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Holographic model for the first order phase transition in the composite
Higgs boson scenario
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In the composite Higgs model the Higgs field arises as the pseudo-Goldstone mode, which is associated
with a dynamical symmetry breaking in a new strongly coupled sector. We present a soft-wall holographic
model where such symmetry breaking occurs as a first order phase transition. In this case the bubble
nucleation in the early universe becomes possible. To study the homogeneous solutions in the models of
this type we present the perturbation theory approach. We estimate the gravitational wave spectrum
produced during the nucleation phase and find it to be detectable with the planned gravitational wave

detectors.
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I. INTRODUCTION

The Standard model with minimal Higgs sector continues
to be in the good agreement with LHC observations,
however it cannot address a number of astrophysical and
cosmological observations. The nature of the dark matter
remains to be mystery. As its contribution to the energy
density of the matter is approximately five times the
contribution of the known particles, this shortcoming may
be seen as one of the most pressing problem of the modern
fundamental physics. Another issue arising from the cos-
mological considerations is the baryonic asymmetry of the
universe, i.e. the prevalence of the matter of the antimatter.
According to Sakharov [1-3], to explain such asymmetry
three conditions should be satisfied simultaneously:

(1) The baryonic number must not be conserved. While
this symmetry is conserved in the perturbative
Standard Model, its violation become possible
through the nonperturbative sphaleron processes at
the electroweak phase transition temperatures [4—8].
Because the baryonic number conservation origi-
nates from the accidental symmetry its perturbative
violation is common in the Standard Model exten-
sions but they are strongly constrained, primarily by
the proton decay searches.
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(i) The C and CP conservation must be broken. This is
realized in the Standard Model through the complex
phases in the Cabibbo-Kobayashi-Maskawa (CKM)
and Pontecorvo-Maki-Nakagawa-Sagata (PMNS)
mixing matrices. Nevertheless, this violation is
considered to be too small to account for the
observed baryonic asymmetry. The constraints on
the new sources of the C and CP violations come
both from the collider searches and from the experi-
ments with atoms and molecules [9-12].

(iii) The thermal equilibrium must be violated. This may
occur during the first-order phase transition that
allow bubble nucleation to occur [13,14]. The
attractive feature of the Standard Model is that, as
we mentioned before, the baryonic violation be-
comes significant during the electroweak phase
transition. Another important signature of such
process would be a gravitational wave production
during the nucleation phase [15-26]. However,
theoretical studies of the thermal behavior of the
Higgs potential point to the crossover nature of such
phase transition in the minimal Standard Model.
Thus, some modification of the Higgs sector or some
unrelated first-order phase transition at higher tem-
peratures is required [27-29].

One of the popular extensions of the Standard Model is
the composite Higgs model that can alleviate to a certain
degree the naturalness problems of the fundamental scalar
Higgs field [30-34]. In this type of the models the Higgs
scalar is assumed to be a pseudo-Nambu-Goldstone particle
originating from a dynamical symmetry breaking of the
approximate global symmetry G to a subgroup H in a new
strongly coupled sector, just as a pi-meson is a pseudo-
Nambu-Goldstone boson associated with the breaking of
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the chiral symmetry in the quantum chromodynamics
(QCD). Such models may be studied with help of the
effective field theory approaches. However, if such strongly
coupled sector can be treated as a Yang-Mills gauge theory
with sufficiently large number of colors N,., the bottom-up
holographic constructions can be applied. While the hard-
wall models are easier to study, the AdS/QCD experience
teaches us that the soft-wall models are more natural, with
example of the soft-wall composite Higgs model con-
structed in [35-37] [38—44].

Among other holographic composite Higgs construc-
tions, we would like to mention the top-down inspired
models in [45,46].

The strong dynamics that results in the emergence of the
composite Higgs may influence the CP violating physics in
important ways [47-50]. It also may influence the nature of
the electroweak phase transition [51,52]. However, it also
introduces novel phase transitions not present in the
Standard Model.

If we compare the composite Higgs model with QCD
we can distinguish two phase transitions: the confinement-
deconfinement phase transition and the G — H phase
transition. In the holographic description the confinement-
deconfinement transition is associated with the Hawking-
Page phase transition [53]. When the black hole geometries
become thermodynamically preferred to the horizonless
geometries, this affects the behavior of the long strings
and, hence, the behavior of the long Wilson loops in the dual
gauge theory. Therefore, the confinement-deconfinent phase
transition involves the study of the gravitational or dilaton-
gravitational dynamics. For example, in [54,55] such dynam-
ics was studied for the hard-wall model of the composite
Higgs and the gravitational signatures of this phase transition
were estimated. QCD induced phase transitions in the
braneworld Randall-Sundrum models were studied with
help of the dual holographic models in [56-58].

In this paper we study the G — H phase transition instead,
which is analogous to the chiral phase transition in the QCD.
The chiral phase transition was studied in the bottom-up
AdS/QCD models through the dynamics of the scalar field in
the asymptotically AdS spacetime with nonlinear potential
thatis dual to the chiral condensate [59-70]. In this paper we
apply similar approach to construct the bottom-up holo-
graphic model of the composite Higgs admitting the first-
order phase transition through the development of the
condensate violating G-symmetry. While in the previous
AdS/QCD papers similar problem was treated numerically,
we also apply the perturbation theory.

II. THE COMPOSITE HIGGS SCENARIO

The composite Higgs model assumes the new strong
hypercolor gauge interaction between some fundamental
fermions ¥; or some other matter field with a mass gap of
order pr ~ 1-10 TeV. [ denotes the index for some
approximate hyperflavor symmetry G that is broken at

low energies to its subgroup H. The hypercolor number N
is assumed to be large. The Standard Model fields (omitting
Higgs field) are coupled through the gauging of the
U(1)y x SU(2), subgroup in H. The Lagrangian is
given by,

Etot = EHC + ESM + BMJ'L;/ + Wﬁ]lzﬂ

+ {an,@, + H.c.], (1)

where Ly is the new strongly coupled sector consisting of
the new fundamental matter fields ¥; and their hypercolor
interaction; Lq, is the weakly coupled sector of the Standard
Model fields (excluding Higgs); B, and WX are U(1) and
SU(2), gauge fields respectively; y, are the fermions of the
Standard Model (left and right quarks and leptons), J%, J*#
are conserved currents in Lyc associated with the U(1),
and SU(2), symmetries correspondingly; O, are some
composite operators from the hypercolor sector.

The models with different cosets G/H are studied [71-73]
[74-82]. In the minimal variant the symmetry group G =
SO(5) x U(1)p_, is broken to H = SO(4) x U(1)g_, =~
SU(2); x SU2)p x U(1)p_;. U(1)y arises as a subgroup
of SU(2)g x U(1)p_,. In the following we assume this
scenario though our results may be easily generalized for a
larger hyperflavor symmetry provided that G — H breaking
happens in a sufficiently diagonal way in G/H.

The breaking of the symmetry at low energies may be
associated with the development of the symmetry-violating
condensate. We will assume that just like a chiral con-
densate in QCD it corresponds to the vacuum expectation
value (vev) of the bilinear operator constructed from the
hypercolored fermions,

Xy = <q’1q’1>» (2)

where / and J are indices of the fundamental representation
of G. This implies the nonanomalous conformal dimension
A = 3. Let us denote broken symmetry generators as 7.
Then, if we neglect the approximate nature of the hyper-
flavor symmetry G, at low energies the condensate expe-
riences massless Goldstone fluctuations 7,

04><4 0
DIEFL WS Zo—( 0 g>,

5 = exp(_i”aTa/fn')’ (3)

where f, ~ “{—f Urr 1s analogous to z-meson decay constant
in QCD.

However the interaction between Standard Model and
hypercolor sectors explicitly breaks the hyperflavor sym-
metry G. As result, radiative processes produce the potential
for x,. It is these pseudo-Goldstone fields that play the role
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of the Higgs field. The breaking of the electroweak
symmetry that requires (z,) # 0 is associated with the
misalignment of the vacuum within G compared to H. This
is accompanied by the mixing between the elementary
gauge bosons and fermions in Lgy; with the vector meson-
like and baryonlike bound states in Lyzc. The fermion
mixing and the resulting masses are strongly depending on
the anomalous dimension of the O, operators, which may
explain the hierarchy of the fermion masses.

While in the preceding discussion the only explicit
breaking of G was coming from its interactions with the
Standard Model fields, Lyc itself may contain terms
violating this flavor symmetry, e.g., nondiagonal mass
terms m,,¥,¥, 4+ H.c. In this paper we will neglect such
contributions.

III. HOLOGRAPHIC MODEL

We assume that Lyc is a strongly coupled Yang-Mills
theory with large number of colors N. Then we may
employ AdS/CFT duality to describe it with help of the
weakly coupled 5d theory with gravity. Taking the soft-wall
bottom-up AdS/QCD model [83—-86] as an example, we
consider the following model,

Siot = Sgrav+¢ + Sx + Sa + Ssm- (4)

Here the first part is the Einstein-Dilaton action,

1
Sgrav+l}5 = 13/ d’x |g|82{/)
P
X [=R +2|A| = 49" 0,00y = V(4)],  (5)

where a,b =0,...4 with |[A| =& and (L/Ip)* ~N. The

second part is the action for the scalar field X dual to Z,

1
Sx _k_s/dsx |g|€(/'

x B FPTHY, XTIV, X) = Ve(X) [, (6)

where the scale k; is introduced to keep the dimensionality of
X similar to the dimensionality of the 4d scalar field. The
choice would determine the normalization of the X-field and
of the coefficients in the potential V. In our paper, we will
take k, = L. We will take the following potential that allows
the symmetry breaking G — H with the mass adjusted to the
conformal dimensionality of the dual operator,

3 v v
Ve(X)=Tr| ———XTX——2(XTX)2+ 128 (XTX)3 ) (7
V) =Tr( - XX =SP4 LX) (1)

Where v, and v¢ are dimensionless. For v, > 0, vg > 0 the
phase transition will be the first order (whereas vy <0,
vg > 0 gives the second order).

The covariant derivative is,
vaX = aaX + [Aa’X] (8)

where the A, gauges G flavor group and is dual to the
current operators J; in the hypercolor sector. Its kinetic
term is given by the third part of the action,

1
Sa = —?/ d°x |g|e¢9acgbdFachd )
5

Finally, the interaction with the Standard Model fields is
given by the boundary term,

Ssm = €4/ d*x\/|g¥|[Lsm + cyB, Tr(TyA*)
=€

+ Cka.llTr(TkA”) + LV/} (10)

where g,(,i) is the induced metric, Ty and T} are the
generators of the electroweak group embedded into G,
and L, is responsible for the interaction with the Standard
Model fermions not considered in this paper.

To study the phase transition at the finite temperature we
make study this system on a space with Euclidean signature
and periodic time coordinate 7 ~ 7 + 2zT~'. We take the
fixed metric and dilaton background of a planar black hole
in the asymptotically Euclidean AdS spacetime,

w2 =5ae2 (e + S va®). p=9) (1)
Z

f)
where the Z — 0 limit gives AdS metric and the function
f(Z) has zero corresponding to the planar black hole
horizon,

" (z)
47

f(zu) =0, =T, f(Z)zjol, A(Z) — 1,

Z—0 ( ! 2)

The background must be a solution to the Einstein-
dilaton equations of motion determined by the potential V.
However, to simplify our treatment we take the metric to be
just a solution of the Einstein equations and the dilaton to
be a standard quadratic ansatz providing the soft-wall
infrared cutoff,

24

:1——’ :~~'2’ g = —.
f ) ¢ = Pz =

(13)

We employ the AdS/CFT correspondence [87-89] to
define the generating functional of the hypercolor sector
with help of the theory in AdS which in the limit N > 1 is
assumed to be in the quasiclassical regime,

Zucl] = ZaasJ] ~ exp(=Se[J]), (14)
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where Sg is the on-shell Euclidean action computed for
solution with the asymptotic behavior near the boundary
determined by the currents J. For the scalar field X we
define it as,

VN 2=x B
L'XIJNEJIJZ+—21JZS+..., (15)

VN

where the factor \2/—7]7 comes from the appropriate scaling of
the bilinear fermion operator (2) with N [59].

In QCD the chiral phase transition happens at temper-
atures close to the confinement-deconfinement transition
temperatures. Therefore, the proper description of such
transition must take into account the interplay between the
Einstein-dilaton and scalar sectors. Similar situation may be
expected for the G — H phase transition in the composite
Higgs model. Nevertheless, in this paper we will decouple
these transitions from each other by neglecting the dynam-
ics of the Einstein-dilaton part and the backreaction of the
scalar fields. We will also neglect the impact of the gauge
fields A,. In the 4d QFT this would correspond to the zero
chemical potential for the fermionic charges. We leave the
investigation of the impact of our approximations to the
future work.

IV. PHASE TRANSITION DESCRIPTION

The equation for the X-field is (for the Euclidean
signature),

1 3
7§ e™9,(\/9¢? 9" 0,X ;) + ﬁxu

+ 0 XU Tr(XTX) — L2 XV Tr(XTX)2. (16)

The homogeneous solution for the scalar field is
assumed to be in the form,

<04><4 0 >
X = o (17)
0 BL @)

so that y is dimensionless. Equation (16) then becomes,

. 1 .
2090, (5@ ) + 3+ 30— =0, (19
Z
where we introduced,

Ve
4

Near the anti-de Sitter boundary Z — 0 the solution
behaves as,

= =3
. Z z
x~j—+to5+... (20)
IH iy

On the other hand, from the ansatz (3) and the boundary
condition (15) we have,

v N 2r

3 22 TN

where J is the source for ¢. Comparing it with (20) we may
identify our dimensionless constants with,

B+ ..., (21)

. \/1}4N 271'\/114 3
=——zyJ, o= Z3C. 22
I =B Nl (22)

In this paper we will consider only the case j = 0. Then the
solution may be represented as a polynomial series in Z
without Z" InZ terms.

On the other hand, near the horizon Z — z the solution
with the finite action behaves as,

x~CH+w-<1—E>+..., (23)

ZH

and is polynomial in (1 —Z/zp).
We rescale the coordinate 7 = zyz. Then,

N 1 2~
Sehiy, <z3 ooz f(z)dz)() +3r+37° - =0, (24)

where ]’(z) = 1-z% and the only free parameter in this
equation is,

b = &521%1’ (25)

which is high for the low temperatures and low for the high
temperatures.

Notice that while the ansatz (17) manifestly violates
the original global symmetry G, the equation (24) has
the symmetry under the transform y +— —y. This reflection
symmetry may be considered a residual of the original
symmetry G coming from the rotation that changes the
direction of the symmetry breaking to the opposite one. The
only reflection symmetric solution is the trivial one y = 0
which corresponds to the G-symmetric X-field configura-
tion. The phase transition associated with G — H breaking
is caused by the development of the nonzero condensate
2 (3) that in the dual model corresponds to the nonzero y
solution noninvariant under the reflection transformation.
Thus, the phase transition in this language is associated
with the breaking of this reflection symmetry.

The free energy for (14) is given by,

F=-TInZ =TS,. (26)
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As in this paper we neglect the all the dynamics except of
the scalar field, we will replace the full Sg with Sx z. Then
for the homogeneous solutions,

= (fo

where F is completely determined by the solution of (24)
for given ¢, and y,

6r 1
= F,

V4 Zy

(27)

Lo ) [22 3 3 14
F= | dz—=eh@|= (00 =2 =44 +2,5], (28
A i 5¢ [2( ) S =X e (28)

when j = 0 one may integrate the derivative term by parts
so that the boundary term vanishes. Then this expression
can be simplified using (24) to,

1 1 2 3 Y
— d7 — 7 |2 4 7,6 .
F /) zzse [4)( 3)(}

From this representation of the free energy one may expect
that for small y the free energy increases whereas for
larger y it starts to decrease. This argument supported by
the perturbation treatment below justifies our choice of
the Vy(X).

We study this equation numerically. Because z = 0 and
z = 1 are singular points in this equation we approximate the
function there with the series solutions and match them
together using Runge-Kutta method in the intermediate
region. We also found that if the both series are obtained
up to the 30th order, matching them at z = 0.5 without any
intermediate numerical solution leads to the acceptable error.

The typical behavior of the numerical solutions in the
model considered is depicted on the Fig. 1 whereas the
corresponding free energy is plotted on Fig. 2. One may
notice that the behavior is qualitatively similar to the
Landau first phase transition model.

As one can see, at low values of ¢, < ¢5 (that corre-
sponds to the high temperatures) no nontrivial solution

(29)

2.65
2.60] ;”
2.55
N
<
2.50
crit
ZAST e e e
*
2.40(y =10 2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
o
FIG. 1. The typical behavior of the phase diagram illustrated

with y = 10 case.

FIG. 2. The typical behavior for the free energy density
illustrated with y = 10 case.

exists. Therefore at high temperatures only the phase with
o = 0 exists that is characterized by nonbroken reflection
and G symmetries. However at point ¢, = ¢} two non-
trivial solutions appear that diverge as two branches. We
will call the solution belonging to the branch with larger ||
as the upper solution whereas the solution with the smaller
|| as the lower solution. At this point the trivial solution
has the lowest free energy, thus, corresponding to the stable
phase with ¢ = 0, whereas the upper solution corresponds
to the new metastable phase with ¢ # 0 and broken
symmetry, while the lower solution is the unstable maxi-
mum of the barrier. At certain point ¢, = ¢S the free
energy of the upper nontrivial solution becomes lower than
the free energy of the trivial solution, while the lower
nontrivial solution still has higher free energy. Because of
the barrier represented by the lower solution, this represents
the first order transition between the phase with ¢ = 0 and
phase with ¢ # 0. The lower solution disappears when
¢, = qbéo) ~ 2.58, the value not depending on y parameter.
From this point the metastable phase with 6 = 0 no longer
exists and at low temperatures only the phase with ¢ # 0
represented by the upper solution is possible.

V. PERTURBATION THEORY

To get better understanding of the phase diagram we will
study it with help of the perturbation theory. First, let us
rescale the field,

x =y, (30)
so that the equation (24) takes the form,
Deh? 9. <Z13 e”zzzf(z)azw)
+ 3y + 3y -y %y = 0. (31)
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Taking A to be a small parameter, we will represent the
solution and parameter ¢, as,

w =y + 2 + 2y + (32)

by = ¢V + i) + 29 + . (33)
If we take,

yO(1) =1, w(=0(1) =0, (34)

then A = y?(1) = ¢%,. From Fig. 1 one may expect that our
perturbation theory should yield the solutions in the vicinity

of the point that we already denoted as qﬁéo).
For the zeroth order the Eq. (31) is linear,

2 1 2~
) (;3 Lk f(Z)(W) 3y =0, (35)

which we will rewrite in the form,
Loy = 0. (36)

We may note that for the inner product,

b1 00
(&)= | de et E@n(2), (37)
this operator is symmetric,

(Lo&,n) = (&, Lon)- (38)

The solutions that have the finite norm (y(®,y(?) must
satisfy the boundary conditions that we imposed in the
previous section,

w0 ~60 .3 (39)

=1, YO ~14+0®. (1-2)+.... (40)

The equation (35) is basically a one-dimensional
Schrodinger equation with a potential depending on the

parameter qb(zo). The solution with finite norm exists only fora

single value qbgo) ~ 2.58 that agrees with numerical compu-
tations in the previous section. It has 6(*) ~ 4.41. Regretfully,

it seems that there is no analytic expression of (%), so the
perturbation theory has to be done in a semianalytic fashion,
treating y(*) as a new special function.

One can also construct the linearly independent solution
7% by using their Wronskian,

0) 2

3
¢ )e-¢z 2 (41)

W = 09,50 _ 50a 0 = _

which is non-normalizable,

g e+ Inz+ .., (42)

1
e LU RS —Ze—fﬁim (1 —2) +.... (43)

In the first order only the cubic term plays the role,

LoV =61 Gi=-24,"2] ()0 =30 (44)
As is commonly done in the quantum mechanical pertur-

bation theory, the value of ¢(21) may be obtained from the
requirement of the finiteness of the norm of (! with help
of the self-adjointness of Ly,

(w0, Loy W) = (Low @, w)) =0, (45)
from which we get,
3 ©) (03

2 (.2 f(2)oy®)

The solution for y!!) may be obtained by the variation of
constants,

where,

)= [ deghit

The condition (46) together with this choice of the
integration limits results in,

/dz— D, (48)

z—0, y~o) 34 (49)

71, w0~ (1-2).... (50)

Next orders of (") satisfy the equations,

’COW(n> = gn’ (51)

and can be obtained in the same fashion using G, instead
G,. In the second order the dependence on y appears,

Gy = =223F(2) (5 0. + ¢y oy M)
=9y )2y V) 4y (y )3, (52)
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as result the second order correction to ¢, is a linear
function on vy,

¢ = 957"+ g5 (53)
p20 = L @227 + 0w ) g
2 W' 2F(2)oy®)
g0 =L w0 ) (55)
@ = :
2 .2 (2)oy)

This way we obtained,
o~ V(441 —3.430+ (252 +0.957)22),  (56)
¢y ~2.58 — 1.682 + (0.94 + 0.397)2%. (57)

The point ¢; on Fig. 1 when the symmetry-breaking phase
and the barrier appear can be obtained as,

¢

do, _
25 + v

di

(4) =0, A= (58)

Obviously the second-order perturbation theory becomes
useless for study of the phase diagram when A, 2 % For the
values we obtained this requires y = 2.

The free energy may be represented as,

po [t PO s [
0 3 4 o 2

Z
y [¢g> 3w )¢ @} (59)

7 3Oy —y

which for the obtained solutions equal to,
F =218+ (=1.27 - 0.69y)2>. (60)

This gives us the critical point of the first-order phase
transition (when the symmetry breaking phase has the same
free energy as the symmetry preserving one),

2.18

Aot = . 61
T 1.27 4+ 0.69y (61)

VI. MODIFIED PERTURBATION THEORY

There is a way to reorganize the perturbation series to cut
the computations. Let us assume that y parameter is
sufficiently large, so that,

g~ 1. (62)

Then the y° term affects already the first order,

gred — 2¢V 3F(2)a.p O =30 + gp®)3. (63

The first order correction is then,

¢<1> _ _é_ (l//(o), (w(o))3)
’ 2 (', 2f(2)ay”)
©0) (05
+g (Ol// ’;~(l// ) )0 . (64)
2 (9,2 (2)a.p?)
Not surprisingly, we get the result,
6 ~VA(441 —3.431 + 0.95¢4)
= V(441 = 3.431 + 0.95742), (65)
> ~2.58 — 1.68 + 0.39gA
=2.58 — 1.681 + 0.39742, (66)

that is consistent with (57) when y is large. The advantage

of this approach is that to obtain gz’)gl) and make rough
estimates on the critical values of ¢, and A, one does not
need to compute y!). Of course o(!) correction is, as a
matter of fact, important to lessen the errors at high A.

The comparison between the perturbation theory and
numerical computations is shown on the Fig. 3. One may
notice that the perturbation theory is successful in at least
qualitative description of the phase diagram.

VII. QUANTUM EFFECTIVE POTENTIAL
FOR THE CONDENSATE

The bubble nucleation rate is determined by the free
energy of the critical bubble, the Arrhenius equation [90-92],

2xT

Fbubble(R(crit))>% ( Fbubble(R(crit))>
—g )P )

Fnucleation = T4(
(67)

The bubble is assumed to be in the thin wall approximation,
so that for its radius R the free energy equals,

. 4= dF .. dF;
Fouppe(R) = 47R*fi — ?R3 <Wﬂt - d—Vn> ’ (68)

where dF ,;/dV and dF;,/dV are the free energy densities
outside and inside the bubble respectively, and ji is the
surface free energy density of the bubble. The critical radius
for the bubble is determined by,

dFpubpie

o = 0. (69)

R=R

crit
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=10
240f L
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
o
(a)
2.65-e  Numerical o
Analytical k
®

2.60f — Analytical Modified

2.55\‘\«‘,‘0

<
2.50
245
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2400 L
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ag
(c)

FIG. 3.

2.65te  Numerical
Analytical
2.60f — Analytical Modified
2.55
N
<
2.50 P
L)
2.45
=15
2400
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
o
(b)
265 o e Numerical
Analytical
2.60 — Analytical Modified
2,55\”
N
<
2.50
2.45
=50
2400

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

g
(d)

Comparison between the numerical computations, the second order of the perturbation theory and the first order of the

modified perturbation theory (a) y = 10 (b) y = 15 (c) y =30 (d) y = 50.

To obtain i it will be useful to introduce the quantum
effective action [93]. Let us quickly elucidate this. First we
define,

eV = Z[J). (70)
The vev of a certain field ¥ (also known as the “classical

field”) associated with the current J in the presence of the
nonzero current may be obtained as,

(71)

Then the Legendre transform will give us the quantum
effective action defined as,

rY,] = wiJ - / A3, (x)J (). (72)

The first variational derivative of the I" gives the current,

olg.]
8Y,.(x)

= —J(x). (73)

For J = 0 we may obtain that,
Y. =const-¢ (74)

On the homogeneous configurations the quantum effec-
tive action reduces to the quantum effective potential,

r:_</d4x>.ueff

One may notice that this effective potential is equal to the
free energy density,

( / d3x> Uy = F, (76)

therefore, using (27) we get in our case,

(75)

6r 1
2T (77)
43g

Uetr =

Our solutions with J ~ j = 0 represent the extrema of this
potential. In principle if we consider the solutions with
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j#0 we may restore the full shape of the potential.
However, one should note that if J, j # 0 then F diverges
at z — 0. To solve this one should renormalize the action by
addition of the boundary term at z =€ by adding a
boundary term as described in [94].

As it is not needed for our solutions, we will not consider
the renormalization of the homogeneous effective potential
here. Instead we will assume that using the data about its
extrema the renormalized potential may be extrapolated with,

Uesr = ag + 462 + as6e + aecd. (78)

For the data obtained in the previous sections we get ay =~ 0
which ensures that the extrapolated free energy of the
symmetry-preserving phase is close to zero.

To get the normalization factor for the fields with the
canonical kinetic term we consider the small perturbations
near the homogeneous solution. We will for simplicity
consider only the perturbation of the nontrivial component,

O4><4 0
X”:< 0 A x()+p(fx2)>’ e

where the perturbation has the asymptotic form,

VN 2?2z -
Lo g1 =gy G+ 200] 767
2r
+ " 5e(r, %) + .., 80
\/NG( ) (80)

The contribution of the perturbations to the W[J] may be
obtained as,

W7 =Wy A+ w81
where W™ is given by the bare action (6) regularized by
restricting integration domain to 7 > e,

W) — /d4/ dz+/|gle?

3
?Pz +V,(2)p*|.  (82)

xlg“bapdp—
27 T

where the potential,

27

2L2§2 2L2‘54 2L2 & (83)

V,(2) =

plays little role near the boundary Z — 0 but important for
the dependence of ¢ on 7. Using the equation of motion
this bare action may be reduced to the boundary term,

ey L7e?
W/()ae) :7? (Z)/d4xp05p|z=€, (84)

which or 7 # 0 is divergent. As mentioned above, to deal
with this divergence we introduce the boundary counter-

term,
= —/d4xp(rx€ [

- G+ 2o 65)

In the limit € — O the full contribution of the fluctuations to
W1J] becomes,

W, ] = / & (-

From this we get the classical field variable,

N
@jaﬂaﬂj + j5€>, (86)

W
= (3%) = L = 5g+j%s7g)—ga T, (87)

so that at 7 = 0 we have 6%, = dc. When ( ) may be
neglected the resulting effective action would be of a free
CFT. However this term reflects the conformal symmetry
breaking by the background. As the equation on p is linear
then we may express d¢ as,

N 1
oc~—C— 88
S~ z%,j (88)

where ¢», v4 and v4 dependent coefficient C is of order 1.
Let us restrict ourselves to small momenta. Then the
current variable is approximately,

27272 1
J i [1 +-—0 a#f]lpc, (89)
The effective action then takes the form,

7’z 4C
d*x( 0,6¥.0"6%, ——(6¥.)* ). (90
4C2N/ x( " c c Z%{( c) > ( )

[,[0¥.]=

To get the canonical normalization of the kinetic term for
¢ we must multiply it on the factor,

Y, ~ ¥~ z
C\/WHC mHg

Then the WKB asymptotics for ji is given by [91,92],

o1

gml“
~ Z d 2 o Ue 0 __ prit
i~ C\/W % g\/ 1($) = Uetr(0)) 14,5

33772 T3

E 2
5 CU4/4 (92)
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FIG. 4. The values of the dimensionless factor int the surface
free energy density of the bubble as the function of y.

where we used (22), (77) and zy = # We also introduced

the factor,
<6>min
U= | do [2F(0)] 5, —psi. (93)

For this asymptotics to be valid we need v, < 1, i.e. the
quartic coupling should be weak. We depict the values of u
for different values of y at Fig. 4.

VIII. GRAVITATIONAL WAVES SPECTRUM

The parameters of our model are restricted by the
experimental bounds on the mass of the lowest predicted
particle i.e. the radial fluctuations of the condensate (2). To
obtain its mass we consider the small inhomogeneous
radial fluctuation on the homogeneous background (18)

x(z)

The first-order perturbation equation on the correction
takes form

—x(2) +ox(1.%2), ol <lxl. (94)

2

1
—%1H025;(+221%1V S+ 2579 ( h7f(z )am)
+3(1+3x>=57*)y =0. (95)

Being linear equation on Jy, it can be factorized on plane
waves 8y = e'E'e’P¥y(z). For low temperatures correspond-
ing to high values of ¢, we must consider the region near the
conformal boundary z — 0, where the Lorentz symmetry
and the energy-momentum relation m?> = E? — p? is
restored. After the substitution u(z) = e~%2%"/2z3/2y(z) that
removes the first derivative term the equation takes the
Schrodinger-like form,

1// (¢ ) _mZ
2y+<82+ BRI )y_< 2

+¢2> (96)

where only terms up to O(z?) are taken into account. For
large ¢, the potential corresponds to a harmonic oscillator
with a reflecting wall at z = 0. This gives 2m*z%, ~ ¢, and,
correspondingly 2m?2 ~ ¢, for the lowest state, which we
will use in our following considerations.

The bound m Z 10 TeV ties the temperature 7T =
m/m+\/2/ ¢, to the physical scales and allows us to consider
its cosmological implications. The critical value of the
bubble free energy takes form

— 3\/5——T (97)

Fc= Fbubb]e crlt V4 2
with Fy, =0 and dF ., /dV = Ug. Its numerical values
are presented in Fig. 5.

The bubble collision during the nucleation phase results
in the gravitational wave production. The time-depended
nucleation rate is given by the formula [95]

['(t) =T, e, (98)

where 1/f is a constant timescale from nucleation to initial
collision. The nucleation takes place at time ¢ = ¢, when
the nucleation rate becomes comparable with the Hubble
rate HYI" ~ 1. At the radiation dominant stage the Hubble
rate is determined by the number of the relativistic degrees
of freedom g, (which is close to the number of the SM
degrees of freedom ~100) by H, = /90/(873g,)Mp,.

We can neglect the impact of the cosmic expansion on
the nucleation if f/H, > 1. This ratio can be estimated
from the bubble free energy as follows,

p Fe
~— =Torlogl ~—.
H. T 10g T (99)

The bubble production starts at the critical temperature
Teie = m/m\/2/P5. (see Fig. 1) corresponding to the

Uy ﬂ
L 102 < ——— < 10"
1000 S
10+
|& 0.100}
:,4 )
= |U o =11 o v=20
0.001 -
e y=13 © y=230
10-5+
e =10 e y=15 o v=50
107 L s ‘ .
0.280 0.285 0.290 0.295
T/m
FIG. 5. Normalized critical value of the bubble free energy for

different values of the parameter y.
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FIG. 6. The green region is the predicted (peak of the spectrum) values of the gravitational waves at the corresponding frequency.
Sensitivity curves of the perspective gravitational waves observatories (LISA, DECIGO, and BBO) are also placed on the figure [100].

upper points of the graphs in the picture Fig. 5. The values
of (v4/C?)B/H, do not depend on y and justify our
approximation of slow universe expansion. For v, <
107" <1 and C~1 we get 10> <B/H, <10°.

The parameter @ = pg/praq- [96] determines the liberated
energy during the phase transition. The corresponding
energy densities are [97]

po = 67 2p2,2 AT

(100)
Uy

Prad ~ 9=« T47

where AT =T ) — Tere- As one can see from the Fig. 5,
AT/T is the range 1072 < AT/T(y) < 107! for the con-
sidered range of y. Therefore, the released energy is of
order

(101)

The main contribution in the run-away spectrum of the
gravitational waves gives the scalar part produced during
initial collisions of the bubble walls [98]. Sound and
turbulence contributions are not currently included in the
rough estimate. The peak of the spectrum can be found
as [99]

Qe = 167 x 10-5%a [ L) 7 (2 ) (2 B
7. ) \1xa) 100

(102)

Where the efficiency factor k(a) ~ 1 for @ > 1, the velocity
factor A may be approximated by A = 0.2k/f with the wall
momentum k < f (in the relativistic approximation) [99].

The corresponding peak frequency can be found as
follows [99],

1
fo=165x105. —— 2 -~ _ < g > Hz.  (103)

2rpH,0.1 TeV \ 100

The estimated gravitational wave background is con-
trasted with the capabilities of the future detectors on Fig. 6.
The right high-frequency boundary for our predicted region
(green field) is due to the restriction k < 5. The left
low-frequency boundary is determined by the experi-
mental restriction on the lowest composite state masses
m 2 10 TeV and by f/H, = 1000.

Most of existing gravitational observatories are sensitive
only to higher frequencies and higher amplitudes. However,
our estimates lie within the sensitivity range of some of the
next generation gravitational observatories. Note that
Ultimate DECIGO is not shown as it covers most of the
shown region with the sensitivity Qgwh> ~ 10717 [101].

IX. CONCLUSIONS

In this work we have constructed the dynamical holo-
graphic model that experiences the first order phase transition
from the symmetric phase at high temperatures to the broken
symmetry phase at low temperatures and have estimated the
rate of the bubble nucleation. We employed the perturbation
theory to study the phase diagram in the semianalytic
fashion. This approach helps to gain more intuitive under-
standing of the relation between the shape of the five-
dimensional potential and the resulting phase diagram.
Besides, we estimate the gravitational waves spectrum
produced due to first order phase transition. Our estimates
imply that such background should be detectable with the
planned gravitational waves observatories.
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These results may have importance not only for the
physics beyond the Standard Model but also for the
holographic description of the QCD at high densities where
the first order phase transition should occur [102]. The rich
physics may be associated with the emergence of the
bubbles of the hadronic and quark matter, e.g., local CP
violation [103-110].

Our paper leaves a number of important questions for
the further investigation. The shape of the potential
should be matched with the properties of the correspond-
ing correlation functions in the dual gauge theory, and we,
basically, pointed out what relation should four-point
and six-point corellators satisfy for the first order
phase transition to occur. We also have left the possibility
of more complex interactions such as the amplitude

proportional to the ’t Hooft determinant like the one
considered in [70]. The Einstein-dilaton sector that is
responsible for the confinement-deconfinement transi-
tions should also be taken into account. Last but not the
least, is the interaction with the weakly coupled sector of
the Standard Model fields that determines how the
processes considered in this work are related to the
observable quantities.
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