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We explore an odd class of quantum field theories where a hierarchy problem is resolved with new
dynamics as opposed to new particles. The essential element of our construction is a Uð1Þ pseudo-Nambu-
Goldstone boson with symmetry breaking interactions all characterized by a large number N of units of the
fundamental charge. In the resulting effective theory, quantum corrections, like those to the effective
potential and mass, which are normally power divergent and saturated at the UV cutoff, are instead
saturated at a much lower scale. This critical scale, which does not involve any new particle, corresponds to
the onset of unsuppressed multiparticle production in scattering processes. Remarkably, this all happens
within the tractable domain of weak coupling. Terms involving arbitrarily high powers of the Goldstone
field must, however, be taken into account. In particular, a truncation to the renormalizable part of the
effective Lagrangian would completely miss the physics.
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I. INTRODUCTION

The existence of large separations of length scales is a
basic fact of physics. Indeed, our ability to describe
phenomena in terms of a finite number of parameters is
a direct consequence of that fact. More precisely, what
controls predictivity is the separation between the funda-
mental scale of the dynamics and the macroscopic scale of
the phenomenon being described. The multipole expansion
in classical electrodynamics represents the simplest
incarnation of the concept. Modern effective field theories
(EFTs), with their action organized as an expansion in a
series of operators of increasing dimension, are just a more
sophisticated one. The added difficulty in the latter case
stems from ultraviolet (UV) divergences. These can be
technically dealt with via the renormalization procedure, in
a manner that is independent of the specific nature of the
microphysics. In particular, the scales that regulate the UV
divergences in a chosen scheme do not need to be physical.
In reality, however, we expect these divergences to be
regulated or at least modified at the physical scale where
the EFT gives way to a more fundamental description. Of
particular relevance are, in this perspective, divergences

that grow with a power of the UV cutoff. That is because
these are normally associatedwith corrections to the physical
masses and thus control the very existence of the separation
of scales that makes the EFT description possible.
In all known examples where the mass of a scalar is UV

completed into a theory where it is calculable, the fate of
the power divergence of the EFT is invariably the same: the
order of magnitude of the physical effects are correctly
captured by just cutting off the UV divergences of the EFT
at momenta around the physical mass of the particles of the
UV completion. There are many real world and theoretical
examples. Low energy QCD offers two real world exam-
ples with the K − K̄ and πþ − π0 mass differences. In the
K − K̄ case, the relevant EFT involves the charged-current
Fermi interaction of u, d, s quarks supplemented with
Cabibbo mixing and is UV completed by the addition
of the charm quark c. Neglecting Oð1Þ factors, one has the
pattern

Δm2
K ∼

�
G2

Ff
2
Km

2
K

16π2

�
Λ2
UV →

�
G2

Ff
2
Km

2
K

16π2

�
m2

c; ð1:1Þ

where the first result represents the estimate in terms of the
EFT cutoff ΛUV, while the second is the correct calculation
in the UV completed theory [1,2]. Of course, this result
crucially depends on the absence of the power divergence
in the UV completed theory. In the case of the πþ − π0

mass difference, the EFT is the chiral Lagrangian for pions
supplemented with electromagnetic interactions. The UV
completion includes the heavier hadrons, whose mass can
collectively be identified with that of the ρ meson mρ.
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Again, up to Oð1Þ factors and with the same notation as
before one has

m2
πþ −m2

π0
∼
�

e2

16π2

�
Λ2
UV →

�
e2

16π2

�
m2

ρ: ð1:2Þ

Models with a calculable Higgs mass, such as super-
symmetric [3] or composite [4] models, all offer theoretical,
but conceptually robust, incarnations of the same situation.
For instance, the contribution of the top quark sector to the
Higgs mass parameter invariably follows the pattern

δm2
H ∼

�
3y2t
4π2

�
Λ2
UV →

�
3y2t
4π2

�
m2

T; ð1:3Þ

where mT represents the physical mass of the top partners,
which are bosons in the case of supersymmetry and
fermions in the case of composite Higgs.1

In the simplest cases, like in Eqs. (1.1) and (1.2), power
divergences imply a remarkable relation, valid up to an
Oð1Þ factor, between parameters that are measurable at low
energy within the EFT and the scale where the EFT breaks
down. In more general situations, the Oð1Þ factor repre-
sents just an upper bound, as one can engineer cancellations
between different UV contributions. These cancellations
can be seen explicitly in theories such as supersymmetry
and composite Higgs boson. For instance, in the case of
supersymmetry, the cancellation in the Higgs mass can
occur between the contribution due to sparticles and the
tree-level contribution from the μ term. Significant can-
cellations, however, appear nongeneric, and thus unnatural.
The reason for that view is that, while the structure of the
individual contributions is robustly based on symmetry and
selection rules, their cooperative cancellation is not. The
relevant symmetry constraints are implicit in the structure
of Eqs. (1.1)–(1.3). These all involve two factors: the first,
within brackets, corresponds to the square of a dimension-
less coupling constant, while the second is just the square of
a physical mass.2 The appearance of each factor is dictated
by a separate set of selection rules. The second factor, the
squared mass, is just dictated by the dilation symmetry
selection rule, also known as dimensional analysis. The
first factor is dictated by the selection rules of the group of
higher spin symmetries of free field theory.3 Under this

symmetry, all couplings (i.e., all the coefficients of higher
than quadratic terms in the action) can be viewed as
spurions with nontrivial transformation properties. It is
the selection rules associated with these transformations that
dictate the presence of the squared coupling factor. This
symmetry explainswhy, in all UV completions including the
top-Higgs coupling, there always appears a correction of
the form shown in Eq. (1.3). The point is that, whenever the
Yukawa coupling yt and themass scalemT exist in the theory,
a correction of the form in Eq. (1.3) is allowed, given it
matches the quantum numbers of the Higgs mass term under
(higher spin symmetry) × (dilation).
Given the important role hierarchy problems play in

particle physics, it is important to study any possible
exception to the naivest interpretation of naturalness.
Along these veins, in this paper we study precisely one
such exception.4 We will present and study a toy model
wherepower divergences in theEFTare rendered finite rather
surprisingly at a scale that is parametrically belowwhere new
resonances appear. That is, as if the role of mT in Eq. (1.3)
was played in reality by a scale≲500 GeV at which no new
states exist, compatiblewith naturalness and compatiblewith
the lack of direct evidence for top partners below∼1–2 TeV.
Surprisingly, the symmetry rendering all of this possible is a
simple discrete shift symmetry. The leadingorder corrections
to themass coming from a shift symmetric Yukawa or from a
shift symmetric scalar potential are finite.
While violating the naivest interpretation of naturalness,

our example does not violate a more refined definition of
naturalness. Before the scale ΛUV new physics does occur,
just not in the form of new particles. Instead, final states
with multiple particles become important. Nonetheless, the
systems remain weakly coupled and tractable: the dominant
final states contain a large but finite number of quanta and
the cross section is perturbatively small. The virtual
counterpart of this on shell phenomenon is responsible
for the finiteness of the relevant class of loop integrals.
Another interesting feature in our model is that the

correction to the scalar mass is algebraically related to the
mass of the Yukawa coupled fermion. In our simple
example, we find that δmϕ ¼ 2mψ . While we are unsure
of what exactly are the full implications of such a relation-
ship, it is amusing to note that, to within a few percent,
mH ¼ mt=

ffiffiffi
2

p
.

Exceptions almost invariably come at a price. In our
case, the price is an extra parameter that allows us to lower
the loop cutoff below the masses of the new states. As made
evident by considering the UV completion of the EFT, this
parameter is essentially the large number of legs, or the
large charge, and thus the large dimensionality of the

1The top partners normally carry the same color quantum
number as the top. Twin Higgs models offer, at the price of
additional complication, a twist where the lightest top partners do
not carry color [5], but even in that case Eq. (1.3) holds true.

2This statement is manifestly correct for Eqs. (1.2) and (1.3),
while for Eq. (1.1) notice that the prefactor can be rewritten as
ðg2=16π2ÞðmK=mWÞ2ðfK=vFÞ2, which more precisely corre-
sponds to a squared coupling times ratios of masses and decay
constants.

3In Appendix A, we offer a more detailed discussion of this
fact (see also [6]).

4There have been many attempts to circumvent the arguments
of naturalness, see Refs. [7–16] for a representative sample.
Similar to this paper, there have also been recent attempts at
violating the expectations of naturalness [17–19].
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involved operators.5 The large dimensionality of the oper-
ators that are involved makes it difficult to extend our
mechanism to larger couplings. Because of this, a trans-
lation of the mechanism of our toy model into a concrete
and natural UV completion of the Higgs boson does not
seem immediate. Perhaps, and that is our hope, others may
succeed in putting the mechanism to good use by working
along equally unusual pathways. Given that most alter-
native explanations for the Higgs mass have been exper-
imentally cornered, perhaps nature is indicating a theory of
this kind is present.
This paper is organized as follows. In Sec. II, we discuss

our theory and show that a shift symmetry is all that is
needed to render some would-be divergent diagrams finite.
In Sec. III, we present a UV completion and show that its
calculations agree with those in Sec. II. Finally, we
conclude in Sec. IV.

II. IR EFT

In this section, we study the IR EFT of interest. Our
starting point is a pseudo-Nambu Goldstone boson with a
discrete Z2⋊Z symmetry,

Z2∶ ϕ → −ϕ; Z∶ϕ → ϕþ 2πkf k∈Z: ð2:1Þ

The Lagrangian we will consider is

L ¼ 1

2
ð∂ϕÞ2 þ iψ̄=∂ψ þ ϵ4 cos

�
ϕ

f

�
þ

ffiffiffi
2

p
yf sin

�
ϕ

2f

�
ψ̄ψ :

ð2:2Þ

Invariance of the Yukawa coupling under Z2⋊Z dictates ψ
transform in such a way that Z2∶ ψ̄ψ → ð−1Þψ̄ψ ,
Z∶ψ̄ψ → ð−1Þkψ̄ψ . The above Lagrangian involves the
lower harmonics in ϕ that are compatible with Z2⋊Z.
Higher harmonics, i.e., terms involving higher powers of
cosðϕfÞ, are generated at loop level but are correspondingly

suppressed by higher powers of the couplings ϵ4 and y,
which we treat as small. While this specific structure is not
necessary, it is convenient.
The higher harmonics generated by quantum corrections

are indeed the main target of our discussion. At first glance,
many loop integrals are expected to be divergent, e.g., a
loop of fermions giving a mass to ϕ. However, a more
detailed calculation demonstrates that these loops are
instead regulated by the scale 4πf. While the request of

perturbative unitarity6 typically implies the UV cutoff of
theories of Goldstone bosons to be below the scale 4πf, it
seems clear that the above theory can have a UV cutoff
above 4πf. As ϵ and y go to zero, the theory becomes free
and the UV cutoff, as dictated by unitarity, goes to infinity.
In this section, we first calculate the unitarity bounds

associated with the Lagrangian in Eq. (2.2) before calcu-
lating a few loop diagrams and showing that they are
regulated at the scale 4πf.

A. Unitarity bounds

We first calculate the unitarity bound associated with the
potential ϵ4 cosðϕfÞ. We will follow the approach of
Ref. [20] with results in theories similar to ours being
found in Refs. [21–23]. We consider an initial state with n
Goldstone bosons scattering to a final state with n
Goldstone bosons (states with a different number of initial
and final states give weaker unitarity bounds). The appro-
priate dimensionless matrix element is

Mn→n ¼
1

8π

ϵ4

f4

� ffiffiffi
s

p
4πf

�
2n−4 1

n!ðn − 1Þ!ðn − 2Þ!

≈
ϵ4

n6f4

� ffiffiffi
s

p
4πfn3=2

�
2n−4

: ð2:3Þ

In the last line, we have taken the large n limit. This matrix
element is maximized when scattering nmax particles,

nmax ¼
1

e

� ffiffiffi
s

p
4πf

�
2=3

: ð2:4Þ

Unitarity requires jMn→nj ≤ 1. Setting n ¼ nmax and
imposing this inequality gives a bound on the center of
mass energy

ffiffiffi
s

p ≲ 4πf

�
e
3
log

f4

ϵ4

�
3=2

: ð2:5Þ

At the unitarity bound, scattering is dominated by processes

involving n⋆ ∼ log f4

ϵ4
particles. The energy per particle at

the unitarity limit, which controls the UV cutoff, is

ffiffiffi
s

p
n⋆

≲ 4πf log1=2
�
f4

ϵ4

�
: ð2:6Þ

It is clear that, by choosing arbitrarily small ϵ, the UV
cutoff of the theory can be made parametrically larger than
4πf. The UV completion shown in Sec. III will realize this5The fact that the operators involve fields to high powers is

why multiple final states become important. The theory must
interpolate from the deep IR, where there is a simple Yukawa
coupling involving a single particle, to the far UV, where this
Yukawa coupling is a higher dimensional operator and involves
many particles.

6We stick to the traditional nomenclature, even though it is
inaccurate, because unitarity never is at stake: these bounds
simply require the theory to be weakly coupled, so that it makes
sense to write a Lagrangian.
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limit. A similar result holds when considering the unitarity
bound from the Yukawa coupling in Eq. (2.2).
We have established that, for small enough ϵ, our EFT

still makes sense at energies above 4πf, but a question
lingers: what does the scale 4πf represent physically? This
question is readily addressed by considering the n depend-
ence of Mn→n. In particular, the ratio Mnþ1→nþ1=Mn→n
measures the cost of adding two more legs to the scattering
amplitude. Using Eq. (2.3), we find

Mnþ1→nþ1

Mn→n
¼

�
n

nþ 1

�
3n−4

� ffiffiffi
s

p
n3=24πf

�
2

∼
� hEi
n1=24πf

�
2

;

ð2:7Þ

where in the last step we have defined the average energy
per quantum hEi ∼ ffiffiffi

s
p

=n. This result shows that 4πf is a
threshold for unsuppressed multiparticle production.
Notice that this does not imply strong coupling, because
these processes all have small amplitudes. It is just the
relative importance of processes with different n that
undergoes a regime change at E ∼ 4πf.
A similar result is obtained when considering 2 → n

processes, including, in particular, ψψ̄ → nϕ. In the 2 → n
case, the relevant quantities to compare are the cross
sections, i.e., the squared amplitudes integrated over phase
space.7 One finds again

σ2→nþ1

σ2→n
∼
� ffiffiffi

s
p

n3=24πf

�
2

¼
� hEi
n1=24πf

�
2

: ð2:8Þ

What these formulas show is that for n ¼ Oð1Þ the produc-
tion of an additional quantum becomes unsuppressed whenffiffiffi
s

p
becomes larger than 4πf. However, because of the n−3=2

factor, the total cross section
P

n σ2→n is still dominated by
processes with a finite number of quanta.
Having determined the role of the scale 4πf for on shell

processes, we will now investigate virtual effects.

B. Loop diagrams

We now calculate two different corrections to the
effective potential and show that these otherwise UV
dominated effects are instead dominated at the IR scale
4πf. As we will be computing the UV corrections to IR
physics, it will be convenient to work in a background field
approach and write ϕ ¼ ϕ0 þ δϕ, where ϕ0 describes the
soft IR field (which in the limiting case can be taken to
coincide with the vacuum expectation value of ϕ), while δϕ
parametrizes the (mostly UV) quantum fluctuations.

1. Higher harmonics

We first consider the ϵ8 correction to the effective
potential that give rise to a cosine with doubled frequency
of the form

Veff ¼ Δ8cos2
�
ϕ0

f

�
→ Δ8

cos
�
2ϕ0

f

�
2

: ð2:9Þ

Before presenting the computation, a technical remark is in
order. The one-loop part of the Coleman-Weinberg effec-
tive potential features an IR logarithm regulated by the
mass of the scalar m2ðϕ0Þ≡ ðϵ4=f2Þ cosϕ0=f. A proper
treatment requires separating the mass term from the
potential, which slightly complicates things. As our main
point concerns the fate of the UV divergences, we found it
more convenient to regulate the IR simply by adding to the
action of the quantum fluctuation a background-field-
independent mass term m2δϕ2=2. The results then differ
from the correct one by a finite threshold correction.8 We
will not bother to do the matching computation, as it is
irrelevant to our main point.
After a Wick rotation to Euclidean space, Δ8 can be

expressed as the path integral

Δ8 ¼
−ϵ8

2

Z
d4x

Z
Dδϕe−S

×

�
ei

δϕð−x=2Þ
f þiδϕðx=2Þf − ei

ffiffi
2

p
δϕð0Þ
f

�
1 −

DϕðxÞ
f2

��
; ð2:10Þ

where S ¼ R ðð∂δϕÞ2 þm2δϕ2Þ=2 is the free action sup-
plemented with the IR regulator massm, whileDϕðxÞ is the
associated propagator. As one can check by a straightfor-
ward diagrammatic analysis, the term in round brackets,
with a proportionality constant ei

ffiffi
2

p
δϕð0Þ=f, subtracts the

non-1PI diagrams. These are those diagrams that involve
only zero or one propagator between x=2 and −x=2.
Expanding the exponential in ϕ, the terms up to fourth
order in δϕ give rise upon functional integration to the
usual one-loop Coleman-Weinberg effective potential. This
includes the standard logarithmically divergent ½mass�4
term. The path integral of the higher order terms capture
all loops connecting the two Feynman vertices. It turns out
that these are both calculable and physically crucial.
Calculability is evident, as Eq. (2.10) is just a Gaussian

integral. It is convenient to rewrite the inserted fluctuations
as a delta function source J,

Z
Dδϕe−Sei

δϕð−x=2Þ
f þiδϕðx=2Þf ¼

Z
Dδϕe−Sei

R
d4zJðzÞδϕðzÞ

JðzÞ ¼ 1

f
ðδ4ðz − x=2Þ þ δ4ðzþ x=2ÞÞ:

7The n → n amplitude of Eq. (2.3) refers to states of unit norm.
Such normalization already includes the phase space factor, see
Ref. [20].

8This mostly amounts to, but does not coincide with, the
replacement m2 → ðϵ4=f2Þ cosϕ0=f in the final result.
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By completing the square, we then find

Z
Dδϕe−Sei

δϕð−x=2Þ
f þiδϕðx=2Þf ¼ e

− 1

2f2
ð2Dϕð0ÞþDϕðxÞþDϕð−xÞÞ

¼ e
−
Dϕð0Þ
f2 e

−mxK1ðmxÞ
4π2f2x2 ; ð2:11Þ

where K1 is the modified Bessel function. As
limt→0 tK1ðtÞ ¼ 1, for mx ≪ 1 we simply have

DϕðxÞ
				
xm≪1

¼ mxK1ðmxÞ
4π2x2

				
xm≪1

¼ 1

4π2x2
: ð2:12Þ

For the non-1PI subtraction part, we similarly find

Z
Dδϕe−Sei

ffiffi
2

p
δϕð0Þ
f

�
1 −

DϕðxÞ
f2

�
¼ e

−
Dϕð0Þ
f2

�
1 −

DϕðxÞ
f2

�
;

ð2:13Þ

which precisely corresponds to the expansion of Eq. (2.11)
in DϕðxÞ up to linear order, keeping all orders in Dϕð0Þ.
The e−Dϕð0Þ=f2 factor represents a multiplicative renorm-

alization of the coupling ϵ4. It can be absorbed in the
definition of the coupling observed at low energy,

ϵ4obs ¼ ϵ4e
−
Dϕð0Þ
2f2 : ð2:14Þ

Notice that Dϕð0Þ coincides diagrammatically with the
one-loop tadpole, so that the exponential factor results from
a resummation of multitadpole diagrams as shown in Fig. 1.
As Dϕð0Þ ∼ Λ2

UV=16π
2, the terms in the series correspond

to the power divergences of fixed order perturbation theory.
Remarkably, however, the resummation of the series turns
the power enhancement into an exponential suppression.
This phenomenon in the renormalization of the Oðϵ4Þ term
in the potential is a prelude of what happens at Oðϵ8Þ.
Combining all of our results, the Oðϵ8Þ correction to the

effective potential reads

δVeff ¼−
cos

�
2ϕ0

f

�
2

ϵ8obs
2

Z
d4x

�
e
−mxK1ðmxÞ

4π2f2x2 −1þmxK1ðmxÞ
4π2f2x2

�

≈−
cos

�
2ϕ0

f

�
2

1

64π2

�
ϵ4obs
f2

�
2

log

�
4π2f2

m2

�
: ð2:15Þ

Notice that, in view of Eq. (2.12), the integral of each term
in brackets is independently UV convergent. IR conver-
gence is instead guaranteed both by mutual compensation
and by the finite mass m. In the last line, we have taken the
small mass and large f limit to isolate the logarithmically
enhanced piece. Note that the usual logarithmic UV
divergence of the Coleman-Weinberg potential has been
cut off at the physical scale 2πf. As promised, the erstwhile
divergent integral has been rendered finite. A glance at
Eq. (2.10) allows us to trace back the origin of this
phenomenon: two same charge operators eiϕ=f inserted
within a distance x≲ 1=ð2πfÞ mutually cause large and
“disordered” quantum fluctuations in their exponents that
suppress their average to e−1=ð2πfxÞ2 .

2. Loops of fermions

Our next example is the y2 correction to the effective
potential. The calculation of this contribution proceeds in
much the same manner as the previous calculation. In fact,
the computation is simpler because this contribution does
not suffer from infrared divergences in the massless limit
and we can happily work with massless ϕ and ψ .
After Wick rotation, the result can be written as

δVeff ¼
−y2f2

2

Z
d4xTrðDψðxÞDψ ð−xÞÞ

×
Z

Dδϕeiðδϕðx2Þþδϕð−x
2
ÞÞ=2fe−S cos

�
ϕ0

f

�

¼ y2obsf
2

2π2

Z
dx2

x4
e
− 1

8f2
ðDϕðxÞþDϕð−xÞÞ cos

�
ϕ0

f

�

¼ 8y2obsf
4 cos

�
ϕ0

f

�
; ð2:16Þ

where the massless fermion propagator DψðxÞ gave
TrðDψðxÞDψ ð−xÞÞ ¼ −1=ðπ4x6Þ; moreover, we used
Eq. (2.12) and similar to before defined

yobs ¼ ye
−
Dϕð0Þ
8f2 : ð2:17Þ

This time, the standard quadratically divergent loop integral
has been rendered finite with the UV cutoff instead replaced
by ∼4πf.9

FIG. 1. The leading order (divergent) corrections to ϵ4.
The tree-level, one-loop quadratic divergence, two-loop
ðquadratic divergenceÞ2, and so on, all sum together to give
an exponential suppression of the form shown in Eq. (2.14). The
naive expectation of divergences increasing ϵ4 is subverted and
instead the tree level combined with the divergent corrections all
sum into an exponential suppression.

9The factor of 2 increase in the UV cutoff with respect to the
previous case stems from the 1=2 in the phase factor of the
Yukawa interaction, see Eq. (2.2).
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Notice, amusingly, that in the self-consistent situation
where Eq. (2.16) represents the leading contribution to the
scalar potential, there is a sharp relation between the masses
mψ and mϕ of, respectively, fermion and boson. The
minimum of the potential in Eq. (2.16) is at ϕ=f ¼ π,
which breaks the discrete chiral symmetry protecting the
fermion mass. Expanding around the minimum, we find
mϕ ¼ 2mψ . The fact that mϕ is not suppressed with respect
to mψ , even though it is generated from loops involving the
fermion mass interaction, is because quantum fluctuations
of eiϕ=f at the scale 4πf are unsuppressed.10

3. General operators

Our two examples are not exceptions. The dressing of
erstwhile divergences with exponentials is a general phe-
nomenon. If the scalar couples to an operator as

δL ¼ y sin

�
ϕ

2f

�
O; ð2:18Þ

then the effective potential will be corrected as

Veff ∝ y2 cos

�
ϕ

f

�Z
d4x
x2ΔO

e
− 1

16π2f2x2

∼ y2 cos
�
ϕ

f

�
ΓðΔO − 2Þð4πfÞ2ΔO−4; ð2:19Þ

where ΔO is the dimension of the operator O. The integral
is dominated at a scale 4πf

ffiffiffiffiffiffiffi
ΔO

p
. Only for large enough

ΔO ≫ 1 can this effective cutoff approach the physical UV
cutoff of the theory.

III. UV COMPLETION

The previous section presented an EFT endowed with a
physical scale 4πf within its perturbative domain of
validity that controls the onset of a dynamical regime
where multiparticle states dominate both real and virtual
processes. In this section, we present a UV completion of
our EFT. That will show both its robustness and the
microphysics features that are necessary to give rise to
it. In particular, we will find that the request 4πf ≪ ΛUV
requires the presence of a large discrete symmetry ZN
with N ≫ 1.
The basis of our construction is the theory of a complex

scalar Φ and of a Dirac fermion ψ , endowed with a Z2⋊ZN
symmetry under which

Z2∶ Φ → Φ†; ψ̄ψ → −ψ̄ψ ; ð3:1Þ

ZN∶Φ → e
2πki
N Φ; ψ̄ψ → ð−1Þkψ̄ψ ; k ¼ 1;…; N − 1:

ð3:2Þ

The Lagrangian containing the lowest dimension oper-
ators consistent with Z2⋊ZN contains, in addition to the
kinetic terms, the potential

V ¼ −m2
ΦjΦj2 þ λΦ

4
jΦj4 − λN

�
ΦN þΦ†;N

�

þ iY

�
ΦN=2 −Φ†;N=2

�
ψ̄ψ : ð3:3Þ

Notice that the terms proportional to λN and Y serve the role
of explicitly breaking the Uð1Þ symmetry Φ → eiαΦ down
to ZN .
The negative mass term in the potential forces Φ to

acquire an expectation value. This would give rise to a
Goldstone boson in the limit of an exact Uð1Þ. As we want
to maintain a light pseudo-Nambu-Goldstone (NG) boson
to match the EFT of the previous section, we will work
under the assumption that the couplings λN and Y, which
explicitly break the Uð1Þ, can be treated as small pertur-
bations. A small Y also ensures, under all circumstances,
the lightness of the fermion ψ . We can then expand around
the minimum as

hΦi ¼ F þ ρffiffiffi
2

p eiϕ=F; ð3:4Þ

where at lowest order in λN the expectation value F and the
mass of the radial mode mρ are given by

F2 ¼ 4m2
Φ

λΦ
; m2

ρ ¼ 2m2
Φ: ð3:5Þ

At energies belowmρ the radial mode ρ can be integrated
out. At the lowest order in the derivative expansion and up
to linear order in λN and Y, the resulting effective
Lagrangian for ϕ and ψ matches Eq. (2.2) with

f ¼ F
N
; ϵ4 ¼ 2λN

�
Fffiffiffi
2

p
�

N
; y ¼ YN

�
Fffiffiffi
2

p
�

N=2−1
:

ð3:6Þ
Higher orders in λN and Y involve, in particular, contri-
butions to higher harmonics. In order for our story to make
sense, those UV induced contributions, at tree level and
beyond, should be subdominant to the loop induced IR
ones, which we computed in the previous section. Our goal
now is to show that this is the case. Indeed, the zeroth order
request for our story to make sense is that the EFT UV
cutoff mρ be parametrically larger than the scale 4πf at
which power divergences are cut off in the EFT. Using
Eqs. (3.5) and (3.6), this constraint reads

10For instance, in a strongly coupled composite Higgs model
where the strong scale is ∼4πvF ∼ 2 TeV coincides with the UV
cutoff, one expects, according to Eq. (1.3), a correction δmH ∼mt
with no suppression.
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m2
ρ

16π2f2
∼
λΦN2

16π2
≫ 1: ð3:7Þ

In a weakly coupled model, i.e., with λΦ=16π2 ≪ 1,
Eq. (3.7) necessarily requires N ≫ 1, corresponding to
a large charge interaction.11 Consistent with Eq. (3.7) and
also to simplify our computations, we find it convenient to
scale our parameters as N → ∞ so that

γ ¼ λΦN2

16π2
¼ fixed ≫ 1; mρ ¼ fixed;

f ¼ F
N

¼ fixed; ð3:8Þ

where, by m2
ρ ∼ λΦF2, only two of the above relations are

independent. Notice also that the first relation implies that
λΦN=16π2, which controls the Feynman diagram expan-
sion at large charge, goes to zero as N → ∞.
Consider now the parameters Y and λN . The classical

dimensions of the corresponding operators scales like N
and go to infinity in the scaling limit depicted above. Their
one-loop anomalous dimension is proportional to γ in
Eq. (3.8), while higher loop contributions are instead
controlled by powers of η ¼ λΦN=16π2. As in our scaling
limit γ ¼ fixed and η → 0, we will be allowed to limit our
analysis to a subclass of (suitably resummed) one-loop
effects.
To stay on the safe side, wewant to treat Y and λN as small

perturbations. Considering for definiteness λN , the con-
straints δhΦi=hΦi ≲ 1 and δmρ=mρ ≲ 1 read, respectively,

ϵ4 ¼ 2λNðF=
ffiffiffi
2

p
ÞN ≲ F2m2

ρN−1;

ϵ4 ¼ 2λNðF=
ffiffiffi
2

p
ÞN ≲ F2m2

ρN−2: ð3:9Þ

The bound gets stronger when going from the one- to the
two-point function, and indeed the higher point functions
give increasingly stronger bounds. The strongest constraint
comes in the end from amplitudes with n ∼ N legs. The
computation of these amplitudes, at least close to threshold,
was addressed long ago, focusing on processes of the form 1
virtual → n − 1 real. At tree level, the matrix element
hn − 1jρj0i, with hn − 1j the bra of n − 1 ρ quanta, is
unaffected by the pseudo-NG ϕ, and, using Refs. [26,27]
we find

A1→n−1 ≡ hn − 1jρj0i ¼ ðn − 1Þ!
�

1

2f

�
n−2

: ð3:10Þ

On the other hand, λN gives a correction

δA1→n−1 ¼
2λNðF=

ffiffiffi
2

p ÞN
ðFÞn

1

m2
ρ

N!

ðN − nÞ!
1

nðn − 2Þ ; ð3:11Þ

where the factor 1=ðm2
ρnðn − 2ÞÞ is the propagator of the

incoming off-shell ρ quantum that disintegrates into n − 1
real quanta. Cautiously requesting δA1→n−1 ≲A1→n−1, the
strongest constraint is given by n ∼ N=2 and reads

ϵ4 ¼ 2λNðF=
ffiffiffi
2

p
ÞN ≲Nm2

ρF223−
3
2
N ∼F2m2

ρe−
3N
2
ln2; ð3:12Þ

corresponding to an exponential suppression with respect to
vacuum energy scale of the original complex scalar. Notice
that this exponential suppression guaranteed that the order of
magnitude of ln ϵ4 is not significantly affected by threshold
corrections at the RG matching scale μRG ∼mρ, as the
anomalous dimension γ is large but still ≪ OðNÞ.
A similar exponential suppression can be derived for Y

and y, by considering the one-loop contribution to the same
purely bosonic process.

A. The higher harmonics in the full UV theory

We want to repeat the computations done in Sec. II, but
this time within the UV completion. As already stated, our
main goal is to test the robustness of our conclusion that
power divergent loops are saturated below the UV cutoff
mρ of the low energy EFT.
The main novelty in the full theory is the propagating

radial mode ρ. Equation (3.8) offers a great simplification,
as it implies λΦ → 0: the quantum effects of λΦ vanish, if
not enhanced by two powers of N. That means we can
safely truncate to quadratic order the kinetic and λΦ parts of
the Lagrangian, while keeping higher powers of ρ;ϕ only
in the terms involving OðNÞ legs.12 The fact that ρ=F
can be treated as an infinitesimal quantity also gives us the
right to “exponentiate” ρ when taking OðNÞ powers of Φ,

ΦN ¼
�

Fffiffiffi
2

p
�

N
�
1þ ρ

Nf

�
N
ei

ϕ
f ≃

�
Fffiffiffi
2

p
�

N
e
ρþiϕ
f : ð3:13Þ

The above step, while intuitive, may seem a bit cavalier. We
shall later come back and check that it is justified in the
scaling limit of Eq. (3.8).
In view of the above comments, the UV dynamics is

described by the Lagrangian

11In this situation, standard perturbation theory works reliably
for λΦN=16π2 ≪ 1, while for λΦN=16π2 ≳ 1, one must instead
employ a slightly more involved, but equally reliable, semi-
classical method [24]. The scaling λΦN2 ¼ fixed for N → ∞
was, to our knowledge, first considered in [25].

12One should not be confused by the fact that λN and Y also go
to zero, and exponentially so, when N → ∞. We keep the effects
of these terms, as they are the leading ones involving the breaking
of Uð1Þ to ZN and producing a potential for ϕ, no matter how
suppressed.
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L ¼ 1

2
ð∂ρÞ2 − 1

2
m2

ρρ
2 þ 1

2
ð∂ϕÞ2 þ iψ̄∂ψ

þ 1

2
ϵ4
�
e
ρþiϕ
f þ H:c:

�
−

iffiffiffi
2

p yf

�
e
ρþiϕ
2f − H:c:

�
ψ̄ψ :

ð3:14Þ

At tree level, the matching to the IR theory of Eq. (2.2)
simply amounts to setting ρ ¼ 0. To compute quantum
corrections to the ϕ potential, like before we decompose
ϕ ¼ ϕ0 þ δϕ and integrate out ρ, δϕ, and ψ .
Let us consider first the multiplicative renormalization of

ϵ4 and y. This coincides with the multiplicative renorm-
alization of, respectively, λN and Y. The UV divergent part
of these corrections is therefore related to the anomalous
dimensions of the corresponding operators. Thanks to the
structure of Eq. (3.14), the observed (i.e., at low momenta)
couplings are again determined by a straightforward
Gaussian integral and read

ϵ4obs¼ ϵ4e
1

2f2
ðDρð0Þ−Dϕð0ÞÞ; yobs¼ye

1

8f2
ðDρð0Þ−Dϕð0ÞÞ: ð3:15Þ

Notice that the real and purely imaginary factors with
which, respectively, ρ and ϕ appear in Eq. (3.13) translate
into opposite signs for the propagators in the exponents.

This ensures the exact cancellation of the leading quadratic
divergence, which instead appeared in the EFT computa-
tion [see Eqs. (2.14) and (2.17)]. The residual logarithmic
divergence coincides with the anomalous dimension of the
corresponding operators. Indeed, by Eqs. (3.5) and (3.6),
one has

1

2f2
ðDρð0Þ−Dϕð0ÞÞ¼

1

2f2

Z
d4p
ð2πÞ4

−m2
ρ

p2ðp2þm2
ρÞ

≃−
λΦN2

32π2
ln

Λ
mρ

≡−γN ln
Λ
mρ

; ð3:16Þ

properly reproducing the N ≫ 1 limit of the ΦN anomalous
dimension γN (see, e.g., [24]). The exponent in yobs is
similarly controlled by theΦN=2 anomalous dimension γN=2.
Next we calculate the y2 correction to ϵ4, as it is

emblematically similar to the top correction to the Higgs
mass (the computation of the other corrections, like the ϵ8

one, goes however along the same lines). The result
parallels Eq. (2.16) with the extra contribution from ρ
exchange. Working in Euclidean space and indicating the
free Euclidean quadratic action for ρ and δϕ simply by S,
we thus find

δϵ4obs ¼ −
y2f2

2

Z
d4xTrðDψ ðxÞDψð−xÞÞ

Z
DρDδϕ eðρðx2Þþiδϕðx

2
Þþρð−x

2
Þþiδϕð−x

2
ÞÞ=2fe−S

¼ y2f2

2π2

Z
dx2

x4

Z
DρDδϕ eðρðx2Þþiδϕðx

2
Þþρð−x

2
Þþiδϕð−x

2
ÞÞ=2fe−S

¼ y2f2

2π2

Z
dx2

x4
e

1

8f2
ð2Dρð0Þ−2Dϕð0ÞþDρðxÞ−DϕðxÞþDρð−xÞ−Dϕð−xÞÞ

¼ y2obsf
2

2π2

Z
dx2

x4
e

1

8f2
ðDρðxÞ−DϕðxÞþDρð−xÞ−Dϕð−xÞÞ ≡ y2obsf

2

2π2

Z
dx2

x4
e−

γN
2
GðxmρÞ: ð3:17Þ

As expected, this matches the EFT result in Eq. (2.16),
apart from the ρ contribution in the exponent. DρðxÞ is,
however, exponentially suppressed for mρx ≫ 1 so that, in
the EFT domain, Eq. (3.17) coincides with Eq. (2.16). It is,
however, interesting to study the behavior of the integrand
for arbitrary mρx. For that purpose, in the last line of
Eq. (3.17) we have conveniently expressed the exponent as

1

8f2
ðDρðxÞ−DϕðxÞþDρð−xÞ−Dϕð−xÞÞ¼−

γN
2
GðmρxÞ;

ð3:18Þ

GðzÞ≡ 2 − 2zK1ðzÞ
z2

: ð3:19Þ

Now, crucially, GðzÞ is both positive definite and mono-
tonically decreasing. This guarantees that the integral in

Eq. (3.17) is indeed saturated at length scales ∼1=4πf
where the exponent is Oð1Þ, while the contribution of
shorter scales, in particular, the UV/IR matching scale
1=mρ, is suppressed. Even if the region z ¼ xmρ ≪ 1 is
subdominant in the integral, it is interesting to study the
behavior of the integrand there. Indeed, in that region, one
has the asymptotic behavior GðzÞ ≈ − log z, so that the
exponential factor becomes

e−
γN
2
GðxmρÞ ∝ ðxmρÞ

γN
2 ≡ ðxmρÞγN−2γN=2 ; ð3:20Þ

where in the last step we used γN ¼ λΦN2=32π2 to express
the exponent as the difference of the anomalous dimensions
of, respectively, ON ≡ΦN and ON=2 ≡ΦN=2. The above
result matches the Operator Product Expansion (OPE) in
the far UV regime where our theory (with λN ¼ Y ¼ 0) is at
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lowest order conformally invariant. Indeed the UV tail of
our computation, in the language of conformal perturbation
theory, is controlled by the OPE,

ON=2ðxÞON=2ð−xÞ¼CxΔN−2ΔN=2ONð0Þ¼CxγN−2γN=2ONð0Þ;
ð3:21Þ

which by use of ΔN ¼ N þ γN perfectly matches
Eq. (3.20). The convexity of the operator dimension as a
function of charge [24] guarantees ΔN − 2ΔN=2 > 0 and
thus the UV convergence of the correction.
It is convenient to discuss the integral in Eq. (3.17) by

using the dimensionless coordinate z ¼ xmρ. It is also
suggestive to translate δϵ4 into a correction δm2

ϕ to the mass
term for ϕ, which then reads

δm2
ϕ ¼ −

δϵ4

f2
¼ −

y2obsm
2
ρ

2π2

Z
dz2

z4
e−

γN
2
GðzÞ: ð3:22Þ

The prefactor of the dimensionless integral represents the
estimate of δm2

ϕ, based on a naive application of dimen-
sional analysis and selection rules. Our construction,
however, features another control parameter, γN , which
given Gðz ∼ 1Þ ¼ Oð1Þ, exponentially suppresses the inte-
grand in the naively dominant threshold region z ∼ 1. The
integral is thus instead dominated at z ∼ γN (i.e.,
x ∼ 1=4πf), giving a 1=γN suppression with respect to
the naive result

δm2
ϕ ∼ −

y2obsð4πfÞ2
2π2

¼ −
y2obsm

2
ρ

2π2
×

1

γN
: ð3:23Þ

We should stress that it is essential for this result that
Gðz ∼ 1Þ ¼ Oð1Þ. When comparing to the OPE in
Eq. (3.21) this corresponds to a Wilson coefficient

C ∼m
γN−2γN=2
ρ e−γN×Oð1Þ, i.e., exponentially suppressed with

respect to its naivest estimate. This exponential suppression
ensures that the dx integral is dominated at even longer
distances than guaranteed by the conformal field theory
(CFT) regime in Eq. (3.21). Our computation shows that
the presence of a large charge N “extends the UV
suppressing arm” of the OPE beyond the scale invariant
regime. Figure 2 offers a graphical representation of these
results.
It is easy and instructive to study how Eq. (3.22) changes

when the fermion bilinear operator is replaced by the
interaction in Eq. (2.18). Without paying attention to Oð1Þ
factors, in that case one has

δm2
ϕ ∝

y2obs
2π2

m2ΔO−4
ρ

Z
dz2

z2ΔO−2
e−

γN
2
GðzÞ: ð3:24Þ

For ΔO ¼ Oð1Þ, the numerical integral will be similarly
saturated at large z, ending up in a suppression with respect

to the naive estimate in the prefactor. However, forΔO ≫ 1,
the integral will be saturated closer to z ∼ 1, reducing the
suppression. A simple saddle point estimate of the integral
indeed gives ðΔO=γNÞ2ΔO−4: a suppression persists only as
long as ΔO ≪ γN .

B. Scales in the quantum field theory
and exponentiation

Working at finite but large N, the quantum field theory
(QFT) under consideration has many scales. Going from
long distance to short distances, the first scale of import is
f ¼ F=N, where multiparticle processes set in and where
some loop integrals are dominated. Next, there is mρ, the
physical threshold acting as UV cutoff of the low energy
EFT. Then is the scale F=

ffiffiffiffi
N

p ≡ 1=x2, at which the
linearization of ρ interactions with finite number of legs
and their N-leg exponentiation fail. Finally, there is the
scale

ffiffiffiffi
N

p
F≡ 1=x1, where complete symmetry restoration

occurs. In the N → ∞ scaling of Eq. (3.8), only f and mρ

stay finite, while x1;2 → 0. The phenomena pertaining to
these latter scales thus do not concern us. This means, in
particular, that exponentiation of the radial mode happily
applies at all scales. Let us see that.
To see the scale x2, consider the exponentiation

�
1þ ρ

F

�
N
→ eNρ=F: ð3:25Þ

The Taylor series of an exponential ec is dominated by the
cth terms. As we are exponentiating the propagators,

FIG. 2. The contribution of a loop of fermions as a function of
distance to the mass of ϕ, i.e., the integrand of Eq. (3.22) as a
function of z ¼ mρx, where x is the distance between the two
vertices. The solid line is when γN ¼ 10, the dashed line is when
γN ¼ 102, while the dotted line is when γN ¼ 103. At low
energies, large z, the standard quadratic growth is seen. At a
scale z2 ∼ γN , the fermion loop saturates and begins to be
suppressed, indicating the fermion loop has its structure changed
at scales well below the mass of the ρ. This demonstrates that the
structure of divergences changes at a scale not associated with the
mass of the ρ, z ¼ 1, and takes the initially divergent fermion
loop and renders it finite.
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DρðxÞ ∼ 1=ð4π2x2Þ, requiring that the exponent is smaller
than N gives

N2

F2x2
≲ N ⇒ x2 ¼

ffiffiffiffi
N

p

F
; ð3:26Þ

only for x≳ x2 is the exponentiation trick that we utilize
valid. The above constraint also coincides with the linearity
request ρ=F < 1 for the configurations that dominate the
path integral. When performing the Gaussian integral, we
have ρ=F ∼ N=F2x2, which again translates into x > x2.
As x2 ∝ 1=

ffiffiffiffi
N

p
in the scaling of Eq. (3.8), we conclude that

the linearization and exponentiation expressed by
Eq. (3.14) are exact for N → ∞.
Finally, let us consider the scale where complete sym-

metry restoration occurs. For that purpose we can consider,
for instance, the correlator ΦNðxÞΦ†;Nð0Þ and study where
the first correction proportional to F2 becomes comparable
to the leading short distance result. One has


�
F þ ρþ iϕffiffiffi

2
p

�
N
ðxÞ

�
F þ ρ − iϕffiffiffi

2
p

�
N
ð0Þ

�

¼ N!

�
DðxÞN þ N

2
F2DðxÞN−1 þ…

�
: ð3:27Þ

Requiring that the first term is more important gives

1

x2
≳ NF2 ⇒ x1 ¼

1ffiffiffiffi
N

p
F
: ð3:28Þ

At length scales smaller than x1 the vacuum expectation
value of Φ can be completely neglected, indicating com-
plete symmetry restoration.

C. Non-IR dominated loop integrals

We must point out, in order to avoid confusion, that the
dominance of loop integrals at the scale 4πf is not a
universal feature. That interesting phenomenon only occurs
when considering insertions carrying Uð1Þ charges of the
same sign. That is already clear when considering the UV
regime where our QFT is well approximated by a CFT. For
instance, if, instead of same charge operators in Eq. (3.21),
we considered operators of opposite charge, the OPE would
involve many terms singular at x → 0, starting with the one
associated with the identity operator

ON=2ðxÞO†
N=2ð−xÞ ¼

1

x2ΔN=2
þ…: ð3:29Þ

Quantum corrections would then be fully UV dominated.
Relatedly, in our full theory, involving finite mρ, the
integrand is controlled by the exponential factor

e
γN

1þmρxK1ðmρxÞ
m2
ρx

2
; ð3:30Þ

which as signaled by the positive sign in the exponent
makes now the integral UV dominated. The change of sign
in the exponent gives exponential enhancement where we
previously had an exponential suppression.

IV. CONCLUSION

The application of naturalness to the Higgs boson has
driven the field of particle physics for many years. The
most important aspect of this application of naturalness is
the prediction of where new particles should appear. In this
article, we demonstrated that the scale predicted by dimen-
sional analysis is not necessarily the scale where new
particles appear.
By considering a shift symmetric Yukawa coupling, we

showed that the usual quadratic divergence is not present
and is instead regulated by a new scale ∼4πf that is
parametrically smaller than the scale where new particles
appear. It is this scale that is predicted by naturalness, rather
than the scale of new particles. The physics that appears at
this energy scale manifests itself as the importance of
multiple loops/final states.
In light of the apparent lack of new particles at the meV

scale and the TeV scale, it would be interesting if these
thoughts could be applied to the cosmological constant or the
Higgs boson, seeAppendixB for an example of how to apply
our results to a non-abelian theory. Speculations and progress
along these directions are left as an exercise for the reader.
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APPENDIX A: HIGHER SPIN SYMMETRY
SELECTION RULES

Here we would like to briefly illustrate the role of the
higher spin symmetries of free field theory in shaping the
notion of naturalness. These symmetries are best charac-
terized by working in momentum space. It also suffices to
focus on the simplest case of a massive free scalar ϕ, whose
action can be written in spacetime and momentum space as

S ¼
Z

d4xϕðxÞð−∂2 −m2ÞϕðxÞ

¼
Z

d4p
ð2πÞ4 ϕ̂ð−pÞðp

2 −m2Þϕ̂ðpÞ; ðA1Þ
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where ϕ̂ð−pÞ ¼ ϕ̂ðpÞ�. It is evident from the momentum
space representation that the transformation

ϕ̂ðpÞ → eiθðpÞϕ̂ðpÞ; θð−pÞ ¼ −θðpÞ ðA2Þ

is a symmetry of the action. By expanding θ in a power
series θ ¼ aμpμ þ aμνρpμpνpρ þ � � �, the transformation in
position space reads

ϕ → ð1þ aμ∂μ − aμνρ∂μ∂ν∂ρ þ…Þϕ; ðA3Þ

for which the Noether currents are the tensor bilinears in ϕ
with even rank r ≥ 2 (the energy-momentum tensor cor-
responding to r ¼ 2), hence the label “higher spin sym-
metry.” One can easily see that the infinite symmetry (A2)
“protects” all terms in the action other than the quadratic
ones. Indeed, the effective 1PI action of a generic QFT can
be formally made invariant by assigning to its n-point
functions the transformation property

ΓðnÞðp1;…; pnÞ → ΓðnÞðp1;…; pnÞe−i
P

a¼n
a¼1

θðpaÞ: ðA4Þ

For a general θ satisfying Eq. (A2), true invariance of the
action corresponds to the above transformation being the
identity, which, for well behaved ΓðnÞ, can only happen for
the two-point function Γð2Þ ¼ δð4Þðp1 þ p2ÞΓðp1Þ. This
infinite symmetry thus protects all vertices with more than
two legs, that is, all the nontrivial interactions.
To learn the implications of the selection rules associated

with the high spin symmetry, we can focus on the theory of
a real scalar and a Dirac fermion with Lagrangian

L ¼ 1

2
ð∂ϕÞ2 þ iψ̄=∂ψ − λϕ4 þ yϕψ̄ψ : ðA5Þ

Working in momentum space, the couplings can be viewed
as momentum-dependent spurions, λ ⇒ λ̂ðp1; p2; p3; p4Þ
and y ⇒ ŷðp1; p2; p3Þ, transforming as

λ̂ðp1; p2; p3; p4Þ
→ λ̂ðp1; p2; p3; p4Þe−iðθϕðp1Þþθϕðp2Þþθϕðp3Þθϕðp4ÞÞ; ðA6Þ

ŷðp1;p2;p3Þ→ ŷðp1;p2;p3Þe−iðθϕðp1Þþθψ ðp2Þþθψ ðp3ÞÞ: ðA7Þ

When considering the effective action (let us say the 1PI
action for definiteness), one can easily see the implications
of this symmetry: the compensation of the phase rotations
of the external fields, see Eq. (A2), and of the spurions,
Eq. (A7), give rise to precisely the structures of the
constructable Feynman diagrams. Use of these selection
rules therefore does not teach us anything that we could not
learn by drawing Feynman graphs. Still, we find it con-
ceptually important that the allowed combinations are
controlled by an infinite number of symmetries.

The conceptual relevance is evidenced when considering
naturalness issues, which are too often mistakenly viewed
as lacking sufficient formal ground. The scalar mass in the
above theory is a good example to illustrate that. What we
must consider are the possible contributions to the two-
point function Γðp1; p2Þ for ϕ. Assuming the above theory
is endowed with a physical UV cutoff ΛUV, the combined
selection rules of dilation (≡ dimensional analysis) and
higher spin symmetry are easily seen to allow the following
corrections from, respectively, λ and y:

δΓðp1; p2Þ ∝ λ̂ðp1; p2; k;−kÞΛ2
UV;

δΓðp1; p2Þ ∝ ŷðp1; k1; k2Þŷðp2;−k1;−k2ÞΛ2
UV: ðA8Þ

Replacing then the spurions with their physical values,
i.e., λ̂→ ð2πÞ4δðp1þ�� �þp4Þλ and ŷ→ ð2πÞ4δðp1þp2 þ
p3Þy, we see that the above structures are precisely those
encountered when estimating the one-loop corrections to the
scalar mass. This argument clarifies the ubiquity of the
structure ðcouplingÞ2ðcutoffÞ2 for mass corrections, which
was exemplified in the Introduction.
Where does the model discussed in this paper stand in

the face of the above considerations? Focusing on the
Yukawa interaction, we can first complexify y,

iyf

�
e

iϕ
2f − e

−iϕ
2f

�
ψ̄ψ ⇒ i

�
fye

iϕ
2f − fy�e

−iϕ
2f

�
ψ̄ψ ðA9Þ

and then extend it to a spurion in momentum space
according to

fye
iϕ
2fψ̄ψ ⇒ ½fŷ�ðp1;p2;p3Þ

�
e

iϕ
2f

�
ðp1Þψ̄ðp2Þψðp3Þ: ðA10Þ

We then need to focus only on two symmetries, the fermion
higher spin symmetry and the shift ϕ → ϕþ αf under
which, respectively,

½fŷ�ðp1; p2; p3Þ → ½fŷ�yðp1; p2; p3Þe−iðθψ ðp2Þþθψ ðp3ÞÞ;

ðA11Þ

½fŷ�ðp1; p2; p3Þ → ½fŷ�yðp1; p2; p3Þe−iα=2: ðA12Þ

Notice that we are disregarding the ϕ higher spin symmetry,
under which eiϕ=2f transforms in a very complicated way.
The above two symmetries then are easily seen to jointly
allow a renormalization of the potential of the form

δV ∝ ðfyÞ2M2e
iϕ
f þ H:c:; ðA13Þ

but they offer no clue as to what M should be. In principle,
it could be the UV cutoff, represented in our model by mρ.
However, direct computation shows the role ofM is instead
played by another physical and lower mass scale, ∼4πf,
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controlling the onset of multiparticle processes. The math-
ematical reason for this result is the exponential UV
decrease of the two-point function

heiϕðxÞ
f e

iϕð0Þ
f i ∝ e

− 1

4π2f2x2 : ðA14Þ

This behavior, as far as we can tell, is just dictated by
unitarity rather than by simple dimensional analysis or
some other symmetry.

APPENDIX B: DRESSING A NON-ABELIAN
YUKAWA INTERACTION

In this section, we very briefly discuss one manner in
which our results might be applied to a non-Abelian theory.
Consider the spontaneous symmetry breaking of SUðNfÞ=
SUðNf − 1Þ via a scalar in the fundamental representation

Π⃗ ¼ eiπ
aTa=fπ · Π⃗0. If one wishes, some of the πa may be

loosely interpreted as Higgs-like particles. We couple these
pseudo-NG bosons (pNGBs) to a fermion in the funda-
mental representation Ψ⃗ and a singlet Ψc. Finally, we have
the pNGB of a Uð1Þ symmetry ϕ, which will act as
regulator of the quadratic divergence.
The Yukawa coupling we consider has the form

δL ¼ yΨ⃗ · ðΠ⃗eiϕ=fϕ − Π⃗†e−iϕ=fϕÞΨc: ðB1Þ

This Yukawa coupling explicitly breaks SUðNfÞ down to
SOðNfÞ. Additionally, the manner in which ϕ appears is
enforced by the Uð1Þ symmetry. As this coupling respects
SOðNfÞ, the pions of SOðNfÞ=SOðNf − 1Þ will decouple
from the story, while the remaining pNGBs will obtain a
Yukawa coupling with the fermions and subsequently a
mass as well.
Equation (B1) resembles Eq. (2.2) except with yΠ⃗

appearing out front instead of the combination yf. To
avoid doing any new calculations, we will be taking the
limit fϕ ≪ ΛUV ¼ mρ ≪ fπ . In this limit, we can sum over
the many loop diagrams involving ϕ that give the expo-
nentiation while not summing over loops involving the
pions πa. We can thus treat yΠ⃗ as a background field and
simply repeat the calculation done in previous sections. At
order y2 and ðΛUV=fπÞ0, the above Yukawa coupling
generates a mass term for the pNGBs of the form

δV ∝ ð4πfϕÞ2ðΠ⃗ · Π⃗Þe2iϕ=fϕ þ H:c:; ðB2Þ
with the calculation proceeding exactly as before. Because
of the dressing of the Yukawa coupling and mass term by ϕ,
we see that the mass term for the pNGBs is regulated by
4πfϕ as opposed to ΛUV. While not a true non-Abelian
implementation of what was seen in this paper, we hope
that this example may provide inspiration for the reader.
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