ϑ

2
A ∧ dð□AÞ þ 1

2ξ
� ði∂AÞ2

�

¼
Z

d3xðLMDJ þ LgfÞ; ð52aÞ
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LMDJ ¼ −
1

4
FμνFμν þ ϑ

2
εμνρAμ

∂
ν
□Aρ; ð52bÞ

with the gauge fixing term of Eq. (27c). This theory has the
following propagator in momentum space, which results
from Eq. (31) by setting k ¼ 0:

ΔμαðpÞ ¼ −
1

p2ð1 − ϑ2p2Þ
�
ΘμαðpÞ þ iϑεμσαpσ

− ξð1 − ϑ2p2Þpμpα

p2

�
: ð53Þ

The physical dispersion equations are

p2 ¼ 0; p2 ¼ 1

ϑ2
; ð54Þ

as these occur in the gauge-independent part of Eq. (53). In
contrast to MCSDJ theory, there is only a single massive
mode, whereas before we had two; cf. Eq. (35). We thus
notice that the presence or absence of the conventional CS
term in the MDJ Lagrange density changes the mode as
well as the pole structure. A further crucial difference from
Eq. (31) is that one of the massless modes is now also
contained in the gauge-independent term proportional to
ΘμαðpÞ. Thus, this mode is not necessarily related to
physics in the infrared anymore.
Therefore, the corresponding positive-energy dispersion

relations read

p0 ¼ jpj; p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

ϑ2

r
: ð55Þ

The latter are relatively simple and immediately imply that
there is no superluminal signal propagation. On the con-
trary, the first mode propagates with the speed of light and
the second with velocities lower than the speed of light.
Moreover, the analysis of unitarity can be taken directly
from Sec. III A 2 of MCSDJ theory where k ¼ 0 has to be
inserted. These results are expressed in terms of the masses
m� of Eq. (36). Now, we observe that mþ ¼ 1=jϑj and
m− ¼ 0, as expected from Eq. (55). The propagator
saturated with external conserved currents reads

SP ¼ i
jJj2 − ϑΩ

ϑ2p2ðp2 −m2þÞ
; ð56Þ

which corresponds to that of Eq. (49) for k ¼ 0. Thus,

ResðSPÞjp2¼m2
þ
¼ iðjJj2 − ϑΩÞp2¼m2

þ
; ð57aÞ

ResðSPÞjp2¼0 ¼ −iðjJj2 − ϑΩÞp2¼0: ð57bÞ

For a real current, Ω ¼ 0, whereupon it is straightforward
to deduce that

Im½ResðSPÞj Ω¼0

p2¼fm2
þ ;0g

� ≶ 0: ð58Þ

In analogy to what we found in Sec. III A 2, issues with
unitarity in MDJ theory are expected to occur for the
massive mode associated withmþ. In contrast, the massless
mode is well behaved. However, when Ω ≠ 0, the presence
of the CS term again complicates the behavior of the
saturation. Nevertheless, we can directly deduce from
Eq. (57) that both residues have opposite signs—independ-
ently of the sign of Ω. In addition, each imaginary part can
take negative values. Therefore, there are indications for
unitarity violation at tree level for either p2 ¼ m2þ
or p2 ¼ 0.

C. Chern-Simons-Deser-Jackiw electrodynamics

An alternative model, whose study could be worthwhile,
emerges from the Lagrange density of Eq. (27b) in the
absence of the Maxwell term. We will refer to the latter as
Chern-Simons-Deser-Jackiw (CSDJ) theory:

SCSDJ ¼
Z �

k
2
A ∧ dAþ ϑ

2
A ∧ dð□AÞ þ 1

2ξ
� ði∂AÞ2

�

¼
Z

d3xðLCSDJ þ LgfÞ; ð59aÞ

LCSDJ ¼
k
2
εμνρAμ

∂
νAρ þ ϑ

2
εμνρAμ

∂
ν
□Aρ; ð59bÞ

with Lgf of Eq. (27c). Its propagator in momentum space is
readily obtained as follows:

ΔμαðpÞ¼−
1

p2ðk−ϑp2Þ
�
iεμσαpσ−ξðk−ϑp2Þpμpα

p2

�
: ð60Þ

The physical dispersion relations are

p0 ¼ jpj; p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k

ϑ

r
; ð61Þ

representing a massless, Abelian vector boson and a
massive particle, respectively, with mass squared k=ϑ.
The absence of the Maxwell term does not imply a pole
structure different from that of MDJ theory, but it is still
composed of a massless and a massive mode, respectively.
Furthermore, we note that the DJ term generates dynamics
for the CS Lagrangian, assuring the existence of propa-
gating modes by itself. Signal propagation in this model is
subluminal since the group velocity is given by Eq. (42a)
with m2ðϑ; kÞ ¼ k=ϑ and the front velocity is equal to 1.

PLANAR ELECTRODYNAMICS MODIFIED BY HIGHER- … PHYS. REV. D 108, 115032 (2023)

115032-11



Contracting the propagator of Eq. (60) with two external
conserved currents eliminates the second term, which is
gauge dependent and unphysical. Thus, the saturation is
now completely governed by the CS term:

SP ¼ iΩ
p2ðk − ϑp2Þ ¼ −

iΩ
ϑp2ðp2 −m2Þ : ð62Þ

Therefore, the following statements are made on the
residues at the poles:

ResðSPÞjp2¼0 ¼
iΩjp2¼0

k
; ð63aÞ

ResðSPÞjp2¼m2 ¼ −
iΩjp2¼m2

k
: ð63bÞ

Depending on the signs of Ω and k, either the massless or
the massive or even both modes may cause unitarity issues.
This behavior is reminiscent of that for the residues of MDJ
theory; cf. Eq. (57). Since the parameter ϑ only occurs in
the dispersion relation for the massive mode in Eq. (63b),
the DJ term does not have a direct impact on the properties
of the residues.

1. Classical field equations and solutions

Classical solutions of the field equations coupled to
external physical sources provide one of the key elements
for more sophisticated studies of a field theory, e.g., at the
quantum level. Therefore, our interest in the following is to
solve the field equations of CSDJ theory coupled to the
external conserved current Jμ; i.e., we consider

L ¼ LCSDJ − JμAμ; ð64Þ
with LCSDJ taken from Eq. (59b). The Euler-Lagrange
equations of Eq. (15) for n ¼ 3 imply the field equations

kεμνρ∂νAρ þ ϑεμνρ∂
ν
□Aρ ¼ Jμ: ð65Þ

The component μ ¼ 0 corresponds to an equation for the
magnetic field B ¼ εij∂iAj with the Levi-Civita symbol εij

in two spatial dimensions:

kBþ ϑ□B ¼ ρ; ð66Þ

where ρ ¼ J0 is the charge density. Interestingly, the DJ
term is able to turn the magnetic field dynamical. Indeed,
the latter now fulfills a wave equation:

�
□þ k

ϑ

�
B ¼ ρ

ϑ
; ð67Þ

which for a static configuration reads

�
∇2 −

k
ϑ

�
B ¼ −

ρ

ϑ
: ð68Þ

It is worthwhile to point out that the relationship B ¼ ρ=k,
which is characteristic of CS theory, is no longer valid,
which is due to the magnetic field becoming dynamical. An
equation like the latter can be solved by the Green’s
function method. Let GðRÞ be a Green’s function such that�

∇2 −
k
ϑ

�
GðRÞ ¼ δð2ÞðRÞ; ð69Þ

with the Dirac function δð2ÞðRÞ in two spatial dimensions
and R ¼ r − r0. The magnetic field is then given by

BðrÞ ¼ −
1

ϑ

Z
d2r0Gðr − r0Þρðr0Þ: ð70Þ

To determine the Green’s function, we start from its usual
Fourier expansion in two dimensions:

GðRÞ ¼ 1

ð2πÞ2
Z

d2pGðpÞ expð−iR · pÞ

¼ 1

ð2πÞ2
Z

d2pGðpÞ expð−iRp cosϕÞ; ð71Þ

where we choose a polar-coordinate system with the
horizontal positive axis pointing along R such that
d2p ¼ dϕdpp, with ϕ being the angle between R and
p, as well as jRj ¼ R and jpj ¼ p. Inserting Eq. (71) into
Eq. (69), one obtains the Green’s function in momentum
space:

GðpÞ ¼ −
1

p2 þm2
; ð72aÞ

with the effective mass squared

m2 ¼ k
ϑ
: ð72bÞ

To transform the momentum space Green’s function of
Eq. (72a) to configuration space, we must evaluate the
two-dimensional integral of Eq. (71). To do so, we employZ

2π

0

dϕ expð−iRp cosϕÞ ¼ 2πJ0ðRÞ; ð73aÞ
Z

∞

0

dpp
J0ðpRÞ
p2 þm2

¼ K0ðmRÞ; ð73bÞ

cf. Eqs. (3.915.2) and (6.532.4), respectively, in Ref. [94].
Here, J0ðxÞ is the zeroth-order Bessel function of the first
kind and K0ðxÞ the zeroth-order modified Bessel function
of the second kind. The Green’s function in configuration
space can then be cast into the form
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GðRÞ ¼ −
1

2π
K0ðmRÞ: ð74Þ

Now, the static magnetic field is written as

BðrÞ ¼ 1

2πϑ

Z
d2r0K0ðmjr − r0jÞρðr0Þ; ð75Þ

which, for a pointlike charge q sitting at r0 ¼ 0, reads

BðrÞ ¼ 1

2πϑ

Z
d2r0K0ðmjr − r0jÞqδð2Þðr0Þ;

¼ q
2πϑ

K0ðmrÞ; ð76Þ

describing the radial behavior of an isotropic magnetic field.
Thus, one notices that this DJ solution for the magnetic field
captures the effect of the Laplacian in Eq. (68), which stems
from the Maxwell term. This modifies the usual behavior of
the magnetic field of a pointlike charge in CS theory, which
is described by a Dirac function because of the direct
proportionality between the magnetic field and the charge
density:

BCSðrÞ ¼
q
k
δð2ÞðrÞ: ð77Þ

Now, integrating the magnetic field of Eq. (77) over the
entire plane provides the total magnetic flux permeating
the plane, which amounts to the ratio of the total charge and
the CS parameter k, that is,

Z
d2rBCSðrÞ ¼

q
k
: ð78Þ

The latter property is still valid for Eq. (76) in CSDJ theory.
Indeed, sinceZ

∞

0

dx xK0ðaxÞ ¼
1

a2
; a > 0; ð79Þ

one obtains

Z
d2rBðrÞ ¼ q

ϑ

Z
∞

0

dr rK0ðmrÞ ¼ q
ϑ

�
k
ϑ

�
−1

¼ q
k
; ð80Þ

where the factor of 1=ð2πÞ in Eq. (76) cancels due to the
angular integration. The final result coincides with Eq. (78).
Thus, supplementing CS theory by a DJ term regularizes

the δ-function type behavior of a point charge, turning it
into a spatially extended Bessel function, without altering
the total magnetic flux. Note that the properties character-
istic of a δ-function are reproduced from Eq. (76) in the
limit ϑ ↦ 0. The behavior of this function for decreasing
values of ϑ is illustrated in Fig. 1.

A similar static magnetic-field solution for a pointlike
charge, which is characterized by the function K0ðmrÞ,
occurs in the planar MCS theory, in the absence of spatial
currents. The field equations in this case read

ð∇2 − k2ÞB ¼ −kρ; ð81Þ

where the Laplacian originates from the Maxwell term.
This finding confirms that the DJ term can effectively
mimic the effects of a Maxwell term in the field equations.
In the next section we examine a planar electrodynamics in
the presence of higher-order derivatives that are contracted
with nondynamical background fields. The latter give rise
to preferred spacetime directions, which lead to a break-
down of SOð2; 1Þ symmetry, in general, and to spatial
anisotropies in the plane, in particular.

D. Summary of results

The main results obtained in Secs. III A–III C are
summarized in Table II. Each model exhibits at least a
single massless and a single massive mode. Neither the
group nor the front velocity of any mode takes super-
luminal values. It is possible to evaluate the saturated
propagator in a straightforward manner for Ω ¼ 0, which
tells us whether or not unitarity violation at tree level is
expected for a particular massive or massless mode. Note
that for the MCSDJ and CSDJ theories, the residue of the
massless mode always amounts to zero when Ω ¼ 0,
meaning that the latter mode originates from CS-type
terms. When CS terms are absent, which happens for
Ω ¼ 0, there is simply no such mode. Unfortunately, the
results turn out to be nontransparent for a generic Ω since
then definite conclusions cannot be drawn without provid-
ing an explicit choice for the external current.

0.0 0.2 0.4 0.6 0.8 1.0
0

2
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B
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10–1

1

FIG. 1. Behavior of Eq. (76) for decreasing values of ϑ chosen
in terms of rising inverse powers of 1=10. We observe that the
magnetic field becomes more and more localized at r ¼ 0 when
ϑ ↦ 0, which is the limit recovering a δ-function behavior, as
expected.
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IV. MODIFIED ð2 + 1Þ-DIMENSIONAL
ELECTRODYNAMICS WITH LORENTZ

VIOLATION

In general, the higher-derivative term in the Lagrange
density of Eq. (24), whose structure is εμνϱAμ

∂
νðKλβ

∂λ∂βÞAρ,
corresponds to an extension of the DJ term εμνϱAμ

∂
ν
□Aρ of

mass dimension 4, which incorporates anisotropic contri-
butions. For the purpose of generality, we propose an
extended higher-derivative planar electrodynamics in the
presence of the standard terms, either endowed with the
Maxwell term or not:

Sext ¼
Z �

−
ϰ

4
F ∧ ð�FÞ þ k

2
A ∧ dAþ ϑ

2
A ∧ dð□AÞ

þ ϑ1
2
A ∧ dðK̂ð4ÞAÞ þ 1

2ξ
� ði∂AÞ2

�

¼
Z

d3xðLext þ LgfÞ; ð82aÞ

with the Lagrange density

Lext ¼ −
ϰ

4
FμνFμν þ k

2
εμνρAμ

∂
νAρ þ ϑ

2
εμνρAμ

∂
ν
□Aρ

þ ϑ1
2
εμνρAμ

∂
νK̂ð4ÞAρ; ð82bÞ

and the gauge fixing term of Eq. (27c). Here, we employ the
operator K̂ð4Þ of Eq. (23), for brevity. Moreover, the
parameter ϰ was introduced to permit the description of a
nontrivial dielectric constant; i.e., such a setting can be
neatly adopted to describe certain effects in a material
medium, as we did in Refs. [55,95]. The choice ϰ ¼ 1
reproduces the (2þ 1)-dimensional version of the usual
Maxwell term in vacuo.

To further analyze the features of the electrodynamics
represented by the action of Eq. (82), we calculate the
propagator of the model whose physical poles provide the
dispersion relations of the theory as well as information
about the associated modes. As before, we cast the
Lagrange density into bilinear form,

L̃ext ¼
1

2
AνΞνμAμ; ð83aÞ

with the tensor operator

Ξνμ ¼ ϰ□Θνμ þ kενρμ∂ρ þ ϑενρμ∂
ρ
□

þ ϑ1ενρμK̂
ð4Þ
∂
ρ −

1

ξ
□Ωνμ; ð83bÞ

which can also be reformulated as

Ξνμ ¼ ϰ□Θνμ þ ðkþ ϑ□þ ϑ1K̂
ð4ÞÞLνμ −

1

ξ
□Ωνμ; ð83cÞ

by using the CS operator of Eq. (28c) and the convenient
projectors of Eq. (28d). The propagator is obtained as
before, but now its computation poses a greater technical
challenge. We propose the ansatz

Δμ
α ¼ aΘμ

α þ bLμ
α þ cΩμ

α; ð84Þ

with unknown parameters a, b, c. The latter must satisfy

ΞνμΔμ
α ¼ ηνα: ð85Þ

TABLE II. Properties of the electromagnetic theories studied in Secs. III A–III C. The first and second columns
give the particular model that the entries of the remaining columns refer to. The third and fourth columns list the
number of physical modes, where a distinction is made between massless and massive ones. The fifth column states
whether or not the modes exhibit superluminal regimes. The final columns provide information on the signs of the
imaginary parts for the residues of the propagator contracted with external conserved currents. Here, Ω is the scalar
quantity of Eq. (45), which can be recast into the alternative form of Eq. (48).

Modes Im½ResðSPÞ�
Model Section Massless Massive Superluminality Ω ¼ 0 Ω ≠ 0

MCSDJ III A 1 2 No 0 (massless) 0;�
− (1st massive) 0;�
þ (2nd massive) 0;�

MDJ III B 1 1 No − (massive) 0;�
þ (massless) 0;�

CSDJ III C 1 1 No 0 (massless) 0;�
0 (massive) 0;�
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The tensor algebra of Table I allows us to rewrite Eq. (85) as

Θνα þΩνα ¼ ϰa□Θνα þ bϰ□Lνα −
1

ξ
c□Ωνα

þ ðkþ ϑ□þ ϑ1K̂
ð4ÞÞðaLνα − b□ΘναÞ; ð86Þ

which provides the following solutions for the parameters
a, b, c of the ansatz:

a¼ ϰ

⊟
; b¼ −

kþ ϑ□þ ϑ1K̂
ð4Þ

□⊟
; c¼ −

ξ

□
; ð87aÞ

with

⊟ ¼ ϰ2□þ ðkþ ϑ□þ ϑ1K̂
ð4ÞÞ2: ð87bÞ

Then, the inverse of Eq. (83b) is

Δμα ¼
1

□⊟
½ϰ□Θμα − ξ⊟Ωμα − ðkþ ϑ□þ ϑ1K̂

ð4ÞÞLμα�;

ð88Þ
which is written in momentum space as

ΔμαðpÞ ¼ −
1

p2FðpÞ
�
ϰp2ΘμαðpÞ − ξFðpÞpμpα

p2

þ ðk − ϑp2 þ ϑ1Kð4ÞðpÞÞLμαðpÞ
�
; ð89aÞ

where

FðpÞ ¼ ϰ2p2 − ðk − ϑp2 þ ϑ1Kð4ÞðpÞÞ2; ð89bÞ

and

LναðpÞ ¼ −iενσαpσ; Kð4ÞðpÞ ¼ −Kλβpλpβ: ð89cÞ

The dispersion relations of the theory represented by the
Lagrangian of Eq. (82) can be extracted from the poles of
the propagator of Eq. (89), namely,

FðpÞ ¼ 0; ð90Þ

with FðpÞ of Eq. (89b). To gain information about the
physical modes, it is necessary to analyze the dispersion
relations from Eq. (90) for some configurations of Kαβ.
Before we dedicate ourselves to this endeavor, let us explore
the properties of Eq. (89) saturated by external conserved
currents:

SP ¼ −i
1

ϰ2p2 − ðk − ϑp2 þ ϑ1Kð4ÞðpÞÞ2

×

�
ϰjJj2 þ ðk − ϑp2 þ ϑ1Kð4ÞðpÞÞ Ω

p2

�
; ð91Þ

where the pole p2 cancels in the first contribution, as in
Eq. (49) previously considered for MCSDJ theory. The
imaginary parts of the residues of Eq. (91) provide both
negative and positive results, as will be seen later when
certain parameter subsets of Eq. (82) are studied.
It is also worthwhile to note that the general Lagrange

density of Eq. (82) provides a wide variety of the usual
terms of standard planar theories that can be examined
more carefully. Thus, Eq. (82) encompasses several pos-
sibilities of planar models. The different models obtained
from suitable choices of parameters are stated in Table III,
and the corresponding Lagrange densities read as follows:

L0
MCSDJ ¼ −

1

4
FμνFμν þ k

2
εμνρAμ

∂
νAρ þ ϑ

2
εμνρAμ

∂
ν
□Aρ

þ ϑ1
2
εμνρAμ

∂
νK̂ð4ÞAρ; ð92aÞ

L0
MCS ¼ −

1

4
FμνFμν þ k

2
εμνρAμ

∂
νAρ þ ϑ1

2
εμνρAμ

∂
νK̂ð4ÞAρ;

ð92bÞ

L0
MDJ ¼−

1

4
FμνFμνþϑ

2
εμνρAμ

∂
ν
□Aρþϑ1

2
εμνρAμ

∂
νK̂ð4ÞAρ;

ð92cÞ

L0
CSDJ ¼

k
2
εμνρAμ

∂
νAρ þ ϑ

2
εμνρAμ

∂
ν
□Aρ

þ ϑ1
2
εμνρAμ

∂
νK̂ð4ÞAρ: ð92dÞ

The latter are indicated by primes to distinguish them from
their counterparts in Eqs. (27b), (52b), and (59b) that do not
involve Lorentz-violating contributions. In principle, we
could take K̂ð4Þ as traceless, as the contribution proportional
to the trace corresponds to the DJ term. However, to be as
flexible as possible, we will not necessarily assume that
K̂ð4Þ is traceless. Note that MCS and MDJ theories are, in
principle, special cases of MCSDJ theory that arise for
suitable choices of the parameters.

TABLE III. Variety of different higher-derivative Lorentz-
violating planar electrodynamics emerging from the generic
proposal of Eq. (82) for appropriate choices of parameters.
Parameters that remain arbitrary are not given explicitly.

ϰ k ϑ ϑ1 Model Lagrange density

1 Extended MCSDJ Eq. (92a)
1 0 Extended MCS Eq. (92b)
1 0 Extended MDJ Eq. (92c)
0 Extended CSDJ Eq. (92d)
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A. Extended MCS(DJ) theory

For the Lagrange density stated in Eq. (92a), we extract
the physical dispersion relations from the poles of the
generic saturated propagator given by Eq. (91) where
ϰ ¼ 1. In the general case, they read

p2 − ½k − ϑp2 þ ϑ1Kð4ÞðpÞ�2 ¼ 0: ð93Þ

As the structure K̂ð4Þ reduces to the d’Alembertian when
Kλβ ¼ ηλβ, the higher-derivative term in the Lagrange
density of Eq. (24) contains the DJ operator. Therefore,
without loss of generality, we can consider Eq. (92a) with
ϑ ¼ 0 by writing

L ¼ L0
MCSDJjϑ¼0 þ Lgf ¼ L0

MCS þ Lgf ; ð94Þ

whose propagator is given by Eq. (89) with ϑ ¼ 0. The
corresponding dispersion relation reads

p2 − ðk − ϑ1KλβpλpβÞ2 ¼ 0: ð95Þ

A dispersion relation of this form may be very intricate
since it involves higher powers of p0. Specifically,

p2 − ½k − ϑ1ðK00p2
0 − K0ip0pi þ KijpipjÞ�2 ¼ 0: ð96Þ

To eliminate at least some of the terms depending on p0, we
discard the mixed coefficients, i.e., K0i ¼ 0. Then, Eq. (96)
yields

p2
0¼

1

2ϑ21ðK00Þ2 ½1þ2ϑ1K00ðk−ϑ1KijpipjÞ�
ffiffiffiffi
Θ

p
�; ð97aÞ

with

Θ ¼ ½1þ 4ϑ1K00ðk − ϑ1KijpipjÞ − 4ϑ21ðK00Þ2p2�: ð97bÞ

The latter may still take an even more tractable form for
specific choices of the spacelike tensor components Kij.
We will delve deeper into superluminality as well as tree-

level unitarity for the extended MCS(DJ) model restricted
to certain subsets of coefficients. Since these studies are
rather technical, they are relegated to Appendix A. The
details of the properties depend on the choices of param-
eters, but they are generically summarized in the first part of
Table IV.
The massless mode, which we already encountered in the

Lorentz-invariant models (see Table II), shows up here, too.
The latter is not affected by SOð2; 1Þ violation directly. In
principle, two massive modes would emerge for Kμν ¼ ημν

since this choice reproduces MCSDJ theory; cf. the dis-
cussion under Eq. (93). Two massive modes persist as long
as Kμν is chosen in such a way to be contracted with two
time derivatives. However, for configurations different from
these, the number of massive modes is reduced by one. The
presence of Kμν directly modifies such modes.
Superluminal signal propagation is found for both subsets

of coefficients studied, except for the front velocity of the
isotropic case. The latter is due to the modes not being able
to propagate for large momenta. Note that superluminality
does not occur for any of the Lorentz-invariant, higher-
derivative theories in Table II; i.e., this property is clearly
one of the consequences of a broken SOð2; 1Þ invariance.
The behavior of the saturated propagator allows for clear
statements on potential unitarity issues at tree level as long
as Ω ¼ 0. However, the presence of a nonzero Ω obscures
the characteristics of the saturation, which renders straight-
forward deductions challenging. The only possibility is to

TABLE IV. Properties of the extended electromagnetic theories under investigation in Secs. IVA and IV C. The first and second
columns state the model that the forthcoming properties refer to. The third column lists the nonzero coefficients for the parameter
subspace studied, and the fourth column gives information on (broken) SOð2Þ symmetry. The number of physical modes can be found in
the fifth and sixth columns. The seventh and eighth columns summarize our findings on superluminal regimes for the group and front
velocities, respectively. The final two columns make a statement about the signs of the imaginary parts for the residues of the saturated
propagators for each of the modified modes. As in Table II, Ω is the quantity of Eqs. (45b) and (48), respectively.

Modes Superluminality Im½ResðSPÞ�
Model Section Coefficients Configuration Massless Massive ugr ufr Ω ¼ 0 Ω ≠ 0

Extended MCS(DJ) IVA K00 Isotropic 1 2 ✓ No 0 (massless) 0;�
− (1st massive) 0;�
þ (2nd massive) 0;�

Kij Anisotropic 1 1 ✓ ✓ 0 (massless) 0;�
þ (ω < jpj) 0;�
− (ω > jpj) 0;�

Extended CSDJ IV C K00 Isotropic 1 1 ✓ ✓ 0 (each) 0;�
K0i Anisotropic 1 1 ✓ ✓ 0 (each) 0;�
Kij Anisotropic 1 1 ✓ ✓ 0 (each) 0;�

LISBOA-SANTOS, REIS, SCHRECK, and FERREIRA PHYS. REV. D 108, 115032 (2023)

115032-16



check the sign separately for each configuration of coef-
ficients, momenta, and the three-current given.

B. Extended MDJ theory

In principle, the extended MDJ theory of Eq. (92c) is a
special case of the extended MCSDJ theory of Eq. (92a)
whose study we concluded in Sec. IVA. At a technical level,
k ¼ 0 must be inserted into the previous findings, which is
not expected to be challenging and will probably lead to a
vastly repetitive analysis. However, the physical interpre-
tation of the results may differ from that of Sec. IVA. Thus,
we leave a more thorough examination of the properties of
Eq. (92c) for a future work and dedicate ourselves to the
extended CSDJ theory of Eq. (92d) whose structure is
fundamentally different from that of the extended MCSDJ
and MDJ theories.

C. Extended CSDJ theory

Let us now explore the Lagrange density of Eq. (92d).
The dispersion relations different from p0 ¼ jpj follow
from Eq. (91) by inserting ϰ ¼ 0, which eliminates the
Maxwell term. Then,

ϑp2 − k − ϑ1Kð4ÞðpÞ ¼ 0: ð98Þ

By inserting k ¼ ϑ1 ¼ 0, the dispersion equation
reads p2 ¼ 0, which corresponds to that of DJ theory;
cf. Sec. III C for k ¼ 0.
Decomposing Kαβ into the purely timelike, mixed, and

spacelike pieces K00, K0i, and Kij, respectively, the
dispersion equation becomes

0 ¼ ðϑþ ϑ1K00Þp2
0 − ϑ1K0ipip0 þ ϑ1Kijpipj − ϑp2 − k:

ð99Þ

Its positive-energy solution is

ω ¼ 1

2ðϑþ ϑ1K00Þ ð
ffiffiffiffi
Δ

p
þ ϑ1K0ipiÞ; ð100aÞ

where

Δ ¼ 4ðϑþ ϑ1K00Þ½ϑp2 þ k − ϑ1Kijpipj� þ ðϑ1K0ipiÞ2:
ð100bÞ

An analysis of the properties of the latter is complicated by
the presence of the background field coefficients. Thus, as
we already did for the extendedMCSDJ theory in Sec. IVA,
we will restrict ourselves to specific configurations of the
background field.

Moreover, note that the propagator saturated with exter-
nal currents, Eq. (91), is governed by the geometrical
quantity Ω as well as the modified dispersion equations:

SP ¼ iΩ
p2ðk − ϑp2 þ ϑ1Kð4ÞðpÞÞ : ð101Þ

We already observed a similar behavior for CSDJ theory in
Sec. III C, which is reproduced for a vanishing background
field, Kμν ¼ 0. Nevertheless, the generic behavior is chal-
lenging to understand from the latter result, which provides
further motivation for us considering special subsets of
nonzero coefficients at a time.
Apart from the ubiquitous massless mode, there is always

a single massive mode independently of the choice of Kμν.
The reason is that a (modified) Maxwell term is absent from
CSDJ theory. As we did for extended MCS(DJ) theory in
Sec. IVA, it is our interest to gain some understanding of
superluminal regimes and tree-level unitarity. The analyses
are again technical, and Appendix B provides all details
necessary to follow the computations. The generic results
are presented in the second part of Table IV.
Superluminal modes are concluded to occur for both the

group and the front velocity for each of the coefficient sets
studied, which is again due to SOð2; 1Þ violation. For
extended CSDJ theory, the saturated propagator is nonzero
for Ω ≠ 0 only; cf. Eq. (101). In contrast, it vanishes
identically for Ω ¼ 0, which means that the physical modes
are eliminated completely in this case. However, for Ω ≠ 0,
the imaginary part can take either sign dependent on suitable
choices of coefficients, momenta, and the three-current.
Concise statements on unitarity are then impossible. The
only way out is to check the sign for a particular configu-
ration that one may be interested in.

1. Classical field equations and solutions

The current section is devoted to an extension of the
analysis performed in Sec. III C 1 for CSDJ theory. To
examine the impact of higher-derivative anisotropic terms
on the solutions of the classical field equations explored in
the latter section, we start from the extended CSDJ
Lagrange density of Eq. (92d), which is coupled to the
external conserved current Jμ:

L ¼ L0
CSDJ − JμAμ: ð102Þ

The Euler-Lagrange equations stated in Eq. (15) lead to the
following field equations:

Jμ ¼ kεμνρ∂νAρ þ ϑεμνρ∂
ν
□Aρ þ ϑ1εμνρðKλβ

∂λ∂βÞ∂νAρ;

ð103Þ
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which for μ ¼ 0 yields

kBþ ϑ□Bþ ϑ1ðKλβ
∂λ∂βÞB ¼ ρ; ð104Þ

with the planar magnetic field B ¼ εij∂iAj. We already
know that the DJ term is able to turn the solutions of the
field equations of CS theory into dynamical modes. Now,
we examine the effect of anisotropies on the solution for the
magnetic field that arise because of the nonstandard higher-
derivative term. To do so, we consider the wave equation,

�
□þ k

ϑ
þ ϑ1

ϑ
ðKλβ

∂λ∂βÞ
�
B ¼ ρ

ϑ
; ð105Þ

which in the static limit reads�
∇2 −

k
ϑ
−
ϑ1
ϑ
ðKij

∂i∂jÞ
�
B ¼ −

ρ

ϑ
: ð106Þ

The Green’s function must fulfill

�
∇2 −

k
ϑ
−
ϑ1
ϑ
ðKij

∂i∂jÞ
�
GðRÞ ¼ δð2ÞðRÞ; ð107Þ

which, based on Eq. (71), implies

GðpÞ ¼ −
1

p2 þm2 þ ðϑ1=ϑÞðKijpipjÞ : ð108Þ

Computing the Fourier transformation of the latter is
challenging for a generic Kij. Hence, we take the choice
of a Kij expressed in terms of a single two-component
vector T as follows:

Kij ¼ TiTj; ð109Þ

such that

GðpÞ ¼ −
1

p2 þm2 þ ðϑ1=ϑÞðT · pÞ2 : ð110Þ

Further, we take into account that

T · p ¼ jTjjpj cosðα − ϕÞ; ð111Þ

where α is the angle between T and the position r; see
Fig. 2. Then, the Green’s function in momentum space
reads

GðpÞ ¼ −
1

p2 þm2 þ η22p
2 cos2ðα − ϕÞ ; ð112aÞ

with the dimensionless parameter

η22 ¼
ϑ1
ϑ
T2: ð112bÞ

The Fourier transform of the Green’s function in Eq. (112a)
is challenging to evaluate analytically in its full generality.
To be able to understand the deviation from the regime
with η2 ¼ 0, we assume that η22 ≪ 1. Then, the following
expansion is justified:

GðpÞ ≃ −
1

p2 þm2
þ η22p

2

ðp2 þm2Þ2 cos
2ðα − ϕÞ: ð113Þ

Even the computation of the Fourier transform of the latter
expanded Green’s function is lengthy, and Appendix C
provides some details. Any reader not interested in the
technicalities can skip that part and jump to the final result,
which is

GðRÞ ¼ −
1

2π
K0ðmRÞ

�
1 −

η22
2

�

−
η22
4π

ðmRÞK1ðmRÞ cos2 α; ð114Þ

where K1ðxÞ is the first-order modified Bessel function of
the second kind. We consider a pointlike charge distribu-
tion at the origin: ρðr0Þ ¼ qδð2Þðr0Þ. Inserting Eq. (114) as
well as the latter into

BðrÞ ¼ −
1

ϑ

Z
d2r0Gðr − r0Þρðr0Þ ð115Þ

leads to the magnetic field that the charge generates:

BðrÞ ¼ q
2πϑ

��
1 −

η22
2

�
K0ðmrÞ

þ η22
2
mrK1ðmrÞcos2α

�
: ð116Þ

The dependence of the magnetic field on the angle α is a
clear manifestation of the anisotropy induced by the
Lorentz-violating higher-derivative term at the end of

FIG. 2. Vector T of Eq. (109), the momentum p, and the
position r in the plane.
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Eq. (92d). A polar plot of Eq. (116) is presented in Fig. 3
for η2 ¼ 1=2. The latter value is already large considering
that Eq. (116) is a perturbative result that holds for η2 ≪ 1.
However, this value is chosen for illustrative purposes, as
otherwise the deviation from the result for η2 ¼ 0 would be
difficult to perceive.
Finally, as we did in Eq. (78), we integrate the magnetic

field of Eq. (116) over the entire plane. Note that the angle
α is kept fixed and does not correspond to the angle in
polar coordinates integrated over. By using Eqs. (79) and
(6.521.11) of Ref. [94], we readily obtain

Z
d2rBðrÞ ¼ q

k

�
1þ η22

2
cosð2αÞ

�
; ð117Þ

which is an anisotropic perturbation of the result in Eq. (78)
in the regime η2 ≪ 1.

V. DUALITY

In Sec. IV we emphasized the presence of a possible
duality between MCSDJ theory of Eq. (27b) and MCSH
theory stated in Eq. (39). Dualities are interesting, as they
always unravel fundamental relationships between appa-
rently very different physics. In the following, another
duality will be pointed out, which is based on some of
the findings in Ref. [96]. Actually, it is possible to recast the
MCSDJ Lagrange density of Eq. (92a) into a different, but
equivalent form:

S00MCSDJ ¼
Z

d3xL00
MCSDJ; ð118aÞ

L00
MCSDJ ¼ −

1

2
F̃μF̃μ þ

k
2
F̃μAμ þ

ϑ

2
F̃μ

□Aμ þ
ϑ1
2
F̃μK̂ð4ÞAμ;

ð118bÞ

expressed in terms of the vector-valued quantity

F̃μ ≡ 1

2
εμαβFαβ ¼ εμαβ∂αAβ; ð118cÞ

with ½F̃μ� ¼ 1=2. In this context it is worthwhile to note that

F̃μF̃μ ¼
1

2
FμνFμν: ð119Þ

To obtain the field equations associated with Eq. (118b), we
can either resort to the Euler-Lagrange equations of Eq. (15)
or, alternatively, compute the variation of the action for Aϱ

directly. Let us pursue the second possibility:

δS00MCSDJ

δAϱ
¼ −F̃κ

δF̃κ

δAϱ þ
k
2
F̃ϱ −

k
2
∂αAμε

μαϱ

þ ϑ

2
□F̃ϱ −

ϑ

2
∂α□Aμε

μαϱ

þ ϑ1
2
K̂ð4ÞF̃ϱ −

ϑ1
2
∂αK̂

ð4ÞAμε
μαϱ

¼ ∂αF̃κε
καϱ þ kF̃ϱ þ ϑ□F̃ϱ þ ϑ1K̂

ð4ÞF̃ϱ; ð120Þ

which implies

0 ¼ −εϱακ∂αF̃κ þ kF̃ϱ þ ϑ□F̃ϱ þ ϑ1K̂
ð4ÞF̃ϱ: ð121Þ

We also propose a self-dual Lagrange density, which is an
extension of that given in Ref. [96]:

SSD ¼
Z

d3xLSD; ð122aÞ

LSD ¼ 1

2
fμfμ þ

ϑ

2k
fμ□fμ þ ϑ1

2k
fμK̂

ð4Þfμ −
1

2k
εαβγfα∂βfγ;

ð122bÞ

where fμ is a vector field with ½fμ� ¼ 3=2. The variation of
the self-dual theory is readily obtained as

δSSD
δfϱ

¼ fϱ þ ϑ

k
□fϱ þ ϑ1

k
K̂ð4Þfϱ −

1

2k
εϱβγ∂βfγ

þ 1

2k
εαβϱ∂βfα; ð123Þ

leading to the field equations

0 ¼ fϱ þ ϑ

k
□fϱ þ ϑ1

k
K̂ð4Þfϱ −

1

k
εϱβγ∂βfγ: ð124Þ
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FIG. 3. Polar plot of Eq. (116) as a function of the angle α. The
value η2 ¼ 1=2 is used for the red (dashed) curve where the blue
(solid) circle shows the behavior for η2 ¼ 0, for comparison.
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By comparing Eq. (121) to Eq. (124), a duality between
MCSDJ theory and the self-dual theory is evident. Note that
a reformulation of the self-dual theory is possible as follows:

LSD ¼ −
1

2k
εμνϱfμ∂νfϱ þ

1

2
fμfμ þ

ϑ

2k
fμ□fμ þ ϑ1

2k
fμK̂

ð4Þfμ

¼
�

iffiffiffiffiffi
2k

p fμ

�
iðiεμϱνÞ∂ν

�
iffiffiffiffiffi
2k

p fϱ

�

− k

�
iffiffiffiffiffi
2k

p fμ

�
ημϱ
�

iffiffiffiffiffi
2k

p fϱ

�

− ϑ

�
iffiffiffiffiffi
2k

p fμ

�
ημϱ□

�
iffiffiffiffiffi
2k

p fϱ

�

− ϑ1

�
iffiffiffiffiffi
2k

p fμ

�
ημϱK̂ð4Þ

�
iffiffiffiffiffi
2k

p fϱ

�
: ð125Þ

The latter bears a major resemblance to a modified Dirac
theory in (2þ 1) spacetime dimensions of the form

L0
D ¼ ψ̄γνi∂νψ −mψ ψ̄ψ −

1

M
ψ̄□ψ − ψ̄m̂ð4Þψ ; ð126Þ

with a two-component Dirac spinor field ψ , its Dirac
conjugate ψ̄ ¼ ψ†γ0, and the Dirac matrices γμ taken as
the three Pauli matrices σi: γ0 ¼ σ1, γ1 ¼ σ2, and γ2 ¼ σ3.
Note that ½ψ � ¼ ½ψ̄ � ¼ 1 in (2þ 1) spacetime dimensions.
Moreover, mψ is the fermion mass, M another mass scale,
and m̂ð4Þ ¼ mð4Þμνði∂μÞði∂νÞ the (2þ 1)-dimensional analog
of a scalar higher-derivative operator of the Dirac fermion
sector in the nonminimal SME [97]. Now, the following
identifications can be made:

ψ̄ ↔
iffiffiffiffiffi
2k

p fμ; ψ ↔
iffiffiffiffiffi
2k

p fμ; ð127aÞ

γν ↔ ðiεμϱÞν; 12 ↔ ðημϱÞ; mψ ↔ k; ð127bÞ

1

M
↔ ϑ; m̂ð4Þ ↔ ϑ1K̂

ð4Þ: ð127cÞ

Explicitly, the Dirac matrices are identified with

γ0 ↔

0
B@

0 0 0

0 0 i

0 −i 0

1
CA; γ1 ↔

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; ð128aÞ

γ2 ↔

0
B@

0 i 0

−i 0 0

0 0 0

1
CA: ð128bÞ

The ð3 × 3Þ matrices on the right-hand sides form
the adjoint (spin-1) representation of the suð2Þ algebra.
This makes sense, as Eq. (121) is a spin-1 field theory.
Thus, there is a duality between the operator K̂ð4Þ of
Eq. (23), which naturally occurs in extensions of
CS theory in (2þ 1) spacetime dimensions, and the
(2þ 1)-dimensional equivalent of m̂ð5Þ being part of the
nonminimal SME fermion sector. To the best of our
knowledge, such a relationship has not been pointed
out in the literature before.

VI. APPLICATIONS

In the current paper we are primarily interested in
describing electromagnetic phenomena. Planar materials
in solid-state physics are clearly systems of Dirac (or
Weyl) fermions, in particular, electrons. A reasonable first
step in finding an effective theory for such materials is to
develop the electromagnetism of these systems. As long as
the energy of the fermions is much larger than the energy
of electromagnetic fields applied to a sample or electro-
magnetic waves propagating through it, a reasonable
approach is to integrate out the fermions. Doing so leads
to an effective electromagnetic theory, which does not
necessarily correspond to Maxwell’s electromagnetism.
For example, following this procedure for bμ-type Weyl
semimetals [98,99] implies an MCS theory in (3þ 1)
spacetime dimensions. With the electromagnetic theory at
one’s disposal, the most basic application is the descrip-
tion of wave propagation effects such as dispersion and
birefringence via frequency- and polarization-dependent
refractive indices; see, e.g., Refs. [55,95].
Planar condensed-matter systems are not necessarily flat,

but a substantial number of them exhibit properties of
curved manifolds [100,101]. A generalization of electro-
magnetism to systems including curvature is relatively
straightforward. Consider a (2þ 1)-dimensional curved-
spacetime manifoldMwith metric gμν. Gauge fields live in
the gauge bundle of such a manifold; i.e., the electromag-
netic theory can be coupled to M in replacing the
Minkowski metric ημν by gμν.
However, the procedure is more involved for Dirac

fermions [102]. First, Dirac spinors live in the spinor
bundle of M, which does not necessarily exist for a
generic manifold but only if the second Stiefel-Whitney
class vanishes [103]. Second, even if M permits a spin
structure, the vierbein formalism is indispensable when
fermions are described in a curved background. Thus,
before performing any dedicated studies of fermionic
systems, it is very reasonable to gain some understanding
of how to promote theories of electromagnetism to curved
backgrounds.
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For example, the extended electromagnetism of Eq. (82)
is coupled to a curved-spacetime metric as follows:

LðgÞ
ext ¼

ffiffiffiffiffiffi
−g

p �
−
ϰ

4
FμνFϱσgμϱgνσ þ

k
2
εμνϱAμ

∂
νAϱ

þϑ

2
εμνϱAμ

∂
ν
□gAϱ þ ϑ1

2
εμνϱAμ

∂
νK̂ð4Þ

g Aϱ

�
; ð129Þ

with the gauge field Aμ defined in the Uð1Þ bundle of M.
Here, g ≔ detðgμνÞ, and gμν is the inverse metric on M.
Moreover, □g ≔ ∇μ∇μ ¼ gμν∇μ∇ν is the d’Alembertian,

and K̂ð4Þ
g ≔ Kαβ∇α∇β with the covariant derivative ∇μ on

M and a contravariant tensor field Kαβ defined in the
cotangent bundle of M.
Note that the CS-type terms are not directly affected by

gμν since these are of topological nature, which has been
mentioned many times previously. This is also clear from
expressing the CS contributions via differential forms
and their exterior derivatives, such as in Eq. (82). The
latter concepts do not require any metric. Hence, the
field strength tensor, which is a 2-form, also remains
unaffected by the presence of the curved-spacetime
metric: Fμν ¼ ∂μAν − ∂νAμ. This is why the partial deriv-
atives in the CS-type terms that are contracted with Levi-
Civita symbols do not have to be replaced by covariant
derivatives. Instead, covariant derivatives only occur in
nontopological contributions.
The spacetime metric must be chosen accordingly to

describe a specific planar curved system under consid-
eration. A (curved-)spacetime structure has been shown to
emerge in certain planar materials [104–106]; i.e., in
these cases a generic spacetime metric gμν of a (2þ 1)-
dimensional spacetime manifold would have to be used,
where g0i ¼ gi0 ≠ 0. The acoustic metric, which plays a
role in analog-gravity models of particular condensed-
matter phenomena [107], provides an example:

ðgμνÞ ¼
�
1þ jζj ζT

ζ −12

�
; ð130Þ

with a spatial direction ζ ¼ ðζ1; ζ2ÞT and the two-
dimensional unit matrix 12. In fact, in the context of
black-hole physics, an extension of this metric to (3þ 1)
spacetime dimensions occurs when using Gullstrand-
Painlevé coordinates for a Schwarzschild black hole.
Contrarily, to describe the geometry of a spatially curved

sheet, the metric would explicitly be taken to be of the
block-diagonal form

ðgμνÞ ¼
�
1 0

0 ðgijÞ
�
; ð131Þ

with the generic coefficients gij for the intrinsic geometry
of a two-dimensional surface. Analyses of such problems

pose interesting projects for the future. In what follows, our
intention is to apply our results to flat samples exclusively.

A. Quantum Hall effect

Chern-Simons electromagnetism in (2þ 1) spacetime
dimensions inspired us to introduce a number of models of
an extended electrodynamics that incorporates violations of
SOð2; 1Þ invariance. To get an overview of possible effects,
we investigated the modified mode structures, where
particular emphasis was put on identifying subluminal
and superluminal regimes in the parameter spaces of the
models. After gaining some theoretical understanding of
the models and their properties, the next sensible step is to
find applications. Note that the parametrization of Lorentz
violation via the SME has already found its way into the
description of certain condensed-matter systems and effects
in material media; see, e.g., Refs. [55,95,108].
Interestingly, the concept of SOð2; 1Þ symmetry break-

ing potentially opens pathways beyond those already
charted. A (2þ 1)-dimensional electrodynamics is obvi-
ously expected to be a theoretical playground for planar
condensed-matter systems. In particular, CS theory is
known to play a significant role in an effective description
of both the integer and the fractional quantum Hall effect
(QHE) [68], where our focus will be on the first. Since we
have been analyzing the physics of a Lorentz-violating
planar electrodynamics, our initial interest is to find the
potential impact of Lorentz violation on this celebrated
phenomenon. Unlike in the previous parts, SI units with ℏ
and c reinstated will be employed when appropriate.
Von Klitzing discovered the integer QHE in 1980 [109],

and its theoretical description involves both quantum
mechanical and profound geometrical concepts [110,111].
The theoretical foundation of this intriguing phenomenon is
a two-dimensional electron gas and the associated non-
relativistic dispersion relation; i.e., the electron Hamiltonian
is usually taken as isotropic. We now would like to
incorporate anisotropies and explore what their impact is
on the QHE. We propose

H ¼ 1

2me
ðαp2

x þ βp2
yÞ; ð132Þ

with the two-dimensional momentum p ¼ ðpx; pyÞ, the
electron mass me, and generic modifications α and β,
which can be parametrized by particular SME coefficients
once a specific sector is chosen. One of the parameters α, β
can be absorbed into the electron mass to give rise to an
effective electron mass m ¼ me=α. The Hamiltonian is
then recast into

H ¼ 1

2m
ðp2

x þϒp2
yÞ; ð133Þ
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with ϒ≡ β=α introduced for brevity. Thus, without a
restriction of generality it is sufficient to modify the
dispersion relation either along the x or the y direction,
where the latter is chosen in this particular case.

1. Density of states

To evaluate the Hall resistivity, the density of states
DðEÞ of a two-dimensional particle system with the
anisotropic Hamiltonian stated in Eq. (133) is indispen-
sable. According to the definition,

DðEÞ ¼
Z

d2p
ð2πÞ2 δðE − EpÞ; ð134aÞ

Ep ¼ ℏ2

2m
ðp2

x þϒp2
yÞ; ð134bÞ

with the dispersion relation Ep, which follows directly from
Eq. (133). To evaluate DðEÞ, Cartesian coordinates are
employed:

DðEÞ ¼
Z

∞

−∞

dpx

2π

Z
∞

−∞

dpy

2π
δ

�
E−

ℏ2

2m
ðp2

x þϒp2
yÞ
�
: ð135Þ

Solving the argument of the δ function for py leads to

py ¼ � 1ffiffiffiffi
ϒ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE − ℏ2p2

x

p
ℏ

: ð136Þ

Requiring that py ∈R, the component px is restricted to the
interval ½−P;P� with P ¼ ffiffiffiffiffiffiffiffiffiffi

2mE
p

=ℏ. Then, the remaining
integral over px provides the final expression for the
density of states:

DðEÞ ¼ 1ffiffiffiffi
ϒ

p m
2π2ℏ

Z
P

−P
dpx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE − ℏ2p2

x

p
¼ 1ffiffiffiffi

ϒ
p m

2π2ℏ2
arctan

�
ℏpxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mE − ℏ2p2
x

p �				P
−P

¼ 1ffiffiffiffi
ϒ

p m
2πℏ2

: ð137Þ

Therefore, in comparison to the result for an isotropic
electron dispersion, DðEÞ gets modified by the global
factor 1=

ffiffiffiffi
ϒ

p
, which is a measure for the anisotropy.

2. Example for anisotropic modification

Since the current paper is on nonminimal Lorentz-
violating modifications in electromagnetism, we would also
like to consult nonminimal operators for electrons. An
intriguing possibility is to consider the (2þ 1)-dimensional
analog of one of the scalar operators in the Dirac fermion

sector of the nonminimal SME [97], which does not have
any counterpart in the minimal SME:

0 ¼ =p − ðmψ þ m̂Þ14; ð138aÞ

m̂ ¼
X
d even
d≥4

mðdÞα1…αd−2pα1…pαd−2 ; ð138bÞ

where we will truncate this series immediately after d ¼ 4.
Note that the resulting operator corresponds to the one of
Eq. (126) that we found to be in a dual relationship with
K̂ð4Þ of Eq. (23). Thus, the latter finding should provide an
excellent motivation for considering a fermionic modifi-
cation governed by m̂ð4Þ. Now, the relativistic particle
Hamiltonian [97] reads

h ¼ E0 þ
m̂mψ

E0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
þ m̂mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
ψ

q

¼ mψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

m2
ψ

s
þ m̂ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2

m2
ψ

q ; ð139Þ

whose form does not depend on the number of spacetime
dimensions considered. Expanding for m2

ψ ≫ p2 provides
the nonrelativistic limit, which is the relevant one for the
system to be studied, cf. Eq. (133). Hence,

hnonrel ¼ mψ

�
1þ p2

2m2
ψ
þ…

�
þ m̂

�
1 −

p2

2m2
ψ
þ…

�

¼ mψ þ m̂þ p2

2mψ
þ…

¼ mψ þ p2

2mψ
þmð4Þxxp2

x þmð4Þyyp2
y

¼ mψ þ 1

2mψ
½ð1þ 2mψmð4ÞxxÞp2

x

þ ð1þ 2mψmð4ÞyyÞp2
y�; ð140aÞ

where we invoked the special choice

m̂ ¼ −mð4Þxx ∂
2

∂x2
−mð4Þyy ∂

2

∂y2
: ð140bÞ

Now, if the electron mass is redefined as before,

m ¼ me

1þ 2mψmð4Þxx ; ð141Þ

the quantity ϒ takes the form

ϒ ¼ 1þ 2mðmð4Þyy −mð4ÞxxÞ: ð142Þ
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Thus, ϒ ≠ 1 arises for mð4Þyy ≠ mð4Þxx, which emphasizes
the anisotropic properties of this particular model.

3. Modified Landau problem

From a quantum mechanical perspective, the Landau
problem is at the heart of the QHE. This problem treats the
quantum motion of an electron in a magnetic field; i.e., the
energy eigenvalues and eigenfunctions are to be deter-
mined. To do so, the free Hamiltonian of Eq. (133) is
minimally coupled to a vector potential A ¼ ðAx; AyÞ to
describe the two-dimensional electron gas in the presence
of a magnetic field B of field strength B ¼ jBj being
perpendicular to the sample. This gives rise to

HA ¼ 1

2m
½ðpx þ eAxÞ2 þϒðpy þ eAyÞ2�: ð143Þ

Now, we employ the Landau gauge Ax ¼ 0 and Ay ¼ Bx.
Then, the modified Landau Hamiltonian takes the form

HL ¼ HAjLandau
gauge

¼ 1

2m

�
−ℏ2

∂
2

∂x2
þϒ

�
ℏ
i
∂

∂y
þ eBx

�
2
�
: ð144Þ

Due to ½HL; py� ¼ 0, the momentum along the y direction
is conserved, and it makes sense to label energy eigen-
functions by the eigenvalues of py that we denote by ky.
Therefore, the following separation ansatz for the total
wave function is reasonable:

ψðx; yÞ ¼ ϕkyðxÞ expðikyyÞ: ð145Þ

Applying Eq. (144) to the latter wave function leads to

HLψðx;yÞ¼
�
−
ℏ2

2m
d2

dx2
þm

2
ϒω2

cðx−xkÞ2
�
ψðx;yÞ; ð146aÞ

with the cyclotron frequency ωc, the orbit center coordinate
xk, and the magnetic length scale lB, which are explicitly
given as follows:

ωc ¼
eB
m

; xk ¼ l2Bky; lB ¼
ffiffiffiffiffiffi
ℏ
eB

r
: ð146bÞ

Now, the Schrödinger equation

HLψðx; yÞ ¼ Eψðx; yÞ ð147Þ

can be interpreted as that of a harmonic oscillator. Thus, the
electron energy is quantized and expressed in the usual way
in terms of a modified cyclotron frequency:

En ¼ ℏω0
c

�
nþ 1

2

�
; ð148aÞ

ω0
c ¼

ffiffiffiffi
ϒ

p
ωc; ð148bÞ

with the quantum number n∈N0.

4. Quantized Hall resistivity

The curves of constant electron energy in momentum
space are ellipses,

E ¼ ℏ2

2m
ðk2x þϒk2yÞ ¼ ℏω0

c

�
nþ 1

2

�
; ð149Þ

i.e., they are reformulated as follows:

1 ¼ k2x
A2

þ k2y
B2

; ð150aÞ

A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ

ϒωc

�
nþ1

2

�s
; B¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ

ωc

�
nþ1

2

�s
: ð150bÞ

The area of such an ellipse associated with momentum k
amounts to

Sk;n ¼ πAB ¼ 2π
ffiffiffiffi
ϒ

p
eB

ℏ

�
nþ 1

2

�
; ð151Þ

such that the difference between the areas Sk;n and Sk;n−1 of
neighboring ellipses is

ΔSk ≡ Sk;n − Sk;n−1 ¼
2π

ffiffiffiffi
ϒ

p
eB

ℏ
: ð152Þ

In configuration space, a modified particle Lagrangian is
needed to describe the semiclassical motion of the particle.
It is proposed that

L ¼ −m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2x −

v2y
ϒ

s
; ð153Þ

with the particle velocity v ¼ ðvx; vyÞ. In principle, the
latter follows from the Hamiltonian of Eq. (133) and the
associated dispersion relation via the procedure developed
in Ref. [112]. The equations of motion are then solved by
elliptical trajectories satisfying

E ¼ m
2
ϒω2

c

�
x2 þ y2

ϒ

�
¼ ℏ

ffiffiffiffi
ϒ

p
ωc

�
nþ 1

2

�
; ð154Þ
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which are alternatively cast into

1 ¼ x2

Ã2
þ y2

B̃2
; ð155aÞ

Ã¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ
mωc

1ffiffiffiffi
ϒ

p
�
nþ 1

2

�s
; B̃¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ
mωc

ffiffiffiffi
ϒ

p �
nþ 1

2

�s
:

ð155bÞ

Thus, the area enclosed by such an ellipse in configuration
space takes the form

Sr;n ¼ πÃ B̃ ¼ 2πℏ
mωc

�
nþ 1

2

�
: ð156Þ

Then, the difference between the areas Sr;n and Sr;n−1 of
neighboring ellipses reads

ΔSr ¼
2πℏ
eB

: ð157Þ

The product of Eqs. (152) and (157) provides a constant:
ΔSrΔSk ¼ 4π

ffiffiffiffi
ϒ

p
. Equation (157) allows for defining the

magnetic-flux quantum Φ0:

ΔSrB ¼ h
e
≡Φ0: ð158Þ

To compute the number of states in a single Landau level,
we need the density of states DðEÞ of Eq. (137), which is
based on the anisotropic dispersion relation of free
electrons stated in Eq. (134b). Note that the external
magnetic field is not capable of changing the number of
states. The energy window of a single Landau level is
ΔE≡ En − En−1 ¼ ℏω0

c. Then, the number of states in
each Landau level follows from

Ns ¼ ð2sþ 1ÞDðEÞΔES ¼ 2sþ 1ffiffiffiffi
ϒ

p m
2πℏ2

ℏω0
cS

¼ ð2sþ 1Þ e
h
BS ¼ ð2sþ 1Þ Φ

Φ0

; ð159Þ

where Φ ¼ BS is the magnetic flux permeating a sample
of area S and Φ0 is the flux quantum of Eq. (158).
Furthermore, we can also take into account the electron
spin degeneracy 2sþ 1 ¼ 2 with the spin quantum num-
ber s ¼ 1=2. However, when the magnetic field is strong
enough, the energy levels associated with different spin
projections become nondegenerate, whereupon the energy
levels separate. In this case the electrons are usually
considered as spinless; i.e., we employ s ¼ 0 in Ns.

The corresponding number density of states per area then
amounts to

ns ¼
Ns

S
¼ e

h
B: ð160Þ

Finally, the filling factor ν, i.e., the number of occupied
Landau levels corresponds to the ratio between the electron
density ne and the number density ns of Eq. (160):

ν≡ ne
ns

¼ ne
B
h
e
: ð161Þ

The occurrence of Landau levels that are occupied succes-
sively implies a quantized Hall resistivity in units of h=e2:

Rxy ¼
B
nee

¼ h
νe2

; ð162Þ

for ν∈N. Thus, an anisotropy in the electron dispersion of
the form of Eq. (133) does not modify the very essence of
the QHE. The outcome makes perfect sense, as this
phenomenon is of topological nature; i.e., local properties
of the electron such as perturbations of its dispersion
relation are not expected to lead to a different behavior.
This will become clearer in the forthcoming section.

5. CS theory

It is possible to describe the quantization of the Hall
resistivity of Eq. (162) by means of an effective theory that
is of CS form. Let S½ψ ;φ; A� be the action of the field
theory taking into account all degrees of freedom of the
sample, i.e., fermionic ones for the electron incorporated
into ψ , scalar ones for impurities contained in φ, and
electromagnetic degrees of freedom described by the vector
field Aμ. Integrating out the fermionic and scalar degrees of
freedom in the path integral implies a CS theory based on
the action SCS½A� as follows:Z

DψDφDA exp

�
i
ℏ
S½ψ ;φ; A�

�

¼
Z

DA exp

�
i
ℏ
SCS½A�

�
; ð163aÞ

with

SCS½A� ¼
Z

d3x

�
ζe2

4πℏ
εμνλAμ∂νAλ þ

jμ
c
Aμ

�
: ð163bÞ

In fact, here we also resort to SI units with the elementary
charge e, which are particularly adequate for the forth-
coming analyses. By doing so, the parameter ζ is rendered
dimensionless. Integrating out ψ and φ of the generic action
S½ψ ;φ; A� is challenging. Instead, it is more straightforward
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to derive Ohm’s law from the field equations of SCS½A� as
follows. The variation of the action is

δSCS½A�
δAϱ

¼ ζe2

4πℏ
ðεϱνλ∂νAλ − εμνϱ∂νAμÞ þ

jϱ

c

¼ ζe2

2πℏ
εϱνλ∂νAλ þ

jϱ

c
¼ ζe2

4πℏ
εϱνλFνλ þ

jϱ

c
: ð164Þ

The principle of stationary action leads to the field
equations

ζe2

4πℏ
εϱνλFνλ ¼ −

jϱ

c
: ð165Þ

Let us consider the spatial components of the current
density:

jk ¼ −
ζe2

4πℏ
εkl0cFl0 ¼

ζe2

2πℏ
εklEl; ð166Þ

which allows us to read off the Hall conductivity σxy:

jx ¼ σxyEy; σxy ¼
ζe2

2πℏ
¼ ζe2

h
: ð167Þ

The latter is the inverse of the Hall resistivity:

Rxy ¼
1

σxy
¼ h

ζe2
; ð168Þ

where we can simply choose ζ ¼ ν∈N with the filling
factor of Eq. (161) to identify the latter Rxy with that of
Eq. (162). Based on this finding, the topological nature of
the QHE is understood in terms of a topological invariant
known as the first Chern number. This is the reason for the
QHE being independent of the microscopic details of the
sample, as, in principle, measurements of the Hall resis-
tivity correspond to measuring a topological invariant.
Note that Eq. (134b) can be understood via an effective

spatial metric η̃ij:

E ¼ ℏ2

2m
kiη̃ijkj; ðη̃ijÞ ¼

�
1 0

0 ϒ

�
: ð169Þ

It is possible to interpret the form of the elliptic trajectories
in configuration space [see Eq. (154)] as

E ¼ ℏ2

2m
riη̃−1ij r

j; ðη̃−1ij Þ ¼
�
1 0

0 1=ϒ

�
; ð170Þ

with the components ri of r ¼ ðx; yÞ and η̃−1ij being the
inverse of the effective metric. However, Eq. (163b) does
not involve any metric tensor, as it is a topological field
theory. Hence, there is no possibility of the effective metric
occurring in the Hall resistivity. This is an alternative way
to explain why the Hall resistivity of Eq. (162) cannot

involve ϒ, which describes a geometric property of the
electron dispersion relation.

6. (Extended) CSDJ theory

Now we extend the previous analysis by a nonminimal
contribution to the CS term; cf. the extended CSDJ
Lagrange density of Eq. (92d) with ϑ ¼ 0:

S½A� ¼
Z

d3x

�
ζe2

4πℏ
εμνλAμ∂ν

�
1þ ϑ1

k
Kαβ

∂α∂β

�
Aλþ

jμ
c
Aμ

�
;

ð171Þ

where ½ϑ1=k� ¼ m2 in SI units, which makes the coeffi-
cients Kαβ dimensionless. The variation of the action
provides

δS½A�
δAϱ

¼ ζe2

4πℏ

�
εϱνλ∂ν

�
1þ ϑ1

k
Kαβ

∂α∂β

�
Aλ

− εμνϱ∂ν

�
1þ ϑ1

k
Kαβ

∂α∂β

�
Aμ

�
þ jϱ

c

¼ ζe2

2πℏ
εϱνλ∂ν

�
1þ ϑ1

k
Kαβ

∂α∂β

�
Aλ þ

jϱ

c

¼ ζe2

4πℏ
εϱνλ
�
1þ ϑ1

k
Kαβ

∂α∂β

�
Fνλ þ

jϱ

c
: ð172Þ

Although additional time derivatives are likely to cause
problems with unitarity, as we remarked under Eq. (A17),
the coefficients K00 and K0i ¼ Ki0 contracted with time
derivatives can parametrize interesting physics. Thus, we
keep them in the setting of the effective field theory, which
leads to

jk ¼ ζe2

2πℏ
εkl
�
1 −

ϑ1
ℏ2k

Kαβpαpβ

�
El; ð173Þ

in momentum space. Then, the modified Hall resistivity
reads

Rxy ¼
h

½1 − ϑ1=ðℏ2kÞKαβpαpβ�ζe2
; ð174Þ

which is now energy, momentum, and direction dependent
via the presence of Kαβ. As the previous considerations
show, anisotropies at the level of Eqs. (134b) and (169) do
not have any impact on the QHE, which is topological.
However, anisotropies can be incorporated into the Hall
resistivity at the effective field theory level via the presence
of nonminimal SME field operators. These are then
automatically accompanied by a momentum dependence
of the electromagnetic field.
The reason this is possible is that nonminimal extensions

of CS theory such as the CSDJ model of Eq. (92d) naturally
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involve the spacetime metric. Thus, the topological nature
of the QHE, which applies to the infrared regime, is now
superimposed by phenomena depending on local properties
of the sample. Hence, based on Eq. (174), our prediction is
that materials should exist whose quantized Hall conduc-
tivity changes in the ultraviolet regime. A possible behavior
is shown in Eq. (174). Note, however, that the latter is still
an effective description of potential ultraviolet phenomena.
Modifications of the Hall conductivity that depend on the

energy-momentum ðE;pÞ of the electromagnetic field, but
are isotropic, have already been proposed in Ref. [113]. In
the latter paper four regimes of the Hall conductivity σxy ¼
σxyðE; pÞwith p ¼ jpj have been pointed out. First, there is
the static regime σxyð0; 0Þ, which is the standard case
investigated since von Klitzing’s experimental discovery of
the QHE [109]. In the context of extended CSDJ theory,
this regime is characterized by Kμν ¼ 0.
The regime with an energy-dependent Hall conductivity,

σxyðE; 0Þ, is called dynamical and is described by K00 ≠ 0

and K0i ¼ Kij ¼ 0. The authors of the aforementioned
reference denote the momentum-dependent regime
σxyð0; pÞ as viscous and it is their principal interest.
Referring to extended CSDJ theory, this case involves
Kij ¼ δij and K00 ¼ K0i ¼ 0. The latter two choices for
Kμν violate SOð2; 1Þ invariance, but they are still isotropic;
i.e., SOð2Þ symmetry is maintained.
Last but not least, the dynamical and viscous settings can

be joined, giving rise to σxyðE; pÞ, which is the most
involved case to be studied. It should be effectively
described via Kμν ¼ ημν, which implies the SOð2; 1Þ-
invariant CSDJ model. The Hall conductivities σxyð0; pÞ
and σxyðE; pÞ, respectively, give rise to a nonvanishing
photonic Chern number; i.e., topological phases of the
electromagnetic field now become essential. Our σxy ¼
R−1
xy with Rxy of Eq. (174), and Kμν ≠ ημν is a possible

extension of the proposal in Ref. [113], which incorporates
anisotropies in momentum space. In principle, a generali-
zation of Eq. (174) including higher orders of the momen-
tum is

Rxy ¼
h

½1þ ðϑ1=kÞK̂ð−ip=ℏÞ�ζe2 ; ð175Þ

with K̂ of Eq. (22c) transformed to momentum space.
Table V provides a summary of the different regimes of the
Hall conductivity.

7. Experiments

Until now, only a few experiments have been carried out
on measuring anisotropies in the QHE. The analysis of
Ref. [114] represents one example for the integer QHE.
Here, a graphene sheet was deposited on a substrate of SiC
whose surface structure was characterized by several
terraces. Both the Hall resistivity and the longitudinal

resistivity were measured in a Hall bar perpendicular
and transverse, respectively, to the terraces. The Hall
resistivity was found to be largely independent of the
orientation of the Hall sample, whereas the longitudinal
resistivity strongly depended on the orientation. In addi-
tion, the experiments reported in Ref. [115] provide an
example for the fractional QHE, and a GaAs/AlGaAs
heterostructure served as a base of this study. The Hall
and longitudinal resistivities were determined to be quite
similar for currents flowing along different crystal direc-
tions. However, anisotropies in the longitudinal Hall
resistivity emerged when the sample was tilted with respect
to the direction of the magnetic field.
Thus, what is common to the results of both experiments

is the robustness of the Hall resistivity with respect to
anisotropies in the sample or the experimental setup. This
outcome corroborates the topological nature of the QHE
and is in accordance with our observations that we made
within the simple model presented in Sec. VI A 4. In
general, anisotropies only occur in the longitudinal resis-
tivity, which is not of topological origin. Apart from that,
our analysis hints towards the possibility of anisotropies in
the Hall resistivity showing up for high-energy magnetic
fields applied to a sample, although such phenomena are
likely to be strongly suppressed. To the best of our
knowledge, experiments demonstrating effects of this kind
have not been performed so far. Nevertheless, looking for
such effects may pose an interesting challenge for exper-
imentalists working on the QHE.

VII. CONCLUSIONS AND FINAL REMARKS

In this paper we proposed a series of modified electro-
dynamics in (2þ 1) spacetime dimensions. Each was based
on CS theory and three different types of extensions: (1) a
Maxwell term, (2) higher-derivative Lorentz-invariant

TABLE V. Different regimes of the quantized Hall conductivity
σxy. The first column states the name of the regime according to
Ref. [113]. The second column indicates how σxy depends on the
energy E and the momentum p. The third column provides the
suitable choice of the coefficients Kμν necessary to describe σxy
via CSDJ theory for each of the regimes. Our proposal of an
anisotropic Hall conductivity, which would require a generic Kμν

neither proportional to the Minkowski metric nor involving the
Kronecker symbol, is given by the last line. Such a Hall
conductivity would not just depend on the norm p of the
momentum but on its direction, too.

Regime Hall conductivity Nonzero coefficients

Static σxyð0; 0Þ
Dynamical σxyðE; 0Þ K00

Viscous σxyð0; pÞ Kij ¼ δij

General σxyðE; pÞ Kμν ¼ ημν

Extended σxyðE;pÞ Kμν
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terms, and (3) higher-derivative Lorentz-violating contri-
butions. The specific terms incorporated into these theories
are briefly compiled in Table VIa.
We determined the propagators of each model in

Table VIa, which served as a base for deriving their
physical dispersion relations. Table VIb provides the
number of massless and massive modes that we found
for each model. If a Lorentz-violating modification does
not increase the maximum power of time derivatives
already present in the Lorentz-invariant model, the modes
are affected by Lorentz violation, but their number remains
the same. Otherwise, additional modes show up that are
nonperturbative in the controlling coefficients; i.e., they do
not approach the standard relativistic dispersion relation
for vanishing coefficients.
Note that the propagator suitably contracted with con-

served currents, known as the saturation, poses a means to
gain a first understanding of possible unitarity issues at the
quantum level. In contrast to what we found in previous
works, e.g., Refs. [51,52], it is not just higher-order time
derivatives that are able to spoil unitarity. In fact, CS-type
terms in (2þ 1) spacetime dimensions give rise to con-
tributions of geometrical nature, which were clearly not
present in the (3þ 1)-dimensional theories studied in the
latter articles. These geometrical terms shroud the behavior
of the saturation and are a hurdle to making clear statements
on the fate of tree-level unitarity. However, the criterion
used indicates unitarity violations for at least certain regions
in the parameter spaces of the models. Our analysis can be
refined by checking the validity of the optical theorem for
tree-level processes (cf. Refs. [44,45,50,88,116–118],
amongst others), which is beyond the scope of the current
work.
We also looked at the classical propagation properties of

the modes; i.e., we computed their group and front
velocities. Having these results at our disposal, our intention
was to identify sub- and superluminal regimes in the

parameter spaces. Signals can, in fact, propagate faster
than the speed of light when parameters and controlling
coefficients are chosen suitably. However, this finding does
not pose a problem with classical causality, as we inter-
preted the (2þ 1)-dimensional electrodynamics in the
context of planer condensed-matter systems. Therefore,
the symmetry group SOð2; 1Þ is not governed by a velocity
characterizing the propagation of information at a funda-
mental level.
Another interest of ours included dualities between

apparently very different models. We found one duality
between an extended MCSDJ theory and a modified Dirac
theory in (2þ 1) spacetime dimensions that involves a
Lorentz-invariant higher-derivative term and a (2þ 1)-
dimensional version of the dimension-5 m̂ coefficients of
the SME. This finding is complementary to the results of
Refs. [96,113] and reveals a kind of supersymmetry
between spin-1 and spin-1=2 excitations in the plane,
which are subject to SOð2; 1Þ invariance violation.
Our final objective was to apply a subset of the models

introduced to a real planar condensed-matter system. It has
been well known for some time that CS theory can be
employed as an effective description of the quantum Hall
effect; i.e., it is possible to describe the quantization of the
Hall resistivity by means of a CS theory. An anisotropic
modification of the electron dispersion relation was shown
to not have any impact on the Hall resistivity, which was
expected, as the quantum Hall effect is topological and
local properties of the sample do not feed into it—at least
not at leading order in the momentum of the electron or the
electromagnetic fields.
In spite of that, the effective description of the quantum

Hall effect via CS theory allows for proposing possible
modifications of the latter that, in principle, could be tested
experimentally. CSDJ theory leads to a correction of the
usual quantized Hall resistivity that involves the energy-
momentum of the electromagnetic field. Besides, extended
CSDJ theory would even imply an anisotropic Hall resis-
tivity. The models introduced in this paper and the results
obtained have the potential of finding additional applica-
tions in other planar condensed-matter systems.
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TABLE VI. (a) Models introduced and studied, with the
abbreviations HD (higher derivative), LI (Lorentz invariant),
and LV (Lorentz violating). (b) Number of physical modes
identified in each of the models.

CS Maxwell HD LI HD LV

(a)

(extended) MCS ✓ ✓ (✓)
(extended) MCSDJ ✓ ✓ ✓ (✓)
(extended) CSDJ ✓ ✓ (✓)

Massless modes Massive modes

(b)

MCSDJ 1 2
MCS 1 1
CSDJ 1 1
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APPENDIX A: SUPERLUMINALITY
AND UNITARITY FOR SPECIFIC

CONFIGURATIONS OF EXTENDED
MCS(DJ) THEORY

In what follows, our focus is on superluminal regimes
and possible unitarity violations at tree level of MCS(DJ)
theory in Sec. IVA. We will restrict ourselves to particular
subsets of nonzero coefficients that are complementary
with respect to each other such that the conclusions to be
made are still as general as possible.

1. Isotropic timelike configuration

For Kij ¼ 0, for instance, Eq. (97) implies two positive-
energy dispersion relations in an isotropic setting:

ðωð�ÞÞ2 ¼ 1

2ϑ21ðK00Þ2 ð1þ 2kϑ1K00 � ΞÞ; ðA1aÞ

Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϑ1K00ðk − ϑ1K00p2Þ

q
: ðA1bÞ

To assure real energies, the radicand in Ξ must be non-
negative. Thus, the norm of the momentum should not
exceed a particular value:

jpj ≤ pmax; pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4kϑ1K00

p
2jϑ1K00j : ðA2Þ

Furthermore, an expansion of Eq. (A1b) in K00 reads

ωðþÞ ¼ 1

jϑ1K00j þ sgnðϑ1K00Þk

−
sgnðϑ1K00Þ

2
ð2k2 þ p2ÞK00 þ…; ðA3aÞ

ωð−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k2

q
ð1 − kϑ1K00Þ þ…: ðA3bÞ

Thus, the (−) mode is a perturbation of the CS dispersion
relation, whereas the (þ) mode is nonperturbative; i.e., it
strongly deviates from the standard dispersion relation for
small K00. Therefore, the occurrence of two modes in
Eq. (A1b) cannot be ascribed to the emergence of bire-
fringence in the usual sense. Note that an electrodynamics
in (2þ 1) spacetime dimensions does not exhibit birefrin-
gence, which is a property that we were also able to observe
in Ref. [89]. Thus, the nonperturbative (þ) mode is a
consequence of the presence of higher-order time deriva-
tives in the sector considered.
Next, let us determine the group velocity of each mode.

By resorting to Eq. (A1b), their norms are written in
succinct form as

uð�Þ
gr ¼ 1

Ξ
jpj
ωð�Þ : ðA4Þ

The latter possess sub- and superluminal regimes. Each
branch of the group velocity exceeds 1 for momenta larger
than certain limits given by

pðþÞ
lim ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k

ϑ1K00

s
; ðA5aÞ

pð−Þ
lim ¼ 1

4
ffiffiffi
2

p jϑ1K00j ðð1þ 4kϑ1K00Þ½3 − 4kϑ1K00

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4kϑ1K00

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4kϑ1K00

q
�Þ1=2; ðA5bÞ

respectively. Note that the dispersion relations become
complex when the momentum lies beyond the value of
Eq. (A2). Thus, for jpj ≥ pmax, the dispersion relations are
more appropriately recast into

ωð�Þ ¼ 1

2jϑ1K00j

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jϑ1K00j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ k2

q
þj1þ 2kϑ1K00j

r

� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jϑ1K00j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ k2

q
− j1þ 2kϑ1K00j

r 1
A: ðA6Þ

The imaginary parts of the latter vanish for p ¼ pmax, as
expected. Furthermore, the norms of the group velocities
for both modes approach infinity for that value, as Ξ ¼ 0.
To evaluate the front velocity, we must consider the limit

of infinite momenta where the dispersion relations take the
complex form of Eq. (A6). Since the imaginary part is
commonly associated with attenuation, an adaptation of the
definition for the front velocity restricted to the real part is
reasonable:

uð�Þ
fr ≡ lim

jpj↦∞

Reðωð�ÞÞ
jpj ¼ 0: ðA7Þ

By looking at Eq. (A6), it is not difficult to acknowledge

that uð�Þ
fr ¼ 0. Thus, the front velocity does not exhibit a

superluminal regime. After all, infinite-momentum excita-
tions do not even propagate. The analysis of this sector of
Eq. (92b) highlights the peculiar properties of dispersion
relations for choices of controlling coefficients that are
contracted with additional time derivatives.
The latter property of the presently studied dispersion

relation also makes it more challenging to evaluate the
saturated propagator. For ϰ ¼ 1 and ϑ ¼ 0, the saturation
of Eq. (91) reads

SP ¼ −i
jJj2 þ ðkþ ϑ1Kð4ÞðpÞÞΩ=p2

p2 − ðk − ϑ1K00p2
0Þ2

; ðA8Þ
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which can also be rewritten as

SP ¼ i
jJj2 þ ðkþ ϑ1Kð4ÞðpÞÞΩ=p2

ϑ21ðK00Þ2½p2
0 − ðωðþÞÞ2�½p2

0 − ðωð−ÞÞ2� ; ðA9Þ

where ωð�Þ are the dispersion relations stated in Eq. (A1).
In contrast to what we did before, we will now compute the
residues at p0 ¼ ωð�Þ directly. This leads to

ResðSPÞjp0¼ωð�Þ ¼ � i

2ωð�ÞΞ

×

�
jJj2 − 1þΞ

2ðk− ϑ1K00p2ÞΩ
�
p0¼ωð�Þ

:

ðA10Þ

Now, ωð�Þ ≥ jpj where the equality sign holds for jpj ¼
pðþÞ
lim of Eq. (A5a). Hence, for Ω ¼ 0 we can immediately

conclude that

Im
h
ResðSPÞ

			
Ω¼0

p0¼ωð�Þ

i
≶ 0: ðA11Þ

As a consequence, the nonperturbative mode (þ) is likely
to imply unitarity problems. The perturbative mode (−) is
in accordance with unitarity, as expected. For Ω ≠ 0,
though, it is unclear which one of the modes is problematic
for unitarity.
Finally, the massless mode gives rise to

ResðSPÞjp0¼jpj ¼
iΩjp0¼jpj

2jpjðk − ϑ1K00p2Þ : ðA12Þ

The latter clearly does not exist for Ω ¼ 0, but, similarly to
the massive modes, its unitarity-related properties are
challenging to understand for a generic configuration of
parameters, the momentum, and the external current.

2. Anisotropic purely spacelike configuration

An alternative sector of Eq. (92b) that may be worth-
while to study further is the purely spacelike one; i.e., we
choose K0i ¼ 0 and K00 ¼ 0 simultaneously. Going back
to Eq. (96), this yields the single dispersion relation

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðk − ϑ1KijpipjÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδij − 2kϑ1KijÞpipj þ k2 þ ϑ21ðKijpipjÞ2

q
; ðA13Þ

which is relatively simple, as there are no additional time
derivatives in this sector. This dispersion relation demon-
strates the possibility of including anisotropies at both the

second and fourth order in the momentum. The associated
group velocity reads

ugr ¼
1

ω
½p − 2ϑ1ðk − ϑ1KppÞKp�; ðA14Þ

with the scalar Kpp ≡ Klmplpm and the spatial vector Kp

having components ðKpÞi ≡ Kijpj. The norm of the group
velocity is

ugr ¼
1

ω
ðp2 − 4ϑ1ðk − ϑ1KppÞKpp

þ 4ϑ21ðk − ϑ1KppÞ2K2
pÞ1=2; ðA15Þ

which can exceed 1 for sufficiently large momentum
components. Also, for the front velocity we have that
ufr ¼ ∞. The fourth-order term in the momentum, which
becomes dominant for large momenta, is responsible for
both behaviors.
The saturated propagator of Eq. (91) simplifies as

SP ¼ −i
1

p2 − ðk − ϑ1KppÞ2
�
jJj2 þ ðk − ϑ1KppÞ

Ω
p2

�
;

ðA16Þ

where the residue evaluated at the pole given by Eq. (A13),
which is equivalent to p2 ¼ ðk − ϑ1KppÞ2, reads

ResðSPÞjp2¼ω2−p2 ¼ −i
�
jJj2 þ Ω

k − ϑ1Kpp

�
p2¼ω2−p2

;

ðA17Þ

with ω of Eq. (A13). Note that a plethora of investigations
of higher-derivative theories (see, e.g., Refs. [51,52,117])
indicate that additional time derivatives are likely to spoil
unitary time evolution, which is a behavior that shows up in
the saturated propagator evaluated at the corresponding
poles. Since we implemented K0i ¼ 0 and K00 ¼ 0, all
additional time derivatives are eliminated. Therefore, based
on the results of higher-derivative theories, which are
available in the contemporary literature, our expectation
would be that unitarity is guaranteed for the configuration
under study. However, the presence of the second term in
Eq. (A17) again obscures unitarity. The latter can be
violated for suitable choices of the parameters.
The behavior of the massless mode is similar to that of

the corresponding massless mode encountered previously:

ResðSPÞjp0¼jpj ¼
iΩjp0¼jpj

2jpjðk − ϑ1KppÞ
; ðA18Þ

cf. Eq. (A12). The extended theory is devoid of this mode
for Ω ¼ 0, but for Ω ≠ 0, it may trigger violations of
unitarity at tree level.
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APPENDIX B: SUPERLUMINALITY
AND UNITARITY FOR SPECIFIC

CONFIGURATIONS OF EXTENDED
CSDJ THEORY

Our next goal is to make statements on superluminality
and unitary for the extended CSDJ theory of Sec. IV C. As
we did for MCS(DJ) theory in Appendix A, we will look
into distinct subsets of coefficients that are deemed
significant.

1. Isotropic timelike configuration

We set K0i ¼ Kij ¼ 0 and keep K00 ≠ 0 only, which
eliminates all potential anisotropies. In this case, the
dispersion relation of Eq. (100) drastically simplifies to

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑp2 þ k
ϑþ ϑ1K00

s
: ðB1Þ

To be able to make a statement on the velocity of signal
propagation, for instance, we calculate the group and
wavefront velocities in accordance with the definitions
of Eq. (41). For the group velocity, we obtain

ugr ¼
ϑpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðϑþ ϑ1K00Þðϑp2 þ kÞ
p ; ðB2Þ

whose norm is bounded by 1 from above for non-negative
choices of the parameters ϑ1, k, and K00. The wavefront
velocity reads

ufr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ

ϑþ ϑ1K00

s
; ðB3Þ

where ufr < 1 again for non-negative choices of the
parameters. Subluminal signal propagation is definitely
assured in this case. However, there are also regions of the
parameter space, e.g., for ϑ1K00 < 0, where the front
velocity exceeds 1, which implies superluminal regimes.
The saturated propagator of Eq. (101) is reformulated as

SP ¼ −
iΩ

ðϑþ ϑ1K00Þðp2
0 − p2Þðp2

0 − ω2Þ ; ðB4Þ

where ω is given by Eq. (B1). The residues evaluated at the
poles read

ResðSPÞjp0¼jpj ¼
iΩjp0¼jpj

2jpjðk − ϑ1K00p2Þ ; ðB5aÞ

ResðSPÞjp0¼ω ¼ −
iΩjp0¼ω

2ωðk − ϑ1K00p2Þ : ðB5bÞ

Both residues involve the same factor in their denomina-
tors, but they have opposite signs. Thus, either one can take
negative values for certain parameter choices. Unitarity
issues at tree level are then expected to arise. Note also how
Eq. (A12) matches Eq. (B5a), which shows how the
massless pole is independent of the Maxwell term.

2. Anisotropic mixed configuration

Here, we discard both K00 and Kij, but we keep K0i ≠ 0.
The dispersion relation is then readily obtained from
Eq. (100):

ω¼ 1

2ϑ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϑ1K0ipiÞ2þ4ϑðϑp2þkÞ

q
þϑ1K0ipi

�
: ðB6Þ

For brevity, it is reasonable to define the vector-valued
quantity C with components Ci ≡ K0i. Then, the group
velocity reads

ugr ¼
1

2ϑ

 
ϑ21ðC · pÞCþ 4ϑ2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ21ðC · pÞ2 þ 4ϑðϑp2 þ kÞ
p þ ϑ1C

!
; ðB7Þ

whose magnitude corresponds to a lengthy expression. Let
ϕ be the angle between C and p such that

C · p ¼ jCjjpj cosϕ; ðB8Þ

which allows us to express the norm of the group
velocity as

ugr ¼
1

2ϑ

 
ϑ21ð8ϑ2þϑ21C

2ÞC2p2cos2ϕþ16ϑ4jpj2
ϑ21C

2p2cos2ϕþ4ϑðϑp2þkÞ

þϑ21C
2þ 2ϑ1ðϑ21C2þ4ϑ2ÞjCjjpjcosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ21C
2p2cos2ϕþ4ϑðϑp2þkÞ

p
!

1=2

: ðB9Þ

The wavefront velocity is comparably simple:

ufr ¼
1

2ϑ
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ21jCj2 cos2 ϕþ 4ϑ2

q
þ ϑ1jCj cosϕ�: ðB10Þ

The behavior for the absolute value of the group velocity as
a function of the momentum is presented in Fig. 4 for
various angles ϕ, which shows that its norm can exceed 1.
The wavefront velocity can also be greater than 1 when the
angle ϕ is chosen appropriately. These characteristics
indicate superluminal signal propagation.
Here, the propagator of Eq. (101), which has been

contracted with conserved currents, takes the form

SP ¼ iΩ
p2ðk − ϑp2 þ 2ϑ1p0C · pÞ : ðB11Þ
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The residues at the poles read

ResðSPÞjp0¼jpj ¼
iΩjp0¼jpj

2jpjðkþ 2ϑ1C · pjpjÞ ; ðB12aÞ

ResðSPÞjp0¼ω ¼ −
iΩjp0¼ω

2½ϑ1C · pðω2 þ p2Þ þ kω� ; ðB12bÞ

with ω given in Eq. (B6). Now, this case is more
challenging to analyze compared to the previous ones.
However, it is quite palpable that the denominators can take
positive as well as negative values for specific choices of
the parameters and the momentum. Since Ω is not positive
definite, unitarity violations are also inherent to this
particular sector.

3. Anisotropic purely spacelike configuration

We now discard the isotropic coefficient K00 as well as
the mixed ones K0i and only keep Kij ≠ 0. The dispersion
relation results from Eq. (100):

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
δij −

ϑ1
ϑ
Kij

�
pipj þ k

ϑ

s
; ðB13Þ

and is clearly anisotropic. Note the similarity to Eq. (A13),
but the absence of fourth-order terms in the momentum. In
the following, it will be beneficial to employ the quantities
defined under Eq. (A15). Now, the associated group
velocity reads

ugr ¼
1

ω

�
p −

ϑ1
ϑ
Kp

�
; ðB14Þ

and its norm is given by

ugr ¼
1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2

ϑ1
ϑ
Kpp þ

�
ϑ1
ϑ

�
2

K2
p

s
: ðB15Þ

For the wavefront velocity, we obtain

ufr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ϑ1
ϑ
Kijp̂ip̂j

r
; ðB16Þ

where p̂i denotes the ith component of the unit vector p̂≡
p=p pointing along the momentum. The latter is an
anisotropic nondispersive deviation from the conventional
case ufr ¼ 1. Since the expression of Eq. (B15), in
particular, is nontransparent, a reasonable possibility is
to choose a specific parametrization of the background
field. We express the latter in terms of the components of
two spatial vectors D and F:

Kij ¼ 1

2
ðDiFj þDjFiÞ: ðB17Þ

This implies

ufr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ϑ1
ϑ
ðD · p̂ÞðF · p̂Þ

r
: ðB18Þ

In the plane, let Ψ be the angle between the vectors D and
F: D · F ¼ jDjjFj cosΨ. Furthermore, we introduce angles
α and β as follows:

D · p ¼ jDjjpj cos α; F · p ¼ jFjjpj cos β: ðB19Þ

To express the angle between D and F in terms of α and β,
we must distinguish between the two configurations illus-
trated in Fig. 5. This is possible by defining the quantity

0.0 0.5 1.0 1.5 2.0 2.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2

p

u g
r

FIG. 4. Norm of the group velocity stated in Eq. (B9) for the
anisotropic configuration of Appendix B 2. We employed the
values jCj ¼ 0.2, k ¼ 0.2, ϑ ¼ 0.3, and ϑ1 ¼ 0.8 (expressed in
suitable units). Furthermore, ϕ ¼ f0; π=6; π=3g for the red
(solid), blue (dashed), and green (dashed-dotted) curves. The
black (dotted) line indicates the speed of light, cm ¼ 1.

FIG. 5. Configurations of unit vectors p̂, D̂, and F̂ that must be
distinguished from each other. (a) Momentum vector outside of
sector formed from D̂ and F̂. (b) Momentum vector enclosed by
D̂ and F̂.
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Ξ≡ p1D2 − p2D1

p1F2 − p2F1
: ðB20Þ

The latter is, in principle, the ratio of the third components
of cross products between fp;Dg and fp;Fg when these
vectors are extended to an auxiliary third spatial dimension.
Due to the arrangement of the vectors with respect to each
other, these cross products are of equal signs for the
configuration of Fig. 5(a), where their signs disagree for
the configuration of Fig. 5(b). Therefore, Ξ provides a
means to distinguish between these two arrangements of
fp;D;Fg. Then,

Ψ ¼ Ψðα; βÞ ¼

8>><
>>:

jα − βj for Ξ ≥ 0

αþ β for Ξ < 0; αþ β < π

2π − ðαþ βÞ for Ξ < 0; αþ β > π:

ðB21Þ

Now, in terms of the angles α and β, the wavefront velocity
of Eq. (B18) can be cast into

ufr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ϑ1
ϑ
jDjjFj cosα cos β

r
: ðB22Þ

Let us assume that ϑ1 > 0 and ϑ > 0. If either α or β lies
within ðπ=2; πÞ, the front velocity exceeds 1. Otherwise, it is
less than 1. The situation changes, of course, when the signs
of ϑ1 and ϑ are different.
Now, based on the parametrization of Eq. (B17), the

norm of the group velocity of Eq. (B15) reads

ugr ¼ ðjpj2 þ ðk=ϑÞ − ðϑ1=ϑÞjDjjFjjpj2 cos α cos βÞ−1=2
× ðjpj2 − ð2ϑ1=ϑÞjDjjFjjpj2 cos α cos β
þ ϑ21=ð4ϑ2ÞjDj2jFj2jpj2½cos2 β þ cos2 α

þ 2 cos α cos β cosΨ�Þ1=2; ðB23Þ

as a function of the angles α, β, and Ψ. The behavior of the
norm of the group velocity is illustrated in Fig. 6. According
to the latter graph, we see that for different choices of α and
β the group velocity can exceed 1 above certain momenta,
which implies superluminal signal propagation. The group
velocity enters this regime at even lower momenta when the
vectors D and F are antiparallel. Thus, we conclude that the
generic dispersion relation of Eq. (100) corresponds to a
propagating mode, whose dynamics comes from the pres-
ence of the higher-derivative terms. The specific cases of
Eqs. (B1), (B6), and (B13) exhibit radicands that are not
necessarily positive definite. Therefore, they may be
plagued by instabilities for certain values of the parameters
involved. In this scenario, it is worthwhile to emphasize
again that the pure CS Lagrangian, i.e., the regime k ≠ 0,
ϑ ¼ 0 ¼ ϑ1, does not exhibit propagating modes.

Finally, the saturation of Eq. (101) takes the rather
simple form:

SP ¼ −
iΩ

ϑðp2
0 − p2Þðp2

0 − ω2Þ ; ðB24Þ

and the residues evaluated at the positive-energy dispersion
relations are readily obtained as

ResðSPÞjp0¼jpj ¼
iΩjp0¼jpj

2jpjðk − ϑ1KppÞ
; ðB25aÞ

ResðSPÞjp0¼ω ¼ −
iΩjp0¼ω

2ωðk − ϑ1KppÞ
: ðB25bÞ

Here, the situation is comparable to that for the isotropic,
timelike case; cf. Eq. (B5). Nothing prevents the imaginary
parts of the residues from becoming negative. This behav-
ior indicates issues with unitarity at tree level for one or
both of the modes. As before, the correspondence between
Eqs. (A18) and (B25a) is evident.

APPENDIX C: FOURIER TRANSFORM
OF ANISOTROPIC GREEN’S FUNCTION

Here, we intend to Fourier-transform the expanded
Green’s function of Eq. (113) from momentum to con-
figuration space, i.e.,

GðRÞ ¼
Z

d2p
ð2πÞ2 expð−iRp cosϕÞGðpÞ; ðC1aÞ

0 1 2 3 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0

p

u g
r

FIG. 6. Norm of the group velocity given in Eq. (B23) for
the anisotropic configuration of Appendix B 3. Here, we used
ϑ ¼ ϑ1 ¼ 0.5 and jDj ¼ jFj ¼ 0.9 as well as k ¼ 1.2 (expressed
in suitable units). Moreover, α∈ f0; π=6; π=3g and β ¼ π for the
red (solid), blue (dashed), and green (dashed-dotted) curves. The
black (dotted) line represents the speed of light, cm ¼ 1.
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GðpÞ ≃ −
1

p2 þm2
þ η22p

2

ðp2 þm2Þ2 cos
2ðα − ϕÞ; ðC1bÞ

whose first part is already known from Eq. (74) such that

GðRÞ ≃ −
1

2π
K0ðmRÞ þ η22

ð2πÞ2 I; ðC2aÞ

I ¼
Z

d2p
p2 expð−iRp cosϕÞ

ðp2 þm2Þ2 cos2ðα − ϕÞ: ðC2bÞ

The second part is to be evaluated as follows. By parametric
differentiation for the mass,

I ¼ −
1

2m
∂Ĩ
∂m

; ðC3aÞ

Ĩ ¼
Z

d2p

�
p2 expð−iRp cosϕÞ

p2 þm2

�
cos2ðα − ϕÞ: ðC3bÞ

At this point it makes sense to rewrite the trigonometric
function as

cos2ðα − ϕÞ ¼ sin2 αþ cosð2αÞ cos2 ϕ

þ 1

2
sinð2αÞ sinð2ϕÞ: ðC4Þ

The angular integral over the third of these contributions
vanishes,

Z
2π

0

expð−iRp cosϕÞ sinð2ϕÞ ¼ 0; ðC5Þ

as the integrand is antisymmetric with respect to the middle
point of the interval, i.e., ϕ ¼ π. Thus,

Ĩ ¼ sin2αĨ1 þ cosð2αÞĨ2; ðC6aÞ

Ĩ1 ¼
Z

d2p
p2 expð−iRp cosϕÞ

p2 þm2
; ðC6bÞ

Ĩ2 ¼
Z

d2p
p2 expð−iRp cosϕÞ

p2 þm2
cos2 ϕ: ðC6cÞ

The first of the latter integrals gives

Ĩ1 ¼
Z

∞

0

dp
p3

p2 þm2

Z
2π

0

dϕ expð−iRp cosϕÞ

¼ 2π

Z
∞

0

dp
p3J0ðRpÞ
p2 þm2

¼ −2πm2K0ðmRÞ: ðC7Þ

The second is more involved and requires another param-
eter differentiation:

Ĩ2 ¼ −
∂
2

∂R2

Z
d2p

expð−iRp cosϕÞ
p2 þm2

¼ −2π
∂
2

∂R2
K0ðmRÞ; ðC8Þ

i.e., it is traced back to the second derivative of a modified
Bessel function. Note that first-order derivatives of modi-
fied Bessel functions can again be expressed in terms of
modified Bessel functions of different orders. In particular,

d
dx

KnðxÞ ¼ −
1

2
½Kn−1ðxÞ þ Knþ1ðxÞ�: ðC9Þ

Further valuable relationships are

−
2n
x
KnðxÞ ¼ Kn−1ðxÞ − Knþ1ðxÞ; ðC10Þ

as well asK−nðxÞ ¼ KnðxÞ; see Eqs. (8.486.11), (8.486.10),
and (8.486.16) in Ref. [94]. Applying these allows us to
express Eq. (C8) as follows:

Ĩ2 ¼ −2πm2

�
K0ðmRÞ þ 1

mR
K1ðmRÞ

�
: ðC11Þ

Finally, for Eq. (C3a) we must evaluate the parameter
derivative for m. Here, the previous relationships of
Eqs. (C9) and (C10) are again useful, and we obtain

I ¼ π½K0ðmRÞ −mRK1ðmRÞ cos2 α�: ðC12Þ

Eventually, the Green’s function in configuration space
stated in Eq. (C2) can be cast into its final form:

GðRÞ¼−
1

2π
K0ðmRÞþ η22

4π
½K0ðmRÞ−mRK1ðmRÞcos2α�;

ðC13Þ

which is reprinted in a slightly different form in Eq. (114).
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