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In this study, we introduce a transformative, automated framework for classifying basis invariants in
generic field theories. Utilizing a novel ring-diagram methodology accompanied by the well-known
Cayley-Hamilton theorem, our approach uniquely enables the identification of basic invariants and their
CP-property characterization. Critically, our framework also unveils previously concealed attributes of
established techniques reliant on the Hilbert-Poincaré series and its associated Plethystic logarithm. This
paradigm shift has broad implications for the deeper understanding and more accurate classification of
CP invariants in generic field theories.
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I. INTRODUCTION

A plethora of experiments and observations signal the
emergence of new physics (NP) beyond the StandardModel
(BSM), from neutrino masses to matter-antimatter asym-
metry and dark matter [1–3]. Within this context, the
existing CP violation (CPV) in the Standard Model (SM)
is insufficient to account for the observed matter-antimatter
asymmetry of the Universe. Additionally, there is a crucial
intersection between CPV and electric dipole moments
(EDMs), which violate both parity and time-reversal sym-
metries [4–7]. This makes EDMs a direct probe for new
sources of CPV. Therefore, any measurable EDM that
significantly deviates from SM predictions would strongly
indicate NP, including new mechanisms for CPV. Our
research introduces a new method for identifying CP basis
invariants, which not only advances our understanding of
CPV but also has important implications for interpreting
future EDM measurements. For a consistent understanding

ofCPV, it is necessary to use rephasing invariants methods.
These are specific mathematical quantities that remain
constant under changes to the phase of complex numbers.
They help distinguish between physically meaningful
parameters and those that are simply artefacts of mathemati-
cal representations. The most well-known rephasing invari-
ant is the Jarlskog invariant [8,9], that is proportional to

J− ∝ ðm2
t −m2

cÞðm2
t −m2

uÞðm2
c −m2

uÞ
× ðm2

b −m2
sÞðm2

b −m2
dÞðm2

s −m2
dÞJ ; ð1:1Þ

where J can be given in terms of Cabibbo-Kobayashi-
Maskawa matrix [10],

J ¼ Im
�
VusVcbV⋆

ubV
⋆
cs

�
:

The invariant J− also can be rewritten as

J− ¼ 3ImDet
h
YuYu

†; YdYd
†
i
:

That ensures the theoretical predictions are basis indepen-
dent, providing a consistent and reliable means to compare
theory with experimental data.
Recent research has leveraged the SMeffective field theory

(SMEFT) to generalize various NP effects, including those
associated with CPV [11–22]. However, SMEFT introduces
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multiple higher-dimensionalCP-violating operators, making
the task of classifying basis invariants challenging. Tools like
the Hilbert-Poincaré series and its Plethystic logarithm (PL)
offer some aid toward identifying the number of invariants
[7,17,23–34]. However, the current methods fall short in
finding a “primary invariant”, especially when it comes to
clearly identifying CP-even and CP-odd invariants, which
are essential for a complete understanding of CPV.
In this paper, we present an automatic and novel

methodology for explicitly classifying CP basis invariants.
We utilize fundamental blocks, constructed as orthogonal
trivial singlets via newly established ring diagrams, and
employ the Cayley-Hamilton theorem for precise identi-
fication. This paves the way for defining both basic and
joint invariants, as well as their CP properties. Our
contributions are threefold:

(i) We introduce a universal method to classify invar-
iants in diverse theories.

(ii) We delineate an automatic mechanism for differ-
entiating betweenCP-odd and -even basis invariants.

(iii) We elucidate the limitations and hidden aspects of
Hilbert series and its PL, thus gaining new structural
insights.

These fill the existing gap in research, offering a clearer and
more complete understanding of CPV in particle physics
and cosmology.
In this paper, we first present our approach within the

context of the SM. Subsequently, we outline a more general
methodology and illustrate its application using the seesaw
SM effective field theory (νSMEFT) with operators of
dimensions 5 and 6.

II. IDENTIFYING INVARIANTS IN THE SM

Let us start with the SM Yukawa Lagrangian with
up-type and down-type quarks,

L ⊃ YuQ̄L;iH̃uR;j þ YdQ̄L;iHdR;j þ H:c:; ð2:1Þ

where the fundamental quantities in this Lagrangian are the
flavor matrices from which the masses and mixing angles
are derived through diagonalization. Despite being basis
dependent, one can implement unitary transformations on
quark and lepton fields. Under chiral flavour transforma-
tions, Yukawa couplings evolve as

Yu → Uð3ÞQYuUð3Þu†; ð2:2Þ

Yd → Uð3ÞQYdUð3Þd†; ð2:3Þ

with Uð3ÞQ and Uð3Þu;d being the unitary transformations
on the quark doublet QL and singlet fields uR; uR, remain-
ing the Lagrangian invariant. However, one cannot directly
compare the predictions of the mass matrices with their
corresponding experimental values, since these are
basis dependent, whereas observable quantities must be

independent of the change of basis. This approach requires
canceling the impact of flavour transformations by para-
metrizing observables in a basis-independent manner,
utilizing invariant quantities. In this context, the obvious
cancellation of Uð3Þu;d is the combinations U ≡ YuY

†
u and

D≡ YdY
†
d, which both transform as

U → Uð3ÞQUUð3ÞQ†; ð2:4Þ

D → Uð3ÞQDUð3ÞQ†: ð2:5Þ

Here, the invariants are trace operations on U and D. By
exploring all possible combinations of the fundamental
blocks U and D, we can derive the basic quark invariants.
This process is guided by the Cayley-Hamilton theorem,
stipulating that the nth power of a n × n matrix A can be
expressed in terms of powers less than n [7]. Thus, the SM
invariants Jnm (with n and m being the orders of U and D,
respectively) are thus given by

J10 ¼ TrðUÞ; ð2:6aÞ

J01 ¼ TrðDÞ; ð2:6bÞ
J20 ¼ Tr

�
U2

�
; ð2:6cÞ

J02 ¼ Tr
�
D2

�
; ð2:6dÞ

J30 ¼ Tr
�
U3

�
; ð2:6eÞ

J03 ¼ Tr
�
D3

�
; ð2:6fÞ

J11 ¼ Tr
�
UD

� ¼ Tr
�
DU

�
; ð2:6gÞ

J21 ¼ Tr
�
U2D

� ¼ Tr
�
DU2

�
; ð2:6hÞ

J12 ¼ TrðUD2Þ ¼ TrðD2UÞ; ð2:6iÞ

J22 ¼ Tr
�
U2D2

�
: ð2:6jÞ

Additionally, from the combination of higher-order
invariants,

J33 ¼ Tr
�
U2D2UD

�
; ð2:7Þ

J033 ¼ Tr
�
D2U2DU

�
; ð2:8Þ

where CPðJ33Þ → J033, a CP-odd invariant can be obtained
in the following form:

J− ¼ ðJ33Þ − ðJ33Þ0: ð2:9Þ

Hence, the CPV can be parametrized as

J− ≡ ImTr½U;D�3 ¼ 3ImDet½U;D�: ð2:10Þ
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This is the invariant that appears in the parametrization of
the Cabibbo-Kobayashi-Maskawa matrix relevant to CPV
in the renormalizable theory of weak interaction
[10,13,14,35–38].
Note that CP-even combinations i.e.,

Jþ ¼ ðJ33Þ þ ðJ33Þ0; ð2:11Þ

can be rewritten in terms of the lower primary invariants;
thus, this is disregarded as a basic invariant.
Now, we introduce an alternative procedure that

methodically classifies invariants in the SM and extends
further. This classification is based on a newly established
ring diagram that is accompanied by Cayley-Hamilton
theorem and equivalently, by a ring set (petals) enabling
us to identify basic invariants. Particularly, we show our
approach automatically distinguishes basic invariants as
well as their CP properties.
To begin, we designate three rings corresponding to the

flavor transformations Uð3ÞQ;Uð3Þu, and Uð3Þd of the
Yukawa matrices, as illustrated in Table I.
In this configuration, as delineated in diagram 1, Yu and

Y†
u are positioned within the Uð3Þu-ring, while Yd and Y†

d
are located within the Uð3Þd-ring. The Uð3ÞQ-ring acts as a
connecting hub between these two rings. The diagrams
below succinctly represent both the detailed and simplified
versions of this structure.
Now, we construct the three building blocks pertinent to

these three rings with only one passage through them, as

ð2:12Þ

Here, the trace operations over the rings form what we term
as “petals”. The petal formations are depicted below,
illustrating the trace operations and their corresponding
mathematical expressions,

ð2:13aÞ

ð2:13bÞ

ð2:13cÞ

ð2:13dÞ

These petals effectively represent the component matrices
Yu, Y

†
u, Yd, and Y†

d, each a 3 × 3 matrix, transforming
according to Uð3Þu and Uð3Þd, respectively. Utilizing the
foundational blocks and rings defined above, we can
systematically organize higher-order invariants as shown
in the following tensor product equation:

Jux1dx2 ðudÞxn ¼ TrðMu
x1 ⊗ Md

x2 ⊗ Mud
xnÞ: ð2:14Þ

In an equivalent manner, petal sets can be effectively
utilized in our approach. Considering that U and D are
3 × 3matrices, rings can accommodate up to three passages
over them. While combinations between rings are allowed,
the number of petals in each combination should not exceed
three. Therefore, when constructing higher-order invariants
using petals, one can repeat up to two out of the three petals
of the same color. This mandates that the third petal of the
same color must follow a petal of a different hue. To
simplify the petal set, two adjacent petals can be replaced
with a dual-layer petal. This approach can also be applied to
the repetition of multiple petals, but only twice, i.e.,

After this simplification, one can translate them to
the relations by taking an arbitrary starting point
in rings and read a whole cycle clockwise � anticlock-
wise, i.e.,

J� ≡ ð↻þ↘↙↖ � � �Þ � ð↺þ↘↗↖ � � �Þ:

Therefore, using the fundamental blocks (2.12) the SM
invariants can be recovered as

TABLE I. Flavor transformation of the Yukawa matrices.

Uð3ÞQ Uð3Þu Uð3Þd
Yu 3 3̄ 1
Yd 3 1 3̄

FIG. 1. Ring diagram for the SM.
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and an order-6 nonreducible CP-odd invariant can be
deduced out of

In the subsequent section, we expand this formalism to
identify potential invariants in a generic scenario, under-
scoring the versatility and applicability of our approach.

III. GENERIC FORMALISM FOR IDENTIFYING
INVARIANTS

In many complex systems, it is useful to build and
understand the relation between invariants. In this paper,
we introduce the so-called ring diagram, which comprises
sets of interconnected rings, each adhering to a specific
symmetry constraint.

Let us begin with a generic example involving
n ¼ mþ k main elements p1;…; pm and q1;…; qk, where
the p elements rotate with U1 and U2, while the q elements
rotate with U1 and U3. To represent these interactions, we
introduce three rings: the first ring labeled with U2

representing rotations of p elements with U2, the second
ring labeled with U3 for rotations of q elements with U3,
and the third ring connecting all rings relevant to
mutual U1. This structure is depicted in ring diagram 2,
where the number of rings can increase due to the presence
of more rotations with Ui. Here, clusters of interlinked
rings form building blocks that are characterized by
symmetries.
The inputs to the rings fall into two categories, aiding

the construction of possible invariants. The first type
involves first-order blocks, easily obtained through com-
binations of main elements within the Ui-ring, where Ui
cancels out. These blocks are placed in the relevant ring
with arbitrary sequences and are denoted by a small circle
“↻”. Blocks are connected with dashed cycles, repre-
sented by . The second input type pertains to
elements where cancellation of Ui in their rotations
involves combinations directly used in building blocks
in other rings. These elements remain unchanged in the
rings and connect to other elements or blocks through
single-way dashed curves . In this case, a cycle of
dashed lines forms a building block, with only one turn
passing through the connection lines as

Although the mutualU1 ring allows for N ¼ N1 × N2 pass
through the connection lines with N1;2 being the number
of blocks in U2;3 rings, this restriction helps us to build the
lowest possible combinations in the construction of
blocks. Therefore, in a ring diagram, one may have m1

number of first-order blocks tagged by “↻” and m2

building blocks out of dashed cycles. Accordingly, one

FIG. 2. The generic ring diagram.
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can construct these building blocks in the form of tensors
and produce higher-order invariants. The former blocks
can be arranged in sets of m1 orthogonal vectors.
For instance, in ring diagrams 3(a) and 3(b), we have
two different sets m1 ¼ 4 and m1 ¼ 2, m2 ¼ 1
building blocks, where m1 are first-order blocks tagged
with “↻” and m2 are involving building blocks out of
dashed cycles.
Accordingly, for each diagram, the building blocks can

be given in the form of matrices. For example, the building
blocks pertinent to diagrams (a),

Ma≡diag
�
A 0 0 0

�
; Mb≡diag

�
0 B 0 0

�
;

Mc≡diag
�
0 0 C 0

�
; Md≡diag

�
0 0 0 D

�
; ð3:1Þ

and for diag (b) Ma remains same while Mb read as

ð3:2Þ

For higher-order blocks, elements follow dashed cycles
between first-order blocks in the following forms for
diagrams (a) and (b):

ð3:3Þ

ð3:4Þ

with σ0 ¼ 12 and Cm ¼ bATmb†.
The lowest order of invariants is formed based on trace

over interlinked rings referred to as petals. These compo-
nents take the form of orthogonal trivial singlets and are
positioned uniquely within the framework of the ring-
diagram structure. The properties of the building blocks can
be directly represented in terms of petals. One cycle of first-
order blocks that are tagged by “↻” in ring diagram 3 can
be translated into a single petal representation. For higher
order cycles depending on their n connection lines n petals
are required, e.g., n ¼ 2 for “ ”. This structure from the
ring diagram can be summarized as follows:

Furthermore, the petals related to the blocks are distin-
guished with different colours/patterns. Note that these
representations always follow the prearranged direction in
the ring diagram. Rings facilitate the construction of
higher-order identical invariants as any repetitions even
illustriously would be trivial to drop out. This formulation
shows the connection between invariants as well as dis-
tinguishing their CP properties.
To step forward, the building blocks can be extended up

to higher orders equivalently using diagrams or based on
the products of the above building blocks,

FIG. 3. Ring diagrams for (a) noninvolving blocks in other
rings and (b) involving blocks.
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Jnax1 ;nbx2 ;…;nabxn ¼TrðMa
x1 ⊗Mb

x2 ⊗ �� �⊗Mab
xnÞ: ð3:5Þ

To construct invariants using diagrams (3.5), firstly one
may take an arbitrary starting point in rings that are
assigned to a fundamental block and read a whole cycle
according to the possible existing discrete symmetries in
the common ring, for example, in the most cases, clockwise
� anticlockwise and repeated until identical terms pro-
duced, e.g.,

ð3:6Þ

with the left red petal as a starting point and dropping out
all repetitions.
In diagrams according to the Cayley-Hamilton theorem

for a single 3 × 3 block, one has

ð3:7Þ

This is since producing higher order invariants terminated
at the point where they can be rewritten in terms of the
lower invariants. Otherwise, in the presence of another
3 × 3 matrix equivalent to another petal (that can be
distinguished with a different sign or color), always all
petals of one type are adjacent so the invariant can be
reduced, i.e.,

Ja2ab1 ¼ TrðA3BÞ ¼ 1

6

h
TrðA3ÞTrðBÞ

− 3TrðA2ÞTrðAÞTrðBÞ þ 6TrðAÞTrðA2BÞ
þ 2TrðAÞ3TrðBÞ þ 3TrðABÞðTrðA2Þ − TrðAÞ2Þ

i
;

ð3:8Þ

indicating the next invariant out of two building blocks,

ð3:9Þ

and similarly, for Jab1b1 ¼ TrðAB2Þ. Additionally, out of
two matrices, there is one nonreducible CP-conserving
invariant that arises from

Jab2 ¼ TrððABÞ2Þ þ TrðA2B2Þ ¼ fðBasic InvsÞ; ð3:10Þ

where equivalently this may be given as

ð3:11Þ

The highest invariant consisting of two matrices is the so-
called ”Joint” invariant. Here, the word “Joint” represents
those invariants in which the summation between different
permutations produces basic or lower-order joint invariants.
In the case of two matrices, one may have the maximum
petal set as

pertinent to CP-even and CP-odd invariants. Although the
CP-even invariant is reducible, as can be simply checked
by rearranging petals or alternatively, using the Cayley-
Hamilton theorem, so

Jþab3 ≔TrððABÞ3Þþ3

2

�
TrðA2B2ABÞþTrðB2A2BAÞ�

≡1

2

�
TrðA2B2ABÞþTrðB2A2BAÞ�þfðBasic InvsÞ

≡fðBasic InvsÞ; ð3:12Þ

and

J−ab3 ≔
�
TrðA2B2ABÞ − TrðB2A2BAÞ�; ð3:13Þ

where nonzero imaginary values of the above quantity
indicate a nonvanishing CP-violating phase. Thus one CP-
odd invariant in this order is considered.
Furthermore, this procedure for the construction of

higher-order invariants can be extended by including
additional 3 × 3 matrices. In this context, the lowest
invariants involving an additional 3 × 3 matrix C become

ð3:14Þ

where Jþ and J− indicate CP-even and CP-odd invariants,
respectively. Evidently, nonzero values of the CP-odd
invariant introduce a nonvanishing CP-violating phase.
Note that these relations are not reducible and can be
regarded as basic invariants; however, for 2 × 2 matrices
these become reducible.
The next invariants out of three matrices A, B, C are joint

invariants of order four rising from the following petals set:

NEDA DARVISHI, YINING WANG, and JIANG-HAO YU PHYS. REV. D 108, 115030 (2023)

115030-6



That is equivalent to two discrete forms,

Jab1ac1 þ Jþa2bc1 ¼ TrðA2BCÞ þ TrðA2CBÞ þ TrðABACÞ
¼ fðBasic InvsÞ; ð3:15Þ

and a nonreducible CP-odd invariant,

J−a2bc1 ¼ TrðA2BCÞ − TrðA2CBÞ: ð3:16Þ
Therefore, based on this petal set, there are a CP-odd and a
CP-even invariant.
In a similar fashion, one can obtain higher-order combi-

nations of three matrices and their permutations. For
example, at order 5 for three blocks in a ring diagram,
one may have the following petals set:

which can account only for one CP-odd invariant. This is
because, for the CP-even case, three petals can always be
placed adjacently,

Jþa3cb1 þ Jþa1ac1ab1 ¼ Tr
�
A3CB

�þ Tr
�
A3BC

�
þ 2Tr

�
A2BAC

�þ 2TrðA2CABÞ
∼ TrðAÞ × fðJoint invsÞ
þ fðBasic invs Þ; ð3:17Þ

and

J−a3bc1 ≔
�
Tr
�
A2BAC

�
− Tr

�
A2CAB

��
: ð3:18Þ

Thus, one can account for only oneCP-odd invariant in this
type. Note that the CP-odd TrðA3CBÞ − TrðA3BCÞ invar-
iants can be written in terms of lower CP-odd invariants
[i.e., the basic invariants TrðACBÞ − TrðABCÞ and the
CP-odd TrðA2CBÞ − TrðA2BCÞ].
Moreover, in the presence of an additional 3 × 3 matrix

D, there are six permutations around ABCD where their
summation is reduced to basic invariants as

ð3:19Þ

Thus five of these permutations can be considered CP-even
joint invariants. Note that the CP-odd relation is reducible
to CP-odd invariants in the form of Eq. (3.14).
This chain procedure is trivially extended up to higher

orders, where only basic invariants and the summation
of the joint invariant are present, as well as the summation
of the lowest joint invariant that can be expressed in
terms of basic invariants.
Up to four blocks from Eqs. (3.13), (3.14), (3.16), and

(3.18), one can realize in addition to the obvious CPV
invariants via a complex matrix ImTrðA − H:c:Þ there are
CP-odd invariants as

J−ab3 ¼ ImTr
�fA2; B2g½A;B��; ð3:20Þ

J−axbycy ¼ ImTr
�
Ax0 ½Ax1By; Ax1Cy��; ð3:21Þ

where x ¼ x0 þ x1 stopped at power 3. This approach can
systematically be extended up to any n order smaller than
the termination point. Here, for the first time, we formulate
the termination points of invariants based on the LO (lowest
order) CP-odd due to matrix order (not their complex
nature), HO (highest order) basic and LO joint invariants as
shown in Table II.
This way of formulation enables us to navigate CPV,

thereby opening new pathways for future searches.
In the following section, we showcase the application of

the ring diagram in the framework of νSMEFT with
operators of dimensions 5 and 6.

IV. EXAMPLE: INVARIANTS IN THE
FRAMEWORK OF νSMEFT WITH

OPERATORS 5 AND 6

In this section, we consider the framework of νSMEFT
that includes three right-handed neutrinos NR, which are
singlets under the SM gauge group [39,40].
The SM Lagrangian,LSM, is extended through a series of

higher-order dimension n (dim-n) SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY gauge-invariant operators, Oðdim¼nÞ

i , describing
higher-order interactions as follows:

LSMEFT ¼ LSM þ
X
n>4

X
i

Cðdim¼nÞ
i

Λn−4 Oðdim¼nÞ
i ; ð4:1Þ

where Λ is some higher mass scale and Ci stands for the
corresponding dimensionless coupling constants, i.e., the
so-called Wilson coefficients [41].

TABLE II. The termination points of invariants.

LO CP-odd HO basic LO joint Termination

n m k ≥ m ≥ nþ k
n m k < m > nþm
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For an example, we take the νSMEFT that is extended to
the order of dim-6. The leading flavor symmetry-breaking
Lagrangian can be given by

L ¼ LSM −
�
C5

2Λ
O5 þ h:c:

	
þ C6

Λ2
O6; ð4:2Þ

with the following dim-5 and dim-6 operators:

O5 ¼ L̄LH̃H̃TLC
L ; O6 ¼ ðH̃†i∂

↔

μH̃ÞðL̄iγ
μLjÞ; ð4:3Þ

where LL ≡ ðνL; lLÞT and C≡ iγ2γ0 being the charge-
conjugation operator. Accordingly, the corresponding
Wilson coefficients read

C5 ¼ −Yν
Λ
MR

YT
ν ; C6 ¼ Yν

Λ2

M†
RMR

Y†
ν: ð4:4Þ

The transformationofYukawamatrices, theMajoranamasses
(MR) and the Wilson coefficient is shown in Table III.
Skipping the first round of trivial blocks out of the ring

diagram, the building blocks for the construction of flavor
invariants are fL≡ YeY

†
e; C5; C6g as can be seen in ring

diagram 4.
Consequently, the building blocks are

ð4:5aÞ

ð4:5bÞ

ð4:5cÞ

ð4:5dÞ

ð4:5eÞ

ð4:5fÞ

ð4:5gÞ

TABLE III. Flavor transformation under Uð3ÞL, Uð3Þe and
Uð3ÞR of the Yukawa matrices Ye;ν, the Majorana massesMR and
the Wilson coefficients C5 and C6.

Uð3ÞL Uð3Þe Uð3ÞR
Ye 3 3̄ 1
Yν 3 1 3̄
MR 1 1 3� × 3̄
C5 3 × 3T 1 1
C6 3 × 3† 1 1

FIG. 4. The ring diagram for νSMEFT with Wilson
coefficients C5;6.
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ð4:5hÞ

ð4:5iÞ

where Km ¼ C5LTmC†
5, Hm ¼ C5CT

6
mC†

5, and Fmn
� ¼

C5Xmn�C†
5 with Xmn� ¼ LTmCT

6
n � CT

6
nLTm running over

m,n ¼ 1,2 . Additionally, the blocks M�
c6Hm

out of ring

can be skipped as it generates dim-10 invar-

iants; however, we retain this block for comparative
analysis with the number deduced through the Hilbert
series approach.
One can organize the basic invariants beginning with the

lowest order blocks as follows:
(i) Order-1:

(ii) Order-2:

(iii) Order-3:

(iv) Order-4:
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where the dashed orange and olive petals presenting order
three blocksK1 ≡ C5LTC†

5 andH1 ≡ C5CT
6C

†
5, respectively.

(v) Order-5:

(vi) Order-6:

where the dashed petals in violet, purple, blue, and cyan
present order four K2 ≡ C5LT2C†

5, H2 ≡ C5CT
6
2C†

5,
and F�

11 ≡ C5ðLTCT
6 � CT

6L
TÞC†

5.
In addition to the aforementioned invariants, there are

CP-odd and joint invariants. The first CP-odd invariant
appears at order 4 and comprises nine invariants. The first
joint invariant emerges at order 5, where, in combination
with four CP-odd and basic invariants, one can account for
14 invariants. Similarly, at order 6, along with the previous
13 invariants, there are an additional 20 CP-odd and joint
invariants. Note that, there are CP-odd J− relevant to each
Jþ invariant containing two terms but for their subtractions.
However, there is only one J− invariant corresponding to
the two last relations.
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Until the fifth order, all invariants are of the basic type.
Yet, from this order onward, joint invariants can also be
recognized.
In the subsequent listing, we present CP-odd invariants,

commencing from the lowest conceivable order exhibiting
CP violation.

ð4:6Þ

ð4:7Þ

ð4:8Þ

ð4:9Þ

ð4:10Þ

ð4:11Þ

From the aforementioned invariants, it can be observed
that CPV occurs if and only if ImJ− ≠ 0. It is worth noting
that when constructing invariants of higher dimensions than
eight, certain invariants involving higher orders of C5;6 can
be omitted.
In cases involving degeneracies, the assessment of

higher-order CP-violating invariants becomes crucial.
Alongside J−, which aligns with the petals and relations

for Jþ (but with reversed signs between terms) as illustrated
in the fundamental invariant at the sixth order, a compre-
hensive list of additional higher-order CP-violating invar-
iants is provided in Appendix A.

V. COMPARISON WITH HILBERT SERIES

The Hilbert series, along with its associated PL, are
powerful tools in the quest for understanding invariants in
theories, but they do have limitations. These methods offer
an algebraic enumeration of invariants, providing a gen-
erative function for constructing them; however, they may
not always elucidate the underlying structure and inter-
relationships among these invariants, especially in the
context of complex field theories and higher-dimensional
operators. One intrinsic limitation is that the Hilbert
series can obscure the physical interpretation of the
invariants it enumerates. It tends to provide a raw count
without distinguishing between invariants of different
physical significance or between redundant and essential
invariants. This can lead to an overestimation of the
independent invariants when relations among invariants
are present.
In light of these aspects, while the Hilbert series and PL

remain invaluable in the field of invariant theory, there is a
compelling need for complementary approaches that can
provide a more direct and physically intuitive grasp of
invariants. Such is the promise of the newly established
ring-diagram technique, which, by manifesting the struc-
ture of invariants through a visual and topological frame-
work, can potentially overcome some of the shortcomings
of the purely algebraic methods, providing a more
nuanced and complete understanding of the invariant
landscape in various theories.
As demonstrated in Sec. IV, we have outlined the

structure, number, and CP properties of invariants up to
the sixth order in the νSMEFT framework with operators 5
and 6. An interesting exercise is to compare the magnitude
of these invariants with predictions from the Hilbert series
[32,34]. We start by defining the character functions in
terms of 3 and 3� as z1 þ z2 þ z3 and z−11 þ z−12 þ z−13 ,
respectively, where z1;2 and z3 are coordinates on the
maximal torus of Uð3Þ. The character functions of the
flavor invariants, fL≡ YeY

†
e; C5; C6g, analogous to

Table III, are expressed as

χl;6ðz1; z2; z3Þ ¼ ðz1 þ z2 þ z3Þðz−11 þ z−12 þ z−13 Þ; ð5:1Þ

χ5ðz1; z2; z3Þ ¼ z21 þ z22 þ z23 þ z1z2 þ z1z3 þ z2z3 þ z−21

þ z−22 þ z−23 þ z−11 z−12 þ z−11 z−13 þ z−12 z−13 :

ð5:2Þ
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Now, by incorporating the above relations into the ple-
thystic exponential (PE) function and the Hilbert series for
the νSMEFT framework with operators of dimensions 5
and 6, denoted as H6ðqÞ, and considering the 3 × 3
matrices (detailed in Appendix B), we define the PL as
follows:

PL½H6ðqÞ� ¼ 2qþ 4q2 þ 6q3 þ 9q4 þ 14q5 þ 33q6 þ 44q7

þ 72q8 þ 74q9 þ 21q10 −Oðq11Þ: ð5:3Þ

From this, the magnitude of the invariants can be
extracted, although the underlying structure and proper-
ties of the invariants remain concealed. Comparing this
with our finding in Table II, the order of the leading
negative term matches with the formulation (orders
>10≡ LO of CP oddþ the maximum between HO basic
and LO joint) obtained using the ring diagram. For a
sanity check, we compare these findings with more EFT
models listed in Table IV. The summary of the lowest
order of CP-odd due to matrix properties (not because of
their complex nature), the highest order of basic and the
lowest order of joint invariants for SM, SMEFT and
νSMEFT are given.
The PL equations corresponding to the models listed in

Table IV are as follows:

PL1½HðqÞ� ¼ 2qþ 3q2 þ 4q3 þ q4 þ q6 −Oðq12Þ; ð5:4Þ

PL2½HðqÞ� ¼ 4qþ 10q2 þ 24q3 þ 35q4 þ 56q5 þ 60q6

−Oðq7Þ; ð5:5Þ

PL3½HðqÞ� ¼ qþ 2q2 þ 2q3 þ 3q4 þ 2q5 þ 5q6 þ 2q7

þ 5q8 þ 4q9 þ 5q10 þ 2q11

−Oðq13Þ; ð5:6Þ

PL4½H6ðqÞ� ¼ 2qþ 4q2þ 6q3þ 9q4þ 14q5þ 33q6þ 44q7

þ 72q8þ 74q9þ 21q10

−Oðq11Þ; ð5:7Þ
PL5½HðqÞ� ¼ qþ 5q2 þ 5q3 þ 17q4 þ 20q5 þ 82q7

þ 175q8 þ 231q9 þ 199q10

−Oðq11Þ: ð5:8Þ

The exclusion order in the last column in Table IV is
aligned with the negative leading term in the above PL
related to SM and EFT models.

VI. CONCLUSIONS

We present an automatic and novel methodology for
explicitly classifyingCP invariants. We utilize fundamental
blocks, constructed as orthogonal trivial singlets via newly
established ring diagrams and employ the Cayley-Hamilton
theorem for precise identification. We delineate an auto-
matic mechanism for differentiating between CP-odd and
-even basis invariants.
Remarkably, this approach not only provides a comple-

mentaryway of identifying invariants but also provides a new
explanation for details in the traditional Hilbert-Poincaré
series and its plethystic logarithm (PL) concerning basis
invariant, joint, and negative leading numbers in PL.
Utilizing this method, we successfully identify the

complete set of SM invariants through the consideration
of two fundamental matrices. We have demonstrated the
application of this approach in the context of the seesaw
Standard Model effective field theory (νSMEFT), focusing
on operators of dimensions 5 and 6. Our technique is
developed as a general methodology, adaptable to SMEFT
for incorporating higher-order operators up to dimension-
2n. It is also extendible to νSMEFT with operators of
dimensions 5, 6, and 7. These extensions are subjects of our
forthcoming publications.
Additionally, future studies will detail the application of

this method in constructing invariants from high-rank
tensors and complex structures. Moreover, we will explore
its applications within the frameworks of multi-Higgs
doublet models (nHDMs) [42,43] and nHDM-effective
field theory (nHDM-EFT) [44].
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TABLE IV. The lowest order (LO) of CP-odd invariants due to
matrix properties (not their complex nature) are given in the first
column. The highest order (HO) of basic and the LO of joint
invariants are detailed in the subsequent columns. Finally, the last
column shows the order in which invariants terminate.

Number Models
LO

CP-odd
HO
basic

LO
joint Termination

1 SM 6 4 6 ≥12
2 SMEFT-dim2n 3 4 4 ≥7
3 ν-SMEFT-dim5 6 6 7 ≥13
4 ν-SMEFT-dim5, 6 4 6 5 >10
5 ν-SMEFT-dim5, 7 5 6 6 ≥11
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APPENDIX A: IDENTIFYING HIGHER-ORDER
CP-ODD INVARIANTS

In this appendix, we provide a list of higher-orderCP-odd
invariants in the framework of νSMEFT with operators of
dim-5 and dim-6. In Sec. IV, we have shown the list of
basicCP-even and six of the lowest orderCP-odd invariants
in this framework. Following the structure of ring-diagram
higher-order CP-odd invariants starting from order-6 are

APPENDIX B: HILBERT SERIES FOR νSMEFT FRAMEWORK WITH OPERATORS
OF DIMENSIONS 5, 6

In Sec. V, we have shown the character functions of the flavor invariants, fL≡ YeY
†
e; C5; C6g can be given in the

following forms:

χl;6ðz1; z2; z3Þ ¼ ðz1 þ z2 þ z3Þðz−11 þ z−12 þ z−13 Þ;
χ5ðz1; z2; z3Þ ¼ z21 þ z22 þ z23 þ z1z2 þ z1z3 þ z2z3 þ z−21 þ z−22 þ z−23 þ z−11 z−12 þ z−11 z−13 þ z−12 z−13 :

Pertinent to the above character functions, the PE function can be expressed as

PEðz1; z2; z3; qÞ ¼ exp
�X∞

k¼1

χlðzk1; zk2; zk3Þqk þ χ5ðzk1; zk2; zk3Þqk þ χ6ðzk1; zk2; zk3Þqk
k

	

¼ ½ð1 − qÞ6ð1 − qz1z−12 Þ2ð1 − qz2z−11 Þ2ð1 − qz1z−13 Þ2ð1 − qz3z−11 Þ2ð1 − qz2z−13 Þ2
× ð1 − qz3z−12 Þ2ð1 − qz21Þð1 − qz22Þð1 − qz23Þð1 − qz1z2Þð1 − qz1z3Þð1 − qz2z3Þ
× ð1 − qz−21 Þð1 − qz−22 Þð1 − qz−23 Þð1 − qz−11 z−12 Þð1 − qz−11 z−13 Þð1 − qz−12 z−13 Þ�−1: ðB1Þ
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Thus Hilbert series in the νSMEFT for the 3 × 3 matrices becomes

H6ðqÞ ¼
N 6ðqÞ
D6ðqÞ

¼
Z

½dμ�Uð3ÞPEðz1; z2; z3; qÞ

¼ 1

6ð2πiÞ3
I
jz1j¼1

I
jz2j¼1

I
jz3j¼1



−
ðz2 − z1Þ2ðz3 − z1Þ2ðz3 − z2Þ2

z21z
2
2z

2
3

�
PEðz1; z2; z3;qÞ: ðB2Þ

In the above relation, the nominator N 6ðqÞ and the denominator D6ðqÞ read

N 6ðqÞ ¼ 1þ 2q3 þ 4q4 þ 11q5 þ 33q6 þ 52q7 þ 104q8 þ 182q9 þ 307q10 þ 495q11 þ 808q12

þ 1176q13 þ 1692q14 þ 2307q15 þ 2995q16 þ 3736q17 þ 4546q18 þ 5246q19 þ 5902q20

þ 6401q21 þ 6632q22 þ 6632q23 þ 6401q24 þ 5902q25 þ 5246q26 þ 4546q27 þ 3736q28

þ 2995q29 þ 2307q30 þ 1692q31 þ 1176q32 þ 808q33 þ 808q33 þ 495q34 þ 307q35 þ 182q36

þ 104q37 þ 52q38 þ 33q39 þ 11q40 þ 4q41 þ 2q42 þ q45; ðB3Þ

and

D6ðqÞ ¼ ð1 − qÞ2ð1 − q2Þ4ð1 − q3Þ4ð1 − q4Þ5ð1 − q5Þ3ð1 − q6Þ3: ðB4Þ

Finally, the associated PL for Hilbert series can be derived using the following relation:

PL½HðqÞ�≡X∞
k¼1

μðkÞ
k

ln ½HðqkÞ�; ðB5Þ

where μðkÞ is the Möbius function [23], defined as

μðkÞ≡

8>><
>>:

0 repeated prime factors in k

1 k ¼ 1

ð−1Þn product of n distinct primes in k

: ðB6Þ
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