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We compute the density of a spin-3
2
particle, the raritron, produced at the end of inflation due to

gravitational interactions. We consider a background inflaton condensate as the source of this production,
mediated by the exchange of a graviton. This production greatly exceeds the gravitational production from
the emergent thermal bath during reheating. The relic abundance limit sets an absolute minimum mass for a
stable raritron, though there are also model-dependent constraints imposed by unitarity. We also examine
the case of gravitational production of a gravitino, taking into account the goldstino evolution during
reheating. We compare these results with conventional gravitino production mechanisms.
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I. INTRODUCTION

Any inflationary theory consists of three key compo-
nents [1]. First, it must have a prolonged period of
exponential expansion to account for the observed flat-
ness of the Universe. Second, the produced density
fluctuations should agree with the CMB measurements
of the anisotropy spectrum and tensor-to-scalar ratio [2].
Finally, the theory should incorporate a reheating phase,
resulting in a hot thermal universe. This universe should
have a minimum temperature of a few MeV to allow big
bang nucleosynthesis (BBN), and potentially even a higher
temperature nearing the TeV scale or higher, which is
necessary for baryogenesis.
Reheating is most efficient when a direct decay channel

exists for the inflaton to Standard Model (SM) fields [3,4].
Assuming that the decay products thermalize instantly and
with an inflaton potential VðϕÞ which is quadratic about its
minimum, the reheating temperature is directly related to

the inflaton decay rate, TRH ∝ ðΓϕMPÞ12, where Γϕ is the
decay rate for the inflaton, ϕ, andMP ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
≃ 2.4 ×

1018 GeV is the reduced Planck mass. The reheating
process is not instantaneous; at the end of inflation, the
inflaton decays producing a bath of relativistic particles
[5–7]. When an inflaton potential is predominantly char-
acterized by a quadratic term near its minimum, the inflaton
energy-density scales as ρϕ ∼ a−3, where a is the cosmo-
logical scale factor. The radiation density rapidly increases,
reaching a peak temperature, Tmax, which then falls until
the energy density in radiation becomes equal to that stored
in the inflaton condensate, thus defining the reheating
temperature. The reheating temperature and the scaling of
the radiation density, in principle, depend on the spin of the
final state particle and the shape of the potential near the
minimum that governs inflaton oscillations [8–10].
Once produced, the thermal bath can generate veryweakly

coupled non-SM particles that do not achieve thermal
equilibrium [11,12]. Importantly, these might include a dark
matter component. The gravitino is a classic example of such
a feebly interactingmassive particle, or FIMP [4,13–16]. For
a review and related studies, see [17–22]. The relic density of
a FIMP is determined by its thermally averaged production
cross section from the thermal bath. Consequently, the relic
abundance is sensitive to TRH or Tmax, which depends on the
form of its coupling to the SM.
In addition to the production of matter and dark matter

from the thermal bath, it is also possible to produce matter
directly from inflaton decays or scatterings in which case
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the relic density depends on the coupling of the matter to
the inflaton [6,8,23,24]. In the absence of a direct coupling
between the inflaton and dark matter, radiative decays of
the inflaton may produce a significant relic density [25,26],
provided the dark matter has a coupling to the SM particles.
When there is no direct coupling between the dark matter

and either the inflaton or SM particles, production through
gravitational interactions is always present [26–48]. These
gravitational interactions include processes that produce
dark matter either from gravitational scattering within the
thermal bath or directly from the inflaton condensate. Both
scenarios have been explored for the production of either
spin 0 or spin-1

2
particles [38] and the thermal production

with a massive spin-2 mediator was considered in [30].
The dependence on spin in gravitational production is not
immediately intuitive. However, when we represent the
gravitational interaction through the exchange of a massless
spin-2 graviton, the relationship between spin and gravity
becomes evident. The source of production is also impor-
tant. In fact, inflaton scattering can be interpreted as the
scattering of spin-0 particles at rest in the case of quadratic
potential. Using a simple helicity argument, we expect the
amplitude to be proportional to the mass of a final state
fermion. On the other hand, the conformal nature of
massless spin-1 particles also leads to the conclusion that
they cannot be produced by gravitational interactions. In
conclusion, for massless final states, only scalars can be
gravitationally produced by inflaton scattering.
In this work, we demonstrate that the production of

spin-3
2

particles is more intricate than the previously
mentioned cases. The production of a spin-3

2
dark matter

candidate from the thermal bath ψμ was considered in [49],
where this particle was called the raritron. However, to
produce such a raritron, it was necessary to introduce a
coupling ψνAμν between the raritron, the photon, and a
neutrino, implying its metastability. It is well known since
the work of [50] that coupling a spin-3

2
particle to the

electromagnetic field leads to pathologies, though these can
be addressed within the supergravity framework [51,52]. It
is important to determine whether raritrons can be produced
in a generic framework solely through gravitational inter-
actions, driven by the oscillation of the inflaton. If they are
stable, this would correspond to the minimum amount of
spin-3

2
fields still present in the Universe and contributing to

the dark sector.
The structure of this paper is as follows: In Sec. II A, we

provide a brief review of the properties of a fundamental
spin-3

2
particle. Its coupling to the graviton is discussed in

Sec. II B, while its production rate is explored in Sec. II C.
In Sec. II D, we compute the relic density generated by the
oscillations of the inflaton at the end of the inflationary
phase, mediated by graviton exchange. The gravitational
production from the thermal bath is discussed in Sec. II E.
Finally, we apply our results to one of the best-motivated
raritron models, the gravitino, in Sec. III, and discuss a

specific supergravity model in Sec. III C. In Sec. III D, we
compare our results with the standard thermal production of
gravitinos in both low-scale and high-scale supersymmetric
models. We conclude in Sec. IV, and provide some addi-
tional details of the calculations in Appendixes A, B, and C.

II. GRAVITATIONAL SPIN-32 PRODUCTION

In this section, we compute the gravitational production
of a spin-3

2
particle directly from the inflaton condensate

as well as from scatterings among Standard Model (SM)
particles in the thermal bath. In both scenarios, the inter-
action is mediated by the canonical gravitational perturba-
tion hμν, and the only distinction between the two processes
is the source fueling the production. This perturbation
arises when the space-time metric is expanded around
the flat Minkowski metric, with gμν ≃ ημν þ 2hμν=MP. This
approximation is valid during the reheating phase after the
end of inflation. Importantly, such gravitational interactions
are universal and invariably exist between the inflaton, the
thermal bath, and the spin-3

2
raritron, as depicted in Fig. 1.

A. The Rarita-Schwinger field

Naively, while looking at the table of known funda-
mental particles, we observe spin-0, spin-1

2
, spin-1, and

spin-2 fields. Naturally, one might question the absence of a
spin-3

2
fundamental particle. However, it is often claimed

that fields with spin higher than 1 exhibit pathologies. After
the 1939 paper by Fierz and Pauli [53], where they
constructed the Lagrangians for spin-3

2
and spin-2 particles,

Rarita and Schwinger proposed a more compact formu-
lation for spin-3

2
particles [54], leading to the equations of

motion

ðiγμ∂μ −m3=2Þψμ ¼ 0; γμψμ ¼ 0: ð1Þ

These equations can be obtained from the Lagrangian1

L3=2 ¼ ψ̄μðiγμρν∂ρ þm3=2γ
μνÞψν; ð2Þ

FIG. 1. Feynman diagram for the production of spin-3
2
particles

through the gravitational scattering of the inflaton condensate or
the Standard Model particle bath.

1For a derivation of (2) from Eq. (1), see for example [55].
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with

γμν ¼ 1

2
½γμ; γν� ¼ γμγν − ημν; ð3Þ

and

γμνρ ¼ γμγνγρ þ ημργν − ηνργμ − ημνγρ: ð4Þ

A stable ψμ is called a raritron and can constitute the
majority of the dark matter component of the Universe.

B. Gravitational couplings

To compute the gravitational interactions between the
raritron and the graviton, the space-time metric is expanded

around Minkowski spacetime using gμν ≃ ημν þ 2hμν
MP

. The
Lagrangian can then be written as (see e.g., [38,41,56])

ffiffiffiffiffiffi
−g

p
Lint ¼ −

1

MP
hμνðTμν

SM þ Tμν
ϕ þ Tμν

ψμÞ; ð5Þ

where SM represents Standard Model fields and ϕ is the
inflaton. The form of the canonical stress-energy tensor Tμν

i
depends on the spin of the field, with i ¼ 0; 1=2; 1; 3=2. For
the inflaton and SM fields, we take

Tμν
0 ¼ ∂

μS∂νS − gμν
�
1

2
∂
αS∂αS − VðSÞ

�
; ð6Þ

Tμν
1=2 ¼

i
4
½χ̄γμ ∂↔ν

χþ χ̄γν ∂
↔μ

χ�− gμν
�
i
2
χ̄γα ∂

↔

αχ −mχ χ̄χ

�
; ð7Þ

Tμν
1 ¼ 1

2

�
Fμ
αFνα þ Fν

αFμα −
1

2
gμνFαβFαβ

�
; ð8Þ

where VðSÞ is the scalar potential for either the inflaton

or the SM Higgs boson,2 with S ¼ ϕ; H, and A∂

↔

μB≡
A∂μB − ð∂μAÞB. Here Fμν ¼ ∂μAν − ∂νAμ is the field
strength for a vector field, Aμ. The energy-momentum
tensor for a spin-3

2
Majorana field is given by [57]3

Tμν
3=2 ¼ −

i
4
ψ̄ργ

ðμ
∂

↔νÞ
ψρ þ i

2
ψ̄ ðνγμÞ ∂

↔

ρψ
ρ þ i

2
ψ̄ργðμ ∂

↔

ρψ
νÞ;

ð9Þ

where parentheses surrounding indices indicate symmetri-
zation, defined by AðμBνÞ ≡ ðAμBν þ AνBμÞ=2. For a Dirac
spin-3=2 field instead, the right-hand side of Eq. (9) should
be multiplied by a factor of 2.

The gravitational scattering amplitudes related to the
production rate of the processes

ϕ=SMiðp1Þ þ ϕ=SMiðp2Þ → ψðp3Þ þ ψðp4Þ ð10Þ

can be parametrized by

Mi3
2 ∝ M

3
2
μνΠμνρσMi

ρσ; ð11Þ

where i ¼ 0; 1=2, 1 denotes the spin of the initial state
involved in the scattering process. Note that we are
summing over all polarizations, justifying the absence of
Lorentz indices in Eq. (10) for the raritron. Here, Πμνρσ is
the graviton propagator for the canonical field hμν with
momentum k ¼ p1 þ p2,

ΠμνρσðkÞ ¼ ημρηνσ þ ημσηνρ − ημνηρσ

2k2
: ð12Þ

The partial amplitudes, Mi
μν, can be expressed by [38]

M0
μν ¼

1

2
½p1μp2νþp1νp2μ− ημνp1 ·p2− ημνV 00ðSÞ�; ð13Þ

M
1
2
μν ¼ 1

4
v̄ðp2Þ½γμðp1 − p2Þν þ γνðp1 − p2Þμ�uðp1Þ; ð14Þ

M1
μν ¼

1

2
½ϵ�2 · ϵ1ðp1μp2νþp1νp2μÞ

− ϵ�2 ·p1ðp2μϵ1νþ ϵ1μp2νÞ− ϵ1 ·p2ðp1νϵ
�
2μþp1μϵ

�
2νÞ

þp1 ·p2ðϵ1μϵ�2νþ ϵ1νϵ
�
2μÞ

þ ημνðϵ�2 ·p1ϵ1 ·p2−p1 ·p2ϵ
�
2 · ϵ1Þ�; ð15Þ

where the masses of the SM fermions and vector fields have
been neglected. The partial amplitude for the Majorana
spin-3

2
field ψμ is given by

M
3
2
μν ¼ 1

4
½v̄αðp4Þγðμðp3 − p4ÞνÞuαðp3Þ

− 2v̄αðp4Þγðμðp3 − p4ÞαuνÞðp3Þ
− 2v̄ðνðp4ÞγμÞðp3 − p4Þαuαðp3Þ�; ð16Þ

where we defined ψμðpÞ ¼ uμðpÞe−ipx. In this section, we
do not rely on any specific model of inflation and keep our
discussion as general as possible. Any model satisfying the
constraints on the slow-roll parameters as imposed by
Planck data [2] will suffice, provided there is a well-defined
minimum and the potential can be expanded as VðϕÞ ≃
λϕk=Mk−4

P around this minimum. For example, both the
Starobinsky model [58] and α-attractor-type models [59]
are sufficient.
We consider two distinct processes illustrated by the

Feynman diagram in Fig. 1:

2In our calculations, we considered real scalar fields with H
corresponding to 4 degrees of freedom.

3See Appendix A for a detailed derivation and discussion
of Tμν

3=2.

GRAVITATIONAL PRODUCTION OF SPIN-3=2 PARTICLES … PHYS. REV. D 108, 115027 (2023)

115027-3



(i) The production of raritrons from the inflaton
ϕþ ϕ → ψ þ ψ . In the case of a quadratic potential,
the inflaton behaves like a massive particle at rest,4

with four-momentum p1;2. Its partial amplitude is
then directly given by Eq. (13). However, for a
generic potential VðϕÞ, we need to use the zero
mode of the inflaton condensate that is valid for any
arbitrary minimum (see below and [41] for a detailed
discussion).

(ii) The production from the thermal background,
SMþ SM → ψ þ ψ , which uses Eqs. (6)–(8) for
SM particles on the right-hand side of Eq. (11). In
the following subsection, we compute the full
scattering amplitudes for both channels and deter-
mine the gravitational production rate of the raritron.

C. Gravitational production
from the inflaton condensate

We begin by examining the gravitational production of
the raritron from the inflaton condensate. Although particle
production occurs throughout the reheating process, the
dominant source of energy density emerges at the onset of
oscillations after inflation, when the oscillation amplitude
peaks. Notably, despite the gravitational production process
being Planck-suppressed, the inflaton condensate scattering
continues to be a substantial source of particle production,
particularly at the beginning of the reheating process, when
its energy density is very large.

1. Quadratic potential minimum

We consider the case with a quadratic minimum first,
with VðϕÞ ≃ 1

2
m2

ϕϕ
2. In this case, the rate computation is

straightforward. We evaluate the square of the matrix
element in Eq. (11) using M0

ρσ for the inflaton incoming
state. We assume for the inflaton condensate that the
incoming inflaton momentum vanishes, p1;2 ¼ 0, and
compute jM03

2j2 using the spinor sums [60,61]

Pab ¼
Xþ3=2

s¼−3=2
uaðp; sÞūbðp; sÞ ¼ ðpþm3=2Þ

×

�
ηab −

1

3
γaγb −

2

3

papb

m2
3=2

þ paγb − pbγa
3m3=2

�
; ð17Þ

and

Qab ¼
Xþ3=2

s¼−3=2
vaðp; sÞv̄bðp; sÞ ¼ ðp −m3=2Þ

×

�
ηab −

1

3
γaγb −

2

3

papb

m2
3=2

−
paγb − pbγa

3m3=2

�
: ð18Þ

Using the above expressions, we find that the total
matrix element squared is given by Eq. (B3) shown in
Appendix B. For the inflaton condensate, this expression
can be simplified significantly by writing t ¼ m2

3=2 −m2
ϕ

and s ¼ 4m2
ϕ, and the matrix element squared (B3)

becomes

jMj2 ¼ m4
ϕs

18M4
Pm

2
3=2

�
1 −

4m2
3=2

s

��
1 −

6m2
3=2

s
þ 18m4

3=2

s2

�

¼ 2

9

m6
ϕ

m2
3=2M

4
P

�
1 −

m2
3=2

m2
ϕ

��
1 −

3

2

m2
3=2

m2
ϕ

þ 9

8

m4
3=2

m4
ϕ

�
:

ð19Þ

The production rate, Rϕk
, for a quadratic minimum with

k ¼ 2, can be written as [55]

Rϕ2 ¼ n2ϕhσvi ¼
ρ2ϕ
m2

ϕ

jMj2
32πm2

ϕ

p3

mϕ
; ð20Þ

where p3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ −m2
3=2

q
, and if we use the matrix element

squared (19), we find

Rϕ2 ¼ 2 × ρ2ϕ
288πM4

P

�
τ−1 −

3

2
þ 9

8
τ

�
ð1 − τÞ3=2; ð21Þ

with τ ¼ m2
3=2=m

2
ϕ. The factor of 2 explicitly accounts for

the fact that two raritrons are produced by annihilation.5

Before extending our result to a more general potential
VðϕÞ, we would like to make a few comments regarding
Eq. (21). The massive raritron could have been considered,
naively, as a Clebsch-Gordan decomposition of a massive
spin-1 boson and a spin-1

2
fermion, which is manifestly not

the case when we look at the limit τ → 0 of Eq. (21).
Indeed, we would expect no production of massless
fermions, due to helicity conservation [33], and no diver-
gences are expected for the production of a massless vector
field [34]. This reflects the inherent pathology of theories
with spin > 1, implying that we should treat with care the
unitarity constraints when we analyze the bounds on m3=2.

2. General potentials

Gravitational particle production from the inflaton con-
densate naturally depends on the shape of the potential. We
extend our discussion and consider a more general potential
which about its minimum is of the form

4Up to some symmetry factors, see [33,38].

5We note that in Appendix B, we provide the amplitude in the
case of scalar scattering, which yields a rate which is larger by a
factor of 2 compared to inflaton scattering when considering a
condensate ϕ.
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VðϕÞ ¼ λ
ϕk

Mk−4
P

; ϕ ≪ MP: ð22Þ

We parametrize the time-dependent oscillating inflaton
field as

ϕðtÞ ¼ ϕ0ðtÞ · PðtÞ; ð23Þ

where ϕ0ðtÞ is the time-dependent envelope that includes
the effects of redshift and PðtÞ describes the periodicity
of the oscillation. Then for a potential of the form (22), we
can write VðϕÞ ¼ Vðϕ0Þ · PðtÞk and expand the potential
energy in terms of its Fourier modes [9,62,63]

VðϕÞ ¼ Vðϕ0Þ
X∞
n¼−∞

Pk;ne−inωt ¼ hρϕi
X∞
n¼−∞

Pk;ne−inωt;

ð24Þ

where ω is the frequency of oscillation of ϕ, given by [9]

ω ¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk

2ðk − 1Þ

s
Γð1

2
þ 1

kÞ
Γð1kÞ

; ð25Þ

with m2
ϕ ¼ ∂

2V=∂ϕ2jϕ0
,

PðtÞk ¼
X∞
n¼−∞

Pk;ne−inωt; ð26Þ

and hρϕi is the mean energy density averaged over the
oscillations.
To compute the inflaton condensate scattering rate, we

follow the treatment presented in Appendix C. We find that
the raritron production rate is given by

Rϕk ¼ 2 × ρ2ϕ
72πM4

P
Σk
3=2; ð27Þ

where

Σk
3=2 ¼

Xþ∞

n¼1

jPk;nj2
E2
n

m2
3=2

�
1 − 6

m2
3=2

E2
n

þ 18
m4

3=2

E4
n

�

×

�
1 −

4m2
3=2

E2
n

�3=2
: ð28Þ

Here the superscript k corresponds to the type of potential
minimum VðϕÞ ∼ ϕk ∼ Pk, En ¼ nω is the energy of the
nth mode of the inflaton oscillation, and m3=2 is the
produced raritron mass. In the quadratic case, where
ω ¼ mϕ [see Eq. (25)] and PðtÞ2 ¼ cos2ðmϕtÞ ¼ 1

2
þ

1
4
ðe−2mϕt þ e2mϕtÞ, since

P jP2;nj2 ¼ jP2;2j2 ¼ 1
16
, only

the second mode in the Fourier expansion contributes to

the sum. Taking E2 ¼ 2mϕ, we find that the rate (27)
reduces to Eq. (20).
We also consider separately the production of the� 1

2
and

� 3
2
helicity components. One can express the spin-3

2

polarization vector as a direct product of spin-1 and
spin-1

2
polarization vectors. We introduce the following

spin-3
2
Clebsch-Gordan decomposition for the spinor6

uμ�3=2ðpÞ ¼ ϵμ�ðpÞu�1=2ðpÞ; ð29Þ

uμ�1=2ðpÞ¼
ffiffiffi
2

3

r
ϵμ0ðpÞu�1=2ðpÞþ

1ffiffiffi
3

p ϵμ�ðpÞu∓1=2ðpÞ; ð30Þ

vμ�3=2ðpÞ ¼ ϵμ�� ðpÞv�1=2ðpÞ; ð31Þ

vμ�1=2ðpÞ ¼
ffiffiffi
2

3

r
ϵμ�0 ðpÞv�1=2ðpÞ þ

1ffiffiffi
3

p ϵμ�� ðpÞv∓1=2ðpÞ:

ð32Þ

We find that the raritron production rate (27) can be
decomposed as

Rϕk ¼ 2 × ρ2ϕ
72πM4

P
ðΣk

3=2;3=2 þ Σk
3=2;1=2Þ; ð33Þ

where the transverse spin � 3
2
contribution is given by

Σk
3=2;3=2 ¼

Xþ∞

n¼1

jPk;nj2
E2
n

m2
3=2

×

�
9
m4

3=2

E4
n

��
1 −

4m2
3=2

E2
n

�3=2
;

ð34Þ

and the longitudinal spin � 1
2
contribution is

Σk
3=2;1=2¼

Xþ∞

n¼1

jPk;nj2
E2
n

m2
3=2

×

�
1−3

m2
3=2

E2
n

�2�
1−

4m2
3=2

E2
n

�3=2
:

ð35Þ

We note that the sum of transverse and longitudinal com-
ponents satisfy Eq. (28), with Σk

3=2 ¼ Σk
3=2;3=2 þ Σk

3=2;1=2.
Returning to the pathology of the limitm3=2 → 0 (τ → 0)

discussed above, we observe that the transverse compo-
nents � 3

2
are not produced for m3=2 ¼ 0. These compo-

nents correspond to a direct composition between a spin-1
2

fermion and the transverse components of a spin-1, as
we can see in Eqs. (29) and (31). As these transverse
components are not gravitationally produced for massless
particles [33], it stands to reason that their production rate

6As a side comment, from this decomposition, one can also
derive the spinor-helicity formalism for massive spin-3=2 fields,
and compute helicity amplitudes. See for example [64].
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vanishes in the massless limit for a spin-3
2
particle as well. In

other words, the transverse modes are expected to be highly
suppressed for light raritron, relative to the longitudinal
mode which is enhanced and could be considered as the
goldstino in a gauged framework.
In Fig. 2, we plot separately the longitudinal and trans-

verse components for k ¼ 2. We clearly see the effect we
have just described; the transverse mode is always pro-
duced in negligible quantities compared with the longi-
tudinal mode, except in the limit where the mass of the
raritron is of the order of the fundamental modem3=2 ≃mϕ.
The slopes for masses m3=2 ≲mϕ, keeping only the first
Fourier mode as an approximation, gives R�3=2 ∝ m2

3=2 and

R�1=2 ∝ m−2
3=2 and do not depend on k. The absolute value

of the rates depends on the Fourier coefficients Pn;k which
themselves become very similar for large values of k, hence
we do not expect big differences for larger values of k.

D. Relic abundance calculation

Given the production rate, we next compute the abun-
dance of raritrons from the Boltzmann equation,

dn
dt

þ 3Hn ¼ Rϕk
; ð36Þ

where H ¼ ȧ
a is the Hubble parameter. It is convenient to

rewrite the Boltzmann equation in terms of the scale factor,

dY
da

¼ a2Rϕk

H
; ð37Þ

where Y ≡ a3n. To integrate this expression we need to
include the dependence HðaÞ with

HðaÞ ¼ ρ
1
2

ϕðaÞffiffiffi
3

p
MP

: ð38Þ

The conservation of energy for the inflaton field imposes

dρϕ
dt

þ 3ð1þ wÞHρϕ ¼ Ha

�
dρϕ
da

þ 3ð1þ wÞ ρϕ
a

�
¼ ð1þ wÞΓϕρϕ; ð39Þ

whose solution is, for Γϕ ≪ H

ρϕðaÞ ¼ ρend

�
aend
a

� 6k
kþ2 ¼ ρRH

�
aRH
a

� 6k
kþ2

: ð40Þ

In these expressions, aend is thevalue of the scale factor when
accelerated expansion (inflation) ends, ρend¼ρϕðaendÞ, aRH
is the scale factor when ρRðaRHÞ ¼ ρϕðaRHÞ, defining the
moment of reheating. The Boltzmann equation (37) then
becomes

dY
da

¼
ffiffiffi
3

p
MPffiffiffiffiffiffiffiffi
ρRH

p a2
�

a
aRH

� 3k
kþ2

RϕkðaÞ: ð41Þ

Restricting our attention to the case k ¼ 2, we have
ρϕ ∼ a−3, ρR ∼ T4 ∼ a−3=2, with m2

ϕ ¼ 2λM2
P. The

Boltzmann equation becomes

dY
da

¼
ffiffiffi
3

p
MPffiffiffiffiffiffiffiffi
ρRH

p a2
�

a
aRH

�3
2

Rϕ2ðaÞ; ð42Þ

where Rϕ2ðaÞ is given by Eq. (21). Equation (42) is easily
integrated to give

nðaRHÞ ¼
1

72
ffiffiffi
3

p
πMP

�
ρend
M4

P

�1
2

αT4
RH

×

�
τ−1 −

3

2
þ 9

8
τ

�
ð1 − τÞ3=2; ð43Þ

where we assumed that aRH ≫ aend and α is defined by

ρR ¼ gTπ2

30
T4 ≡ αT4: ð44Þ

Using [55]

Ωh2 ≃ 1.6 × 108
g0
gRH

nðTRHÞ
T3
RH

m3=2

1 GeV
; ð45Þ

we then obtain

Ωh2 ≃ 3 × 109
�

TRH

1010 GeV

��
ρend

ð5.2 × 1015 GeVÞ4
�1

2

×

�
mϕ

1.7 × 1013 GeV

�
2
�
EeV
m3=2

�
; ð46Þ

FIG. 2. Longitudinal and transverse raritron production rates
for k ¼ 2 in the units of R ×M4

P=ρ
2
ϕ as a function of

τ ¼ m2
3=2=m

2
ϕ. As can be seen from the figure, the raritron

production is completely dominated by the longitudinal compo-
nent, which contains a factor τ−1.
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where we take g0 ¼ 43=11 and gRH ¼ 427=4, and assume
m3=2 ≪ mϕ, and values of mϕ and ρend are normalized for
an α-attractor model of inflation with k ¼ 2, though there
is some additional dependence on TRH for these quan-
tities [8,38,65].
As one can see, the gravitational production of raritrons

is extremely efficient, much more efficient than the
production of scalars, spin-1

2
fermions, or vectors [33].

As a consequence, stable raritrons are only possible if either
TRH is quite low (of order the weak scale or below) or
m3=2 ≃mϕ. This can be seen in Fig. 3 where the red curve
shows the values of m3=2 and TRH such that Ωh2 ¼ 0.12
from Eq. (46). To remain consistent with big bang
nucleosynthesis, TRH ≳ 2 MeV, which implies that raritron
dark matter is heavier than ≳6 PeV. This unavoidable
(because it is produced gravitationally) minimal mass for
the raritron is one of the main results of our work.
Using Eqs. (33) and (35), it is possible to separate out

the contributions of the transverse and longitudinal con-
tributions to Ω3

2
. For the transverse contribution for k ¼ 2

we have

n3
2
ðaRHÞ ¼

1

128
ffiffiffi
3

p
πMP

�
ρend
M4

P

�1
2

αT4
RHτð1 − τÞ32; ð47Þ

and

Ω3
2
h2 ≃ 2 × 10−8

�
TRH

1010 GeV

��
ρend

ð5.2 × 1015 GeVÞ4
�1

2

×

�
1.7 × 1013 GeV

mϕ

�
2
�
m3=2

EeV

�
3

: ð48Þ

As expected and discussed previously, the gravitational
production of the transverse mode is completely negligible.

Similarly, we can compute the longitudinal contribution

n1
2
ðaRHÞ ¼

1

72π
ffiffiffi
3

p
MP

�
ρend
M4

P

�1
2

αT4
RH

×
�
τ−1 −

3

2
þ 9

16
τ

�
ð1 − τÞ3=2; ð49Þ

which for m3=2 ≪ mϕ, gives the result in Eq. (46) for Ω1
2
h2

since the production of raritrons is completely dominated
by the longitudinal component which carries the factor
of τ−1.
At this point it is important to note that for “low” values

of τ, we may run into a problem with unitarity. The
amplitude in Eq. (19) becomes of order unity when
m3=2 ≲ 1 TeV. However, raritron scattering ψμψμ →
hμν → ψμψμ is further enhanced, and we estimate that its
amplitude scales as jMj2 ∝ m4

ϕ=ðM4
Pτ

4Þ, which would
exceed unity when m3=2 ≲ 40 EeV!7 This would allow
reheating temperatures TRH ≳ 10 GeV.
In addition to problems with unitarity, low-mass raritrons

are produced with low and potentially vanishing sound
speeds [67]. The gravitational production of raritrons was
calculated by solving the mode function with Bunch-
Davies initial conditions.8 Indeed, in [67], it was argued
that sound speed vanishes whenever m3=2 ≲ 0.39HðaendÞ.
In the models considered here, HðaendÞ ≃ 0.4mϕ and
thus the sound speed vanishes when τ < 0.02 or when
m3=2 < 2.5 × 1012 GeV. As a consequence, the spectral
densities continue to rise as the cube of the wavenumber
without bound, leading to potentially “catastrophic” pro-
duction. In contrast, for larger raritron masses, the spectral
density turns over and peaks for wave numbers of order a
few HðaendÞ. However it is difficult to compare this result
with our own given in Eqs. (43) and (46). While we have
neglected the effects of curvature in Tμν, we estimate that
this may change our result by factors of order unity, while
still neglecting the effects for vanishing sound speed. To
determine the total number density or the relic density of
raritrons from the approach using mode functions, one must
specify an ultraviolet cutoff, Λ, and integrate the spectral
density up to that cutoff. As the density scales as the Λ3, it
is not immediately clear that a vanishing sound speed leads
to an over-density of raritrons.

FIG. 3. Contours ofΩcondh2 ¼ 0.12 (red) andΩthermalh2 ¼ 0.12
(blue) in the ðm3=2; TRHÞ plane.

7We consider here a nonsupersymmetric theory where the
spin-3

2
Lagrangian is given by (2). When supersymmetry is

introduced, an additional contribution to raritron scattering arises
from the four-Fermi coupling, which cancels the most divergent
term in the amplitude, leading to jMj2 ∝ m4

ϕ=ðM4
Pτ

2Þ [66]. In
this case, unitarity is violated when m3=2 ≲ 0.1 EeV.

8The production of scalars using mode functions was recently
compared [46] to the perturbative production [33,38], and the two
were found to be comparable so long as the low momentum
modes are suppressed, e.g., due to self-interactions or the
conformal coupling to the scalar curvature.
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Finally, we can also generalize this result to cases when
k ≠ 2. We find that the number density can be expressed as

nðaRHÞ ¼
ðkþ 2Þ
ðk − 1Þ

ρ3=2RH

72
ffiffiffi
3

p
πM3

P

�
ρend
ρRH

�
1−1

k

Σk
3=2; ð50Þ

and the dark matter abundance becomes

Ωh2 ≃ 2.2 × 105
ðkþ 2Þ
ðk − 1Þ

�
ρend
ρRH

�
1−1

k ρ3=4RH

M3
P

m3=2

1 GeV
Σk
3=2: ð51Þ

As expected, for k ¼ 2 this expression reduces to Eq. (46).

E. Gravitational production of raritrons
from the thermal bath

The production of raritron dark matter from the thermal
bath is also possible. The scattering of SM particles
includes the Higgs scalars, gauge bosons, and fermions
in the initial state. Since the initial particle momenta p1 and
p2 are large (of ordermϕ) at the beginning of reheating and
dominate over electroweak-scale quantities, we assume that
the initial particle states are massless.
For the Higgs initial state we can use Eq. (B3) with the

association ϕ → h and set mϕ ¼ 0 (i.e., we neglect the
Higgs mass, and all SM masses relative to the reheating
temperature in the thermal bath). In this case, Eq. (B3)
reduces to

jM0j2¼ 1

72m4
3=2M

4
Ps

2
½−s2tðsþ tÞðsþ2tÞ2−72m12

3=2

þ24m10
3=2ð7sþ12tÞ−2m8

3=2ð47s2þ264stþ216t2Þ
þm6

3=2ð−2s3þ244s2tþ576st2þ288t3Þ
þm4

3=2ðs4−34s3t−210s2t2−240st3−72t4Þ
þm2

3=2sðs4þ6s3tþ44s2t2þ64st3þ24t4Þ�: ð52Þ

In addition to the production of raritrons from a Higgs
initial state, other SM particles in thermal bath will also
lead to raritron production. The amplitudes for massless
fermion and gauge boson initial states are given in
Eqs. (B5) and (B6), respectively.
The dark matter production rate RðTÞ for the SMþ

SM → ψ þ ψ process with amplitude M is given by
[24,55,68]9

RðTÞ ¼ 2

1024π6
×
Z

f1f2E1dE1E2dE2d cos θ12

×
Z

jM̄j2dΩ13; ð53Þ

where we assumed that s ≫ 4m2
3=2, and the factor of two

accounts for two raritrons produced per scattering, Ei
denotes the energy of particle i ¼ 1, 2, 3, 4. θ13, and
θ12 are the angles formed by momenta p1;3 (in the center-
of-mass frame) and p1;2 (in the laboratory frame), respec-
tively. The infinitesimal solid angle in the above integral is
then dΩ13 ¼ 2πd cos θ13. In addition,

fi ¼
1

eEi=T � 1
; ð54Þ

represents the assumed thermal distributions of the incom-
ing SM particles.
The total amplitude squared for the gravitational scatter-

ing process SMþ SM → ψ þ ψ is given by a sum of the
three amplitudes associated with three different SM initial-
state spins,

jM̄j2 ¼ 4jM̄0j2 þ 45jM̄1=2j2 þ 12jM̄1j2: ð55Þ

Using this amplitude and performing the thermal integra-
tion in Eq. (53), we find that the raritron production rate can
be parametrized by

RT
3
2

¼ R3
2
ðTÞ ¼ β1

T12

m4
3=2M

4
P
þ β2

T10

m2
3=2M

4
P

þ β3
T8

M4
P
þ β4

m2
3=2T

6

M4
P

þ β5
m4

3=2T
4

M4
P

; ð56Þ

where the numerical coefficients together with the details of
the computation are given in Appendix B.
The gravitational scattering within the thermal plasma

produces the raritrons. We focus on the case k ¼ 2 and
show that the thermal production rate is strongly sub-
dominant compared to the production from the inflaton
condensate. Following the same steps as in the previous
subsection, we replace the rate in Eq. (41) by the thermal
raritron production rate (56). After expressing the temper-
ature as function of the scale factor by solving

dρR
da

þ 4
ρR
a

¼ Γϕρϕ
Ha

; ð57Þ

we find that the thermally-produced number density is
given by

nTðTRHÞ ¼
2β1
α3

ffiffiffi
3

p
ρ5=2RH

m4
3=2M

3
P
ln

� ffiffiffiffiffiffiffiffi
ρend

pffiffiffi
α

p
T2
RH

�

þ 4β2ffiffiffi
3

p
α5=2

ρ2RH
m2

3=2M
3
P
þ 2β3ffiffiffi

3
p ρ3=2RH

M3
P

þ 4β4
3
ffiffiffi
3

p
α3=2

ρRHm2
3=2

M3
P

þ β5ffiffiffi
3

p
α

ffiffiffiffiffiffiffiffi
ρRH

p
m4

3=2

M3
P

: ð58Þ9We note that we include the symmetry factors associated with
identical initial and final states in the squared amplitude, jM̄j2.
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We note that in our computation, we assumed that
4m2

3=2 ≪ s, where s ¼ ðp1 þ p2Þ2, which would approx-
imately correspond to m3=2 ≲ TRH, and we integrated
Eq. (41) between aend and aRH.

10 Moreover, since β1 ≃
3.6 is greater than βi¼2…5, the first term dominates the
production process for m3

2
< TRH.

Using Eq. (45) for the relic abundance, we obtain

ΩTh2 ¼ 5.9 × 106
nTðTRHÞ
T3
RH

m3=2

1 GeV

≃ 3.6 × 10−5
�

TRH

1010 GeV

�
7
�
12þ ln

�
1010 GeV

TRH

��

×

�
EeV
m3=2

�
3

; ð59Þ

where, in the approximation, we considered only the first
term in Eq. (58). In Fig. 3, we show in blue the constraint
on the relic abundance in the ðm3=2; TRHÞ plane from
raritrons produced gravitationally from the thermal plasma.
As expected, the relic density generated by the thermal
source is negligible compared with that generated by
inflaton oscillations in all of the parameter space. This
result is also valid for k > 2.

III. GRAVITINO DARK MATTER

The cosmological production of gravitinos has been a
constant source of potential cosmological problems due
to its over-production. Standard thermal production (dis-
cussed briefly in Sec. III D below) sets upper limits to the
reheating temperature after inflation [4,6,13–15,23,69,70].
There is also a nonthermal contribution to gravitino pro-
duction when supersymmetry is broken during inflation
[70–76]. In these cases, as we will see below, it is the
goldstino which is produced (i.e., the longitudinal compo-
nent, rather than the transverse component), and this is
typically the inflatino (the superpartner of the inflaton)
during and immediately after inflation. Indeed it was
argued that the longitudinal component of the gravitino
at low energy may be unrelated to the inflatino produced
after inflation [74,75]. Whether or not the production of
inflatinos is problematic is a model-dependent question and
inflatino production may even be kinematically suppressed
[77]. Nonthermal production may also occur if the grav-
itino sound speed vanishes [67,78–80]. However in this
case, unless the models are constrained by eliminating the
pseudoscalar, fermionic, and auxiliary components of the
inflaton, no catastrophic production occurs [81–83].
In the remainder of this section, we consider first toy

models involving two Majorana fermions coupled to the

inflaton. This is a (highly) simplified example of the
inflaton coupling to the gravitino and inflatino. In this
case, as in the nonthermal production of the raritron, the
longitudinal component of the gravitino may be easily
overproduced. However, as we just alluded, the produced
state may not be the longitudinal component of the
gravitino at low energy. Finally, we consider a specific
model of inflation and supersymmetry breaking. If reheat-
ing is prolonged, the gravitino may be produced though
with a suppressed abundance.

A. Toy models

In the previous section, we considered the gravitational
production of raritrons from the inflaton condensate and
thermal bath. As we have seen in Fig. 3, the production
from the condensate is dominant, and from Fig. 2, we see
that the production of the longitudinal (spin-1

2
) component

dominates over the transverse (spin-3
2
) component, particu-

larly at low masses. In addition, as we will be interested in
the production of gravitinos from the inflaton condensate as
a concrete example in the next subsection, we would like to
consider a toy model (not based on supergravity) which
couples two spin-1

2
Majorana fields, ψ and χ, to the inflaton.

We will consider the production of ψ through χ-exchange
having in mind the production of a goldstino through
inflatino exchange when considering the supersymmetric
analog.
The toy model assumes a Yukawa coupling of the form

Lint ¼ −yϕχ̄ψ þ H:c:; ð60Þ

and a direct coupling of the inflaton to a pair of ψ ’s is
absent. We further assume mχ > mϕ > mψ in our setup, so
a direct decay of ϕ → χψ is not allowed kinematically. The
coherent oscillation of ϕ during reheating can however still
produce ψ through ϕϕ → ψψ by exchanging χ, whose
diagrams are shown in Fig. 4.
As in the case of raritron production in the previous

section, the abundance of ψ can be obtained by integrating
the Boltzmann equation given the production rate
Γϕϕ→ψψρϕ=mϕ

RðtÞ ¼ 2 × y4

π

ρ2ϕ
m4

ϕ

τψ ð1 − τψÞ3=2
ð1þ τχ − τψ Þ2

; ð61Þ

where τi ≡m2
i =m

2
ϕ. As for previous rates, the factor of 2 in

the numerator explicitly accounts for the fact that two ψ’s
are produced per reaction. Using this rate, the Boltzmann
equation (41) can be integrated to give

nðaRHÞ ¼
4y4M3

Pffiffiffi
3

p
πm4

ϕ

�
ρend
M4

P

�1
2

αT4
RH

τψ ð1 − τψÞ3=2
ð1þ τχ − τψ Þ2

; ð62Þ

and

10As discussed below, when TRH < m3=2, the integration is
limited between aend and a3=2, where the latter corresponds to the
scale factor when T ¼ m3=2.
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Ωψh2 ≃ 0.12y4
�

TRH

1010 GeV

��
1.7 × 1013 GeV

mϕ

�
2
�

ρend
ð5.2 × 1015 GeVÞ4

�1
2

�
1014 GeV

mχ

�
4
�

mψ

33 TeV

�
3

; ð63Þ

wherewe have taken the limit thatmχ ≫ mϕ ≫ mψ . Figure 5
shows the parameter space satisfying Ωψh2 ¼ 0.12 with
y¼1, mϕ¼1.7×1013GeV, and ρend¼ð5.2×1015GeVÞ4.
The results for this toy model is shown by the red lines with
mχ=mϕ ¼ 1 (solid) and mχ=mϕ ¼ 10 (dot-dashed). Indeed,
because of the helicity suppression, the relic density of ψ
scales as m3

ψ as opposed to m−1
3=2 and hence we see very

different behaviors when comparing the results in Fig. 3 and
Fig. 5. For example, using the normalizations in Eq. (63),
mχ=mϕ ≈ 5.9 and y ¼ 1, the spin-1

2
fermion will provide the

correct relic density when mψ ≃ 33 TeV. One further sees
that rather than adivergence at smallmψ , the relic densitygoes
to 0, in this limit. This can be easily understood on the basis of
helicity conservation.

We can also consider a similar toy model which matches
more closely the supergravity couplings of the gravitino
longitudinal mode. This simple Lagrangian can bewritten as

Lint ¼ − y
MP

∂μϕχ̄γ
μψ þ H:c: ð64Þ

Repeating the above exercise to calculate the production rate
of ψ , we find

RðtÞ ¼ 2 × y4

π

ρ2ϕ
M4

P

τψð1 − τψ Þ3=2
ð1þ τχ − τψÞ2

; ð65Þ

which is suppressed relative to the rate in Eq. (61) by a factor
of ðmϕ=MPÞ4. The integration of the ratewill be identical and
the number density of ψ ’s in Eq. (62) will be suppressed by
the same factor. As a result, the mass needed to achieve
Ωψh2 ¼ 0.12 is significantly larger, mψ ≃ 2.4 × 1011 GeV.
The relation betweenTRH andmψ for the derivatively coupled
toy model is also shown in Fig. 5 (blue lines). As one can
clearly see, the derivative coupling leading to the suppression
requires a significantly larger mass,mψ for a given reheating
temperature in order to achieve the same relic density.

B. Inflatino exchange

We next turn to the example of the gravitino in super-
gravity models. When supergravity models of inflation are
considered, a gravitino (ψμ) generally couples to the
inflaton (Φ) and the inflatino (χ) through the following
terms:

Lint ¼ −
iffiffiffi
2

p
MP

½ð∂μΦÞ�ψ̄νγ
μγνPLχ − ð∂μΦÞχ̄PRγ

νγμψν�:

ð66Þ
In the following argument, we assume that the imaginary
part of Φ is strongly stabilized, and the canonically-
normalized real part ϕ≡ ffiffiffi

2
p

ReΦ is oscillating with an
inflaton potential VðϕÞ after the end of inflation.

FIG. 4. Feynman diagrams of the dark matter production processes.

FIG. 5. The ðmψ ; TRHÞ plane showing lines for Ωψh2 ¼ 0.12
with mχ=mϕ ¼ 1 and 10 as labeled as well as y ¼ 1,
mϕ ¼ 1.7 × 1013 GeV, and ρend ¼ ð5.2 × 1015 GeVÞ4. The red
lines correspond to the relic density obtained from Eq. (63) which
was derived from the Lagrangian in Eq. (60) (without the
assumption τχ ≫ 1). The blue lines show the analogous result
derived from the Lagrangian (64).
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In addition to the gravitational production of gravitinos
discussed previously, a pair of gravitinos can also be
produced from inflaton condensate via inflatino exchange.
There are both the t- and u-channels shown in Fig. 4 with
the replacement of ψ → ψμ. Here, we are making the
(naive) assumption, that the supersymmetry breaking sector
is distinct from the inflationary sector and that the inflaton
does not break supersymmetry. In this case, the goldstino
(or spin-1

2
component of the gravitino) is distinct from the

inflatino. We return to a more realistic example in the next
section. In the Boltzmann equation, the production rate
RðtÞ is computed as

RðtÞ ¼ 2ρ2ϕ
9πM4

P

ð1 − τ3=2Þ7=2
τ3=2ð1þ τχ − τ3=2Þ2

; ð67Þ

where we have assumed k ¼ 2. Note that as discussed in
Appendix C, only the spin-1

2
component of ψμ is produced.

Details of the computation of the production rate are also
given in Appendix C. It is also interesting to see, by
comparing Eqs. (61) and (67), that the production of the
longitudinal component of ψμ (the spin-

1
2
part) is enhanced

∝ m−4
3=2 for light gravitino compared to the production of a

spin-1
2
fermion (61) for reasons similar to those invokedwhen

discussing the gravitational production of the raritrons.11

With this rate, the number density of gravitinos is
obtained by solving Eq. (41),

nðaRHÞ ¼
4

9
ffiffiffi
3

p
πMP

�
ρend
M4

P

�1
2

αT4
RH

ð1 − τ3=2Þ7=2
τ3=2ð1þ τχ − τ3=2Þ2

:

ð68Þ

When τχ ≃ 1, and τ3=2 ≪ 1, this number density is roughly
eight times larger than that from graviton exchange given in
Eq. (43). It should not be surprising that the two results (43)
and (68) are so similar, since the exchange of a graviton
involves couplings of the order ∂μ=MP generated by terms
of the type Tμν=MP, which have exactly the same form as
the couplings between the inflaton, the inflatino and
gravitino given in Eq. (66). Only the graviton propagator
differs from the inflatino propagator, but only in its
structure, not in its order of magnitude.
The relic gravitino abundance can be then estimated by

using Eq. (45)

Ωh2 ≃ 2.4 × 1010
�

TRH

1010 GeV

��
ρend

ð5.2 × 1015 GeVÞ4
�1

2

×

�
mϕ

1.7 × 1013 GeV

�
2
�
EeV
m3=2

�
; ð69Þ

which is, as expected, about 8 times larger than Eq. (46).
Furthermore as we saw previously this abundance is highly
dominated by the spin-1

2
component. However, as we

stressed earlier, this result ignores any contribution to
supersymmetry breaking from the inflaton sector and
any possible mixing between the spin-1

2
partner of the

inflation, the inflatino, and the partner of the scalar
associated with supersymmetry breaking in the vacuum.

C. Specific supergravity model

Let us now consider a more realistic example, in which
the identity of the goldstino evolves during the reheating
process [81,84]. To be more specific, we consider a model
based on no-scale supergravity [85]. The Kähler potential
can be written as

K ¼ −3 ln
�
Φþ Φ̄ −

1

3
ðjSj2 þ jzj2Þ þ gðS; S̄Þ þ hðz; z̄Þ

�
:

ð70Þ

The inflaton, ϕ, is the real part of the canonically

normalized field, Φ ≃ 1
2
e
ffiffiffiffiffiffi
2=3

p
ϕ [up to a small correction

of order μ2 (defined below)]. The matterlike field S and
Polonyi field z are stabilized by gðS; S̄Þ ¼ jSj4=Λ2

S and
hðz; z̄Þ ¼ jzj4=Λ2

z [84,86–95]. The inflaton can decay into
gauge bosons and gauginos if the gauge kinetic function
depends on the inflaton field value [88,93,95–98]. Barring
a direct superpotential coupling of the inflaton to SM fields,
this is the dominant decay mechanism in low-scale super-
symmetric models. In models of high-scale supersymmetry,
the inflaton decays predominately into a pair of the SM
Higgs bosons [25,84,91,93,99]. The choice of the inflaton
sector superpotential [100]

Winf ¼
ffiffiffi
3

p
mϕSðΦ − 1=2Þ ð71Þ

gives the Starobinsky-like inflaton potential [92,101,102],
and the inflaton energy density at the end of infla-
tion becomes ρend ¼ 0.175m2

ϕM
2
P with mϕ ¼ 3× 1013 GeV

[23,103]. The inflatino is nearly degenerate in mass with
inflaton. The scalar and fermionic components of S are also
nearly degenerate with the inflaton [84] (note that ΛS does
not affect the spectrum at leading order).
One should, however, be careful about the time depend-

ence of the mixing in the goldstino mode. The goldstino
in a nonstatic background is given by [75] ν ¼ GIχ

I þ
=∂ϕIχ

jGI
J, where G≡ K þ ln jWj2, GI ≡ ∂G=∂ϕI, and

GI
J ≡ ∂G=∂ϕI

∂ϕ�J with ϕI a superfield that participates
in super-Higgs mechanism, and χI is the fermionic com-
ponent in ϕI. We consider the Polonyi sector superpoten-
tial, given by [104]

WP ¼ m̃ðzþ bÞ; ð72Þ
11Arguments based on the equivalence theorem can also be

used to understand this.
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with b ≃ 1=
ffiffiffi
3

p
. When the reheating phase begins, the

various contributions to the goldstino are given by

GΦ ≃ −
ffiffiffi
3

2

r
ϕ; GS ≃ 2μþ

ffiffiffi
3

2

r
ϕ

μ
;

Gz ≃
ffiffiffi
3

p
−

3ffiffiffi
2

p ϕ; =∂ΦGΦ
Φ ≃mϕϕ; ð73Þ

where μ≡ m̃=mϕ ≪ 1.
Initially, when ϕ ≫ μMP, supersymmetry is broken by

the F-term of S. As discussed earlier, for the quadratic case
considered here (k ¼ 2), the energy density of the inflaton
scales as 1

2
m2

ϕϕ
2 ∝ a−3 and ϕ ∝ a−

3
2 during reheating. But

when ϕ=μ≲ 1, the primary component of the goldstino
becomes the fermionic partner of the Polonyi field, z.
We can estimate the corresponding scale factor ap,
when ϕ=μ ¼ 1 using ϕp ¼ ϕendðaend=apÞ3=2, and ϕend ¼ffiffiffiffiffiffiffiffiffiffi
2ρend

p
=mϕ, then

ap
ae

¼
� ffiffiffiffiffiffiffi

2ρe
p
MPm̃

�2
3

; ð74Þ

and

ap
aRH

¼
�

2ρRH
M2

Pm̃
2

�1
3

: ð75Þ

It would be tempting to deduce that for a > ap, the
Polonyi field dominates in the goldstino and is produced by
the inflaton condensate. However, this ignores the mixing
between the states. Furthermore, the degree of mixing [75],
Δ, gives rise to the gravitino sound speed, c2s ¼ 1 − Δ2,
which can be expressed as [67]

Δ2 ¼ 4

ðjφ̇j2 þ jFj2Þ2 fjφ̇j
2jFj2 − jφ̇ · F�j2g; ð76Þ

where Fi ≡ eK=2Kij� ðWj þ KjWÞ, and theD-term is absent
in our analysis. The dot operator in Eq. (76) denotes a scalar
productwith theKählermetricKij, namely jφ̇j2 ¼ φ̇iKij� φ̇

j�,
and analogously for the other terms. As noted earlier if the
gravitino sound speed vanishes [67,78,79], catastrophic
production of gravitinos ensues. Likewise, in the absence
of mixing, divergent (asm3=2 → 0) production of gravitinos
ensues as seen in Eqs. (68) and (69). In the absence of
constraints (for example the imposition of nilpotent fields),
mixing is sufficiently large so as to suppress this nonthermal
source of gravitino production [81–83]. Indeed the three-
field model considered here, was also considered in [81].
There, it was found that although the leading contribution to
the sound speed may be small, the mixing parameter, Δ, in
this case is large. The detailed numerical analysis in a two-
field model [75] showed that the primary consequence of the

mixing is that even though supersymmetry is initially broken
(a < ap) by the inflationary sector and later (a > ap) through
the Polonyi sector, the eigenstates rotate and the heavy mass
eigenstate associated with the inflatino is always the field
which is predominantly produced. Though a full numerical
analysis of the three-field model was not performed, it was
concluded that due to the large mixing, there is no cata-
strophic production of gravitinos in this model.
It is interesting to note that the Lagrangian (66), suitably

extended to include the coupling of the Polonyi field to the
gravitino, can be separated into the parts providing the
couplings of the transverse and longitudinal components.
The latter will contain the mixing between the “flavor”
eigenstates. This Lagrangian, written in [75], contains the
basic elements found in our toy Lagrangian in Eq. (64). In
agreement with the numerical results found in [75], our
calculation of the production of ψ is suppressed for lowmψ.
In the remainder of this section, we briefly review the

standard thermal production of gravitinos.

D. Thermal production

Before concluding this section, we can compare the
production mechanisms above with the well known thermal
production of gravitinos [6,15,23,69]. So long as the scale
of supersymmetry breaking is below the inflationary scale,
gravitinos can be singly produced, for example, by the
scattering of two gluons producing a gluino and gravitino.
Here, we use the parametrization in [6,23] and consider
only the gauge boson contribution to the production cross
section, which we approximate as

hσvi ≃ 26.24
M2

P

�
1þ 0.56

m2
1=2

m2
3=2

�
: ð77Þ

Form3=2 significantly less than an assumed universal (at the
grand unified theory scale) gaugino mass, m1=2, the second
term corresponding to the production of the longitudinal
mode dominates. The production rate can then be written as

R1 ≃ 0.4
T6

M2
P

�
1þ 0.56

m2
1=2

m2
3=2

�
: ð78Þ

Integrating this rate (for k ¼ 2) we arrive at

nðaRHÞ ¼
4
ffiffiffi
3

p

9
ffiffiffi
α

p 0.4
MP

T4
RH

�
1þ 0.56

m2
1=2

m2
3=2

�
; ð79Þ

and

Ωh2 ≃ 0.04

�
TRH

1010 GeV

��
m3=2

100 GeV

��
1þ 0.56

m2
1=2

m2
3=2

�
;

ð80Þ

KANETA, KE, MAMBRINI, OLIVE, and VERNER PHYS. REV. D 108, 115027 (2023)

115027-12



which gives the typical upper limit on the reheating tem-
perature in supersymmetric models of TRH≲ 2×1010 GeV,
for m1=2 ≃m3=2 ¼ 100 GeV, and the limit becomes
stronger when m1=2 > m3=2. This limit results from the
fact that the gravitino mass is related to the gaugino mass
in a specific framework of supersymmetry breaking.
We have neglected a kinematic factor which roughly
requires TRH ≳m3=2. Note that for these models we are
using gRH ¼ 915=4.
In the case of high-scale supersymmetry breaking,

gravitinos can only be pair produced if the masses of all
other supersymmetric partners are greater than the infla-
tionary scale. Nevertheless, gravitinos can be produced
from SM particle annihilations with a rate

R2 ¼
T12

Λ8
; ð81Þ

where Λ8 ≡ ð9=21.65Þm4
3=2M

4
P [24,25,68]. Integrating this

rate gives

nðaRHÞ ¼
21.65

9
ffiffiffi
3

p ffiffiffi
α

p T10
RH

m4
3=2M

3
P
ln
ρend
ρRH

; ð82Þ

and

Ω3=2h2 ≃ 4 × 10−6
�
EeV
m3=2

�
3
�

TRH

1010 GeV

�
7

×

�
12þ ln

�
1010 GeV

TRH

��
: ð83Þ

In Fig. 6, we show the regions of the parameter space
allowed by the relic abundance constraint in the (m3=2; TRH)
plane for four of the processes we discussed in this paper.
Specifically, we compare the thermal production of grav-
itinos in both low- and high-scale supersymmetric models
from Eqs. (80) and (83) with the nonthermal raritron
production given in Eq. (46) and the thermal production
from Eq. (59). The solid red line shows the “classic”
production of gravitinos in weak-scale supersymmetry,
whose source is predominantly the gluons of the thermal
bath. This is given by Eq. (80), for which Ωh2 ∝ TRHm3=2.
This provides the well known bound on the reheating
temperature for stable gravitinos12 and is applicable when
TRH > m3=2 [9]. For large gravitino masses, we must cut off
the integration of the Boltzmann equation at a3=2 corre-
sponding to the scale factor when T ¼ m3=2, rather than
integrating down to aRH. For large masses, this leads to a
suppression by a factor of ða3=2=aRHÞ9=4 ¼ ðTRH=m3=2Þ6.

Thus, for parameters with TRH < m3=2, Ωh2 ∝ T7
RHm

−5
3=2.

This effect accounts for the change in the slopewhenm3=2 ≳
TRH seen in the figure.
This thermal bound on TRH is greatly relaxed in models

of high-scale supersymmetry (shown here by the red dotted
line) as single production of gravitinos becomes kinemat-
ically forbidden [24,68]. In this case, from Eq. (83), we see
that Ωh2 ∝ T7

RHm
3
3=2. In contrast, the gravitational produc-

tion of a stable spin-3
2
raritron, whose source is the inflaton,

provides a significantly stronger constraint, particularly at
low masses. This constraint is shown by the blue dot-
dashed line and given by Eq. (46) where Ωh2 ∝ TRHm−1

3=2.
As discussed earlier the gravitational production of rari-
trons from the thermal bath is always sub-dominant. It is
shown by the blue dashed line from Eq. (59) and is found
extremely close to the line corresponding to the thermal
production in high-scale supersymmetry.
This figure is one of the most important results of our

studies, and admirably reflects the dominance of gravita-
tional effects over classical thermal gravitino-raritron pro-
duction, within the parameter space allowed by the unitarity
limit, i.e., m3=2 ≳ 40 EeV (nonsupersymmetric). However,
we caution the reader that the thermal constraints shown
here reflect the production of the gravitino in supersym-
metric models. The gravitational production of the raritron
is definitely not the gravitino in supersymmetry. As we

FIG. 6. The ðm3=2; TRHÞ plane showing the contours of
Ω3=2h2 ¼ 0.12. The blue dot-dashed line is derived from the
inflaton condensate via single graviton exchange, Eq. (46). The
blue dashed line is the thermal contribution from graviton
exchange, given by Eq. (59). The red solid line corresponds to
single gravitino production when the scale of supersymmetry
breaking is below the inflationary scale, Eq. (80), where m1=2 ¼
m3=2 is assumed. The red dotted line corresponds to the case of
high-scale supersymmetry, Eq. (83), where gravitinos must be
pair produced.

12A similar bound applies when gravitinos are unstable if
R-parity is conserved as the produced gravitino abundance is
transferred to the lightest supersymmetric particle.
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have seen the gravitational production from the inflaton
condensate produces primarily the longitudinal component
and occurs just after inflationwhen supersymmetry is broken
by the inflationary sector. As a result the longitudinal
component is the inflatino and the resulting particles pro-
duced are not related to the gravitino at low energies.

IV. SUMMARY

Gravitational particle production after inflation is inevi-
table. All particles couple to gravity through their energy-
momentum tensor and can be produced directly from the
inflaton condensate during reheating. While it is difficult
to create the thermal bath directly from minimal gravita-
tional interactions [38,39,42,44], the production of stable
particles making up all or some of the dark matter is
feasible [33].
While all particles couple to the inflaton through gravity,

they do not couple equally. The production rate, R, for
particles produced from the condensate are generally
proportional to ρ2ϕ. Since ρϕ redshifts with the expansion
of the Universe as in Eq. (40), and the production rate
redshifts faster than the Hubble rate, production occurs at
the start of the reheating process. The production of scalars,
S, is to a good approximation independent of the mass of
the scalars when mS ≪ mϕ [33,38] and absent for massless
vectors. However, the production rate for fermions is
suppressed due to the necessity of a spin flip for the
final-state fermion [38]. In this work, we considered the
gravitational production of a massive spin-3

2
particle dubbed

the raritron. We do not however, necessarily associate this
particle with the gravitino. As in the case of scalars and
spin-1

2
fermions, the inflaton couples to raritrons through

their respective energy-momentum tensors, Tμν
0 and Tμν

3=2.
As we saw in Fig. 2, the production rate of raritrons is

largely dominated by the production of the raritron longi-
tudinal modes, particularly at low raritron masses, as the
rate is proportional to m−2

3=2. This yields a very large
abundance of raritrons and unless m3=2 is relatively large,
the reheating temperature is strongly constrained as we
showed in Fig. 3. This result is summarized in Fig. 7 where
we show the relic abundance Ωh2 as a function of the
reheating temperature for three choices of m3=2. The solid
blue line is derived from Eq. (46). It is not shown in the
lower panel with m3=2 ¼ 1 TeV, as we expect unitarity
violations at low masses. We also see in the upper right
panel, that even m3=2 ¼ 1 EeV (109 GeV), would require
TRH ≲ 0.1 GeV to avoid overproduction. When m3=2 ¼
1 ZeV (1012 GeV), as in the upper-left panel, the reheating
temperature may be as large as ∼300 GeV. The horizontal
black line is set at Ωh2 ¼ 0.12 to guide the eye.
Other mechanisms for raritron/gravitino production

are also shown in Fig. 7. Note the huge variation in the
relic abundance obtained from the different mechanisms.

As discussed above, the thermal production of raritrons
mediated by gravity is always sub-dominant when com-
pared to the direct production from the inflaton condensate.
This source of production is shown by the blue dotted curve
in Fig. 7 taken from Eq. (59). Extrapolating to larger
masses and reheating temperatures we can see, however,
because of the steep dependence (Ωh2 ∝ T7

RH), there are
regions where thermal production dominates, but Ωh2 is
orders of magnitude too large in this case.
We also show in Fig. 7, the thermal production of gra-

vitinos in both the case of weak-scale (solid red) and high-
scale (dotted red) supersymmetry taken from Eqs. (80) and
(83), respectively. The abundance of thermally produced
gravitinos in weak-scale scale supersymmetry is propor-
tional to TRH so long as TRH > m3=2. As we have already
seen in Fig. 6, for large gravitino masses, we must cut off
the integration of the Boltzmann equation at a3=2 corre-
sponding to the scale factor when T ¼ m3=2, rather than
integrating down to aRH. This leads to a suppression by
a factor of ðTRH=m3=2Þ6. For m3=2 ¼ 1 ZeV, and the
parameter range shown in Fig. 7, TRH < m3=2 and the
we see only the steeper slope. For the other two values of
m3=2 shown, we see the change in slope when TRH ¼ m3=2.
For m3=2 ¼ 1 TeV, 1 EeV, and 1 ZeV, we have limits of
TRH ≲ 2 × 109 GeV, 4 × 107 GeV, and 5 × 109 GeV,
respectively to avoid overproduction of gravitinos in
weak-scale supersymmetry.
For the case of high-scale supersymmetry, cutting off

the integration in the Boltzmann equation only results in a
change in the log term in Eq. (83) resulting in a replacement
of TRH with m3=2 for TRH < m3=2. This change is unob-
servable on the scale shown in the figure. The same is true
for the thermal production via gravity in Eq. (59). Since
the relic abundance in both cases is ∝ 1=m3

3=2, the heavier
the dark matter, the larger the permitted range of TRH. The
limits in the high-scale supersymmetry cases for m3=2 ¼
1 TeV, 1 Eev, and 1 ZeV, are TRH ≲ 8 × 107 GeV,
3.1 × 1010 GeV, and 6.3 × 1011 GeV respectively.
We have not included the production of gravitinos from

inflatino exchange as that production is suppressed due
to mixing with inflatinos. A quantitative measure of the
abundance in that case would require an analysis similar to
what is done in [75].
Of course we do not know how dark the dark sector is. At

its darkest, gravitational interactions may play a leading
role in the production of dark matter. A generic Rarita-
Schwinger is easily overproduced in the early Universe
through its (minimal) gravitational coupling to the inflaton.
We have derived strong limits on the raritron mass in this
case, though depending on the detailed model, unitarity
limits may be even stronger. The gravitino in models of
broken supersymmetry can also be produced gravitation-
ally, however only the transverse components are produced
as the longitudinal states are primarily composed of the
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inflatino. In this case the standard thermal production of
gravitinos still provides limits on its mass and the infla-
tionary reheating temperature.
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APPENDIX A: ENERGY-MOMENTUM TENSOR
OF SPIN-3=2 FIELD

In this appendix, we provide a brief review of the
computation for the energy-momentum tensor of a spin-3

2
particle. We begin with a theory that closely resembles
N ¼ 1 pure supergravity, where the spin-3

2
particle is a

Majorana fermion known as the gravitino.
We begin by introducing the full action, which is the sum

of the Einstein-Hilbert action and the Rarita-Schwinger
action for the massive gravitino,

S ¼
Z

d4xðL2 þ L3=2Þ; ðA1Þ

where

L2 ¼ −
M2

P

2
eR; ðA2Þ

FIG. 7. The relic abundance of raritrons/gravitinos, Ωh2 as a function of the reheating temperature for fixedm3=2 ¼ 1 ZeV (upper left
panel), m3=2 ¼ 1 EeV (upper right panel), and 1 TeV (lower panel). The blue solid line is derived from Eq. (46) and does not appear in
the lower panel due to concerns over unitarity violations. The thermal production of raritrons mediated by gravity is shown as the blue
dotted line from Eq. (59). Also shown is the thermal production of gravitinos in both the case of weak-scale (solid red) and high-scale
(dotted red) supersymmetry (with m1=2 ¼ m3=2) taken from Eqs. (80) and (83) respectively. The horizontal black line at Ωh2 ¼ 0.12 is
shown for reference.

GRAVITATIONAL PRODUCTION OF SPIN-3=2 PARTICLES … PHYS. REV. D 108, 115027 (2023)

115027-15



L3=2 ¼ −
1

4
ϵμνρσψ̄μγ5γν∇

↔

ρψσ −
1

4
em3=2ψ̄μ½γμ; γν�ψν

¼ i
4
eψ̄μγ

μνρ∇↔ρψν −
1

4
em3=2ψ̄μ½γμ; γν�ψν; ðA3Þ

with the determinant of the frame field given by det eaμ ≡ e

and A∇↔μB≡ A∇⃗μB − A∇⃖μB. The covariant derivative act-
ing on the spin-3

2
field is defined as

∇μψν ≡
�
∂μ þ

1

4
ωμabγ

ab

�
ψν; ðA4Þ

ψ̄ν∇⃖μ ¼ ψ̄ν

�
∂⃖μ −

1

4
ωμabγ

ab

�
; ðA5Þ

γab ¼ γ½aγb� ¼ 1

2
½γa; γb�; ðA6Þ

and ψ̄ν∂⃖μ ≡ ∂μψ̄ν. The frame field eaμ is related to the flat
Minkowski metric as

gμν ¼ eaμebνηab; ðA7Þ

ηab ¼ diagðþ1;−1;−1;−1Þ: ðA8Þ

The curvature tensor is given by

Rμν
ab ¼ ∂μων

ab − ∂νωμ
ab þ ωμ

acωνc
b − ων

acωμc
b; ðA9Þ

Rμνρσ ¼ eaρebσRμν
ab; ðA10Þ

Rμν ¼ Rρ
μρν; ðA11Þ

R ¼ eμaeνbRμν
ab ¼ gμνRμν; ðA12Þ

where ωμab is the spin connection, given by

ωμab ¼ ωμabðeÞ þ Kμab: ðA13Þ
Here, Kμνρ is the contorsion tensor and

ωab
μ ðeÞ ¼ 2eν½a∂½μe

b�
ν� − eν½aeb�σeμc∂νecσ ðA14Þ

is the torsionless contribution. In the nonsupersymmetric
case, the contorsion can be set to zero. However, in super-
gravity, Kμνρ is expressed as a combination of terms
bilinear in ψμ. We derive the energy-momentum tensor
Tμν
3=2 by varying the total Lagrangian, L ¼ L2 þ L3=2, with

respect to the frame field e, and then expressing the result in
the Minkowski limit gab → ηab.
The energy-momentum tensor can be derived from the

Einstein equation, where the terms other than the pure
spin-2 contribution are grouped to define Tμν

3=2. In this
context, two main approaches exist; the Palatini and the
metric formalism, or the first- and second-order formalism in

the context of supergravity. Since it is a quite involved task to
compute the energy-momentum tensor using either method,
we briefly discuss the distinctions between the two.
In the first-order formalism, the parameters e, ω, and ψ

(with Lorentz indices suppressed) are treated as indepen-
dent variables when varying the action. The spin connec-
tionω is subsequently expressed as a function of e and ψ by
requiring δS=δω ¼ 0 [105]. The second-order formalism
treats only e and ψ as independent variables, with ω chosen
to ensure that supersymmetry [106] is preserved. This
approach assumes Eq. (A13) at the starting point. For a
more detailed discussion on the first- and second-order
formalisms, see Ref. [107].
In the first-order formalism, the total Lagrangian is

treated as a function of e, ω, and ψ . The solution to
δS=δω ¼ 0 is given by Eq. (A13), with ω ¼ ωðe;ψÞ. We
then solve the condition δS=δejω¼ωðe;ψÞ ¼ 0 and find that
the Einstein equation is given by

Gμνðe;ωÞjω¼ωðe;ψÞ ¼
e−1eμa
MP

δL3=2

δeaν

����
ω¼ωðe;ψÞ

; ðA15Þ

Gμν ¼ Rμν −
1

2
gμνR: ðA16Þ

We note that the Einstein tensor Gμν on the left-hand side
of Eq. (A15) includes both e and ψ , the latter due to the
contorsion term in the spin connection. Therefore, to derive
the correct energy-momentum tensor, the ψ-dependent
terms must be move to the right-hand side.
On the other hand, in the second-order formalism,

deriving the energy-momentum tensor is more straightfor-
ward. As the Lagrangian is treated as a function of e and ψ ,
with Eq. (A13) already applied to eliminate the explicit ω
dependence, the Einstein equation is simply derived from
δL=δe ¼ 0, and Gμν does not depend on ψ . Consequently,
the symmetrized energy-momentum tensor is defined as

T3=2;μν ¼ e−1eðμa
δL3=2

δeνÞa
; ðA17Þ

where as before L3=2 is given by eliminating the ω
dependence in the second-order formalism. This approach
allows for a direct computation to compute the gravitino
energy-momentum tensor, given by

T3=2;μν ¼ −
i
4
ψ̄ργðμ∇

↔

νÞψρ þ i
2
ψ̄ ðνγμÞ∇

↔

ρψ
ρ þ i

2
ψ̄ ργðμ∇

↔

ρψνÞ;

ðA18Þ

where we have used the equation of motion and the
gravitino constraints. We note that the above result does
not depend on the gravitino mass. In the flat Minkowski

limit, we can replace ∇↔ → ∂

↔
and neglect the four-Fermi
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terms originating from the torsion contribution as they are
not relevant for our analysis, which leads to Eq. (9).
If we do not assume supersymmetry, the spin-3

2
particle is

not necessarily a Majorana fermion. For a Dirac spin-3
2

particle, the Lagrangian is given by

L3=2 ¼−
1

2
ϵμνρσψ̄μγ5γν∇

↔

ρψσ −
1

2
em3=2ψ̄μ½γμ;γν�ψν; ðA19Þ

and the energy-momentum tensor is given by

TðDiracÞ
3=2;μν ¼ 2TðMajoranaÞ

3=2;μν ; ðA20Þ

where TðMajoranaÞ
3=2;μν is given by Eq. (A18).

APPENDIX B: AMPLITUDES AND
THERMAL RATES

In this appendix, we compute the thermal production rate
of raritrons, RT

3
2

. We consider only the massless Standard
Model particles in the initial state, which include scalars,
fermions, and gauge bosons. The dark matter production
rate for the process SMþ SM → ψ þ ψ is given by the
general expression Eq. (53), where we assumed that

4m2
3=2 ≪ s and included a factor of two in the numerator

to account that two dark matter particles are produced per
scattering event.
We express the squared amplitudes in terms of the

Mandelstam variables s and t, which are given by

t ¼ s
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
3=2

s

s
cos θ13 − 1

!
þm2

3=2; ðB1Þ

s ¼ 2E1E2ð1 − cos θ12Þ: ðB2Þ

The general squared amplitude for the thermal processes
involving SM initial states is given by Eq. (55), where we
include 4 degrees for 1 complex Higgs doublet, 12 degrees
for 8 gluons and 4 electroweak bosons, and 45 degrees for 6
(anti)quarks with 3 colors, 3 (anti)charged leptons and 3
neutrinos. We note that the squared amplitudes include the
symmetry factors of both the initial and final states, and this
is indicated with an overbar.
When summing over all polarizations, the total squared

amplitude of the gravity-mediated scalar production of
raritrons is given by

jM̄03
2j2 ¼ 1

72m4
3=2M

4
Ps

2
f−s2ðsþ 2t − 2m2

ϕÞ2½m4
ϕ − 2m2

ϕtþ tðsþ tÞ� − 72m12
3=2 þ 24m10

3=2ð7sþ 12tÞ

− 2m8
3=2½47s2 þ 264stþ 216t2 þ 72m4

ϕ − 12m2
ϕðsþ 12tÞ�

− 2m6
3=2½s3 − 122s2t − 288st2 − 144t3 þ 12m4

ϕð7s − 12tÞ þm2
ϕð288t2 þ 216st − 62s2Þ�

þm4
3=2½s4 − 34s3t − 210s2t2 − 240st3 − 72t4 − 72m8

ϕ þ 24m6
ϕðsþ 12tÞ

− 18m4
ϕðs2 þ 16stþ 24t2Þ − 4m2

ϕðs3 − 35s2t − 126st2 − 72t3Þ�
þm2

3=2s½24m8
ϕ þ s4 þ 6s3tþ 44s2t2 þ 64st3 þ 24t4 − 32m6

ϕðsþ 3tÞ
þ 16m4

ϕð2s2 þ 8stþ 9t2Þ − 2m2
ϕð5s3 þ 24s2tþ 80st2 þ 48t3Þ�g; ðB3Þ

where mϕ is the scalar mass and m3=2 is the raritron mass. For the incoming SM Higgs bosons, we set mϕ ¼ 0, and this
expression simplifies to

jM̄03
2j2 ¼ 1

72m4
3=2M

4
Ps

2
½−s2tðsþ tÞðsþ 2tÞ2 − 72m12

3=2 þ 24m10
3=2ð7sþ 12tÞ − 2m8

3=2ð47s2 þ 264stþ 216t2Þ

þm6
3=2ð−2s3 þ 244s2tþ 576st2 þ 288t3Þ þm4

3=2ðs4 − 34s3t − 210s2t2 − 240st3 − 72t4Þ
þ m2

3=2sðs4 þ 6s3tþ 44s2t2 þ 64st3 þ 24t4Þ�: ðB4Þ

Similarly, the matrix element squared for the gravity-mediated raritron production from massless fermions is given by

jM̄1
2
3
2j2 ¼ 1

144m4
3=2M

4
Ps

2
f576m12

3=2 − 768m10
3=2ðsþ 3tÞ þ 4m8

3=2ð137s2 þ 768stþ 864t2Þ

− 8m6
3=2ð58s3 þ 265s2tþ 504st2 þ 288t3Þ þ 4m4

3=2ð13s4 þ 197s3tþ 513s2t2 þ 480st3 þ 144t4Þ
þ 4m2

3=2sð2s4 − 31s3t − 106s2t2 − 128st3 − 48t4Þ þ s2ðs4 þ 10s3tþ 42s2t2 þ 64st3 þ 32t4Þg; ðB5Þ
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and the production from massless gauge bosons is given by

jM̄13
2j2 ¼ 1

18m4
3=2M

4
Ps

2
f−36m12

3=2 þ 12m10
3=2ðsþ 12tÞ − 4m8

3=2ð23s2 þ 30stþ 54t2Þ

þ 4m6
3=2ð3s3 þ 53s2tþ 54st2 þ 36t3Þ −m4

3=2ð25s4 þ 118s3tþ 186s2t2 þ 120st3 þ 36t4Þ
þ 2m2

3=2sð3s4 þ 7s3tþ 16s2t2 þ 16st3 þ 6t4Þ − s2tðsþ tÞðs2 þ 2stþ 2t2Þg: ðB6Þ

By evaluating the integral, we find that the thermal production rate of raritrons can be written as

RT
3=2 ¼ β1

T12

m4
3=2M

4
P
þ β2

T10

m2
3=2M

4
P
þ β3

T8

M4
P
þ β4

m2
3=2T

6

M4
P

þ β5
m4

3=2T
4

M4
P

; ðB7Þ

where

β1 ¼
205511π7

85730400
; ðB8Þ

β2 ¼
16453ζð5Þ2

15π5
; ðB9Þ

β3 ¼ −
369149π3

93312000
; ðB10Þ

β4 ¼ −
8759ζð3Þ2
1152π5

; ðB11Þ

β5 ¼ −
49

5760π
: ðB12Þ

APPENDIX C: COMPUTATION OF THE
GRAVITINO PRODUCTION RATE

The production rate of the gravitino can be derived from
the energy transfer rate from the inflaton energy density ρϕ to
the gravitino sector. Using the equation of state parameter
wϕ ¼ pϕ=ρϕ for the inflaton, the evolution of ρϕ follows,

dρϕ
dt

þ 3Hð1þ wϕÞρϕ ¼ −ð1þ wϕÞΓϕρϕ; ðC1Þ

where the right-hand side is given by the energy transfer per
space-time volume (Vol4) due to the inflaton decay or
scattering processes to particles A and B, defined as

ð1þ wϕÞΓϕρϕ ≡ ΔE
Vol4

; ðC2Þ

where

ΔE≡
Z

d3pA

ð2πÞ32p0
A

d3pB

ð2πÞ32p0
B
ðp0

A þ p0
BÞ

×

���� 1n! hfj
�
i
Z

d4x1Lint

�
� � �
�
i
Z

d4xnLint

�
j0i
����2;
ðC3Þ

and Lint is the interaction Lagrangian (see [9] for more
details).
We decompose the oscillating inflaton as ϕðtÞ≃

ϕ0ðtÞPðtÞ, where P represents the rapidly oscillating
component and ϕ0 is its envelope that slowly evolves
(redshifts) with time. In practice, ϕ0 can be taken as a
constant quantity when computing a reaction that occurs
over time scales much shorter than the change in ϕ0.
Therefore, the fast oscillating component can be decom-
posed as

PðtÞ ¼
X∞
n¼−∞

Pne−inωt; ðC4Þ

where ω is the frequency of the inflaton oscillation.
Using the interaction Lagrangian Lint, given by Eq. (66),

the amplitudes for the t- and u-channels are given by

Mðn;mÞ
t ¼ 1

4M2
P

nmPnPm

tn −m2
χ
ðωϕ0Þ2ūμðpAÞ=δγμðpϕ;n − pAÞγν=δPRucνðpBÞ; ðC5Þ

Mðn;mÞ
u ¼ 1

4M2
P

nmPnPm

un −m2
χ
ðωϕ0Þ2ūμðpAÞ=δγμðpB − pϕ;nÞγν=δPLucνðpBÞ; ðC6Þ

where pμ
ϕ;n ¼ ðnω; 0⃗Þμ, tn ≡ ðpϕ;n − pAÞ2, un ≡ ðpB − pϕ;nÞ2, and =δ≡ δ0μγ

μ is introduced to account for ∂μϕ ¼ ðϕ̇; 0⃗Þμ.
Using these amplitudes, the energy transfer rate can be written as
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ΔE
Vol4

¼
Z

d3pA

ð2πÞ32p0
A

d3pB

ð2πÞ32p0
B
ðp0

A þ p0
BÞ
X

nþm>0

X
spin

jMðn;mÞ
t þMðn;mÞ

u j2ð2πÞ4δ4ðpϕ;n þ pϕ;m − pA − pBÞ: ðC7Þ

If we use the equation of motion for ψμ, the sum of the amplitudes greatly simplifies and becomes

Mðn;mÞ
t þMðn;mÞ

u ¼ m3=2

M2
P

nmPnPm

nmω2 þm2
χ −m2

3=2

× ðωϕ0Þ2δμ0δν0ūμðpAÞucνðpBÞ; ðC8Þ

where we used tn ¼ un ¼ m2
3=2 − nmω2 and p0

A ¼
p0
B ¼ ðnþmÞω=2. We emphasize that only the μ ¼ 0

contribution of ψμ is produced. The gravitino wave
function may be written as ψμ ∼ ψϵμ, where ψ and ϵμ
denote the spin-1

2
and spin-1 components, respectively. It is

important to note that the spin-(�3=2) component is
proportional to the transverse polarization of ϵμ, which
does not have the μ ¼ 0 component. As a result, only

spin-(�1=2) mode of the gravitino may have a nonzero
amplitude.
Thus, the amplitude given by Eq. (C8) can be further

simplified by substituting u0ðpÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
ϵ0ðpÞuðpÞ ¼ffiffiffiffiffiffiffiffi

2=3
p ðjp⃗j=m3=2ÞuðpÞ, where uðpÞ is the spin-12 component
that satisfies ðp −m3=2ÞuðpÞ ¼ 0. Without specifying the
oscillatory solution of the inflaton, we derive the energy
transfer rate,

ð1þ wϕÞΓϕϕ→ψμψμ
ρϕ ¼

X
nþm≥1

ðnmÞ2ðnþmÞ7ðPnPmÞ2ω11ϕ4
0

144πm2
3=2M

4
Pðnmω2 þm2

χ −m2
3=2Þ2

�
1 −

4m2
3=2

ðnþmÞ2ω2

�7=2

: ðC9Þ

For concreteness, we consider VðϕÞ ¼ ðm2
ϕ=2Þϕ2, which

implies that wϕ ¼ 0. The solution for ϕ can be expressed as
ϕðtÞ ≃ ϕ0ðtÞ cosðωtÞ, where ω ¼ mϕ and ρϕ ≃ ðm2

ϕ=2Þϕ2
0.

Consequently,Pn¼�1¼1=2, and is zero otherwise. Therefore,
only the n ¼ m ¼ 1 modes contribute, and we obtain

Γϕϕ→ψμψμ
¼ 2mϕρϕ

9πM4
P

ð1 − τ3=2Þ7=2
τ3=2ð1þ τχ − τ3=2Þ2

; ðC10Þ

where τi ≡m2
i =m

2
ϕ.
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