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It is shown that the solution for B − L gauge symmetry with B − L ¼ −4;−4;þ5 assigned for three
right-handed neutrinos, respectively, reveals a novel scotogenic mechanism with implied matter parity for
neutrino mass generation and dark matter stability. Additionally, the world with two-component dark
matter is hinted.
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I. INTRODUCTION

Of the exact conservations in physics, the conservation
of baryon number minus lepton number, say B − L, causes
curiosity. There is no necessary principle for B − L con-
servation since it results directly from the standard model
gauge symmetry. As a matter of fact, every standard model
interaction separately preserves B and L such that B − L is
conserved and anomaly free, if three right-handed neutri-
nos, say ν1R; ν2R; ν3R, are simply imposed. In the literature,
there are two integer solutions forB − L, such as−1;−1;−1
and −4;−4;þ5, according to ν1R; ν2R; ν3R [1]. In contrast to
electric and color charges, the excess of baryons over
antibaryons of the Universe suggests that B − L is broken.
B − L likely occurs in left-right symmetry and grand uni-
fication, which support the first solution and a seesaw
mechanism for neutrino mass generation [2–5], but no such
traditional theories manifestly explain the existence of dark
matter, similarly to the standard model.
With regard to the second solution, Refs. [6–8] discussed

type-I seesaw neutrino mass generation, in which the first
work interpreted ν3R dark matter by including a Z2 sym-
metry, the second work studied a scalar dark matter by
choosing an alternative Z2, while the third work inves-
tigated ν3R dark matter stability without needing any extra
symmetry as Z2. The accidental stability of a scalar dark
matter was also probed in Ref. [9] along with neutrino
mass generation by an effective interaction. Alternatively,
Ref. [10] discussed Dirac or inverse seesaw neutrino mass
generation by imposing extra vectorlike leptons, N’s,
with B − L ¼ −1 and interpreting ν1;2R dark matter, and

subsequently Ref. [11] gave a realization of residual Z3

symmetry and a long-lived scalar dark matter in such a
combined framework. Reference [12] discovered a simple
option of Dirac neutrino mass as suppressed by a potential
with accidental ν3R dark matter. Reference [13] investigated
radiative neutrino mass and ν3R dark matter mass by
introducing an extra vectorlike lepton S with B − L ¼ 8
besides νR’s, whereas Ref. [14] proposed a scotogenic
scheme in a variant with seven extra neutral leptons alter-
native to νR’s. Reference [15] examined radiative Dirac
neutrino mass and dark matter by imposing extra lepton
doublets and Z2 for dark matter stability.
As a next attempt to the above process, I argue that the

second solution provides naturally both dark matter and
neutrino mass, without requiring any extra fermion and
extra symmetry. It is indeed the first scotogenic mechanism
realized for minimal right-handed neutrino content with
B − L ¼ −4;−4;þ5 and a residual matter parity, alterna-
tive to [16]. In a period, the matter parity which stabilizes
dark matter has been found usefully in supersymmetry.
I argue that the matter parity naturally arises from the
second solution for B − L gauge symmetry, without neces-
sity of supersymmetry.

II. PROPOSAL

Gauge symmetry is given by SUð3ÞC ⊗ SUð2ÞL ⊗
Uð1ÞY ⊗ Uð1ÞB−L. Field content according to this sym-
metry is supplied in Table I, in which a ¼ 1, 2, 3 and α ¼ 1,
2 indicate family indices. The usual Higgs field H has a
vacuum expectation value (VEV) hHi ¼ ð0; v= ffiffiffi

2
p Þ break-

ing the electroweak symmetry and generating mass for usual
particles. The new Higgs fields ϕ1;2 have VEVs hϕ1i ¼
w1=

ffiffiffi
2

p
and hϕ2i ¼ w2=

ffiffiffi
2

p
, inducing Majorana masses for

ναR and ν3R, respectively, as well as breaking B − L,
determining a residual matter parity P ¼ ð−1Þ3ðB−LÞþ2s

(see below),which is included toTable I too. I imposew1;2 ≫
v ¼ 246 GeV for consistency with the standard model.
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Additionally, the scalar χ couples laL to ναR, while the scalar
η couples χ to Hϕ1 as well as to ϕ2, which radiatively
generates neutrino mass (see Fig. 1). The fields χ, η have
vanished VEVs, preserved by thematter parity conservation.
This realizes a scotogenic scheme with automatic matter
parity by the model itself, which stabilizes dark matter
candidates ναR; χ0; η, opposite to [16] for which a Z2 is
ad hoc input.

III. MATTER PARITY

A B − L transformation has the form P ¼ eixðB−LÞ,
where x is a parameter. P conserves both the vacua w1;2,
i.e., Pw1 ¼ w1 and Pw2 ¼ w2, given that ei8x ¼ 1 and
e−i10x ¼ 1. It leads to x ¼ kπ, thus P ¼ ð−1ÞkðB−LÞ, for k
integer. Acting P on every field, I derive P ¼ 1 for minimal
jkj ¼ 6, except the identity with k ¼ 0. This defines a

residual group Z6 ¼ f1; p; p2; p3; p4; p5g, where p ¼
ð−1ÞB−L and p6 ¼ 1. I factorize Z6 ¼ Z2 ⊗ Z3, where
Z2 ¼ f1; p3g is the invariant subgroup of Z6, while Z3 ¼
f½1�; ½p2�; ½p4�g is the quotient group of Z6 by Z2, with each
coset element containing two elements of Z6, i.e., ½g� ¼
fg; gp3g, thus ½1� ¼ ½p3� ¼ Z2, ½p2� ¼ ½p5� ¼ fp2; p5g,
and ½p4� ¼ ½p� ¼ fp; p4g. Since ½p4� ¼ ½p2�2 ¼ ½p2�� and
½p2�3 ¼ ½1�, Z3 is generated by the generator ½p2� ¼
½ω3ðB−LÞ�, where ω ¼ ei2π=3 is the cube root of unity.
Since 3ðB − LÞ is the integer due to p6 ¼ 1, Z3 has three
irreducible representations 1, 10, and 100 according to
½p2� ¼ ½1� → 1, ½p2� ¼ ½ω� → ω, and ½p2� ¼ ½ω2� → ω2

respectively, which are homomorphic from those of Z6

independent of the signs p3 ¼ �1 that identify Z6 elements
in a coset [17]. I obtain ½p2� ¼ ½ω� → ω ∼ 10 for quarks,
while ½p2� ¼ ½1� → 1 ∼ 1 for all other fields. Hence, Z3

transforms nontrivially only for quarks, isomorphic to the
center of the color group. In other words, the theory
automatically conserves Z3, accidentally preserved by
SUð3ÞC. Omitting Z3, the remaining residual symmetry
is only Z2 ¼ f1; p3g, generated by the generator p3 ¼
ð−1Þ3ðB−LÞ. Since the spin parity ps ¼ ð−1Þ2s is always
conserved by the Lorentz symmetry, I redefine

P≡ p3 × ps ¼ ð−1Þ3ðB−LÞþ2s ð1Þ

to be matter parity similar to that in supersymmetry,
governing this model.1 The matter-parity group M¼f1;Pg
instead of Z2 has two irreducible representations 1 and 10
according to P ¼ 1 and P ¼ −1, respectively, collected in
Table I for every field. The lightest of odd fields ναR; η; χ is
absolutely stabilized by the matter parity conservation,
providing a dark matter candidate. However, since ν3R does
not singly couple to standardmodel fields at a renormalizable
level similar to the proton, ν3R has a lifetime bigger than the
Universe age (see below), supplying an alternative dark
matter candidate, a kind of minimal dark matter.

IV. SCALAR POTENTIAL AND MASS SPLITTING

I write the scalar potential V ¼ VðH;ϕ1;ϕ2Þ þ
Vðη; χ;mixÞ, where the first part includes only the fields
that induce breaking,

VðH;ϕ1;ϕ2Þ ¼ κ2H†H þ κ21ϕ
�
1ϕ1 þ κ22ϕ

�
2ϕ2 þ cðH†HÞ2

þ c1ðϕ�
1ϕ1Þ2 þ c2ðϕ�

2ϕ2Þ2
þ c3ðH†HÞðϕ�

1ϕ1Þ þ c4ðH†HÞðϕ�
2ϕ2Þ

þ c5ðϕ�
1ϕ1Þðϕ�

2ϕ2Þ; ð2Þ

while the second part is relevant to η, χ and mixed terms
with breaking fields,

TABLE I. Field presentation content of the model.

Field SUð3ÞC SUð2ÞL Uð1ÞY Uð1ÞB−L P

laL ¼
�
νaL
eaL

�
1 2 −1=2 −1 þ

ναR 1 1 0 −4 −
ν3R 1 1 0 5 þ
eaR 1 1 −1 −1 þ
qaL ¼

�
uaL
daL

�
3 2 1=6 1=3 þ

uaR 3 1 2=3 1=3 þ
daR 3 1 −1=3 1=3 þ
H ¼

�
Hþ

H0

�
1 2 1=2 0 þ

ϕ1 1 1 0 8 þ
ϕ2 1 1 0 −10 þ
χ ¼

�
χ0

χ−

�
1 2 −1=2 3 −

η 1 1 0 5 −

FIG. 1. Neutrino mass generation induced by dark matter
solution of B − L gauge symmetry. 1The matter parity appeared in previous studies, e.g., [14].
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Vðη; χ;mixÞ ¼ μ21η
�ηþ μ22χ

†χ þ λ1ðη�ηÞ2 þ λ2ðχ†χÞ2 þ λ3ðη�ηÞðχ†χÞ
þ ðη�ηÞðλ4ϕ�

1ϕ1 þ λ5ϕ
�
2ϕ2 þ λ6H†HÞ þ ðχ†χÞðλ7ϕ�

1ϕ1 þ λ8ϕ
�
2ϕ2 þ λ9H†HÞ

þ λ10ðχ†HÞðH†χÞ þ μðϕ2ηηþ H:c:Þ þ λðHχηϕ�
1 þ H:c:Þ: ð3Þ

The trivial η, χ and nontrivial H;ϕ1;2 vacua acquire
μ21;2 > 0, κ2 < 0, and κ21;2 < 0. Additionally, the potential
bounded from below demands that c > 0, c1;2 > 0, and
λ1;2 > 0, which are derived from V > 0 when H, ϕ1, ϕ2, η,
and χ separately tend to infinity. Furthermore, V > 0
applies when every two of these fields simultaneously
tend to infinity, yielding c3 > −2 ffiffiffiffiffiffiffi

cc1
p

, c4 > −2 ffiffiffiffiffiffiffi
cc2

p
,

c5 > −2 ffiffiffiffiffiffiffiffiffi
c1c2

p
, λ3 > −2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
, λ4 > −2

ffiffiffiffiffiffiffiffiffi
λ1c1

p
, λ5 >

−2
ffiffiffiffiffiffiffiffiffi
λ1c2

p
, λ6 > −2

ffiffiffiffiffiffiffi
λ1c

p
, λ7 > −2

ffiffiffiffiffiffiffiffiffi
λ2c1

p
, λ8 > −2

ffiffiffiffiffiffiffiffiffi
λ2c2

p
,

and λ9 þ λ10Θð−λ10Þ > −2
ffiffiffiffiffiffiffi
λ2c

p
, where Θ is the Heaviside

step function. Notice that V > 0 for every three (every four,
every five) of the scalar fields simultaneously tending
to infinity and will supply extra complicated conditions
for scalar self-couplings.2 Furthermore, constraints of
physical scalar masses squared to be positive might exist,
but most of which would be equivalent to the given
conditions.
Let χ0 ¼ ðRþ iIÞ= ffiffiffi

2
p

and η ¼ ðR1 þ iI1Þ=
ffiffiffi
2

p
. Further-

more, denote M2
1 ¼ μ21 þ λ4

2
w2
1 þ λ5

2
w2
2 þ λ6

2
v2 and M2

2 ¼
μ22 þ λ7

2
w2
1 þ λ8

2
w2
2 þ λ9

2
v2, which all are at least at w1;2

scale. The field χ� is a physical field by itself with mass
m2

χ� ¼ M2
2 þ λ10

2
v2. The fields R;R1 and I; I1 mix in each

pair, such as

V ⊃
1

2
ðR1 R Þ

�
M2

1 þ
ffiffiffi
2

p
μw2 − 1

2
λvw1

− 1
2
λvw1 M2

2

��
R1

R

�

þ 1

2
ð I1 I Þ

�
M2

1 −
ffiffiffi
2

p
μw2

1
2
λvw1

1
2
λvw1 M2

2

��
I1
I

�
: ð4Þ

I define two mixing angles,

t2θR ¼ −λvw1

M2
2 −M2

1 −
ffiffiffi
2

p
μw2

; t2θI ¼
λvw1

M2
2 −M2

1 þ
ffiffiffi
2

p
μw2

:

ð5Þ

The physical fields are

R0
1 ¼ cθRR1 − sθRR; R0 ¼ sθRR1 þ cθRR; ð6Þ

I01 ¼ cθI I1 − sθI I; I0 ¼ sθI I1 þ cθI I; ð7Þ

with respective masses,

m2
R0
1
≃M2

1 þ
ffiffiffi
2

p
μw2 þ

1
4
λ2v2w2

1

M2
1 þ

ffiffiffi
2

p
μw2 −M2

2

;

m2
R0 ≃M2

2 þ
1
4
λ2v2w2

1

M2
2 −M2

1 −
ffiffiffi
2

p
μw2

; ð8Þ

m2
I0
1
≃M2

1 −
ffiffiffi
2

p
μw2 þ

1
4
λ2v2w2

1

M2
1 −

ffiffiffi
2

p
μw2 −M2

2

;

m2
I0 ≃M2

2 þ
1
4
λ2v2w2

1

M2
2 −M2

1 þ
ffiffiffi
2

p
μw2

; ð9Þ

where the approximations come from jθR;Ij ≪ 1 due to
v ≪ w1;2, and it is clear that the R, I and R1, I1 masses are
now separated.

V. NEUTRINO MASS

The Yukawa Lagrangian relevant to neutral fermions is

LYuk ⊃ haαl̄aLχναRþ
1

2
tαβν̄cαRνβRϕ1þ

1

2
t33ν̄c3Rν3Rϕ2þH:c:

ð10Þ

When ϕ1;2 develop VEVs, νR’s obtain Majorana masses,
such as

mν1R ¼ −t11
w1ffiffiffi
2

p ; mν2R ¼ −t22
w1ffiffiffi
2

p ; mν3R ¼ −t33
w2ffiffiffi
2

p ;

ð11Þ

where I assume tαβ to be flavor diagonal, i.e., ν1;2;3R are
physical fields by themselves. This Yukawa Lagrangian
combined with the above scalar potential, i.e.,L ⊃ haαffiffi

2
p ν̄aL×

ðcθRR0 þ icθI I
0 − sθRR

0
1 − isθI I

0
1ÞναR − 1

2
mναRν

2
αR þ H:c:−

1
2
m2

R0R02 − 1
2
m2

I0I
02 − 1

2
m2

R0
1
R02

1 − 1
2
m2

I0
1
I021, up to kinetic

terms yields necessary features for the diagram in Fig. 1
in mass basis. That said, the loop is propagated by physical
fermions ν1;2R and physical scalars R0; I0; R0

1; I
0
1, inducing

neutrino mass in the form of L⊃−1
2
ν̄aLðmνÞabνcbLþH:c:,

where

2All such conditions ensure the quartic coupling matrix to be
copositive responsible for the vacuum stability, which can be
derived with the aid of [18].
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ðmνÞab ¼
haαhbαmναR

32π2

0
B@c2θRm

2
R0 ln

m2
ναR

m2

R0

m2
ναR −m2

R0
−
c2θIm

2
I0 ln

m2
ναR
m2

I0

m2
ναR −m2

I0

þ
s2θRm

2
R0
1
ln

m2
ναR

m2

R0
1

m2
ναR −m2

R0
1

−
s2θIm

2
I0
1
ln

m2
ναR

m2

I0
1

m2
ναR −m2

I0
1

1
CA: ð12Þ

It is noteworthy that the divergent parts arising from
individual one-loop contributions by R0; I0; R0

1; I
0
1, having

a common form CUV ¼ 1
ϵ − γ þ ln 4π þ 1 in dimensional

regularization ϵ ¼ 2 − d=2 → 0, are exactly canceled due
to ðc2θR − c2θI þ s2θR − s2θIÞCUV ¼ 0. Additionally, as sup-
pressed by the loop factor ð1=32π2Þ, the R0; I0 mass
splitting ðm2

R0 −m2
I0 Þ=m2

R0;I0 ∼ λ2v2=w2
1;2, as well as the

mixing angles θ2R;I ∼ λ2v2=w2
1;2, the resultant neutrino

mass in (12) manifestly achieved, proportional to mν ∼
λ2h2v2=32π2w1;2 is small, as expected.
Since η is a mediator field, possibly coming from a more

fundamental theory, I particularly assume it to be much
heavier than other dark fields, i.e., μ1 ≫ μ2; w1;2, thusM1 ≃
μ1 and one can take the soft coupling μ≲ μ1. In this case,
the diagram in Fig. 1 approximates that in the basic
scotogenic setup with the vertex 1

2
λ̄ðHχÞ2 þ H:c: induced

by η to be λ̄ ¼ λ2μw2w2
1=

ffiffiffi
2

p
μ41 ∼ ðw1;2=μ1Þ3 ≪ 1, explain-

ing why λ̄ is necessarily small [16]. Indeed, it is clear that
θR ≃ −θI ≃ λvw1=2μ21, commonly called θ ¼ jθR;Ij. The
contribution of R0

1; I
0
1 (i.e., η) in the last two terms in (12) is

proportional to θ2 lnm2
R0
1
=m2

I0
1
≃ λ̄v2=μ21, which is more

suppressed than that by χ0 in the first two terms in (12)
due to the R0; I0 mass splitting, proportional to
ðm2

R0 −m2
I0 Þ=m2

R0;I0 ≃ λ̄v2=m2
R0;I0 , where one notices that

mναR ∼mR0;I0 ∼ ðμ2; w1;2Þ ≪ μ1. That said, the neutrino
mass is dominantly contributed by R0; I0 (i.e., χ0), approxi-
mated as

ðmνÞab ≃
λ̄v2

32π2
haαhbαmναR

m2
χ0
−m2

ναR

�
1−

m2
ναR

m2
χ0
−m2

ναR

ln
m2

χ0

m2
ναR

�
; ð13Þ

becausem2
χ0
≡ ðm2

R0 þm2
I0 Þ=2 is much bigger than the R0; I0

mass splitting. This matches the well-established result, but
the smallness of the coupling λ̄ or, exactly, of the observed
neutrino massmν ∼ 0.1 eV, given thatmναR ∼mχ0 ∼ 1 TeV

and h ∼ 0.1, is manifestly solved since λ̄ ¼ ðλ2= ffiffiffi
2

p Þ ×
ðμ=μ1Þðw2w2

1=μ
3
1Þ ∼ 10−6 for w1;2=μ1 ¼ 10−2 and λ ∼ 1∼

μ=μ1, as desired.

VI. DARK MATTER

Differing from the scotogenic (odd) fields ναR; χ0; η, the
third right-handed neutrino (ν3R) is accidentally stabilized

by the current model by itself despite the fact that it is
even.3 Furthermore, this stability is maintained even if ν3R
is heavier than the scotogenic fields and others. This results
from the B − L gauge symmetry solution for which ν3R
has a charge B − L ¼ 5 and is thus coupled only in pairs in
renormalizable interactions, say ν3Rν3Rϕ2 and ν̄3Rν3RZ0

B−L.
Given an effective interaction that leads to ν3R decay,
the one with minimal dimension is 1

Λ3 l̄LH̃ν3Rðϕ2
1ϕ2Þ�,

1
Λ3 ναRν3Rηðϕ2

1ϕ2Þ�, or 1
Λ5 l̄Lχν3R½η�ðϕ1ϕ2Þ2=ηðϕ3

1ϕ2Þ��,
where Λ ∼ 1016 GeV would be a scale of grand unified
theory, broken for determining the effective couplings,
conserving the current gauge symmetry. After B − L
breaking, ν3R gets mass and possibly decays to normal
fields lLH, dark fields νcαRη

�, or mixed product lLχ�η=η�,
with the rate suppressed by Γν3R ∼ ðw1;2=ΛÞ6mν3R → 0

for the first two and ðw1;2=ΛÞ10mν3R → 0 for the last
one, since w1;2=Λ ∼ 10−13. It translates to a lifetime
τν3R ∼ 1043ðTeV=mν3RÞðΛ=1013w1;2Þ6 yr ∼ 1043 yr and
1095ðTeV=mν3RÞðΛ=1013w1;2Þ10 yr ∼ 1095 yr, given that
mν3R ∼ TeV, respectively. It indicates that the field ν3R
is absolutely stable.
The field ν3R communicates with normal matter through

the Z0
B−L and ϕ2 portals only, unlike the scotogenic fields

that interact directly with usual leptons and Higgs field,
additionally. Obviously the ϕ2 portal couples to normal
matter only through a mixing with the usual Higgs field,
giving a small contribution to dark matter observables.
The gauge portal dominantly contributes to dark matter
annihilation to normal matter via s-channel diagrams as in
Fig. 2 where f is every fermion, possibly including the odd
field. The annihilation cross section is proportional to
hσvreliν3R ∼ g4B−Lm

2
ν3R=ð4m2

ν3R −m2
Z0
B−L

Þ2. Hence, the Z0 mass

resonance mν3R ≃
1
2
mZ0

B−L
will set a correct relic density for

dark matter, i.e., Ων3Rh
2 ≃ 0.1 pb=hσvreliν3R ≤ 0.12 [19].

Let us remind the reader that throughout this work “h” is
always coupled to the density “Ω” and denotes the reduced
Hubble parameter, without confusion with the Yukawa
coupling haα or even h’s when the indices (aα) are
suppressed. Note that ν3R is a Majorana field, scattering
with nucleon in direct detection only via spin-dependent
effective interaction through exchange by Z0

B−L. However,
this kind of interaction of Z0

B−L with quarks confined in
nucleons vanishes, hence it presents a negative search
result, as currently measured [20].
Last, but not least, the lightest of odd fields ναR; χ0; η is

stabilized by the matter parity, potentially contributing to
dark matter too. As a result, this model presents a promising
scenario for two-component dark matter [21]. In what

3Such a minimal fermion dark matter was studied in [8] in
an X-charge setup, while a minimal scalar dark matter alternative
to the minimal fermion dark matter was also given in [9] in a
B − L model.
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follows, I choose the lightest odd field to be ν1R and
interpret the world of dark matter with two right-handed
neutrino components, ν1R and ν3R above. First note that due
to the Majorana nature, ν1;3R annihilation is helicity sup-
pressed. Hence, it is important to include p-wave contri-
butions to their annihilation cross section too. In the early
Universe, the field ν3R annihilates to usual fermions ðl; qÞ
as well as the field ν1R if mν3R > mν1R via the diagrams
identical to Fig. 2 for f ¼ l; q; ν1R, revealing an annihila-
tion cross section,

hσvreliν3R ¼ 325hv2relig4B−Lm2
ν3R

6πð4m2
ν3R −m2

Z0
B−L

Þ2 þ Θðmν3R −mν1RÞ

×
200g4B−L

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
ν1R

m2
ν3R

s "
m2

ν1R

2m4
Z0
B−L

þ hv2reliðm2
ν3R −m2

ν1RÞ
3ð4m2

ν3R −m2
Z0
B−L

Þ2
#
: ð14Þ

On the other hand, the field ν1R annihilates to usual fermions as well as the field ν3R if mν1R > mν3R via diagrams as in
Fig. 3 for f ¼ l; q; ν3R. It is straightforward to compute ν1R annihilation cross section summarizing all t, s-channel
diagrams, such as

hσvreliν1R ¼ jhj4
32π

m2
ν1R

ðm2
ν1R þm2

χÞ2
þ 5hv2relijhj2g2B−Lm2

ν1R

6πðm2
ν1R þm2

χÞð4m2
ν1R −m2

Z0
B−L

Þ þ
104hv2relig4B−Lm2

ν1R

3πð4m2
ν1R −m2

Z0
B−L

Þ2

þ Θðmν1R −mν3RÞ
200g4B−L

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
ν3R

m2
ν1R

s "
m2

ν3R

2m4
Z0
B−L

þ hv2reliðm2
ν1R −m2

ν3RÞ
3ð4m2

ν1R −m2
Z0
B−L

Þ2
#
: ð15Þ

It is clear that for ν1R the t-channel diagram gives a
contribution in addition to the s-channel diagram, while it
does not exist for the case of ν3R. The t-channel contribution
arises from six physical odd fields χ ∈ ðχ�; R0; R0

1; I
0; I01Þ,

which must be heavier than ν1R. Since the ν1R relic density is
necessarily governed byZ0

B−L mass resonance, I suppose the
t-channel contribution effectively mediated by a character-
istic particle χ that has a mass mχ ∼mZ0

B−L
> mν1R with

effective coupling signified as h ∼ gB−L. Notice that the
conversion ν1R ↔ ν3R in either annihilation may get a
contribution ofϕ1;2 besidesZ0

B−L, but this effect is negligible
if the mixing of ϕ1;2 fields is small, as supposed.
The densities of ν1;3R are obtained by solving the

coupled Boltzmann equations, which contain their annihi-
lation to standard model fields and conversion between

themselves [22]. When a generation of lighter dark matter
ν1R(ν3R) from heavier dark matter ν3R(ν1R) is less signifi-
cant compared to its annihilation to usual fermions, the
approximate analytic solution is given by Ων1Rh

2 ≃
0.1 pb=hσvreliν1R and Ων3Rh

2 ≃ 0.1 pb=hσvreliν3R . I make
a contour of the total relic density ΩDMh2 ¼ Ων1Rh

2 þ
Ων3Rh

2 ¼ 0.12—where the last value is experimentally
measured—as a function of ðmν1R ; mν3RÞ, according to
mχ ¼ mZ0

B−L
¼ 5 TeV for fixed h ¼ gB−L ¼ 0.28 (see

below) and hv2reli ¼ 6=xF with xF ¼ 25 for each dark
matter component, as in the left panel of Fig. 4. To
see the contribution of each component to the total
density, the ratio Ων3Rh

2=ΩDMh2 is also contoured in
Fig. 4 in the right panel (contribution of ν1R is followed

FIG. 2. Annihilation of accidental ν3R dark matter to normal
matter and possible odd field.

FIG. 3. Annihilation of scotogenic ν1R dark matter to normal matter and possible ν3R field.
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by 1 −Ων3Rh
2=ΩDMh2, which is not plotted). For each

value of mZ0
B−L

, the relevant mass resonances mν1R ¼
1
2
mZ0

B−L
(as a vertical line) and mν3R ¼ 1

2
mZ0

B−L
(as a

horizontal line) are crucial to set the correct relic density
ΩDMh2 ¼ 0.12 as the density curve is based/distributed
around these resonant lines. Additionally, if the mass
resonance occurs at ν1R then its partner ν3R mainly con-
tributes to the density, and vice versa. Lastly, as ν3R in the
previous scenario, both ν1;3R in two-component dark matter
schemes possess a negligible scattering cross section with
nuclei in direct detection, appropriate to observation.

VII. CONCERNING COLLIDER LIMITS

Z0
B−L couples to both leptons and quarks, presen-

ting promising signals at colliders. The LEPII experi-
ment [23] searched for such a new gauge boson through
process eþe− → ff̄ for f ¼ μ, τ, described by
the effective Lagrangian Leff ⊃ ðgB−L=mZ0

B−L
Þ2ðēγμeÞ ×

ðf̄γμfÞ, making a bound mZ0
B−L

=gB−L > 6 TeV. Since

mZ0
B−L

¼ gB−L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64w2

1 þ 100w2
2

p
, it correspondingly limits

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64w2

1 þ 100w2
2

p
> 6 TeV; particularly, w1∼w2≳0.5TeV

if the two scales are equivalent. Alternatively, the LHC
experiment [24,25] looked for dilepton signals via process
pp → Z0

B−L → ff̄ for f ¼ e, μ, yielding a Z0
B−L mass

bound roundly mZ0
B−L

≳ 5 TeV for Z0
B−L coupling relative

to that of Z, such as gB−L ¼ ffiffiffiffiffiffiffiffi
5=8

p
sWgZ ≃ 0.28. This con-

verts to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64w2

1 þ 100w2
2

p
¼ mZ0

B−L
=gB−L ≳ 17.85 TeV,

thus w1 ∼ w2 ≳ 1.39 TeV, which is radically bigger than
the LEPII. The last bound is appropriate to those imposed
for neutrino mass and dark matter, as desirable.

VIII. CONCLUDING REMARKS

The dark side of the B − L gauge symmetry is perhaps
associated with three right-handed neutrinos that possess
B − L ¼ −4;−4;þ5, respectively. This theory implies a
unique matter parity as residual gauge symmetry, stabilizing
scotogenic fields in a way different from the hypothesis of
superparticles. Besides explaining the scotogenic neutrino
mass generation and darkmatter candidate, themodel reveals
a second component for dark matter, ν3R with B − L ¼ 5.
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