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Lattice gauge field theories may suffer from unphysical “bulk” phase transitions at strong lattice gauge
coupling. We introduce a one-parameter family of lattice SUðNÞ gauge actions which, when used in
combination with a hybrid Monte Carlo (HMC) update algorithm, prevents the appearance of the bulk
phase transition. We briefly discuss the (presumed) mechanism behind the prevention of the bulk transition
and present test results for different SUðNÞ gauge groups.
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I. INTRODUCTION

In asymptotically free gauge theories on the lattice the
continuum limit is obtained when the bare lattice gauge
coupling vanishes. In practice lattice simulations are always
done at finite lattice spacing, and as long as the coupling
constant is sufficiently small we can analytically extrapo-
late the results to the continuum limit. The range of lattice
spacings (or coupling constants) is often limited by the
emergence of an unphysical “bulk phase” at strong lattice
gauge coupling, which prevents the analytical connection
to the continuum phase from this region. The value of the
lattice coupling where the transition to the bulk phase
happens depends on the lattice gauge group, the choice of
the gauge action and the matter content.
The problem of the bulk phase transition becomes acute

in SUðNÞ gauge theories with large number of colors and in
models with large number of fermion degrees of freedom.
In pure gauge SUðNÞ theories with the standard Wilson
plaquette action the bulk transition is a rapid cross-over if
N ≤ 4 but becomes an increasingly strong first order
transition for N ≥ 5 [1]. Adding fermionic degrees of
freedom slows down the evolution of the coupling constant
(i.e. the magnitude of the β-function is smaller) and also

increase the effective lattice gauge coupling [2]. Depending
on the physical case of interest, these effects require one to
use strong bare coupling. This happens especially in
infrared (near-)conformal models, where the coupling runs
very slowly, for example in SUð2Þ with large numbers of
fundamental fermions [3–7], SUð2Þ with adjoint fermions
[8–10], SUð3Þ with many fermions [11–13], and SUð4Þ
with fermions in the antisymmetric representation [14].
In this work we present a local lattice gauge action,

defined on elementary plaquettes, which efficiently
removes the transition to the bulk phase. Our approach
is related to the “dislocation prevention” method by
DeGrand et al. [15]. For Uð1Þ and SUð2Þ gauge groups
also the topological gauge actions that restrict the plaquette
magnitude [16–18] are to some extent related. The latter
stops being the case for SUðNÞ gauge groups with N > 2,
as the plaquette eigenvalues are then no longer determined
by the trace of the plaquette. We note that our approach
removes merely the bulk phase but does not restrict in any
way gauge-topology fluctuations.
Following Wilson’s prescription, the lattice discretiza-

tion of a SUðNÞ gauge theory is obtained by promoting the
Lie algebra valued continuum gauge field,

Aμðx0Þ ¼
X
a

Aa
μðx0ÞTa ∈ suðNÞ; ð1Þ

with fTaga¼1;…;N2−1 being a basis of suðNÞ, to Lie group
valued link variables,

UμðxÞ ¼ Pei
R

aðxþμ̂Þ
ax

dx0Aμðx0Þ ∈SUðNÞ; ð2Þ
which can be interpreted as the gauge-parallel transporters
along the link between a site x and a neighboring site xþ μ̂.
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The leading P on the right-hand side of (2) indicate that
path-ordering should be applied when evaluating the
exponential of the line-integral. The relation between the
coordinate x0 ∈R4 in (1) and the coordinate x∈Z4 in (2) is
given by x0 ¼ ax, where a is the lattice spacing, and μ̂ refers
to the unit-vector in μ-direction. Parallel transporters over
longer distances are then expressed as products of con-
secutive link variables and a lattice gauge action can be
defined in terms of link variables by requiring that in the
limit ða → 0Þ the lattice gauge action converges to the
continuum gauge action,

SG ¼ 1

2g20

Z
d4x0trðFμνðx0ÞFμνðx0ÞÞ: ð3Þ

Wilson proposed the gauge action [19]

SG;W ¼ β

N

X
x

X
μ<ν

Re trð1 − UμνðxÞÞ; ð4Þ

which, as is well known, satisfies the above condition and is
here written in terms of the inverse bare gauge coupling
β ¼ 2N=g20 and the plaquette variables

UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ: ð5Þ

The gauge action (4) and improved versions of it [20] are
the most commonly used in Monte Carlo studies of SUðNÞ
lattice gauge theories. They are, however, not unique and
might not be the best choice for the study of lattice gauge
theories at strong coupling, as they allow the gauge system
to enter a bulk phase. Despite its name, a bulk phase is not
necessarily a proper phase, but simply a region in parameter
space of the lattice theory where lattice artifacts dominate
in ensemble averages. As a consequence the relation
between lattice and continuum results becomes very
complicated or can even be lost completely if bulk and
continuum phase are separated by a first order transition.

II. AVOIDING THE LATTICE BULK PHASE

In this section we propose a characterization of “bulk
configurations” in SUðNÞ lattice gauge systems, which
allows for the definition of a family of lattice gauge actions,
that separate such bulk configurations from regular ones by
an infinite potential barrier, while still yielding the same
naive continuum limit as Wilson’s plaquette gauge action.
In combination with a hybrid Monte Carlo (HMC) update
algorithm, the new gauge actions prevent the gauge system
from entering a bulk phase.

A. Motivation in Uð1Þ
In the Uð1Þ case, the Wilson gauge action in (4)

reduces to

SG;W ¼ β
X
x

X
μ<ν

Reð1 −UμνðxÞÞ; ð6Þ

and the Abelian link variables can be written as

UμðxÞ ¼ eiθx;μ with θx;μ ¼ aAμðxÞ∈ ð−π; π�: ð7Þ

Let us now define,

Θx;μν ¼ θx;μ þ θxþμ̂;ν − θxþν̂;μ − θx;ν ∈ ð−4π; 4π�; ð8Þ

and note that while Θx;μν in (8) can vary in the interval
ð−4π; 4π�, the gauge action (6) depends only on

argðUμνðxÞÞ∈ ð−π; π�: ð9Þ

As illustrated in Fig. 1, the gauge action (6) produces a bulk-
transition at β ¼ βb ≈ 1. For β < βb, the system is in the bulk
phase, where the lattice spacing, a, can be considered large
and Θx;μν from (8) explores the full ð−4π; 4π�-interval. For
β > βb, the system is in the continuum phase, where the
lattice spacing tends to zero if ðβ → ∞Þ. In this phase,Θx;μν

can still be outside the ð−π; π�-interval, but the fraction of
such plaquettes quickly drops as ðβ → ∞Þ and most of the
time, one has that Θx;μν ¼ argðUμνðxÞÞ.
The fact that plaquettes with Θx;μν ∉ ð−π; π� also appear

in the continuum phase indicates that the value of Θx;μν by
itself cannot be used to distinguish bulk from continuum
configurations. However, as illustrated in Fig. 2, for
smoothly varying link variables, UμðxÞ, one can identify
two qualitatively different ways in which plaquettes with
Θx;μν ∉ ð−π; π� can be produced from a configuration in

FIG. 1. The Uð1Þ lattice gauge theory with Wilson gauge action
(6) undergoes a bulk-transition at β ¼ βb ≈ 1. For β < βb, the
system is in the bulk phase, where the lattice spacing, a, can be
considered large and Θx;μν from (8) explores the full ð−4π; 4π�-
interval. For β > βb, the system is in the continuum phase, where
the lattice spacing tends to zero if β → ∞. In this phase, Θx;μν can
still be outside the ð−π; π�-interval, but the fraction of such
plaquettes quickly drops as β is increased and one mostly has
Θx;μν ¼ argðUμνðxÞÞ.
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which initially Θx;μν ¼ argðUμνðxÞÞ is satisfied for all
plaquettes:
(a) the phase of one of the links of a given plaquette can

move across the boundary of the ð−π; π�-interval and
wrap around, which adds roughly �2π to the pla-
quette’s phase angle Θx;μν. As indicated in part (a) of
Fig. 2, this kind of plaquette wrapping can happen also
if argðUμνðxÞÞ is close to 0. We note that the wrapping
link will produce a shift of roughly �2π in the phase
angle Θx;μν of all plaquettes that contain this link and
not just in the phase angle of the plaquette under
consideration;

(b) none of the links of a given plaquette wraps around the
ð−π; π�-interval. Instead, as indicated in part (b) of
Fig. 2, the plaquette’s phase angle Θx;μν has grown
close to the ð−π; π�-interval boundary and finally
crosses it continuously as one of the link variables
undergoes a change that causes Θx;μν to grow further.
Unlike in case (a), this continuous plaquette wrapping
can take place for single plaquettes. This can produce
metastabilities as wrapped and unwrapped plaquettes
pull in opposite directions on shared links when the
action is minimized. In order to approach the con-
tinuum limit, the wrapping needs to be undone.

As case (b) can occur only if individual plaquette angles are
allowed to grow close to �π, this case is likely to occur
only in the bulk phase, where β is so small that the plaquette
action (6) cannot grow sufficiently large as to oppose the
entropy-driven randomization of the plaquette variables in
the system. Wewill therefore introduce in Sec. II C a family
of actions that will prevent plaquette wrappings of type (b).
As it turns out, this is sufficient to get rid of the bulk
transition. First, however, we discuss in Sec. II B how the
concept of continuous type (b) plaquette wrappings can be
generalized from Uð1Þ to SUðNÞ plaquettes. The relation

between plaquette wrappings and the production of Dirac
monopoles is discussed in Appendix A 1.

B. Situation in SUðNÞ
Compact Lie groups like SUðNÞ carry a Riemannian

metric g which is invariant under left and right translation.
As a consequence, the well known bi-invariant Haar
measure for group integration exists, which is given by
the volume form of the invariant metric, normalized so
that the group volume is 1. The fact that SUðNÞ has a
Riemannian metric also means that we can at each point
U∈SUðNÞ define a tangent space TUSUðNÞ and the so
called exponential map expU∶ TUSUðNÞ → SUðNÞ that
maps vectors ω∈TUSUðNÞ from the tangent space at point
U to points V ¼ expUðωÞ in SUðNÞ. The graph of the
function γU;ωðtÞ ¼ expUðωtÞ, t∈ ½0; 1� then describes a
geodesic segment in SUðNÞ that start in the point U in
the direction specified byω and has geodesic length jωjgðUÞ.
The exponential map expU∶ TUSUðNÞ → SUðNÞ is

bijective only in a neighborhood ΩU ⊂ TUSUðNÞ around
the origin of TUSUðNÞ. The boundary ∂ΩU of the region
ΩU ⊂ TUSUðNÞ over which the exponential map expU is
bijective is called the cut locus of U in TUSUðNÞ and its
image expUð∂ΩUÞ is, correspondingly, the cut locus of U
in SUðNÞ.
At the point U ¼ 1∈SUðNÞ the tangent space to SUðNÞ

corresponds to the usual Lie algebra suðNÞ ¼ T1SUðNÞ
and the exponential map applied to some ω∈ suðNÞ can be
identified with the usual matrix exponential,

exp1ðωÞ ¼ expðiωaTaÞ; ð10Þ

with fTaga¼1;…;N2−1 being a Hermitian basis of suðNÞ.
The domain Ω1 ⊂ suðNÞ ¼ T1SUðNÞ over which exp1

is bijective is given by the set of Hermitian matrices
ω∈ suðNÞ whose eigenvalues fϕigi¼1;…;N satisfy [21]:

jϕij < π ∀ i∈ f1;…; Ng: ð11Þ

The image exp1ð∂Ω1Þ ⊂ SUðNÞ, i.e. the cut locus of 1 in
SUðNÞ, is therefore given by the set of matrices V ∈SUðNÞ
for which at least one eigenvalue λi ¼ eiϕi , i ¼ 1;…; N is
equal to −1.
To illustrate this, we pick a ω∈ suðNÞ and write it as

ω ¼ UωDωU
†
ω; ð12Þ

with Uω ∈SUðNÞ and Dω ¼ diagðϕ1;…;ϕNÞ being a
diagonal matrix containing the eigenvalues of ω. The
image V ¼ exp1ðωÞ of ω under the exponential map
exp1 is then,

V ¼ Uω expðiDωÞU†
ω ¼ UωDVU

†
ω; ð13Þ

FIG. 2. The figure illustrates the two different ways in which
Θx;μν form (8) can grow beyond the ð−π; π�-interval: (a) a single
link (between x and xþ μ̂) winds around ðπ; π� which adds
almost 2π to Θx;μν; (b) no link wraps around the ð−π; π�-interval,
Θx;μν grows continuously bigger than π.
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with DV ¼ diagðλ1;…; λNÞ being the diagonal matrix of
eigenvalues of V, given by λi ¼ eiϕi, i∈ f1;…; Ng. As long
as −π < ϕi < π ∀ i∈ f1;…; Ng, the exponential map is a
bijection as the inverse map can be defined using,

ϕi ¼ −i logðλiÞ; i ¼ 1;…; N; ð14Þ

with log being the principal value complex logarithm. But,
if jϕij ≥ π for any i∈ 1;…; N, then (14) breaks down.
We can now generalize the criterion we found in the

previous section for the production of bulk configurations
in Uð1Þ lattice gauge theory to the SUðNÞ case. In the Uð1Þ
case we argued, that if the phase (8) of any plaquette
variable UμνðxÞ in the system crosses continuously the
ð−π; π�-interval boundary [plaquette wrapping of type (b)],
then a bulk configuration is produced. Such a continuous
crossing of the ð−π; π�-interval boundary by the plaquette
phase implies of course that the corresponding plaquette
variable UμνðxÞ passes through the value −1, which is the
cut locus for the exponential map from the Lie algebra
uð1Þ ¼ T1Uð1Þ ¼ R to the group manifold Uð1Þ. If a
plaquette variable UμνðxÞ approaches and smoothly crosses
the cut locus value −1 the resulting lattice gauge field
described by the link variables can no longer be properly
mapped on a corresponding Lie algebra valued gauge field
that is relevant for continuum physics. The same applies in
the case of SUðNÞ lattice gauge theory if a SUðNÞ plaquette
variable approaches and smoothly cross the SUðNÞ cut
locus. The resulting configuration cannot be mapped on a
corresponding Lie algebra valued gauge configuration that
is relevant for continuum physics, which qualifies it as a
bulk configuration.
In order to prevent a SUðNÞ gauge system form entering

a bulk phase at strong coupling, the plaquette variables
must not continuously cross the cut locus. As discussed
below (11), this means that the eigenvalues of the plaquette
variables must not continuously cross the value −1.
The question of how such a restriction affects the

creation of magnetic monopoles in SUðNÞ gauge theory
is addressed in Appendix A 2.

C. Bulk-preventing action

To prevent plaquettes from having eigenvalues close to
−1, we introduce the following family of gauge actions:

SG;b ¼
2γ

nN

X
x

X
μ<ν

trððΩ†
μνðxÞΩμνðxÞÞ−n − 1Þ; ð15Þ

with n ≥ 1 and

ΩμνðxÞ ¼ ð1þUμνðxÞ|fflfflffl{zfflfflffl}
plaquette

Þ=2: ð16Þ

The form of the actions (15) was inspired by the dis-
location-prevention action introduced in [15]. The naive

continuum limit of (15) is the same as for the Wilson gauge
action SG;W from (4). This can be seen by writingUμνðxÞ ¼
expði sF0

μνðxÞÞ, with sF0
μν ¼ a2Fμν þOða3Þ and expand-

ing in a power series in s. For the local plaquette action
contributing to SG;W from (4) one then finds:

Retrð1−UμνðxÞÞ¼s2trðF0
μνðxÞF0

μνðxÞÞ=2

−s4
1

12

�ðtrðF0
μνðxÞF0

μνðxÞÞ=2Þ2 if N<4

trððF0
μνðxÞF0

μνðxÞÞ2Þ=2 if N≥4

þOðs6Þ; ð17Þ

and, correspondingly, for the local plaquette action con-
tributing to SG;b from (15):

2

n
trððΩ†

μνðxÞΩμνðxÞÞ−n − 1Þ
¼ s2trðF0

μνðxÞF0
μνðxÞÞ=2

þ s4
1þ 3n
24

� ðtrðF0
μνðxÞF0

μνðxÞÞ=2Þ2 if N < 4

trððF0
μνðxÞF0

μνðxÞÞ2Þ=2 if N ≥ 4

þOðsÞ: ð18Þ

In the limit ða → 0Þ, one has s ∼ a2, F0
μνðxÞ ∼ FμνðxÞ, and

we see that the two local actions have the same leading term
∼a4, namely:

a4trðFμνðxÞFμνðxÞÞ=2: ð19Þ

The actions (15) introduce an infinite potential barrier
between bulk and continuum configurations. This is suffi-
cient to ensure that, if we start a simulation from a cold
configuration (all link variables equal to the identity) and
use a hybrid Monte Carlo (HMC) algorithm to update the
gauge system, no bulk configurations will be produced.
One could infer that our bulk-preventing setup results in

a nonergodic update algorithm. However, one should keep
in mind that the part of the configuration space that is not
sampled is irrelevant for the continuum limit of the theory.
The algorithm prevents ensemble averages of the lattice
system from being contaminated (or even dominated) by
bulk-configurations, which should allow one to extract
continuum physics also at stronger coupling. The same
effect could be achieved by defining a modified measure,
which gives zero weight to bulk configurations. However,
this would be difficult to implement as the latter are hard to
identify once they are created. The use of an action (15) in
combination with an HMC algorithm is a proxy to achieve
the same effect but in a simpler and more economic way.
An expression for the gauge force, required for the HMC, is
presented in Appendix B.
Let us note that for Uð1Þ and SUð2Þ, the actions in (15)

alone would have a similar effect as the topological
actions discussed in [16–18,22]: the larger the inverse bare
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coupling γ, the stronger the plaquette values are repelled
from −1 resp. −1. For SUðNÞ with N > 2 the effect of (15)
is, however, different from the one of the topological action
discussed in [18], as for N > 2 the trace of the plaquette
does no longer completely determine the plaquette eigen-
values. An action which can have a similar effect as our
actions (15) has been given in [23]. We also note that based
on the observation that the bulk transition of the Wilson
gauge action (4) is sensitive to the addition of an adjoint
plaquette term [24], it has in [25] been demonstrated that
for N ¼ 3 the bulk phase can be avoided by adding an
appropriately scaled negative adjoint plaquette term to the
standard Wilson gauge action [25,26].
While for us it is desirable that the actions (15) do not

prevent topology from fluctuating, there have also been
attempts to find actions which keep the topology fixed [27].

III. RESULTS

To test whether the bulk-preventing actions (15) deserve
their name and whether they are able to reproduce the same
weak coupling results as the Wilson gauge action, we
carried out simulations with pure gauge SUð2Þ, pure gauge
SUð5Þ, and SUð3Þ with Nf ¼ 4 Wilson fermion flavors.
With the Wilson gauge action, all three of these theories
enter a bulk phase for sufficiently small values of the
inverse gauge coupling β. For pure gauge SUð2Þ, the
transition is a smooth cross-over, while for pure gauge
SUð5Þ and for the fermionic SUð3Þ theory with sufficiently
large fermion hopping parameter κ the transition is of first
order. In the following we will discuss the three cases
separately. We use the version of the action (15) with
n ¼ 2. The choice of n should not affect physical results,
but it turns out that a too small value of n will require also a
smaller step size in the HMC trajectories to achieve similar
acceptance rates, which can become computationally more
expensive than using n ¼ 2.
According to the expansions (17) and (18), the Wilson

gauge (WG) action (4) and bulk-preventing (BP) action
(15) agree only to order s2 ∼ a4. Thus, the inverse bare
couplings β and γ will not be equal in the weak coupling
limit. However, it turns out that locally the two couplings
can be related quite accurately by a constant shift,
γ ¼ β − Δβ, which we will use to directly compare bare
lattice results obtained with the two different actions. Of
course, there is in general no need for bare lattice results,
obtained with different actions, to agree. However, it seems
that in the present case, the systems controlled by the WG
and the BP action behave in the weak coupling regime
sufficiently equally, so that a direct comparison of bare
lattice results is reasonable.

A. SUð2Þ pure gauge

SUð2Þ pure gauge theory with the WG action (4) is
known to have a smooth crossover between the bulk phase

and the continuum-like phase. Thus, for this theory the BP
action (15) is not expected to provide any significant
advantage over the WG action and both actions should
give rise to the same results not just at weak, but also all the
way down to strong coupling.
In Fig. 3 we compare results obtained with the WG and

the BP action. TheWG data is plotted as function of β − Δβ
with Δβ ¼ 1.65 and the BP data is plotted as function of γ.
The shift Δβ ¼ 1.65 has been determined by requiring that
the “spatial deconfinement” transition, at which the spatial
Polyakov loop develops a nonzero expectation value
(indicating that the physical spatial volume becomes too
small to fit a meson), occurs for the two actions at the same
value of ðβ − ΔβÞ resp. γ.
The top-left panel in Fig. 3 shows the average of the

traced plaquette and we note that when plotted against
β − 1.65 resp. γ, the plaquette values for the two different
actions agree remarkable well at sufficiently weak cou-
pling. Only below γ ¼ β − 1.65 ≈ 0.65, where the WG
action enters the bulk-phase, the plaquette value for theWG
action starts to deviate from the BP one as function
of γ ¼ β − 1.65.
The strong coupling limit is for both actions obtained

by sending their respective inverse coupling to zero, i.e.
ðγ → 0Þ and ðβ → 0Þ. With the WG action the strong
coupling phase extends over the interval β∈ ½0; 2.3�, while
with the BP action, the strong coupling phase extends over
the significantly smaller interval γ ∈ ½0; 0.65�. In the strong
coupling phase, the system should therefore with the WG
action change more slowly as function of β than with the
BP action as function of γ.
This is indeed what can be observed in the remaining

panels of Fig. 3: the results obtained with the two actions
for temporal Polyakov loop (top-center), Polyakov loop
variance (top-right), and topological susceptibility (bottom-
left) are consistent and match for γ ¼ β − 1.65 > 0.65
very nicely as functions of γ resp. β − 1.65, while for
γ ¼ β − 1.65 < 0.65, the WG results change more slowly
as function of β than the corresponding BP results do as
function of γ.
The last two panels on the second row of Fig. 3 show

gradient flow quantities: the bottom-center panel shows the
gradient flow coupling, Ng2GFðcÞ at c ¼ λ=Ns ¼ 0.3, with
λ ¼ ffiffiffiffi

8t
p

being the flow scale corresponding to flow time t;
and the bottom-right panel shows λ0=a, which is the flow
scale λ (in lattice units) at which t2hEðtÞi ¼ 0.26 [28] with
EðtÞ being the clover action density of the flowed gauge
field at flow time t. Both gradient flow quantities have been
corrected for leading finite volume and lattice spacing
effects [7] by replacing in the computation of the con-
tinuum finite volume correction given in [29] the con-
tinuum momenta by lattice momenta and adapting the
formula to the case Nt ≠ Ns. A refined correction formula
that takes into account the details of the utilized lattice
actions for sampling and flowing of the gauge fields, as
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well as for measuring EðtÞ, is presented in [30]. Also for
the gradient flow quantities the data obtained with the
two actions agrees as function of γ ¼ β − 1.65 if γ ¼
β − 1.65 > 0.65, whereas for γ ¼ β − 1.65 < 0.65, the
WG data changes more slowly as function of β than the
BP data does as function of γ.
As mentioned at the beginning of this section, the shift

Δβ ¼ 1.65 has been determined by requiring that the
spatial deconfinement happens at the same value of γ
and β − Δβ. Because of our small spatial volumes of linear
size Ns ¼ 12, this happens already at γ ¼ β − 1.65 > 0.8.

B. SUð5Þ pure gauge

Figure 4 provides the same information as Fig. 3 but for
SUð5Þ instead of SUð2Þ. The shift in β required to match γ
at weak coupling has been set to Δβ ¼ 14.35, which, as in
the SUð2Þ-case, is determined by matching the values of γ
and β − Δβ at which spatial deconfinement occurs.
For SUð5Þ the bulk transition of the WG action is

of 1st order [1], which is clearly visible from the sharp

discontinuity in the WG data for the average plaquette at
β − 14.35 ≈ 2.3, shown in the top-left panel of Fig. 4. In
contrast, with the BP action the plaquette is completely
continuous as a function of the inverse gauge coupling γ. In
the continuum phase, i.e. for γ ¼ β − 14.35 > 2.3, the
average plaquette values obtained with the two different
actions converge only slowly with increasing inverse
coupling, while the average temporal Polyakov loop
(top-center), temporal Polyakov loop variance (top-right)
and topological susceptibility (bottom-left), as well as the
gradient flow quantities, Ng2GFðc ¼ 0.3Þ (bottom-center)
and λ0=a (bottom-right), agree for the two actions almost
immediately when γ ¼ β − 14.35 > 2.3.
The finite temperature transition for Nt ¼ 6 occurs at

around γ ¼ β − 14.35 ≈ 2.9. This is above the value at
which the WG action undergoes the bulk transition, and the
properties of the finite temperature transition should there-
fore be described equally well with theWG and with the BP
action. The temporal Polyakov loop (top-center) looks
indeed the same for the two actions at Nt ¼ 6, and also
the temporal Polyakov loop variance (top-right) agrees

FIG. 3. Comparison of pure SUð2Þ gauge theory results obtained with the Wilson gauge action (WG), Eq. (4) (orange circles and
brown triangles) and the bulk-preventing (BP) action, Eq. (15), for n ¼ 2 (black diamonds and blue squares). To guide the eye, the data
points are connected by straight lines. The first row shows the real part of the average traced plaquette (top left), the temporal Polyakov
loop (top center), and the temporal Polyakov loop variance (top right). The second row shows the topological susceptibility (bottom left)
the gradient flow coupling at c ¼ λ=Ns ¼ 0.3 (bottom center), with flow scale λ ¼ ffiffiffiffi

8t
p

, corresponding to flow time t, and λ0=a (bottom
right), which is the flow scale λ (in lattice units) at which t2hEðtÞi ¼ 0.26with hEðtÞi being the clover action density of the flowed gauge
field at flow time t. On our finite lattices with spatial size Vs ¼ 123, the temporal size is set to Nt ¼ 6 for finite temperature, and to
Nt ¼ 24 for zero-temperature. The results are shown as functions of β − 1.65 (WG) resp. γ (BP).
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very well for γ ¼ β − 14.35 > 2.3 at Nt ¼ 6; at γ ¼ β −
14.35 ≈ 2.3 (red vertical dashed line) one can, however,
notice a small jump in the Polyakov loop variance for the
WG action, while the Polyakov loop variance obtained with
the BP action behaves completely regular across this point.
A similar behavior can be observed in the Nt ¼ 6 data

for the topological susceptibility (bottom-left), where the
results obtained with the WG and BP action agree for
γ ¼ β − 14.35 > 2.3, but as γ ¼ β − 14.35 decreases
below the bulk transition point, γ ¼ β − 14.35 ≈ 2.3, the
topological susceptibility obtained with the WG action
jumps and approaches almost immediately its strong-
coupling plateau value, while with the BP action, the
topological susceptibility approaches its strong coupling
value much more smoothly.
WithNt ¼ 4, the WG action is no longer able to properly

resolve the finite temperature transition. The data obtained
with the BP action suggests that the finite temperature
transition should for Nt ¼ 4 occur at γ ¼ β − 14.35 ≈ 2.1.
With the WG action, the system is in the bulk-phase at this
value of the bare gauge coupling [1]. It appears that the finite
temperature transition cannot take place inside the bulk
phase and occurs therefore on top of the bulk transition.

Also the topological susceptibility obtained with the WG
action forNt ¼ 4 appears to be unable to decrease as long as
the system is in the bulk phase. As in the case ofNt ¼ 6, the
topological susceptibility obtained with the WG action
appears also for Nt ¼ 4 to be stuck at the strong coupling
plateau value for γ ¼ β − 14.35 < 2.3 and to decrease
abruptly at γ ¼ β − 14.35 ≈ 2.3 when the inverse coupling
is increased beyond this point. In contrast,with theBP action
the asymptotic strong coupling value of the topological
susceptibilities is also for Nt ¼ 4 approached smoothly.
The measurements of the gradient flow coupling

Ng2GFðcÞ at c ¼ λ=Ns ¼ 0.3 are shown in the bottom-center
panel of Fig. 4. From this we conclude that the WG action
is not capable of reaching gradient flow couplings larger
than g2GF ≈ 11 before hitting the bulk transition. In the
bottom-right panel we show the flow scale λ0=a at which
t2hEðtÞi ¼ 0.47 [28]. For the WG action there is a
discontinuity in λ0=a at the bulk transition point, indicating
that there is a largest reachable lattice spacing. For the BP
action these problems disappear and the gradient flow
quantities behave smoothly. As in the SUð2Þ case, both
gradient flow quantities have been corrected for finite
volume and finite lattice spacing effects.

FIG. 4. Same as Fig. 3, but for pure gauge SUð5Þ and including the case Nt ¼ 4 for which the WG action can no longer properly
resolve the finite temperature transition as the latter is forced to occur on top of the bulk transition. The dashed vertical red line indicates
the approximate location of the bulk transition of the WG action. Note that the shown data was obtained on small lattices with Ns ¼ 12
and we did not attempt to perform simulations directly at the pseudocritical points. The peaks visible in the data for the Polyakov loop
variance (top-right panel) do therefore not reflect the true pseudocritical behavior; the lines simply connect the available data points to
guide the eye.
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C. SUð3Þ with Nf = 4 Wilson fermions

For a SUð3Þ lattice gauge theory with the Wilson gauge
action, the transition between continuum- and bulk-phase is
normally a cross-over. However, if the theory is coupled to
fermions, the transition can turn 1st order.
As a concrete example for a system where this is the

case, we consider SUð3Þ lattice gauge theory with the WG
action and with Nf ¼ 4 mass-degenerate, dynamical
Wilson-clover fermion flavors, that couple to the gauge
field via 2-step stout smeared links [31]. Figure 5 shows a
schematic ðβ; κÞ-phase diagram for this system. The dashed
red line marks the location of the bulk transition, the blue
line indicates where the PCAC quark mass [32], mq,
crosses zero, and the dashed black line marks the location
of the thermal resp. “confinement/deconfinement” transi-
tion if the temporal lattice size is set to Nt ¼ 6. The label
confinement/deconfinement is put in quotation marks,
because we use the temporal Polyakov loop as approximate
order parameter for deconfinement, despite the presence of
dynamical fermions [33,34]. In QCD deconfinement is

observed to be accompanied by a chrial transition that
occurs at the same temperature; for light fermions, this
chiral transition dominates, whereas in the heavy fermion
limit, the confinement/deconfinement transition of pure
gauge theory is approached.
The curves in Fig. 5 are based on parameter scans

performed with simulations on lattices of spatial size
Vs ¼ N3

s with Ns ¼ 12. For the mq ¼ 0 and the bulk
transition lines, the temporal lattice extent was set to
Nt ¼ 24 (approximating zero-temperature), while for the
confinement/deconfinement transition, the indicated
Nt ¼ 6 was used. The additional dashed lines in different
shades of gray are not based on actual simulations; they
merely illustrate how the confinement/deconfinement tran-
sition line is expected to change if Nt is increased
(assuming that also Ns is increased accordingly).
For values of κ above ∼0.13 the line where the PCAC

quark mass crosses zero coincides with the bulk transition
line. Across these coinciding lines the system undergoes a
first order transition and the PCAC quark mass never passes
through the value mq ¼ 0 but jumps discontinuously from
positive to negative values across the transition line. This is
shown in the top left panel of Fig. 6 where the PCAC quark
mass for the WG action (brown circles) is shown as
function of β − 4.167 at κ ¼ 0.1358. To the left of the
bulk transition line, the system is in the unphysical bulk
phase, while to the right of the line the system has
unphysical negative PCAC quark mass. Thus, the lattice
does not describe any continuum-related physics for
κ > 0.13. Only for κ < 0.13 there is a range in β for
which the system is in the continuum phase and the PCAC
quark mass is non-negative.
With Nt ¼ 6, also the confinement/deconfinement line

in Fig. 5 is for κ < 0.142 on top of the bulk transition line.
In the displayed range of κ the confinement/deconfinement
transition separates from the bulk transition line only for
κ > 0.142, but is then located in the negative PCAC mass
region and hence unphysical. To extract information about
the continuum theory form this lattice system, one would
have to increase Nt (and, correspondingly, also Ns to avoid
dominance of finite volume effects) so that the confine-
ment/deconfinement line fully separates from the bulk
transition line. Thus, we can conclude that it is not possible
to reach the light quark confinement (chiral) phase tran-
sition with the WG action using Nt ¼ 6 lattices. Of course,
in the limit ðκ → 0Þ, where the quark mass grows much
larger than the deconfinement energy scale, the confine-
ment/deconfinement line is expected to separate from the
bulk transition line also for Nt ¼ 6, as the fermions
decouple and the system reduces to pure gauge SUð3Þ.
Fig. 6 contains also results obtained with the bulk-

preventing action (15). In this case the bulk transition is
absent and the PCAC quark mass approaches mq ¼ 0
continuously. The small gap in the data around mq ¼ 0 is
due to the slowing down caused by the appearance of zero

FIG. 5. Sketch of the finite temperature phase diagram for
SUð3Þ lattice gauge theory with Wilson gauge action and Nf ¼ 4

Wilson clover fermion flavors (coupling to the gauge field via
two-step stout smeared gauge links). The parameters β and κ are,
respectively, the inverse gauge coupling and fermion hopping
parameter. The red, dashed line marks the location of bulk
transition (resp. crossover if κ is sufficiently small) of the Wilson
gauge action, the blue line shows where the PCAC quark mass,
mq, vanishes, and the dashed lines in different shades of gray
mark the location of the finite temperature “deconfinement”
transition lines for different values of Nt. The locations of the
bulk transition and the mq ¼ 0 line were estimated with simu-
lations on a 123 × 24 lattice, and the Nt ¼ 6 deconfinement
transition line from simulations on a 123 × 6 lattice. Note that the
Nf ¼ 4 fermions cause the pseudocritical β to be lower than it
would be in the pure-gauge case.
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eigenmodes of the Wilson-Dirac operator when mq → 0.
This could be avoided by e.g. using Schrödinger functional
boundary conditions, which remove zero modes.
In the first two panels of the second and third row

of Fig. 6 the chiral condensate (2nd row, left) and

disconnected chiral susceptibility (last row, left), as well
as the temporal Polyakov loop (2nd row, center) and
corresponding variance (last row, center) are plotted as
functions of the PCAC quark mass, mq. While deep in the
strong-coupling and deep in the negative mass phase the

FIG. 6. Simulation results for SUð3Þ lattice gauge theory, coupled via 2-step stout smeared links to Nf ¼ 4 degenerate Wilson clover
fermion flavors with hopping parameter κ ¼ 0.1358. The simulations were carried out on lattices of size 123 × 6 (finite temp.) resp.
123 × 24 (zero temp.). As in the previous figures, the orange circles and brown triangles correspond, respectively, to zero and finite
temperature results obtained with the Wilson gauge action (WG), Eq. (4), and the black diamonds and blue squares to corresponding
results obtained with the bulk-preventing action (BP), Eq. (15). Data points are connected by straight lines to guide the eye. The first row
shows the PCAC quark mass (top left) and average unsmeared (top center) and smeared (top right) plaquette as functions of γ (BP) resp.
β − 4.167 (WG). The remaining rows show the quantities as functions of the PCAC quark mass (obtained from the Nt ¼ 24
simulations). The second row shows the chiral condensate (middle left), the temporal Polyakov loop (middle center), and the topological
susceptibility (middle right), and the third row shows the disconnected piece of the chiral susceptibility (bottom left), variance of the
temporal Polyakov loop (bottom center), and the integrated auto-correlation time of the topological charge (bottom right). The shaded
areas in the different panels mark the PCAC quark mass range that cannot be resolved with the WG action for the given simulation
parameters, due to the bulk transition.
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results obtained with the WG action agree with those
obtained using the BP action, the discontinuity in mq with
the WG action (marked by the shaded areas) implies that
theWG action cannot be used to study the transition region.
On the other hand, with the BP action there is no
discontinuity inmq and no bulk transition, and the behavior
of the chiral condensate and the Polyakov loop at the finite-
temperature phase transition are resolved.
The remaining two panels of Fig. 6, which show the

topological susceptibility (2nd row, right) and integrated
auto-correlation time for the topological charge itself (last
row, right), indicate that also when coupled to fermions,
fluctuations of the gauge-topology are not hindered by the
use of the BP gauge action from (15) and HMC updates.
For the values ofmq which are accessible with both actions,
both actions yield the same results for the topological
susceptibility. The slightly higher integrated auto-correla-
tion time for the topological charge with the BP action at
Nt ¼ 6 is mostly due to a different tuning of the acceptance
rates for the HMC trajectories.

IV. CONCLUSIONS

We have identified a mechanism which appears to be
relevant for the formation of unphysical bulk configurations
and the corresponding occurrence of a bulk transition in
simulations of lattice SUðNÞ gauge theories using Wilson’s
plaquette gauge action. We proposed a one-parameter
family of alternative gauge actions, which possess the
same continuum limit as the Wilson plaquette gauge action
but which, when used in combination with an HMC update
algorithm, prevent bulk-configurations from being created.
We tested our bulk-preventing simulation framework for

pure gauge SUð2Þ, pure gauge SUð5Þ, and for SUð3Þ with
Nf ¼ 4 mass-degenerate Wilson-clover fermion flavors
with hopping parameter κ ¼ 0.1358, and which are coupled
to the gauge field via 2-step stout smeared link variables.
We found that in all three cases, the bulk-preventing action
(15) with n ¼ 2 removes the bulk transition and reproduces
at sufficiently weak coupling the same results as the Wilson
plaquette action.
In the caseof the fermionicSUð3Þ theory, theWilsongauge

action could not be used to study the physical finite temper-
ature phase transition on Nt ¼ 6 lattices at small quark
masses. This is due to the fact that the bulk transition prevents
the system from simultaneously reaching the physical tran-
sition region and small quarkmasses. On the other hand, with
the bulk-preventing action (15) the bulk transition is absent
andmq can be made arbitrarily small. It is also worth noting
that the bulk-preventing actions do not seem to hinder any
processes required for topology fluctuations.
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APPENDIX A: PLAQUETTE WRAPPINGS
AND MAGNETIC MONOPOLE CREATION

In this appendix we discuss how in Uð1Þ lattice gauge
theory the plaquette wrapping types (a) and (b), introduced
in Sec. II A, are related to the creation of magnetic Dirac
monopoles as defined in [35]. The situation with monop-
oles in SUðNÞ lattice gauge theory will be addressed in the
second part of this appendix.

1. Situation in Uð1Þ
Dirac monopoles in Uð1Þ lattice gauge theory, as

described in [35], live on the dual lattice and are defined
by a nonzero net physical magnetic flux through the
boundary of a spatial cube. If this flux is nonzero for a
given cube, then this cube contains a Dirac monopole.
With our conventions, the corresponding operator can be
written as:

MðxÞ ¼ 1

2π
ϵ4σμνðargðUμνðxþ σ̂ÞÞ − argðUμνðxÞÞÞ; ðA1Þ

which is the lattice analogue of the continuum expression,
MðxÞ ¼ J0ðmÞ, with

JρðmÞðxÞ ¼ ϵρσμν∂σFμνðxÞ; ðA2Þ

i.e. MðxÞ ¼ divðBðxÞÞ. If one defines integer plaquette
variables nx;μν ∈ f−2;−1; 0; 1; 2g, so that

argðUμνðxÞÞ ¼ Θx;μν − 2πnx;μν; ðA3Þ

with Θx;μν from (8), then nx;μν counts the amount of Dirac
flux passing through the (oriented) plaquette on which
UμνðxÞ is defined. The magnetic monopole operator (A1)
can then also be written as [35]

MðxÞ ¼ ϵ4σμνðnxþσ̂;μν − nx;μνÞ: ðA4Þ

From (A1) or (A4) we see, that in order to create or
annihilate a magnetic monopole, one has to change the net
Dirac flux through the boundary of a spatial cube.
Considering the plaquette wrapping types (a) and (b) intro-
duced in Sec. II A, a change of the net Dirac flux through
the boundary of a spatial cube can only be achieved with
plaquette wrappings of type (b). Figure 7 illustrates how
a type (b) plaquette wrapping of a spatial plaquette
produces in the two adjacent spatial cubes a pair of
magnetic monopoles of opposite charge. The monopoles
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serve, respectively, as source and sink for the Dirac flux
passing through the wrapped plaquette.
With plaquette wrappings of type (a) on the other hand,

only closed Dirac strings can be produced and therefore no
monopole/antimonopole pairs are created. The reason for
this is, that plaquette wrappings of type (a) are caused by a
link variable wrapping around the ð−π; π�-interval. Such a
link wrapping will, however, never affect just a single
plaquette but all plaquettes that contain the given link. If
this link is a spatial one, it is contained in spatial as well as
in temporal plaquettes. For the spatial plaquettes the
wrapping creates the aforementioned Dirac flux that forms
a closed loop winding around the shared link, illustrated in
the left-hand panel of Fig. 8. For the temporal plaquettes,
sketched in the right-hand panel of Fig. 8, the wrapping
does not give rise to the production of Dirac flux as
temporal plaquettes are associated to the electric and not
the magnetic field. For the same reason, no Dirac flux is

produced if the wrapping link is a temporal one, as this
would affect only temporal plaquettes.

2. Situation in SUðNÞ
In non-Abelian SUðNÞ gauge theorymagnetic monopoles

can be defined in different ways [36–39] and can be divided
into two categories: singular monopoles which require a
Dirac string, and nonsingular monopoles which possess a
Dirac string only in certain gauges. On the lattice singular
monopoles can be implemented in terms of net ZN Dirac flux
through theboundaryof spatial cubes [40–42],with theDirac
flux, ∼ expð2πinx;μν=NÞ, nx;μν ∈ f0;…; N − 1g, associated
with a plaquette variableUμνðxÞ, being defined so that in the
factorization

UμνðxÞ ¼ e2πinx;μν=NŨμνðxÞ ðA5Þ

one has

argðtrðŨμνðxÞÞÞ∈ ð−π=N; π=N�: ðA6Þ

The possible values for the first factor on the right-hand side
of (A5) correspond to the center of SUðNÞ:

ZðSUðNÞÞ ¼ f1e2πin=Ngn∈ f0;…;N−1g ≅ ZN: ðA7Þ

As the above discussed Dirac monopoles in Uð1Þ lattice
gauge theory, also the so defined ZN monopoles decouple in
the (naive) continuum limit ðβ → ∞Þ of the SUðNÞ lattice
gauge theory. Preventing the formation of ZN monopoles
in SUðNÞ lattice gauge theory (with WG action) has for
N ¼ 2 been reported to push the bulk phase to stronger
coupling [41]. Preventing not only ZN monopoles but also
ZN Dirac strings from being formed removes the bulk phase
completely [16,22,41]. The continuum limit of the model
remains, however, unaffected by these modifications [43].
To make contact with our discussion in Sec. II B about

the relation between the production of bulk configurations
in SUðNÞ lattice gauge theory and having SUðNÞ pla-
quettes continuously crossing the cut locus of 1 on SUðNÞ,
we note that the nontrivial SUðNÞ center elements listed
in (A7) are all located beyond this cut locus for N > 2
(resp. on the cut locus for N ¼ 2). Therefore, by preventing
the continuous cut locus crossing of SUðNÞ plaquettes, the
production of ZN Dirac flux though individual plaquettes is
not possible, which should also prevent the production of
ZN monopole/antimonopole pairs. This is the analogue of
the type (b) plaquette wrapping from Sec. II A, which is
responsible for the monopole/anti-monopole pair produc-
tion in Uð1Þ lattice gauge theory, as described in Fig. 7.
We note that this does not imply that the use of our bulk-

preventing actions (15) in combination with HMC updates
would prevent the production of ZN monopoles in general;
only the production of cutoff scale monopoles is exlucded.

FIG. 7. If a single spatial plaquette (blue) picks up a nonzero
Dirac flux (red dashed arrow), the two spatial cubes adjacent to
the plaquette get, respectively, occupied by a monopole (black
sphere) and an antimonopole (white sphere).

FIG. 8. If the phase of the displayed spatial link (long black
arrow) wraps around the ð−π; π�-interval, this implies that the
phases of all plaquettes that contain this link also wrap around the
ð−π; π�-interval. For the spatial plaquettes (left-hand panel) this
means that they pick up a Dirac flux passing through them, which
is such that a closed magnetic flux loop (red dotted arrow loop) is
formed that winds around the phase-wrapped link (long black
arrow). For the temporal plaquettes (right-hand panel), the phase-
wrapping does not correspond to the production of Dirac flux as
temporal plaquettes are associated with the electric and not the
magnetic field.
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Extended ZN monpoles with “thick” strings [44–46]
attached should still be possible.
Also, the production of nonsingular SUðNÞ monopoles

[47,48] is not prevented by our bulk-preventing setup.
Nonsingular monopoles could on the lattice be located by
gauge fixing the system to maximal Abelian gauge (MAG)
[49] and then performing abelian projection (AP) to the
Cartan subgroupUð1ÞðN−1Þ [50]. In each of the ðN − 1ÞUð1Þ
factors of Uð1ÞðN−1Þ one can then look for Dirac monopoles
with the method from [35], discussed in the first part of this
appendix. It is only in this maximum Abelian gauge that
nonsingular monopoles show up as Dirac monopoles of the
projected Uð1ÞðN−1Þ subgroup; fixing to another gauge
before projecting to Uð1ÞðN−1Þ results in fewer monopoles
being found [51] in the Uð1Þ subgroup factors. We have not
tried to use the MAG-AP method to monitor the monopole
densities directly in our HMC simulations with the BP
actions from (15). However, there is no reason to expect
that the BP setup would prevent continuum-relevant
monopoles from being produced. Since finite temperature

instantons (calorons) can be described as composite objects,
consistingofmultiplemonopoles [52], the bottom-left panels
of Figs. 3, 4, which illustrate that topology fluctuations are
unhindered by the bulk-prevention, indicate that also the
caloron constituent monopoles can fluctuate.

APPENDIX B: COMPUTING THE
GAUGE FORCE

We note that the plaquette variables satisfy U†
μνðxÞ ¼

UνμðxÞ, so that also the ΩμνðxÞ from Eq. (16) satisfy
Ω†

μνðxÞ ¼ ΩνμðxÞ. We can therefore write the bulk-
preventing action from Eq. (15) as

SG;b ¼
γ

nN

X
x

X
μ≠ν

trððΩ†
μνðxÞΩμνðxÞÞ−n − 1Þ: ðB1Þ

Let us now denote by δay;ρ the variation with respect to the
link-variable that lives on the link that points from site y in
ρ-direction. We then have:

δay;ρSG;b ¼ −
γ

nN

X
x

X
μ≠ν

trfðΩ†
μνðxÞΩμνðxÞÞ−nðδay;ρðΩ†

μνðxÞΩμνðxÞÞnÞðΩ†
μνðxÞΩμνðxÞÞ−ng

¼ −
γ

N

X
x

X
μ≠ν

trfðΩ†
μνðxÞΩμνðxÞÞ−ðnþ1Þ δay;ρðΩ†

μνðxÞΩμνðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð1
2
δay;ρU

†
μνðxÞÞΩμνðxÞþΩ†

μνðxÞð12δay;ρUμνðxÞÞ

g

¼ −
γ

2N

X
x

X
μ≠ν

trfðδay;ρUμνðxÞÞAμνðxÞ þ A†
μνðxÞðδay;ρU†

μνðxÞÞg

¼ −
γ

N

X
x

X
μ≠ν

trfðδay;ρUμνðxÞÞAμνðxÞg; ðB2Þ

where

AμνðxÞ ¼ ðΩ†
μνðxÞΩμνðxÞÞ−ðnþ1ÞΩ†

μνðxÞ ¼ ðΩ†
μνðxÞΩμνðxÞÞ−nΩ−1

μν ðxÞ; ðB3Þ

and we have used that A†
μνðxÞ ¼ AνμðxÞ as ΩμνðxÞ and Ω†

μνðxÞ commute with each other and with their inverses. If we now
carry out the variation of the plaquette explicitly, we find:

δay;ρUμνðxÞ ¼ δx;yδμρðδaUμðxÞÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ þ δxþμ̂;yδνρUμðxÞðδaUνðxþ μ̂ÞÞU†
μðxþ ν̂ÞU†

νðxÞ
þ δxþν̂;yδμρUμðxÞUνðxþ μ̂ÞðδaU†

μðxþ ν̂ÞÞU†
νðxÞ þ δx;yδνρUμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞðδaU†
νðxÞÞ

¼ iδx;yδμρTaUμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ þ iδxþμ̂;yδνρUμðxÞTaUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ
− iδxþν̂;yδμρUμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞTaU†
νðxÞ − iδx;yδνρUμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂ÞU†
νðxÞTa; ðB4Þ

where fTaga¼1;…;N2−1 are the hermitian generators of SUðNÞ, normalized so that trðTaTbÞ ¼ δab=2. Plugging this into
Eq. (B2), we obtain after some manipulations:

δay;ρSG;b ¼ −
2γ

N

X
ν≠ρ

Re½trðiTaUρνðyÞAρνðyÞÞ þ trðiTaUρð−νÞðyÞAρð−νÞðyÞÞ�; ðB5Þ
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with

Uμð−νÞðxÞ ¼ U†
νðx − ν̂ÞUνμðx − ν̂ÞUνðx − ν̂Þ ðB6Þ

being the plaquette that starts and ends at site x and is spanned by the μ and the negative ν direction, and the corresponding
A-matrix,

Aμð−νÞðxÞ ¼ U†
νðx − ν̂ÞAνμðx − ν̂ÞUνðx − ν̂Þ: ðB7Þ
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