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A variety of supergravity and string models involve hidden sectors where the hidden sectors may
couple feebly with the visible sectors via a variety of portals. While the coupling of the hidden sector to
the visible sector is feeble, its coupling to the inflaton is largely unknown. It could couple feebly or with
the same strength as the visible sector, which would result in either a cold or a hot hidden sector at the
end of reheating. These two possibilities could lead to significantly different outcomes for observables.
We investigate the thermal evolution of the two sectors in a cosmologically consistent hidden sector
dark matter model where the hidden sector and the visible sector are thermally coupled. Within this
framework, we analyze several phenomena to illustrate their dependence on the initial conditions. These
include the allowed parameter space of models, dark matter relic density, proton-dark matter cross
section, effective massless neutrino species at big bang nucleosynthesis time, self-interacting dark
matter cross section, where self-interaction occurs via exchange of dark photon, and Sommerfeld
enhancement. Finally, fits to the velocity dependence of dark matter cross sections from galaxy scales to
the scale of galaxy clusters is given. The analysis indicates significant effects of the initial conditions on
the observables listed above. The analysis is carried out within the framework where dark matter is
constituted of dark fermions, and the mediation between the visible and the hidden sector occurs via the
exchange of dark photons. The techniques discussed here may have applications for a wider class of
hidden sector models using different mediations between the visible and the hidden sectors to explore
the impact of big bang initial conditions on observable physics.

DOI: 10.1103/PhysRevD.108.115008

I. INTRODUCTION

Hidden sectors appear in most modern models of particle
physics beyond the standard model and have become
increasingly relevant in analyses of particle physics phe-
nomena. Success of precision electroweak physics tell us
that the hidden sector couplings to the standard model must
be feeble, but what about the coupling of the hidden sector
to the inflaton? If the coupling of the hidden sector to
the inflaton is also feeble relative to the coupling of the
standard model, the population of the hidden sector
particles would be negligible, and their temperature would
be much colder than of the standard model particles. On the
other extreme, the hidden sector and the visible sectors
could couple democratically, i.e., with equal strength, to the
inflaton and thus be essentially in thermal equilibrium at
the end of reheating. These cases represent two extreme

possibilities with a variety of other possibilities in between.
Because of the interactions between the visible and the
hidden sectors, the two sectors are thermally coupled, and
thus, their evolution is constrained by the initial condition
on the hidden sector at the end of inflation which can be
codified by the ratio ξ0 ≡ T0

h=T
0, where T0

h is the temper-
ature of the hidden sector, and T0 is the temperature of the
visible sector initially after reheating. It is thus of relevance
to ask the influence of the initial conditions on physical
observables at low energy. In this work, we study the effect
of ξ0 on a variety of physical observables, i.e., on the relic
density of dark matter, on the proton-DM scattering cross
sections, on the number of massless degrees of freedom
at big bang nucleosynthesis (BBN), and on DM self-
interaction cross sections. For DM self-interaction cross
section, we further analyze the effect of ξ0 on its velocity
dependence and on Sommerfeld enhancement and analyze
the effect of ξ0 on fits to the galactic dark matter cross
sections from the scale of dwarf galaxies to the scale of
galaxy clusters. The portal we utilize in the analysis
consists of a hidden sector with a Uð1ÞX gauge invariance
with kinetic mixing [1] and Stueckelberg mass growth of
the Uð1ÞX gauge boson [2]. By numerically solving the
Schrödinger equation, we are able to achieve a compre-
hensive understanding of the dark matter self-interacting
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cross section in this model. While our analysis is done in a
specific choice of the portal, one may expect similar effects
discussed in this work using other portals connecting
visible and the hidden sectors.
The outline of the rest of the note is as follows: Sec. II

gives a summary of the thermal evolution of coupled visible
and hidden sectors, while Sec. III discusses a specific
model with the visible sector coupled to one hidden sector
where the coupling arises via kinetic mixing along with
Stueckelberg mass generation for the hidden sector gauge
boson. Section IV discusses the effect of ξ0 on dark freeze-
out and on the relic density of dark matter. Here, we also
discuss the dependence of ΔNeff at BBN time on ξ0 and
further the effect of ξ0 on the allowed parameter space and on
the spin-independent proton-DM cross section. In Sec. V,
we discuss the effect of ξ0 on Sommerfeld enhancement for
the self-interacting dark matter cross section. In Sec. VI,
we discuss the effect of ξ0 on fits to the galaxy data on dark
matter cross sections from low relative velocities to high
relative velocities, which encompass scales from dwarf
galaxies to galaxy clusters. Conclusions are given in
Sec. VII. Additional details related to the analysis are given
in Appendix A–C. Further, in Appendix D, we give a
comparison of our analysis of the thermal evolution when
the total entropy is conserved vs the thermal evolution when
the entropies of the visible and the hidden sectors are
separately conserved. In this section, we also analyze the
accuracy of using conservation of total entropy in compu-
tations of yields for dark matter since, in general, the total
entropy is not conserved unless the sectors equilibrate.

II. COSMOLOGICALLY CONSISTENT
EVOLUTION OF COUPLED VISIBLE AND

HIDDEN SECTORS IN DM ANALYSIS

As mentioned in the previous section, most models of
particle physics based on physics beyond the standard
model contain hidden sectors that may be feebly coupled to
the visible sector. In this case, the thermal evolution of each
is interdependent on the other. Thus, the approximation
typically made that the entropy of the visible and the hidden
sectors are separately conserved is invalid. Further, the
hidden sector by itself may consist of several sectors, some
of which may interact directly with the visible sector while
others indirectly via their interactions with other hidden
sectors, which couple with the visible sector. First, in this
case, the Hubble expansion is affected by the hidden sectors
via their energy densities so that

H2 ¼ 8πGN

3

�
ρv þ

Xn
i¼1

ρi

�
; ð2:1Þ

where ρv is the energy density of the visible sector, and ρi
the energy density of the ith hidden sector where ρ0s have
temperature dependence so that

ρ ¼ π2

30

�
gveffT

4 þ
Xn
i¼1

ghi effT
4
i

�
; ð2:2Þ

and the total entropy density of the visible and hidden
sectors is given by

s ¼ 2π2

45

�
hveffT

3 þ
Xn
i¼1

hhi effT
3
i

�
: ð2:3Þ

Here, gv;heff and hv;heff are the energy and entropy degrees of
freedom and are temperature dependent. A full expression
for them for the specific model we will consider is given in
Sec. III. In [3], an analysis was given where the visible
sector (V) at temperature T is coupled to the hidden sector
H1 at temperature T1, the hidden sectorH1 is coupled to the
hidden sector H2 at temperature T2, and so on, and finally
that the hidden sector Hn−1 at temperature Tn−1 is coupled
to the hidden sector Hn at temperature Tn. In the analysis
of [3], radiation dominance was assumed. Here, we extend
the analysis to include radiation and matter. In this case, the
energy densities for various sectors obey the following set
of coupled Boltzmann equations:

dρα
dt

þ 3Hðρα þ pαÞ ¼ jα; α ¼ 0; 1; 2;…; n: ð2:4Þ

Here, ρα and pα are the energy and momentum densities for
the sector α, where α ¼ 0 refers to the visible sector, and
α ¼ 1; 2;…; n to the hidden sectors, and where jα encodes
in it all the possible processes exchanging energy between
neighboring sectors. We note now that the total energy
density ρ ¼ P

n
α¼0 ρα in an expanding universe satisfies the

equation

dρ
dt

þ 3Hðρþ pÞ ¼ 0; ð2:5Þ

where p ¼ P
n
α¼0 ρα is the total pressure density. In the

analysis, it is convenient to introduce the functions ζ ¼
3
4
ð1þ p

ρÞ and ζα ¼ 3
4
ð1þ pα

ρα
Þ, where ζα ¼ 1 for radiation

dominance and ζα ¼ 3
4
for matter dominance. More gen-

erally, ζ and ζα are temperature dependent, and this
dependence is taken into account in the evolution equa-
tions. Thus, ρα and ρ satisfy the evolution equations:

dρα
dt

þ 4Hζαρα ¼ jα; ð2:6Þ

dρ
dt

þ 4Hζρ ¼ 0: ð2:7Þ

We use the visible sector temperature T as the clock as
we thus wish to write the evolution equations Eqs. (2.6)
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and (2.7) in terms of temperature T rather than time. This is
accomplished using the relation

dT
dt

¼ −
4Hζρ

dρ
dT

: ð2:8Þ

Thus, using dρα=dt ¼ ðdρα=dTÞðdT=dtÞ, one has

dρα
dT

¼ ð4Hζαρα − jαÞ
4Hζρ

dρ
dT

: ð2:9Þ

Next decomposing ρ so that ρ ¼ ρv þ
P

n
i¼1 ρi, one finds

that dρi=dT can be written as

dρi
dT

¼
Xn
j¼1

ðC−1ÞijCj
dρv
dT

: ð2:10Þ

Here,

Ci ¼
4Hζiρi − ji
4Hσi þ ji

; ð2:11Þ

where σi ¼ ζρ − ζiρi, and Cij is defined so that

Cij ¼ δij − Ciði ≠ jÞ; i; j ¼ 1; 2;…; n: ð2:12Þ

Note that one may also write

dρi
dT

¼ Pi þQiξ
0
i; i ¼ 1; 2;…; n: ð2:13Þ

Here, Pi ¼ ξi
dρi
dTi

; Qi ¼ T dρi
dTi

, where ξi ¼ Ti=T and ξ0i ≡
dξi=dT. Thus, we have an equation for dξi=dT, which takes
the form

dξi
dT

¼ −
Pi

Qi
þ
Xn
j¼1

ðC−1ÞijCj
ρ0v
Qi

; i ¼ 1; 2;…; n; ð2:14Þ

where ρ0v ¼ dρv=dT. Equations (2.14) give us a set of n
differential equations for the evolution functions dξi=dT.
These have to be solved along with the Boltzmann
equations governing the number density evolution of the
hidden sector particles. This will allow us to determine
the relic densities of all stable species and describe the
thermal evolution of this coupled system. For the case
of the visible sector coupled to one hidden sector, we have
C11 ¼ 1; C1 ¼ ð4Hζhρh − jhÞ=ð4Hζρ − 4Hζhρh þ jhÞ,
ρh ≡ ρ1, Th ≡ T1, jh ≡ j1, and we define ξ≡ ξ1 ¼ Th=T.
The source term jh is discussed in Appendix A. With this
notation specific to the case of the visible sector and one
hidden sector, we have the following equation for ξ, which
governs the temperature evolution of the hidden sector
relative to that of the visible sector

dξ
dT

¼
�
−ξ

dρh
dTh

þ 4Hζhρh − jh
4Hζρ − 4Hζhρh þ jh

dρv
dT

��
T
dρh
dTh

�
−1
:

ð2:15Þ

We note that gveff and hveff are precalculated, and we use
tabulated results from micrOMEGAs [4]. As noted already,
gheff and hheff for the hidden sector that enter Eqs. (2.2)
and (2.3) are temperature dependent [5,6], and their explicit
expressions are given in Eq. (B4).

III. THE MODEL COUPLING VISIBLE AND
HIDDEN SECTORS

There are a variety of portals that allow communication
between the visible and the hidden sectors. These include
the Higgs field portal [7], kinetic mixing of two gauge
fields [1], Stueckelberg mass mixing [2,8], kinetic and
Stueckelberg mass mixing [9], Higgs-Stueckelberg
portal [10], as well as other possibilities such as higher
dimensional operators. In this work, we focus on kinetic
mixing along with the mass growth for the hidden sector
gauge field via the Stueckelberg mechanism. Thus, for
analysis in this work, we consider a specific model for dark
matter, which is an extension of the standard model with an
SUð3Þ × SUð2Þ ×Uð1ÞY ×Uð1ÞX gauge invariance where
the Uð1ÞX gauge field has kinetic mixing with the visible
sectorUð1ÞY gauge field [1] and, in general, a Stueckelberg
mass mixings [2,9,11,12]. We assume that the Uð1ÞX
hidden sector has a dark fermion D, which interacts
with the Uð1ÞX gauge field. Thus, the extended SUð3Þ ×
SUð2Þ × Uð1ÞY ×Uð1ÞX Lagrangian consisting of the SM
part LSM and the extended part Lext is given by

L ¼ LSM þ Lext;

Lext ¼ −
1

4
CμνCμν − D̄

�
γμ

1

i
∂μ þmD

�
D − gXD̄QXγ

μDCμ

−
δ

2
CμνBμν −

1

2
ðM1Cμ þM2Bμ þ ∂μσÞ2: ð3:1Þ

Here Bμ is the gauge field for the Uð1ÞY , Cμ is the gauge
field of Uð1ÞX, σ is an axionic field that gives mass to Cμ

and is absorbed in the unitary gauge, and D is the dark
fermion whereQX is theUð1ÞX charge ofD and gX is gauge
coupling of Uð1ÞX. Further, δ is the kinetic mixing
parameter between the field strengths of Cμ and Bμ,
and M1 and M2 are the Stueckelberg mass parameters.
A nonvanishing M2 will lead to a milli-charge for the dark
fermion D, and we assume neutrality of dark matter and
thus setM2 ¼ 0 in the analysis.1 The spontaneous breaking
of the SUð2Þ ×Uð1ÞY electroweak symmetry along with
the Stueckelberg mass growth gives rise to mixing among

1A nonvanishingM2 was used to resolve the EDGES anomaly
in the analysis of [13].
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the three gauge fields Cμ; Bμ; Aμ
3, where Aμ

3 is the third
component of the SUð2ÞL gauge field Aμ

a (a ¼ 1, 2, 3) of
the standard model. The mixings give rise to a 3 × 3 mass
square matrix, which can be diagonalized by the three
Euler angles ðθ;ϕ;ψÞ, which are given in Eq. (B3). The
diagonalization gives the following mass eigenstates:
the Z boson, a massive dark photon γ0, and the massless
photon γ. The Lagrangian governing the interaction of dark
photon and dark fermion, which enters into our analysis, is
given by

Ldark ¼ −
1

4
Aμνγ0A

μν
γ0 −

1

2
m2

γ0Aγ0μA
μ
γ0 − D̄

�
γμ

1

i
∂μ þmD

�
D

− D̄γμ½ϵDZZμ þ gDγ0A
γ0
μ �D: ð3:2Þ

The interaction of Eq. (3.2) involves two massive gauge
bosons (Z; γ0). For the case when the kinetic mixing
is small, one has gDγ0 ≃ gXQX and ϵDZ ¼ Oðδ3Þ, which is
negligible. In addition, the dark photon will have couplings
with the standard model quarks and leptons, which are
discussed in Appendix C. Setting QX ¼ 1, the input
parameters of the model are gX;mD;mγ0 ; δ, which are what
appear in Table I. We note here that models with the
vector boson as the mediator between the hidden sector
and the visible sector have been considered in several
previous works [14–56]. Axions and dark photons in
the light to ultralight mass region have also been inves-
tigated [45,47,57–61], and dark photons have been used
in explaining astro-physical phenomena including galactic
γ rays [62,63] and PAMELA positron excess [64–68].
We further note that the dark photon in this model even

when very light and kinematically disallowed to decay into

eþe− will eventually decay via the modes γ0 → νν̄ and
γ0 → 3γ and not contribute to dark matter density unless its
lifetime is larger than the lifetime of the Universe and, even
in that case, only if it has non-negligible relic density,
which is not the case we consider. Thus, the dark fermion
will be the only constituent of dark matter. Further details
about this model are given in Appendix B.

IV. BIG BANG CONSTRAINTS ON DARK
FREEZE-OUT, RELIC DENSITY, ΔNeff, AND ON

PROTON-DM CROSS SECTION

In this section, we discuss the effects on the relic density,
on the number of relativistic degrees of freedom due to the
hidden sector at the BBN time, on the allowed parameter
space of models, and on the proton-dark matter scattering
cross section arising from different choices of the initial
value ξ0 at the end of reheating. In the model discussed in
the preceding section, the dark fermion D constitutes dark
matter and has self-interactions due to exchange of dark
photon.

A. Effect of ξ0 on dark freeze-out and on relic density

In the analysis here, we will discuss the effect of ξ0 on
the dark freeze-out, which generates the relic density of D.
Computationally, the quantities of interest for this purpose
are the yields for the dark fermion YD and for the dark
photon Yγ0 , where the yield is defined so that Y ¼ n=s,
where n is the number density, and s is the entropy density.
Assuming conservation of total entropy (this assumption
will be tested in Appendix D), the evolution equations for
YD and Yγ0 are given by

dYD

dT
¼−

s
H

�
dρv=dT

4ζρ−4ζhρhþjh=H

�
½hσviDD̄→iīðTÞYeq

D ðTÞ2−hσviDD̄→γ0γ0 ðThÞYDðThÞ2þhσvi
γ0γ0→DD̄ðThÞYγ0 ðThÞ2�; ð4:1Þ

dY 0
γ

dT
¼ −

s
H

�
dρv=dT

4ζρ − 4ζhρh þ jh=H

�
½hσviDD̄→γ0γ0 ðThÞYDðThÞ2 − hσvi

γ0γ0→DD̄ðThÞYγ0 ðThÞ2

þ hσviiī→γ0 ðTÞYeq
i ðTÞ2 − hΓγ0→iīðThÞiYγ0 ðThÞ�: ð4:2Þ

Here, hσviDD̄→iī is the annihilation cross section of DD̄ into standard model particles, which are denoted by iī, hσviDD̄→γ0γ0

is their annihilation into dark photon, while hσviiī→γ0 gives the annihilation of standard model particles into a dark photon,
and nD and nγ0 are the number densities of the D fermion and the dark photon γ0. In the above, the cross section for the
process DD̄ → γ0γ0 is given by

σDD̄→γ0γ0 ðsÞ ¼ g4XðR11 − sδR21Þ4
8πsðs − 4m2

DÞ

8<
:−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0 Þðs − 4m2
DÞ

q
m4

γ0 þm2
Dðs − 4m2

γ0 Þ
½2m4

γ0 þm2
Dðsþ 4m2

DÞ�

þ log

2
64s − 2m2

γ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0 Þðs − 4m2
DÞ

q

s − 2m2
γ0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4m2

γ0 Þðs − 4m2
DÞ

q
3
75 ðs2 þ 4m2

Dsþ 4m4
γ0 − 8m4

D − 8m2
Dm

2
γ0 Þ

s − 2m2
γ0

9=
;; ð4:3Þ
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while the rest of the cross sections are given in Appendix
of [13]. Here s, t, u are Mandelstam variables, where
sþ tþ u ¼ 2m2

D þ 2m2
γ0 ,R11 andR21 are matrix elements

of R, which diagonalizes the mass and kinetic energy
matrices of Eq. (3.1) as given in [9]. Further, we note that in
addition to DD̄ → γ0γ0, we also have γ0γ0 → DD̄, which
enters in the yield equations when kinematically allowed
and is related to DD̄ → γ0γ0 so that

9ðs − 4m2
γ0 Þσγ

0γ0→DD̄ðsÞ ¼ 8ðs − 4m2
DÞσDD̄→γ0γ0 ðsÞ: ð4:4Þ

In the above equation, the thermally averaged cross section
and decay widths are given by

hσviaā→bcðTÞ ¼ 1

8m4
aTK2

2ðma=TÞ
Z

∞

4m2
a

dsσðsÞ ffiffiffi
s

p ðs − 4m2
aÞ

× K1ð
ffiffiffi
s

p
=TÞ; ð4:5Þ

hΓX→iīðTÞi ¼ Γx→iī
K1ðmX=TÞ
K2ðmX=TÞ

: ð4:6Þ

The equilibrium yield of the i-th particle is given by

Yeq
i ¼ neqi

s
¼ gi

2πs
m2

i TK2ðmi=TÞ; ð4:7Þ

where s is the entropy density. In Eqs. (4.5)–(4.7), K1 and
K2 are the modified Bessel functions of the second kind and
of degrees one and of degree two. Further, cross sections for
the processes DD̄ → iī, where i; ī are the standard model
particles, can be found in Appendix D of [69]. As noted
above, in this model, the dark photon is unstable and decays
and does not contribute to the relic density, and the entire
DM relic density arises from the dark fermion, where at
current times, the relic density ΩDh2 is given by

ΩDh2 ¼
s0mDY0

Dh
2

ρc
; ð4:8Þ

where s0 is the current entropy density. Y0
D, which is YD at

current times, can begotten usingEqs. (2.15), (4.1), and (4.2),
ρc is the critical energy density needed to close the Universe,
and h is defined so thatH0 ¼ 100h km s−1Mpc−1, whereH0

is the Hubble parameter today.
The procedure for solving the evolution equations

involves simultaneous analysis of coupled equations
Eqs. (2.1)–(2.3), (2.15), (B4), and (B5), the yield equations
for YD, Y 0

γ , Eqs. (4.1)–(4.2), and Eqs. (4.3)–(4.8). Using
these, we do Monte Carlo simulations with parameters
varying in the ranges

10−1 GeV<mD<103GeV; 10−2MeV<mγ0 <102 MeV

10−4<gX <1; 10−12< δ<10−7; ð4:9Þ

and search for model points satisfying all the current
experimental constraints. Table I gives six model points
used in this paper, all of which are consistent with the
current experimental constraints [70] including those from
a variety of experiments, i.e., BABAR [71,72], HPS [73],
LHCb [74], Belle-2 [75], SHiP [76], SeaQuest [77,78]
and NA62 [78], CHARM [78], νCal [78–80], E137 [81],
E141 [82], NA64 [83], NA48 [84]. For a sub-MeV dark
photon mass stringent constraints on the parameter space
of the model arise from Supernova 338, SN1987A [85]
and from BBN, stellar cooling [86] and from the decay
to 3γ on cosmological timescales [30,87]. An analysis of
these constraints in limiting the parameter space is given
in [69,70]. The parameter space chosen in the current
analysis is consistent with these constraints.
We note here that the mass of the dark photon is in the

sub MeV region and is long lived with its most dominant
decay mode being γ0 → 3γ. For kinetic mixing, the decay
width for the mode γ0 → 3γ is given by [30,87,88]

Γγ0→3γ ¼
17α4ðϵγγ0 Þ2
273653π3

m9
γ0

m8
e
; ð4:10Þ

where α ¼ e2
4π, ϵγγ0 is the kinetic mixing parameter of

coupling between dark photon γ0 and photon γ given
by ϵγγ0 ¼ gY

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ̄2

p
R21 as defined in [9], mγ0 is the dark

photon mass, and me is the electron mass. The dark
photon lifetimes for the different model points are given in
Table I. Here, we find that the dark photon lifetimes are
smaller than the age of the Universe, and thus, there is no
contribution of the dark photon to the relic density and
consequently, no constraint on the allowed parameter
space regarding the relic density constraint. We note,
however, that even if the dark photon was long lived with
a lifetime greater than the lifetime of the Universe, its
contribution to the relic density would be negligible.
A recent analysis [69] in accord with the analysis of [30]
shows that with one hidden sector, it is not possible to get
both a long lived dark photon that can contribute to the
relic density and simultaneously achieve a significant
amount of dark matter relic density. To do that, one needs
at least a two hidden sector model [69] in which a dark

TABLE I. Six model points used in the analysis of this work
and their decay lifetime for the dark photon.

Model mD [GeV] mγ0 [MeV] gX δ (in 10−9) τγ0→3γ (yrs)

(a) 0.354 0.306 0.00738 3.99 2.6 × 107

(b) 0.259 0.214 0.00675 6.29 2.6 × 108

(c) 0.281 0.550 0.00931 400 1.3 × 101

(d) 0.170 0.225 0.00618 19.3 1.8 × 107

(e) 0.156 0.285 0.00631 52.9 2.8 × 105

(f) 0.568 0.445 0.00810 2.62 2.0 × 106
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photon as dark matter can produce a non-negligible
amount of dark matter.
We discuss now the dependence of the dark matter

freeze-out and of the relic density on the initial conditions.
In the top left panel of Fig. 1, we exhibit the dependence of
the dark freeze-out and specifically the decoupling of the
dark photon and the dark fermion on ξ0 where we consider
the cases: ξ0 ¼ 0.01 and ξ0 ¼ 1. The top right panel is the
zoom in of the top right in the region of the freeze-out.
From Fig. 1, we see that the processDD̄ → γ0γ0 falls below
H(T) at different temperatures for ξ0 ¼ 0.01 and for ξ0 ¼ 1,
and consequently, the temperature where the dark freeze-
out occurs changes by a significant amount. The sensitivity
of the freeze-out on ξ0 directly affects the yields as shown
in the bottom left panel and the bottom right panel (a zoom
in of the bottom left panel) of Fig. 1. In the left panel of
Fig. 2, we exhibit the dependence of the relic density on ξ0
for the six model points of Table I. Here, we find that the
relic density can change up to 40% as ξ0 varies in the
range (0,1).

B. Dependence of ΔNeff at BBN on ξ0
One of the predictions of beyond the standard model

physics isNeff , the number of effective relativistic degrees of
freedom at BBN. For the standard model, Neff ¼ 3.046. The
current experimental constraint on Neff is summarized in
Fig. 39 of the Planck Collaboration [89], which shows the
spread in Neff . Thus, the Planck Collaboration gives
Neff ¼ 2.99� 0.17, while the joint BBN analysis of deu-
terium/helium abundance and the Planck CMB data gives
Neff ¼ 3.41� 0.45. Here, we will use the conservative
constraint on ΔNeff ¼ Nexp

eff − Nsm
eff so that ΔNeff ≤ 0.25. In

the model under discussion, the dark fermion D and dark
photon γ0 will contribute to the effective neutrino number.
Such contribution is given by

ΔNeff ¼
4

7
gheff

�
11

4

�
4=3

�
Th

T

�
4

; ð4:11Þ

where gheff can computed from Eqs. (B4) and (4.11) is to
be evaluated at the BBN temperature TBBN ¼ 1 MeV

FIG. 1. Top left panel: Exhibition of the dependence of the dark freeze-out temperature when ξ0 ¼ 0.01 (blue) vs ξ0 ¼ 1 (red) for
model (f) in Table I. Top right panel: Zoom in of the top left panel in the region of the freeze-out. Bottom left panel: Yields of dark
fermion (dark matter) and dark photon for model of the top panels for ξ0 ¼ 0.01 (blue) and ξ0 ¼ 1 (red). Bottom right panel: Zoom in of
the bottom left panel to exhibit the shift of the dark fermion yield for the cases ξ0 ¼ 0.01 (blue) and ξ0 ¼ 1 (red).
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(for related works see, e.g., [90,91]). In Table II, ΔNeff is
computed for the six model points of Table I for
ξ0 ¼ 0.01 and ξ0 ¼ 1, while the right panel of Fig. 2
exhibits ΔNeffðBBNÞ for the six model points for ξ0 in
the range (0 − 1). The analysis in general indicates that
hidden sectors which start off cooler than the standard
model at the end of reheating contribute a smaller
amount to ΔNeff than those that are relatively hotter
at the end of reheating. Further, the analysis indicates
that models where ξ ≃ 0 could accommodate more
massless degrees of freedom allowing for the possibility
of building a wider class of models with more hidden
sector particles, which may still be consistent with the
ΔNeff constraint at BBN time.

C. Effect of ξ0 on the allowed parameter space
and on spin-independent proton-DM cross section

Next, we investigate the influence of ξ0 on the allowed
parameter space consistent for a chosen range of relic
density. To this end, we constrain the relic density to lie in
the range 0.012 ≤ Ωh2 ≤ 0.12 andmD to lie in the range of
5 GeV to 10 TeV. Specifically, we explore the allowed
region for the two cases: ξ0 ¼ 0.01 and ξ0 ¼ 1. The result
of our analysis is exhibited in the left panel of Fig. 3, which
gives a scatter plot of the allowed models in δ vsmγ0 , where
those with color blue correspond to ξ0 ¼ 0.01 and those
with color red correspond to ξ0 ¼ 1. One of the interesting
result that emerges is that for ξ0 ¼ 1, most of the models
lie in the range 10−10 < δ < 10−5, while for ξ0 ¼ 0.01, the
allowed range is 10−9 < δ < 10−4. Thus, the analysis
shows that the initial choice of ξ0 significantly impacts
the model’s allowed parameter space. ξ0 also has significant
effect on the proton-DM scattering cross section in the
direct detection experiments for dark matter. Specifically,
we consider the spin-independent proton-DM cross section
σSI∶p−DM. Here, we use the micrOMEGAs [4] to find the
spin independent cross section. In the right panel of Fig. 3,
we exhibit σSI∶p−DM for the six model points of Table I, and
their dependence on ξ0 in the range (0.01–1) is indicated by
the small vertical lines for each of the model points. The
numerical values of the σSI∶p−DM for ξ0 ¼ 0.01 and ξ0 ¼ 1

are exhibited in Table III for the models of Table I. Here,
one finds that the variation of the cross section can be as
large as 40%. Thus, some of the models that are eliminated
for the ξ0 ¼ 1 case would still be viable for the
case ξ0 ¼ 0.01.

TABLE II. Table of ΔNeff and ξðTBBNÞ ¼ ðTh=TÞBBN when
ξ0 ¼ 0.01 and ξ0 ¼ 1 for the model points of Table 1. As noted in
the text, the benchmarks of this table are chosen to lie in the
parameter space allowed in the analysis of Ref. [70], which gives
an exhaustive analysis of all of the current experimental con-
straints on the dark photon and its couplings and exhibits the
parameter space still unconstrained.

Model

ξ0 ¼ 1 ξ0 ¼ 0.01

ΔNeff ξðTBBNÞ ΔNeff ξðTBBNÞ
(a) 1.50 0.692 1.53 × 10−5 0.0391
(b) 1.36 0.675 1.22 × 10−5 0.0369
(c) 1.53 0.700 1.18 × 10−2 0.208
(d) 1.40 0.679 6.37 × 10−5 0.0558
(e) 1.43 0.684 3.80 × 10−4 0.0873
(f) 1.42 0.685 2.59 × 10−5 0.0448

FIG. 2. Left panel: Exhibition of the dependence of the relic density Ωh2 on ξ0 in the range ξ0 ¼ ð0; 1Þ for the model points of
Table I. Right panel: Exhibition of the dependence of ΔNeff at BBN time on ξ0 in the range ξ0 ¼ ð0; 1Þ for the model points of
Table I.
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V. SELF-INTERACTING DARK MATTER,
SOMMERFELD ENHANCEMENT, AND

DEPENDENCE ON ξ0

The self-interacting dark matter cross sections arises
from the processes DD̄→DD̄, DD→DD and D̄D̄ → D̄D̄
via the exchange of a dark photon. The Lagrangian of
Eq. (3.1) leads to a Yukawa potential between the D
fermions due to the dark photon exchange in the non-
relativistic limit so that

Vðr⃗Þ ¼ � ðgXÞ2
4π

e−mγ0 r

r
; ð5:1Þ

where the plus sign is for DD → DD and D̄D̄ → D̄D̄ and
the minus sign is for DD̄ → DD̄. In some of the regions

of parameters (i.e.,
mγ0
mD

≤ ðgXÞ2
4π ), tree-level scattering or the

Born approximation is no longer valid, and one has
contributions from higher order dark photon exchanges
as shown in Fig. 4, which contribute to scattering. In this

case, we need to numerically solve the Schrodinger
equation to find the accurate scattering cross sections.
The radial equation one needs to solve is given by

�
d2Rl

dr2
þ 2

r
dRl

dr
−
lðlþ 1ÞRl

r2

�
þ ðp2 − 2μVðrÞÞRl ¼ 0;

ð5:2Þ

where p is the particle momentum, and VðrÞ is the potential.
The substitution x ¼ pr and Rp;l ¼ NpΦlðxÞ=x gives [94]

�
d2

dx2
þ 1 −

lðlþ 1Þ
x2

−
2ae−bx

x

�
ΦlðxÞ ¼ 0;

a ¼ � μg2X
4πp

; b ¼ mγ0

p
: ð5:3Þ

The nonperturbative effect arising from the repeated
exchange of the mediator is often encoded in Sommerfeld
enhancement and has been discussed in several previous
works (see, e.g., [24,36,95–98] and the references therein).
Thus, including nonperturbative effects, the annihilation
cross section times the velocity v (where v is the relative

TABLE III. Table of spin-independent proton-DM cross section
σSI∶p−DM for the model points of Table 1 for ξ0 ¼ 0.01 and
ξ0 ¼ 1.0.

Model

ξ0 ¼ 1 ξ0 ¼ 0.01

σSI∶p−DM (cm2) σSI∶p−DM (cm2)

(a) 5.84 × 10−38 5.24 × 10−38
(b) 3.18 × 10−37 2.87 × 10−37
(c) 2.19 × 10−37 1.81 × 10−37
(d) 1.03 × 10−36 8.88 × 10−37
(e) 2.61 × 10−36 2.23 × 10−36
(f) 1.39 × 10−38 1.03 × 10−38

FIG. 3. Left panel: A scatter plot of δ vs mγ0 displaying the models allowed under the constraint 0.012 ≤ Ωh2 ≤ 0.12 for ξ0 ¼ 0.01
(blue) and ξ0 ¼ 1 (red). The solid red ellipse shows that a significant region of the parameter space in the mγ0 − δ plane becomes
accessible when ξ0 ¼ 1, which would otherwise be excluded when ξ ¼ 0.01. This is meant as an illustration that ξ0 plays a significant
role in determining the allowed parameter space of models. Right panel: Plot of the spin-independent proton-DM cross section for six
model points where the vertical lines show the shift in the cross section as one moves from ξ0 ¼ 0.01 to ξ0 ¼ 1. The experiment
constraints are from CRESST-III [92] and XENONIT [93].

FIG. 4. A diagram exhibiting a contribution to DD̄ → DD̄
scattering beyond the Born approximation.
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velocity in the CM system) for the cross section σab for the
elastic scattering process aþ b → aþ b may be written as

ðσabvÞ ¼ SEðσ0abvÞ; ð5:4Þ

where ðσ0abvÞ is the tree-level cross section, and SE is the
Sommerfeld enhancement. As noted in the present context,
the contribution to the Sommerfeld enhancement arises from
multiple exchanges of the dark photon γ0. The solution of the
differential equation Eq. (5.3) has the form:

ΦlðxÞx→∞ → A sin

�
x −

lπ
2
þ δl

�
; ð5:5Þ

where δl is the phase shift for the lth partial wave. We write
the Sommerfeld enhancement of lth partial wave cross
section for the case of the Yukawa potential so that

σl ¼ SEl · σ0;l; ð5:6Þ

where [94], SEl ¼ ð1 · 3 � � � ð2lþ 1Þ=AÞ2. Using Eq. (5.5),
we get

A2 ¼ A2sin2
�
x −

lπ
2
þ δl

�
þ A2cos2

�
x −

lπ
2
þ δl

�

¼ Φ2
l ðxÞx→∞ þΦ2

l

�
x −

π

2

�
x→∞

;

SEl ¼
ðð2lþ 1Þ!!Þ2

Φ2
l ðxÞx→∞ þΦ2

l ðx − π
2
Þx→∞

: ð5:7Þ

Taking x larger than 30 gives a good enough approxima-
tion to the exact solution. Typically, an attractive potential
leads to Sommerfeld enhancement of cross section at low
collision velocities, but one may also have Sommerfeld
suppression for a repulsive potential. In the left panel
of Fig. 5, we exhibit Sommerfeld enhancement for the
case of a negative Yukawa potential. Here, we see that
Sommerfeld enhancement can be very significant, and
further, the enhancement shows oscillatory behavior with
gX. To check the accuracy of our numerical analysis and to
explain the oscillatory behavior, we compare our result
with those from the Hulthen potential as an approximation
to the Yukawa potential for which one can obtain a good
analytic approximation for the S wave. The Hulthen
potential is given by [99,100]

VðrÞ¼−α
μe−μr

1−e−μr
; μ¼π2mγ0

6
; α¼ðgXÞ2

4π
: ð5:8Þ

It is known that Hulthen potential is a very good approxi-
mation to Yukawa potential both at short and at long
distances. With it, one can find an analytic solution for
the S wave and thus, find a good analytic approximation to
the S wave Sommerfeld enhancement [101,102]:

SH0 ¼
π

ϵv

sinh ð2πϵvβÞ
cosh ð2πϵvβÞ − cos ð2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β − ϵ2vβ

2
p

Þ
;

ϵv ¼
v
2α

; ϵx ¼
mγ0

αmD
; β ¼ 1

π2ϵx=6
: ð5:9Þ

FIG. 5. Left panel: Plot of S wave Sommerfeld enhancement for an attractive potential, where SE0 is for the Yukawa potential by
solving numerically (red), SC0 is for the Coulomb potential (black), and SH0 is for the Hulthen potential as a function of gX for the case
when mD ¼ 250 GeV, mγ0 ¼ 45 MeV, and v ¼ 10 km=s. Right panel: Plot of S wave Sommerfeld suppression for the case of a
repulsive potential where we use the same symbols SE0; SH0; SC0 for suppression as for enhancement to avoid a proliferation of notation.
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From Eq. (5.9), valid for the attractive potential case, it is
obvious that the oscillation is due to the existence of the
cosine term. For the Coulomb potential, the Sommerfeld
enhancement for the S wave is given by

SC0 ¼ � 2πα

v
1

e�2πα=v − 1
ð5:10Þ

where plus is for repulsive potential and minus is for
attractive potential. The left panel of Fig. 5 gives a
comparison of the S wave Sommerfeld effect for three
different potentials: Yukawa, Hulthen, and Coulomb.
The analysis shows that Hulthen potential gives a good
approximation to the Yukawa potential and also explains the
deep oscillations as a function of gX. For the case of a
repulsive potential (α negative), the analysis is very different.
A comparison of the numerical analysis using Yukawa
potential and the analytic solution using Hulthen potential
for the case of a repulsive potential is given in the right panel
of Fig. 5. Here again, one finds that the numerical analysis
and the Hulthen potential result fully agree.
Having checked the numerical accuracy of our analysis

in Fig. 5, we next investigate the effect of the big bang
initial conditions on Sommerfeld enhancement. In Fig. 6,
we compare S wave Sommefeld enhancement for the cases
ξ0 ¼ 0.01 and ξ0 ¼ 1 for the case of an attractive Yukawa
potential. The left panel of Fig. 6 shows Sommmerfeld
enhancement vs v, and here, one finds that ξ0 ¼ 1 (red)
gives an enhancement which is larger than for the case
ξ0 ¼ 0.01 (blue). In the analysis, we keep the relic density
fixed at ∼0.12 for ξ0 ¼ 0.01 and ξ0 ¼ 1 by allowing gX
to vary. The right panel of Fig. 6 displays Sommerfeld

enhancement as a function of mγ0=mD, and here, one finds
that the oscillation peaks for the case ξ0 ¼ 1 (red) are
significantly larger than those for the case ξ0 ¼ 0.01 (blue).
A similar analysis for a repulsive Yukawa potential is
carried out in Fig. 7. However, in this case, we have
Sommerfeld suppression rather than an enhancement where
the Sommerfeld suppression is vs v for the left panel and vs
mγ0=mD for the right panel, and the red curve is for ξ0 ¼ 1.0
and the blue curve for ξ0 ¼ 0.01. For both cases, the
Sommerfeld suppression is significantly larger for ξ0 ¼ 1
relative to ξ0 ¼ 0.01.

VI. EFFECT OF ξ0 ON FIT TO GALAXY DATA

Several analyses of galaxy data indicate that dark matter
is collisional at the scale of dwarf galaxies and appears
collisionless at the scale of galaxy clusters [33,38,103].
Thus, for dwarf galaxies, one finds collisional velocity hvi
of dark matter in the range 10–100 km=s and 1 cm2=g <
σ=m < 50 cm2=g [33,103], where σ is the cross section,
andm is the mass of DM particle. For midsize galaxies such
as the low surface brightness galaxies (LSB) and the
Milky Way, one finds hvi in the range 80–200 km=s and
0.5 cm2=g < σ=m < 5 cm2=g. The galaxy clusters exhibit
hvi > 1000 km=s. Here, it is estimated that the σ=m is
maximally 1 cm2=g [33,103,104] and could be as low as
0.065 cm2=g < σ=m < 1 cm2=g [38,105,106]. As is well
known, one interesting possibility to account for the
velocity dependence of the DM cross sections is that
DM is self-interacting by Spergel and Steinhardt [107],
and there is considerable follow up work on this idea
[22,25–28,36,108–115]. An analysis of fit to the data

FIG. 6. Plot of S wave Sommerfeld enhancement for an attractive Yukawa potential for the case ξ0 ¼ 0.01 (blue) and for ξ0 ¼ 1 (red),
where for the left panel, the x axis is v, and for the right panel, the x axis is mγ0=mD. Here, we allow gX to vary but keep the relic density
∼0.12 for ξ0 ¼ 0.01 and ξ0 ¼ 1.
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within the dark photon model was previously done in [11]
(see also [116,117]). Here, we study the dependence of the
fits on ξ0. Further, here, the analysis goes beyond the Born
approximation used in [11], taking into account nonper-
turbative effects encoded in the Sommerfeld enhancement
with also inclusion of identical particle exchange effects.
Since the dark matter is constituted of dark Dirac fermions
consisting of D and D̄ constituents, we will have processes
of the typeDD → DD,DD̄ → DD̄, and D̄D̄ → D̄D̄. Thus,
the total cross section σDM is given by

σDM ¼
Z

dΩ
�
dσDD̄→DD̄

dΩ
þ 1

2

dσDD→DD

dΩ
þ 1

2

dσD̄D̄→D̄D̄

dΩ

�
;

ð6:1Þ
where the factor of 1=2 arises due to identical nature of
particles.
To numerically calculate the cross section, we start

with Eq. (5.3) and use the method of [27]. Here, in the
computation of DM cross sections, we need to calculate the
phase shifts (δl) for DD̄ → DD̄ separately from the phase
shifts (δ0l) for DD → DD, while the phase shifts for the
process D̄D̄ → D̄D̄ will be the same as for the process
DD → DD. Including all contributions, i.e., from DD̄ →
DD̄,DD→DD, and D̄ D̄ → ¯̄DD, and taking account of the
identical nature of particles in DD → DD and D̄D̄ → ¯̄DD
scattering, we find

σtot ¼ 4π
X
l

ð2lþ 1Þ
�
jflj2 þ 2

�
1 −

1

2
ð−1Þl

�
jf0lj2

�
;

ð6:2Þ

where fl ¼ eiδl sin δl=k and f0l ¼ eiδ
0
l sin δ0l=k. The

details leading to Eq. (6.2) are given in Appendix C.
The result of our numerical analysis to fit the galaxy data
on σv=mD in the range of velocities from 10 km=s to
104 km=s is given in Fig. 8, which exhibits the dependence
of the fits on ξ0 in the range ξ0 ¼ 0.01 to ξ0 ¼ 1. In the
analysis, we allow gX to vary to keep the relic density
fixed at ΩDh2 ∼ 0.12 as ξ0 varies between 0.01 and 1. The
analysis shows that the variation of σv=m with ξ0 is
significant and can sometimes be as large as Oð1Þ [see
Model (f)] in Fig. 8. We note that the plots include
Sommerfeld enhancement effects, but these effects are
relatively small. The reason for it is that the Sommerfeld
enhancement strongly depends on gX as can be seen from
the left panel of Fig. 5. However, in the analysis of galaxy
fits of Fig. 8, we find that gX is relatively small, which
suppresses the Sommerfeld enhancement. Our result here
is consistent with a similar observation on Sommerfeld
enhancement in the work of [36] (see also [24]). In Fig. 8,
the Born approximation results are also plotted for com-
parison with the exact solutions. Further, we note that more
fine tuned fits to the galaxy data can be gotten by adjust-
ment of the model parameters such that resonances appear
in some of the low lying partial waves, e.g., S, P, and D
waves. This is exhibited in Fig. 9, where in the
left panel, we see enhancements in the S and the P waves
appear to simulate the oscillations in the data at hvi ∼
102 km=s and at hvi ∼ 103 km=s. On the right panel of
Fig. 9, we plot the cross section contributed from each
partial wave separately. It is clear that the peak at hvi ∼
102 km=s is largely due to the S wave while the one at
hvi ∼ 103 km=s has a large contribution from l ¼ 5,

FIG. 7. Plot of S wave Sommerfeld suppression for a repulsive Yukawa potential for the case ξ0 ¼ 0.01 (blue) and for ξ0 ¼ 1 (red),
where for the left panel, the x axis is v, and for the right panel, the x axis is mγ0=mD. Here, we allow gX to vary to keep the relic density
∼0.12 for ξ0 ¼ 0.01 and for ξ0 ¼ 1.
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although the sum of all partial waves up to l ¼ 5 enter in
the fit given on the left panel.
Besides the total cross section, the transfer cross section

[22,23,25–28,118] σT has been used in simulations of long
range interactions [108,111,119]. Further, the viscosity
cross section σV is also widely used in analyses of
SIDM [27,120,121]. They are defined so that

σtotal ¼
Z

dσ
dΩ

dΩ;

σT ¼
Z

dσ
dΩ

ð1 − cos θÞdΩ;

σV ¼
Z

dσ
dΩ

ð1 − cos2 θÞdΩ: ð6:3Þ

In terms of partial waves, σT and σV are given by

σT ¼ 4π
X
l

�
TðflÞ þ 2

�
1 −

1

2
ð−1Þl

�
Tðf0lÞ

�
; ð6:4Þ

σV ¼ 4π
X
l

�
VðflÞ þ 2

�
1 −

1

2
ð−1Þl

�
Vðf0lÞ

�
; ð6:5Þ

TðflÞ ¼ ðð2lþ 1Þjflj2 − lflf�l−1 − ðlþ 1Þflf�lþ1Þ; ð6:6Þ

VðflÞ ¼
�
2ðl2 þ l − 1Þð2lþ 1Þ
ð2l − 1Þð2lþ 3Þ jflj2

−
ðl − 1Þl
ð2l − 1Þ flf

�
l−2 −

ðlþ 2Þðlþ 1Þ
ð2lþ 3Þ flf�lþ2

�
:

ð6:7Þ

Model (a) Model (b) Model (c)

Model (d) Model (e) Model (f)

FIG. 8. A fit to the galaxy data taken from [33], which studies the dependence of σv=mD on ξ0 in the range (0.01–1) for the six models
of Table 1. Here, solid lines are for ξ0 ¼ 1 and the dashed line for ξ0 ¼ 0.01 exhibit the dependence of σv=mD on ξ0. The fits (in red) are
done using the full analysis by numerically integrating the Schrodinger equation including identical particle effects as well as
Sommerfeld enhancement. For comparison, we also exhibit the tree-level QFT cross section shown by black curves that does not
consider the effect of identical scattering. In the analysis, we allow gX to vary but keep the relic density fixed at ∼0.12 as ξ0 varies. It is to
be noted that “galaxy data” is itself a computed quantity based on observation as evident from [33].
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Details of their computation in terms of partial waves are
given in Appendix C. Figure 10 shows that σtot, σT , σV
differ significantly from each other. We also exhibit the
tree-level cross section for comparison.

VII. CONCLUSION

Hidden sectors are ubiquitous in models of extra
dimensions, in extended supergravity, and in strings and
appear in a variety of beyond the standard model con-
structions such as in moose/quiver gauge theories (see, e.g.,
[122–125]). While the hidden sectors are neutral under the
standard model gauge group, they can couple feebly with
the standard model. However, the couplings of the hidden
sector to the inflaton could vary over a wide range. Thus, on
one extreme, the hidden sector coupling to the inflaton
could be negligible relative to the coupling of the standard
model. In this case, at the end of reheating, there would be
essentially no production of the hidden sector particles,
except via gravitational production, and the hidden sector
would likely be colder than the standard model. On the
other extreme, the hidden sector and the visible sectors
could couple democratically to the inflaton, and in this
case, the hidden sector and the visible sectors would be in
thermal equilibrium at the end of reheating. These two
extremes would have significantly different thermal evo-
lution and would result in significant differences in their
predictions of the physical observables. In this work, we
have investigated these effects in the context of a specific
hidden sector model, which arises from a Uð1ÞX extension
of the standard model gauge group. The contents of the
hidden sector consists of a dark fermion, which has gauge
interactions with the Uð1ÞX gauge field. The communica-
tion between the hidden sector and the visible sector arises
from kinetic mixing between the Uð1ÞX and Uð1ÞY gauge
fields, where the Uð1ÞX gauge field acquires mass via the
Stueckelberg mechanism. In view of the asymmetric
coupling of the visible and the hidden sectors to the inflaton
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FIG. 9. Left: Exhibition of peaks in fits to the galaxy data (which is the same as in Fig. 8) with specific parameters. Right panel: Here, it
is shown how the peaks in the left panel at hvi ∼ 102 km=s and at hvi ∼ 103 km=s arise from successive additional of higher waves.
Thus, the peak at hvi ∼ 102 km=s arises mainly from S and P contributions, while the one at hvi ∼ 103 km=s arises from contributions
from up to l ¼ 5.
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FIG. 10. A comparison of σv=mD vs v for different cross
sections, which include the total cross section σtotal, the transverse
cross section σT , the viscosity cross section σV as defined by
Eq. (6.3) and the tree-level QFT cross section with and without
identical particle effects for model (f) of Table I. The analysis is
done for ξ0 ¼ 1.
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field, the temperature of the hidden sector T0
h and of the

visible sector T0 will, in general, be unequal at the end of
reheating. Thus, the ratio of the two, i.e., ξ0 ¼ ðT0

h=T
0Þ,

enters in the thermal evolution of the hidden and the visible
sectors and affects phenomena at low energy.
The analysis of the work provides a cosmologically

consistent framework in that it involves a synchronous
evolution of the coupled hidden and visible sectors. In the
above framework, we investigate a number of phenomena
and their dependence on ξ0. These include dark freeze-out,
relic density, and the extra number of relativistic degrees of
freedom at the BBN time, and the proton-DM cross section.
Further, we investigate the effects of ξ0 on the self-
interaction cross section and on Sommerfeld enhancement.
The model is then used in fitting self-interacting dark
matter cross sections from galaxy scales to the scale of
galaxy clusters. Here, we find that fits to data show a
significant variation sometime as much asOð1Þ for ξ0 in the
range (0,1). Thus, the analysis indicates that inclusion of
hidden sectors that appear in a variety of models of particle
physics beyond the standard model and the initial con-
straints on the hidden sector at the end of reheating and
specifically on ξ0 could have significant influence on
observables, and thus, their inclusion will be relevant for
accurate description of physical phenomena. While our
analysis is done for the case of one portal, the general

techniques discussed here would be valid for a broader
class of models. Finally, we show that the approximation
often made in the thermal evolution of visible and hidden
sectors by assuming entropy conservation for each of the
sectors separately gives widely inaccurate results even for
the case for very feeble interactions such as, for example,
with the kinetic mixing parameter as low as δ ¼ 10−10.
Such an analysis is thus a poor approximation to the
analysis we carry out for the thermal evolution of the
visible and the hidden sectors in a synchronous manner
using Eq. (2.15). For generality, we also consider the case
with the mass mixing parameter ϵ that reaches a similar
conclusion. We have also analyzed the accuracy of
assuming the conservation of total entropy for the yield
equations and find that the differences between conser-
vation assumption and no conservation assumption are
typically within Oð15%Þ. We conclude that an accurate
thermal evolution is essential for the current and future
precision analyses in cosmology while analyzing physics
involving hidden sectors.
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APPENDIX A: SOURCE FUNCTIONS

The source term jh that appears in Eq. (2.15) is defined by:

jh ¼
X
i

½2Yeq
i ðTÞ2Jðiī → DD̄ÞðTÞ þ Yeq

i ðTÞ2Jðiī → γ0ÞðTÞ�s2 − Yγ0Jðγ0 → eþe−ÞðThÞs: ðA1Þ

The J functions that appear in Eq. (A1) are defined as

neqi ðTÞ2Jðiī → DD̄ÞðTÞ

¼ T
32π4

Z
∞

s0

dsσDD̄→iīsðs − s0ÞK2ð
ffiffiffi
s

p
=TÞ; ðA2Þ

neqi ðTÞ2Jðiī → γ0ÞðTÞ

¼ T
32π4

Z
∞

s0

dsσiī→γ0sðs − s0ÞK2ð
ffiffiffi
s

p
=TÞ; ðA3Þ

nγ0Jðγ0 → eþe−ÞðThÞ ¼ nγ0mγ0Γγ0→eþe− ; ðA4Þ

and

neqi ðTÞ2hσviiī→γ0 ðTÞ

¼ T
32π4

Z
∞

s0

dsσðsÞ ffiffiffi
s

p ðs − s0ÞK1ð
ffiffiffi
s

p
=TÞ; ðA5Þ

where, as noted earlier, K1 is the modified Bessel function
of the second kind and degree one, and s0 is the minimum
value of the Mandelstam variable s.

APPENDIX B: MODEL DETAILS

In addition to the interactions given in Sec. III, there are
interactions involving the dark sector and the standard
model particles in the canonical basis where the kinetic
energy and the mass matrices of the gauge boson are
diagonal. Here, the standard model fermions (i.e., quarks
and leptons) have feeble interactions with the dark photon,
which are given by

ΔLint ¼
g2

2 cos θ
ψ̄fγ

μ½ðv0f − γ5a0fÞAγ0
μ �ψf; ðB1Þ

where g2 is the SUð2ÞL gauge coupling constant, f stands
for the standard model fermions, and angle θ is defined in
Eq. (B3). The vector and axial vector couplings of the dark
photon with the SM fermions f are given by
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v0f ¼ − cosψ ½ðtanψ − sδ sin θÞT3f − 2sin2θð−sδ csc θ þ tanψÞQf�;
a0f ¼ − cosψðtanψ − sδ sin θÞT3f: ðB2Þ

Here, sδ ¼ sinh δ, T3f is the third component of isospin, andQf is the electric charge for the fermion f. The angles θ and ψ ,
which, along with ϕ, are the three Euler angles with diagonalize the 3 × 3 gauge boson mass square matrix involving the
fields Cμ; Bμ; Aμ

3, are defined as [9]

tanϕ ¼ −sδ; tan θ ¼ gY
g2

cδ cosϕ; tan 2ψ ¼ −2sδm2
Z sin θ

m2
γ0 −m2

Z þ ðm2
γ0 þm2

Z −m2
WÞδ2

; ðB3Þ

where cδ ¼ cosh δ. For the model of Eq. (3.1), where the hidden sector consists of the dark photon and a dark Dirac fermion,
gheff and hheff are given by

gheff ¼ gγ
0
eff þ gDeff ; hheff ¼ hγ

0
eff þ hDeff ;

gγ
0
eff ¼

45

π4

Z
∞

x0γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2γ0

q
ex − 1

x2dx; hγ
0
eff ¼

45

4π4

Z
∞

x0γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2γ0

q
ex − 1

ð4x2 − x2γ0 Þdx;

gDeff ¼
60

π4

Z
∞

xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2D

p
ex þ 1

x2dx; hDeff ¼
15

π4

Z
∞

xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2D

p
ex þ 1

ð4x2 − x2DÞdx; ðB4Þ

where xD ¼ mD=Th, xγ0 ¼ mγ0=Th.
Further, to compute ζh ¼ 3

4
ð1þ ph

ρh
Þ, we need ρh and ph, which are given by

ρh ¼ ργ0 þ ρD; ph ¼ pγ0 þ pD;

ργ0 ¼
gγ0T4

2π2

Z
∞

x0γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2γ0

q
ex − 1

x2dx; pγ0 ¼
gγ0T4

6π2

Z
∞

xγ0

ðx2 − x2γ0 Þ
3
2

ex − 1
dx;

ρD ¼ gDT4

2π2

Z
∞

xD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2D

p
ex þ 1

x2dx; pD ¼ gDT4

6π2

Z
∞

xD

ðx2 − x2DÞ32
ex þ 1

dx: ðB5Þ

Here, gγ0 ¼ 3 and gD ¼ 4. For total ζ, we need energy and
pressure densities for both the visible and the hidden
sectors, and we use the relation

ζ ¼ 3

4

�
1þ pv þ ph

ρv þ ρh

�
: ðB6Þ

Before proceeding further, we note that the extension
to include both the kinetic and mass mixings in
Eqs. (3.2)–(B3) is straightforward as has been discussed
in [9], and we exhibit them here for easy reference to guide
the discussion in Sec. VII. With inclusion of both the
kinetic mixing parameter δ and the mass mixing parameter
ϵ ¼ M2=M1, the neutral current Lagrangian in the hidden
sector takes the form

Lhid
NC ¼ D̄γμ½ϵDγ0Aγ0

μ þ ϵDZZμ þ ϵDγ A
γ
μ�D; ðB7Þ

where

ϵDγ0 ≃ gXQX; ϵDZ ≃ ϵ̄gXQX sin θ

�
1þ δ

ϵ̄

�
;

ϵDγ ≃ −ϵ̄gXQX cos θ

�
1þ δ

ϵ̄

�
; ðB8Þ

where ϵ̄ is defined so that ϵ̄ ¼ ðϵ − δÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
. There is

also a corresponding modification of the neutral current in
the visible sector as discussed in [9]. The constraints on δ
and ϵ arising from the fits to the electroweak data are mild,
and one finds that jϵ − δj can be as large as 0.05, consistent
with the same level of χ2 fits to the electroweak data as the
standard model [9].

APPENDIX C: SELF-INTERACTIONG DARK
MATTER CROSS SECTIONS

1. DD̄ → DD̄

Let us first consider DD̄ → DD̄ scattering. Here, the
wave function for scattering of a plane wave scattering from
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a central potential is given by ψðr⃗Þ ∼ ½eikz þ fðθÞeikr=r�. In
this case, the scattering amplitude fðθÞ has an expansion in
terms of the partial wave amplitudes fl ¼ eiδl sin δl

k , where δl
is the phase shift for the lth partial wave so that fðθÞ has the
expansion fðθÞ ¼ P∞

l¼0ð2lþ 1ÞflPlðcos θÞ and σDD
tot have

the expansion

σDD̄
total ¼

Z
jfðθÞj2dΩ ¼ ð4πÞ

X
l

ð2lþ 1Þjflj2: ðC1Þ

The transfer cross section is defined by

σDD̄
T ¼

Z
jfðθÞj2ð1 − cos θÞdΩ: ðC2Þ

Using the relations

Z
ðdxÞxPlðxÞPl0 ðxÞ ¼

8<
:

2ðl0þ1Þ
ð2l0þ1Þð2l0þ3Þ for l¼ l0 þ 1

2l0
ð2l0−1Þð2l0þ1Þ for l¼ l0 − 1;

ðC3Þ

the transfer cross section can be written as

σDD̄
T ¼ 4π

X∞
l¼0

ðð2lþ 1Þjflj2 − lflf�l−1 − ðlþ 1Þflf�lþ1Þ:

ðC4Þ

The viscosity cross section defined by

σDD̄
V ¼

Z
jfðθÞj2ð1 − cos2 θÞdΩ ðC5Þ

can be expanded in terms of partial waves using the
relations

Z
ðdxÞx2PlðxÞPl0 ðxÞ ¼

8>>><
>>>:

2ðl0þ1Þðl0þ2Þ
ð2l0þ1Þð2l0þ3Þð2l0þ5Þ for l¼ l0 þ 2

2ð2l02þ2l0−1Þ
ð2l0−1Þð2l0þ1Þð2l0þ3Þ for l¼ l0

2l0ðl0−1Þ
ð2l0−1Þð2l0þ1Þð2l0−3Þ for l¼ l0 − 2;

ðC6Þ

which gives

σDD̄
V ¼ 4π

X∞
l¼0

�
2ðl2 þ l− 1Þð2lþ 1Þ
ð2l− 1Þð2lþ 3Þ jflj2 −

ðl− 1Þl
ð2l− 1Þflf

�
l−2

−
ðlþ 2Þðlþ 1Þ

ð2lþ 3Þ flf�lþ2

�
: ðC7Þ

2. DD → DD, D̄D̄ → D̄D̄

Here, the scattering involves identical particles, which
are fermions, so the overall wave function for the particles

must be antisymmetric. This can happen in two ways:
(i) spin antisymmetric and space symmetric or (ii) spin
symmetric and space antisymmetric. Now the two spin
particles can have a total spin 1 (triplet state) or total spin is
zero (singlet state). For the triplet state, the space wave
function must be antisymmetric in θ → π − θ, and for the
singlet state, the space wave function must be symmetric.
Thus, we have for σDDðθÞ the expression

σDDðθÞ ¼ 3

4
jf0ðθÞ − f0ðπ − θÞj2 þ 1

4
jf0ðθÞ þ f0ðπ þ θÞj2

¼ jf0ðθÞj2 þ jf0ðπ − θÞj2 − Reðf0ðθÞf0�ðπ − θÞÞ:
ðC8Þ

Further, σDD
tot is given by

σDD
tot ¼ 1

2

Z
σDDðθÞdΩ; ðC9Þ

where the front factor of 1=2 is to take account of the
identical nature of the scattering particles. The partial wave
analysis of σDD

tot gives

σDD
tot ¼2π

X
l

ð2lþ1Þ
�
jflj2þ2

�
1−

1

2
ð−1Þl

�
jf0lj2

�
: ðC10Þ

Here, f0l ¼ eiδ
0
l sin δ0l since the potential governing

DD → DD scattering is different from the one that governs
DD̄ → DD̄ scattering. Similar calculations are done for
the transfer cross section and for viscosity cross section.
Further, σD̄ D̄

tot ¼ σDD
tot .

APPENDIX D: ENTROPY CONSERVATION
APPROXIMATION

Here, in Sec. D 1, we will discuss the validity of separate
entropy conservation approximation for visible and hidden
sectors, and in Sec. D 2, we will discuss the validity of the
conservation of the total entropy which is the sum of the
visible and the hidden sector entropies.

1. On the validity of separate entropy conservation
approximation of visible and hidden sector

In several previous works (see, e.g., [29]), an assumption
of entropy conservation per comoving volume separately
for the visible and the hidden sectors is made to relate ξðTÞ
at different temperatures. The above implies that the ratio
sh=sv is unchanged at different temperatures, where sv and
sh are the entropy densities for the visible and the hidden
sectors, where

sv ¼
2π2

45
hveffT

3; sh ¼
2π2

45
hheffT

3
h: ðD1Þ
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Specifically it is assumed that the following relation
between the temperatures T0 and T holds:

hheffðThÞ
hveffðTÞ

ξ3ðTÞ ¼ hheffðT0hÞ
hveffðT0Þ

ξ3ðT0Þ: ðD2Þ

Noting that Th¼ ξðTÞT and T0h¼ ξ0T0, where ξ0 ≡ ξðT0Þ,
we can write the above equation as follows:

ðhheffðξðTÞTÞÞ1=3ξðTÞ ¼ ðhveffðTÞÞ1=3
�
hheffðξ0T0Þ
hveffðT0Þ

�
1=3

ξðT0Þ:

ðD3Þ

Note that the left-hand side is a highly nonlinear function
of ξðTÞ since for our model

hγ
0
effðThÞ ¼

45

4π4

Z
∞

xhγ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2hγ0

q
ex − 1

ð4x2 − x2hγ0 Þdx;

hDeffðThÞ ¼
15

π4

Z
∞

xhD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2hD

p
ex þ 1

ð4x2 − x2hDÞdx; ðD4Þ

where xhγ0 ¼ mγ0=ðThÞ ¼ mγ0=ðξðTÞTÞ and xhD ¼
mD=ðξðTÞTÞ.
In Fig. 11, we give a comparison of the analysis of the

evolution of the ξðTÞ using Eq. (2.15) vs the evolution
given by the approximation of entropy conservation in
comoving volume for the visible and the hidden sectors
separately. The analysis shows that as ξ0 gets progressively
smaller, deviations of the approximate solutions gets
progressively worse, and especially in the freeze-in region
where ξ0 ¼ 0.001, the deviations of the approximate from
the exact is huge for temperatures in the visible sector
below 105 GeV. More importantly, for any choice of ξ0 in

the range (0,1), which includes both the freeze-out and the
freeze-in regions, the prediction of ξ0 for the approximation
is always inaccurate at the BBN temperature of ∼1 MeV.
The right panel gives a plot of ξ as a function of the visible
sector temperature for different values of δ for the case
when ξ0 ¼ 0.001. Here, one finds that the approximation
(dashed line) gives a reasonably accurate result for the case
when δ ¼ 0; i.e., there is no kinetic mixing, but it gives
highly inaccurate results for the case when δ in non-
vanishing, even as small as δ ∼ 10−10.
In the analysis done so far, we assumed M2 ¼ 0. For

generality, we consider now the case where we include the
mass mixing parameter ϵ along with kinetic mixing δ.
Thus, we discuss again the thermal evolution when there
are both kinetic mixing and mass mixing present where we
use the relations given by Eqs. (B7) and (B8) and related
relations given in [9]. In Fig. 12, we investigate the effect of
including ϵ along δ on the evolution of ξðTÞ. The left panel
is for the case ϵ ¼ 0.9δwith δ ¼ 4 × 10−8, and as expected,
the evolution for different ξ0 shows a pattern similar to the
left panel of Fig. 11. The right panel of Fig. 12 shows that
evolutions with different ϵ follow a similar path at high
temperatures but begin to separate at T ∼ 10 GeV. This
separation results in significantly different values of ξðTÞ at
BBN temperature. As expected, we find that since δ and ϵ
together control the thermal evolution, there is a significant
difference in the pattern of evolution here relative to those
of Fig. 11. However, for both Figs. 11 and 12, one finds that
the predictions for ξðTÞ given by the approximation
equation Eq. (D2) shown by dashed curves differ by wide
margins from the result using Eq. (2.15) over wide regions
of the parameter space and specifically at BBN temper-
ature. Thus, our conclusion is that the entropy conservation
approximation separately for the visible and hidden sectors
in thermal evolution is not suitable for a precision analysis.

FIG. 11. Evolution of ξðTÞwith different initial condition using Eq. (2.15) of this paper (solid) and using the approximation of entropy
conservation (dashed). Left panel: Here, δ ¼ 4 × 10−8, and analysis is given for three widely different values of ξ0, i.e., ξ0 ¼ 0.001,
ξ0 ¼ 0.01, ξ0 ¼ 0.1. Right panel: Here, ξ0 ¼ 0.001, and an analysis for several different values for δ in the range δ ¼ 0 to δ ¼ 10−8 is
exhibited. The rest of parameters are chosen so that mD ¼ 2 GeV, mγ0 ¼ 2 MeV, gX ¼ 0.015.
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2. On the validity of the total entropy conservation

In the preceding analysis, we discussed the evolution of
ξðTÞ for the case when entropy conservation per comoving
volume is assumed separately for the visible and the hidden
sectors vs the case when the entropy conservation is
assumed only for their sum. It is found that the deviations
between the two analysis could be significant, as exhibited
by Figs. 11 and 12. It is then pertinent to ask the validity of
conservation of total entropy since the total entropy itself in
not conserved either unless various sectors themselves
equilibrate. We note that in our analysis the deduction of

the evolution equation for ξðTÞ did not involve any
assumptions related to entropy, and the only place where
the conservation of the total entropy was used was in the
yield equations. For this reason, we reconsider the
Botzmann equation for the yields without the assumption
of total entropy conservation. We focus on the yield
equation for the D fermion, which constitutes dark matter
in the model and the analysis for the yield for the dark
photon is very similar.
Thus, we start with the Boltzmann equation for the

number density nD, which is given by

dnD
dt

þ 3HnD ¼ CD ¼ ½hσviDD̄→iīðTÞneqD ðTÞ2 − hσviDD̄→γ0γ0 ðThÞnDðThÞ2 þ hσvi
γ0γ0→DD̄ðThÞnγ0 ðThÞ2�: ðD5Þ

We note now that the equation for the yield YD ¼ nD=s
without the use of entropy conservation gives so that

dYD

dT
¼ 1

s
dnD
dT

−
ns
s2

ds
dT

¼−
s
H

dρv=dT
4ζρ− 4ζhρhþ jh=H

�
CD

s2

�
þ YD

4Hsζρ

�
dρ
dT

�
Δs:

Δs≡
�
ds
dt

þ 3Hs

�
ðD6Þ

We notice that the set of terms on the right-hand side of
Eq. (D6) involving CD are exactly what we have in
Eq. (4.1). Further, the term involving Δs vanishes on using
the conservation of total entropy and indicates the deviation
of the exact equation from the approximate one where total
entropy conservation is assume. A similar analysis holds
for the case of the dark photon yield equation. Thus, we
carry out an analysis using the exact equations without

entropy conservation constraint and compare it with the
analysis where entropy conservation is assumed. Results
are presented in Fig. 13. The analysis of Fig. 13 shows that
when the conservation of entropy (COE) is dropped, the
results do not change a lot. Thus the top left panel for
ξ0 ¼ 0.01 shows that the yield YD changes by typically
within ∼15% without inclusion of the entropy conservation
constraint. A similar analysis holds for the case ξ0 ¼ 1, as
shown on the right panel of Fig. 13. However, we point out
an issue that arises at very low temperatures. Without COE
constraint, the yields begin to exhibit an instability at low
temperature at around 10−4 GeV. In part, this could be due
to lack of analytic expressions for the entropy degrees of
freedom in the visible sector where on relies on curves or
tabulated data (see, e.g., [5,6]) because of hadronization of
quarks and gluons. The instability arises essentially from
the terms proportional to Δs. A proper analysis of this issue
is outside the scope of this work and a relevant topic for
further investigation.

FIG. 12. Evolution of ξðTÞ with different initial conditions using Eq. (2.15) of this paper (solid) and using the approximation of
entropy conservation (dashed). Left panel: Here, ϵ ¼ 0.9δ, and the plot is for three different values of ξ0 as shown. Right panel: Here,
ξ0 ¼ 0.001, and the plots are for several different values of ϵ. For both the left and the right panels, the rest of parameters are chosen to be
mD ¼ 2 GeV, mγ0 ¼ 2 MeV, gX ¼ 0.015, δ ¼ 4 × 10−8.
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