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We compute the low-lying spectrum of 4D SU(2) Yang-Mills in a finite volume using quantum
simulations. In contrast to small-volume lattice truncations of the Hilbert space, we employ toroidal
dimensional reduction to the “femtouniverse” matrix quantum mechanics model. In this limit the theory is
equivalent to the quantum mechanics of three interacting particles moving inside a 3-ball with certain
boundary conditions. We use the variational quantum eigensolver and quantum subspace expansion
techniques to compute the string tension to glueball mass ratio near the small/large-volume transition point,
finding qualitatively good agreement with large volume Euclidean lattice simulations.
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I. INTRODUCTION

Quantum simulations of quantum field theories (QFTs)
in the noisy intermediate-scale quantum (NISQ) era [1] will
be limited by the gap between the complexity of QFTs and
the available quantum resources. Currently, it is difficult to
build a comparison between known Monte Carlo and
quantum simulation results. In particular, gauge theories
are challenging to simulate on quantum devices because of
the infinite tower of states associated with each link on the
lattice. To control the rapid growth in degrees of freedom
requires working with small lattices and putting rather
stringent truncations on the subspaces of the Hilbert space
associated with bosonic degrees of freedom. Subsequently,
one must take care to preserve Gauss’s law and confront
various limitations on what can be computed with small
circuits. It is therefore interesting to explore a wide variety
of approximations, truncations, encodings, and simulation
techniques to make the most of available near-term sys-
tems. In the process we may hope to develop new
applications and tools that will help lower the threshold
for quantum supremacy in simulating high energy physics
phenomena, while creating a large set of benchmark

computations for calibrating quantum simulations against
analytic and classical results.
In this paper we study hybrid quantum simulations of an

approximation to 4D gauge theory known as the femtou-
niverse [2]. Complementary to the small-volume lattice
approach, the approximation we use is a matrix quantum
mechanics model obtained by the dimensional reduction of
the 4D theory on a spatial 3-torus. The study of gauge
theory on a torus was pioneered by ’t Hooft [3] and the
effective matrix quantum mechanics theory obtained by
dimensional reduction was systematically developed by
Lüscher [4], Lüscher and Münster [5], van Baal [6–8], van
Baal and Koller [9,10], and others. For a comprehensive
review see Ref. [11]. We focus on the SU(2) model studied
in detail by van Baal and Koller [9,10]. In our quantum
simulations we use the variational quantum eigensolver
(VQE) [12,13] and quantum subspace expansion (QSE)
[14] techniques. These are hybrid classical-quantum meth-
ods that exploit the strengths of both types of computation.
With these methods we obtain the low-lying spectrum of
the theory, including glueball masses and string tensions,
which can be compared with the large-volume continuum
limit results known from Euclidean latticeMonte Carlo [15].
The spectrum of Yang-Mills theory in infinite volume,

L3 → ∞, is determined by the dynamical scale Λwhere the
running coupling grows strong. In small volumes LΛ ≪ 1,
the effective theory from integrating out Kaluza-Klein
modes is accurate due to asymptotic freedom. However,
it differs markedly from the large-volume limit LΛ ≫ 1. At
large torus volumes, the spectrum of the complete 4D theory
is quite insensitive to the volume. There is a “large-small
volume transition region,” roughly around ΛL ∼Oð1Þ,
where some strong-coupling physics of the large volume
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theory is reflected with reasonable accuracy in the much
simpler effective theory. This is the regime we would like
to probe.
Our work is organized as follows. In Sec. II we begin by

reviewing the effective Hamiltonian described in [9] and
the symmetries of the effective theory, which allow the
decomposition of the Hamiltonian into different super-
selection sectors. In Section III we briefly review the QSE
algorithm used in the calculation of excited state energies.
Section IV presents our main results. We compute ground
and excited state energies using classical exact diagonal-
ization (ED), VQEþ QSE simulators, and the IBM-Lima
quantum computer. We discuss effects of Hilbert space
truncation and different basis choices and various sources
of error. We find that the string tension to glueball mass
ratio of the continuum large-volume theory is reasonably
well captured by VQEþ QSE on the real device, working
at couplings near the large/small volume transition.
The study of matrix quantum mechanics in quantum

simulations is motivated both as a simpler approximation
to higher-dimensional non-Abelian gauge theories, and by
quantum gravity, where matrix models arise in various
contexts. Interesting prior work on this subject includes
[16,17]. In contrast to these works we use a minimal, gauge-
invariant Hilbert space and focus on the explicit model that
arises from dimensional reduction on a 3-torus, including the
loop-induced effective potential and gauge field topology
associated with the parent 4D theory. Dimensional reduction
is also a useful approach for truncating Abelian theories
while preserving some structure; previously we have studied
the reduction of the Schwinger model to the quantum
mechanical particle on the circle model in quantum simu-
lation [18], where dynamics associated with an ’t Hooft
anomaly and the θ term [19] are transparent.

II. MATRIX MODEL FOR 4D SU(2) GAUGE
THEORY

We begin by reviewing the physics of the femtouniverse.
In this section, we rely heavily on the pioneering work of
van Baal and Koller [9,10]. We consider pure SU(2) Yang-
Mills theory in 4D on a small spatial 3-torus of length L and
work in A0 ¼ 0 gauge. The Hamiltonian is

H¼
Z
½0;L�3

d3x

�
1

2
g2Ea

kðxÞEa
kðxÞþ

1

2g2
Ba
kðxÞBa

kðxÞ
�

ð1Þ

where Ea
k , Ba

k are chromoelectric and chromomagnetic
fields, and g is the dimensionless strong coupling. Here
k denotes the spatial index and a labels the color index. The
gauge connection Aa

k is taken to satisfy periodic boundary
conditions on the torus.1

From lattice analysis (see, e.g., [15]) we know the theory
is gapped near the dynamical scale Λ ¼ μe−8π

2=ðbg2ðμÞÞ,
where μ is an arbitrary renormalization scale and g2ðμÞ is
the running coupling at that scale, and the spectrum
becomes exponentially insensitive to L for ΛL≳ 1. The
effective field theory (EFT) analysis below, on the other
hand, will be valid for ΛL≲ 1, where g may be thought of
as the running coupling at the renormalization group scale
1=L. Thus we will be particularly interested in the behavior
near the small volume-large volume transition.
The proper gauge transformations of the SU(2) theory

are periodic SU(2)-valued functions gðxÞ acting on the
connections as

AkðxÞ ¼ gðxÞAkðxÞg−1ðxÞ − igðxÞ∂kg−1ðxÞ: ð2Þ

The classical vacuum manifold, sometimes called the
“vacuum valley,” is the space of flat connections modulo
small gauge transformations. The vacua separate into a
union of disjoint sectors characterized by different
Chern-Simons numbers and related by large gauge trans-
formations. We will work in the sector of fixed vanishing
Chern-Simons number, which is acceptable as long as the
states of interest have energies below the “sphaleron”
energy barrier between these sectors.
We may partially fix the gauge so that the classical vacua

are given by spatially constant connections that are aligned
in suð2Þ space. For convenience of illustration we can go to
a gauge where the vacua are of the Abelian form

Ai ¼
Ci

L
σ3
2
: ð3Þ

At this point, it appears that the vacuum valley (in a fixed
Chern-Simons sector) is R3. However, there are still
residual gauge transformations, given by

gðxÞ ¼ exp

�
−4πi

x · n
L

σ3
2

�
;

g ¼ σ1: ð4Þ

Here ni are integers, and g ¼ σ1 is the nontrivial element of
the Weyl group. These gauge transformations lead to the
following identifications:

C ∼ Cþ 4πn ð5Þ

C ∼ −C: ð6Þ

Thus the vacuum valley is the orbifold T3=Z2, where the
torus periodicity is 4π.
At the quantum level, the continuous vacuum valley is

lifted, but a discrete global symmetry is preserved. This is
the Z2 electric center symmetry, which, in the gauge
Eq. (3), acts as

1Working in sectors of nonzero magnetic flux would be an
interesting direction for generalization.
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hðxÞ ¼ exp

�
−2πi

x · n
L

σ3
2

�
ð7Þ

where ni ∈ f0; 1g. These are not gauge transformations
because hðxÞ and hðxþ LuiÞ, where ui is the ith spatial
unit vector, differ by a nontrivial element of theZ2 center of
SU(2). They are global symmetries, however, because they
preserve the action and the periodic boundary conditions
for the gauge field. They act on the classical vacua, which
are given by C ¼ 2πn, as

C ∼ Cþ 2πn: ð8Þ

Therefore we expect 8 minima of the quantum induced
potential on the vacuum valley, lying on the corners of a
cube embedded in the 3-torus. We also expect that the
symmetry will be unbroken and the true ground state will
be similar to a symmetric linear combination of the
perturbative ground states around each of these minima.
In general the states can be taken to transform in repre-
sentations

jψðAhÞi ¼ ð−1Þk·ejψðAÞi ð9Þ

where e is Z2-valued electric flux labeling the representa-
tions under center [3].
It is convenient to work with an effective theory that is

partway between the full theory Eq. (1) and the vacuum
valley theory of the Ci alone. We split the gauge field into a
linear combination of a spatially constant part and a
spatially varying field:

Aa
kðx; tÞ ¼ cakðtÞ þQa

kðx; tÞ: ð10Þ

At small L we can integrate out Q to obtain an effective
quantum mechanical theory of the cak . This theory includes,
in addition to the vacuum valley degrees of freedom, the
“non-Abelian” or “transverse” spatially constant modes.
Although it seems natural to integrate out Kaluza-Klein
modes, it is not obvious that this step is consistent in a
gauge theory, where the energy of a mode depends on the
vacuum one is perturbing around. The validity of this step
hinges on being able to stay relatively close to the origin in
field space, with boundaries and suitable boundary con-
ditions at points where the constant field effective theory
breaks down. We discuss this further below.
It is also convenient to relax our identification of the

vacuum valley with the σ3 direction. By a constant gauge
transformation we can “point” the vacuum valley in any
direction. We will leave this gauge degree of freedom in the
effective theory, then remove it later by averaging over all
directions. In this formulation, the vacuum valley corre-
sponds to ck that are aligned in suð2Þ space with any
common direction. It may be visualized as three aligned (or
antialigned) vectors in three dimensions, constrained by the

periodicities Eq. (6) to have magnitudes less than 2π=L.
The relative angles between the vectors then encode the
transverse degrees of freedom.
The effective theory described thus far is the quantum

mechanics of three interacting particles in three dimen-
sions. In fact, we can also constrain the particles to move
inside a ball,

ri ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a

cai c
a
i

r
≤

π

L
; ð11Þ

with certain boundary conditions at π=L:

�
∂

∂ri

�
1−eiðriψðcÞÞ

����
ri¼π

L

¼ 0: ð12Þ

The arguments go as follows [9]. The points rk ∈ f0; πg
in the vacuum valley are preserved by the center and Weyl
transformations. This is clear in the gauge-fixed version of
Eqs. (6), (8) and (11) generalizes it to the case where the
vacuum valley direction is unfixed. If the wavefunction and
the energy is continuous at these points, then either the
wave function or its (covariant) radial derivative must
vanish, depending on the electric flux quantum numbers
[cf. Eq. (9)].
Continuity, however, is rather subtle. A global center

transformation acts as a 2π translation on the vacuum
valley, but makes a nontrivial modification to the spatial
dependence of the transverse modes. Since it is a symmetry,
these modes must be reordered. The transverse Kaluza-
Klein modes that should be kept in a consistent effective
theory are completely different from the spatially constant
modes valid near the origin, once we have translated by 2π
away from the origin along the vacuum valley. We should
think of the points rk ∈ f0; π=Lg as boundaries between
different patches in which we have different EFTs. More
precisely the “three particles in a ball” description is valid
in any patch, but the map to the underlying degrees of
freedom of the 4D theory changes from patch to patch. For
this reason it is not immediately obvious whether wave
function continuity (particularly for derivatives) must hold.
However, Ref. [9] argued that continuity properties are

still expected. In brief, at weak coupling, all transverse
modes are expected to be close to their ground states at
rk ¼ π=L, and this property was reflected in the numerical
analysis of [9]. At strong coupling, the transverse modes
are excited. However, they also mix, and we do not expect
level crossing. Continuity of the energy density then leads
to the conditions Eq. (12). The interpretation of the wave
function simply changes discontinuously from patch
to patch.
Thus we are led to the quantum mechanics of three

particles in the region Eq. (11) subject to boundary con-
ditions Eq. (12). The effective Hamiltonian can bewritten as
Eq. (13)
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Heff ¼ −
1

2L

�
1

g2
þ α1

�
−1 ∂

2

ð∂cai Þ2
þ VTðcÞ þ VlðcÞ: ð13Þ

Here VT is the “transverse” part of the effective potential
which vanishes along the vacuum valley. Vl is the effective
potential along the vacuum valley. These potentials take the
form:

VT ¼
1

4

�
1

g2
þα2

�
Fa
ijF

a
ijþα3ðFa

ijF
a
ijÞcbkcbkþα4Fa

ijF
a
ijc

b
j c

b
j

þα5ðdetcÞ2þ���
Vl¼ γ1ðgÞ

X
i

r2i þγ2ðgÞ
X
i

r4i þγ3ðgÞ
X
i>j

r2i r
2
j þγ4ðgÞ

X
i

r6i

þγ5
X
i≠j

r4i r
2
j þγ6ðgÞr21r22r23þγ7ðgÞ

X
i

r8i þ��� ð14Þ

where… indicates terms at higher orders in the fields and in
the loop expansion. We only consider the Hamiltonian with
α1,α2 ≠ 0 and γiðgÞ ¼ γð0Þ for i ≤ 7 and ignore higher order
terms. The effective theory is truncated at the two derivative
order, so it will break down for energies above the Kaluza-
Klein scale ∼2π=L (in addition to energies above the
sphaleron energy, as discussed above.)
In order to extract the low-lying spectrum on a quantum

simulator we use Hamiltonian truncation and compute the
matrix elements classically. The kinetic part can be dia-
gonalized by writing the momentum operator in spherical
coordinates for “particle” i and using a spherical harmonic
basis Yli;mi

ðθi;ϕiÞ for each particle. For the radial part of
momentum operator we employ two choices of basis:

spherical Bessels χðeÞn;l ¼ jlðkeni;lirÞ with VðrÞ ¼ 0 and a

harmonic oscillator basis χðeÞn;l ¼ rle−ωr
2=2Mð1

2
lþ 3

4
−

ϵðeÞn;l =ð2ωÞ; lþ 3
2
;ωr2Þ with VðrÞ ¼ 1

2
ω2r2. Mða; b; zÞ is a

confluent hypergeometric function regular at z ¼ 0 [9] and
we have set ω ¼ 1.5. In either case the radial basis wave
functions can be chosen to satisfy the Eq. (12) in each flux-
sector labeled by the flux quantum number ei. This

boundary condition determines the “momenta” ken;lðϵðeÞn;l Þ
for each particle in terms of the zeros of the chosen basis
functions.
In general, VQE performs better the more “physics” we

can inject into the choice of basis. At strong coupling, the
wave functions tend to spread out more, while for weak
coupling they are more concentrated near the origin. For
this reason we use the spherical Bessel basis for strong
coupling g ≥ 1.2 and the harmonic oscillator basis for weak
coupling g < 1.2. (The spherical bessel basis exactly
diagonalizes the tree-level hamiltonian at infinite coupling.)
Of course, in the absence of truncation the spectrum is
independent of the choice of basis, but with truncations a
better choice of basis can minimize the error in eigenvalue
computations.

Since we are using gauge-invariant coordinates on the
vacuum valley, we can work in a fully gauge-invariant
hilbert space by requiring the angular wavefunctions to be
spin-singlets of SO(3). Hence the gauge invariant wave
functions have no freemi quantum numbers. (Therefore the
approach here differs from other quantum simulation
studies of Yang-Mills type matrix quantum mechanics
models where simpler bases are used at the cost of
introducing an extended Hilbert space that includes
gauge-non-invariant states [17].)
In sum, the gauge-invariant Rayleigh-Ritz basis for

computing the full Hamiltonian matrix are defined as
follows:

hfri;θi;ϕigi¼1;2;3il1l2l3n1n2n3;e

¼
X

m1;m2;m3

Wðl1l2l3m1m2m3Þ
Y3
i¼1

χeini;liðriÞYlimi
ðθi;ϕiÞ

ni; li∈N; jl1− l2j≤ l3 ≤ l1þ l2; mi∈f−li;−liþ1;…; lig

where Wðl1l2l3m1m2m3Þ are the Wigner 3 − j symbols.
Now we must address truncation. We use eigenvalues of

the operator ∂
2

ð∂cai Þ2
to organize the states in Eq. (15) in an

ascending order. The full Hamiltonian is infinite dimen-
sional so we truncate it to a finite number of states. We can
compute the full matrix in Eq. (13) for finite number of
states by computing angular and radial matrix elements in
the Rayleigh-Ritz basis. The effective hamiltonian can be
further projected onto the irreducible representations of its
symmetry group. For electric flux sectors e ¼ 0 or e ¼
ð1; 1; 1Þ the Hamiltonian symmetry group is the full cubic
group Oð3;ZÞ. The cubic group is a semidirect product
Oð3;ZÞ ¼ Z3

2⋊S3, where the Z2 factor corresponds to
parity transformations Picak ¼ −δikcak and S3 represents
coordinate permutations π. These symmetries acts on the
gauge-invariant states in the following manner:

Pijl1l2l3n1n2n3i ¼ ð−1Þli jl1l2l3n1n2n3i
πjl1l2l3n1n2n3i ¼ jlπð1Þlπð2Þlπð3Þnπð1Þnπð2Þnπð3Þi ð15Þ

The cubic group has ten irreps. We focus on the parity even
irreps Aþ

1 (zero flux) and eþ1 [unit flux, e ¼ ð0; 0; 1Þ]. For
e ≠ 0, e ≠ ð1; 1; 1Þ the cubic group is broken to
Z2⋊ðZ2

2⋊S2Þ where S2 permutes the directions with equal
electric flux. We construct the Hamiltonians classically in
both sectors and numerically diagonalize them for different
numbers M of states. Finally, for the case M ¼ 8 we use
VQE and QSE to compute the low-lying spectrum and
compare with the classical exact diagonalization.
The ground state in the Aþ

1 sector is used as the reference
ground state for the system, identified with the true ground
state in the large volume limit. The gap to the first
excitation above the ground state in the Aþ

1 sector is
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identified as a glueball mass. The difference in ground state
energies in the eþ1 flux sector and the A1þ sector is identified
with the energy of an electric flux string. The spectrum of
the Hamiltonian in these irreps suffices to compute observ-
ables, like the square root of the string tension to the
glueball mass ratio, that can be compared with values from
Euclidean lattice simulations.

III. QUANTUM SUBSPACE EXPANSION FOR
EXCITED STATES

As mentioned above we use VQE to obtain ground states
energies. In order to obtain excited state energies, we apply
the Quantum Subspace Expansion (QSE) [14] to the
femtouniverse model. QSE is an extension to the VQE
algorithm based on quantum measurements of a set of
ansatz excitation operators in the optimal ground state
estimate jψðθ�Þi obtained from VQE. Here θ ¼
ðθ0; θ1;…; θnpÞ is the set of parameters in the VQE ansatz
and θ� denotes the optimal parameters that minimize the
energy.
The subspace in QSE is the Hilbert space spanned by a

set of ansatz excitation operators fOigi acting on jψðθ�Þi,
i.e., a set of states fOijψðθ�Þigi. To include the ground state
itself, we define O0 ¼ I, the identity operator. We denote
the dimension of the subspace as dQSE. Then we can
evaluate the Hamiltonian on the subspace as

HQSE
ij ≡ hψðθ�ÞjO†

i HOjjψðθ�Þi: ð16Þ

We further requireOi to be Hermitian operators. The matrix
elements of HQSE can be measured on a quantum circuit,
since the operator O†

i HOj can be decomposed as a linear
combination of Pauli strings for the original Hilbert space.
The basis fOijψðθÞigi is not orthonormal, so instead of an
ordinary eigenvalue problem forHQSE, we will need to also
compute the overlap matrix

SQSEij ≡ hψðθ�ÞjO†
i Ojjψðθ�Þi ð17Þ

and solve a generalized eigenvalue problem (GEVP)

HQSEv ¼ λSQSEv: ð18Þ

The eigenvector v found this way does not directly give the
eigenwavefunctions but needs a further transformation
explained in Appendix B. For our purpose, we do not
use this transformation and only focus on the energies
given by λ. Similar to HQSE, the matrix elements of SQSE

can also be measured on the quantum circuit. When the
ansatz excitation operators are chosen effectively, solving
the GEVP yields a set of eigenstates and eigenenergies that
are close to the lowest dQSE eigenstates and eigenenergies
of H in the original Hilbert space.

In the example of 3 qubits with the truncation
M ¼ 23 ¼ 8, we choose Oi as O0 ¼ III, O1 ¼ XII,
O2 ¼ IXI, O3 ¼ IIX in the Pauli-string notation. This
set of ansatz operators becomes approximately accurate
when using the spherical Bessel function basis in the large-
g limit, since the lowest excitations are approximately the
single-qubit-flipped states from the ground state.
Measuring the matrix elements of HQSE and SQSE

requires evaluations of Pauli strings expectation values at
the state jψðθ�Þi. Since the total number of Pauli strings in
the 3-qubit case is only 64 and our Hamiltonian is relatively
dense, we measure all the 64 Pauli strings. It is worth noting
that the quantum computational resource required at QSE
in our case is significantly lower than VQE, because the
VQE does quantum measurements at multiple positions in
the space of θ, but in QSE, θ is fixed to θ�.
The ground state energy obtained from QSE is not

necessarily the same as the ground state energy from the
prior VQE. We include the results for ground state energy
from VQE, and the first excited state energies from the
follow-up QSE.

IV. RESULTS FROM NUMERICAL SIMULATION
AND REAL QUANTUM HARDWARE

We implement our numerical simulation on the meas-
urement-based Aer simulator in Qiskit [20], a python
framework for quantum computation. We work in units
where the volume is L ¼ 1 and we scan over the running
coupling gðLÞ, which is equivalent to adjusting the dimen-
sionless combination ΛL.
We also implement the VQE and QSE computation on

the IBM quantum computer Lima. In these computations
we use the M ¼ 8 truncation with 3 qubits and test three
values of the coupling, g∈ f1.8; 2.2; 2.6g. We use meas-
urement error mitigation [21] to reduce the effect of noise
on the real quantum hardware.
The effective Hamiltonian does not exhibit the canonical

form of spin or fermionic Hamiltonian. The simplest digital
quantum encoding scheme involves expanding the
Hamiltonian in a Pauli string (tensor product of Paulis)
basis. This naive encoding, for a generic Hamiltonian, leads
to number of Pauli strings that is exponential in the number
of qubits rather than polynomial.2

We begin by performing multiple runs of VQE without
quantum noise with Nshots ¼ 10; 000 for a given coupling,
starting from a fully random initial point for every run. This

2This is a fairly generic issue when the Hamiltonian of a model
with gauge invariance is constructed on a gauge invariant Hilbert
space. Parts of the Hamiltonian (for example, acting on a single
plaquette [22]) are typically dense in the Pauli string basis
irrespective of the truncation. In such cases the scaling can be
improved by a square root [23] by Pauli grouping, by a more
refined choice of encoding, or by applying approximation
methods to reduce the density. For low qubit numbers we simply
work with the naive encoding.
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is a test of whether the ansatz is able to reliably find the
correct result. In Figs. 1 and 2 we show histograms of Aþ

1

and eþ1 values obtained from 100 VQE runs with g ¼ 2.6.
The results are clustered around the exact diagonalization
value to within a few percent. The fact that VQE can
occasionally return results below the truth value is a
consequence of shot noise and the Pauli string decom-
position; in our simulations we use 10000 shots, so few-%
errors of this type are expected.3

The fidelity between the initial ansatz state and the true
ground state, the flatness of energy landscape around local
minima [24], and limitations arising from the classical
optimizer are the dominant factors which affect the shape of
these distributions. In particular the flatness of energy
landscape around a local minima can lead to a VQE result
which is far away from the rest of the values, even in
simulation without quantum noise.
In Figs. 3 and 4 we show the VQE simulation results

(without quantum noise) for a range of g values and
compare to the ED values. We also show IBM-Lima results
in Figs. 3 and 4 with M ¼ 8 states(3-qubits) for g ¼ 1.8,
2.2, 2.6. We used the measurement error mitigation [21] to
reduce the effect of noise on the real quantum hardware.

We present both the VQE minimum and median4 over 100
runs to emphasize the impact of performing multiple runs.
For most values of g, we observe excellent agreement for

the ground state results obtained with high-truncation ED
(1024 states), low truncation ED (8 states), and the VQE
simulations (without quantum noise but only shot noise)
with both the minimum and the median taken over runs.
However, a clear discontinuity is apparent at g ¼ 1.2, and
for 1.2≲ g≲ 1.5, the spread in results is pronounced. This
discontinuity arises from the change in basis employed as
we go from the weak to the strong coupling regime. The
discontinuity is invisible for M ¼ 1024, indicating that
with a large truncation cutoff the results are essentially
basis-independent, but the M ¼ 8 truncation shows a

FIG. 3. VQE versus classical exact diagonalization result for
Aþ
1 irrep.

FIG. 2. Histogram of 100 VQE runs vs classical exact diag-
onalization result at g ¼ 2.6 for eþ1 irrep on Aer simulator with
Nshots ¼ 10;000.

FIG. 1. Histogram of 100 VQE runs vs classical exact diag-
onalization result at g ¼ 2.6 for Aþ

1 irrep on Aer simulator with
Nshots ¼ 10;000.

3This is not a violation of the variational principle. The
expectation value of the Hamiltonian is estimated from a sum
of expectation values of Pauli strings appearing in the decom-
position of H, and these individual terms accrue uncorrelated
statistical errors from the finiteness of Nshots. It can happen that,
say, a term in the Pauli decomposition ofH that lowers the ground
state energy experiences a downward statistical fluctuation in the
shots-based estimate of its expectation value in a given state. If
the state is very close to the true ground state, this can lead to an
expectation value estimate for H that is below the true ground
state energy. It is purely a 1=

ffiffiðp
NshotsÞ effect and disappears in

the limit that expectation values are measured exactly, which is
the limit where the variational principle applies. In Appendix C
we elaborate on this phenomenon in a toy model.

4We order the energies first. When nruns of VQE is even, the
ðnruns=2Þth run (slightly skewed toward the lower side) is chosen
as the median, so that the median is always a single sample, not
an average of 2 samples. When nruns of VQE is odd, the usual
median is taken.
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discontinuity. In this case we also see that taking the
minimum over VQE runs generally gets closer to the exact
value than the VQE median. The disagreement between
median and minimum is a consequence of significant
numbers of runs in which the VQE algorithm became
stuck in spurious local minima, unable to escape due to the
flatness of the energy landscape around the local minima.
In such cases the minimum is the most reasonable estimate
of the ground state energy. However, the minimum can
undershoot the exact result due to shot noise, so in some
circumstances the median may be preferable. (See Footnote
3 and Appendix C for further discussion of this point.)
The IBM-Lima results for g ¼ 1.8, 2.2, 2.6 are generally

around ∼20% above the simulations without quantum
noise and exact results, apart from the result in the
Aþ
1 sector for g ¼ 2.2 which is significantly higher. The

g ¼ 2.2 experiment was performed on the same quantum
computer but on a different day from the g ¼ 1.8 and
g ¼ 2.6 experiments. The larger discrepancy from simu-
lations without quantum noise exhibited by the g ¼ 2.2
experiment may reflect a day-to-day variation in the quality
of the quantum computer in the lab and calibration of the
apparatus therein.
Figure 5 shows the first excited state energy in the Aþ

1

sector, comparing the QSEþ VQE result to exact diago-
nalization. Figure 6 shows the glueball mass m0þ , which is
the gap between this state and the ground state
m0þ ¼ E1ðAþ

1 Þ − E0ðAþ
1 Þ. The effect of the truncation to

M ¼ 8 states substantially overestimates the glueball mass
for g≲ 2, relative to the M ¼ 1024 truncation. This is seen
already in exact diagonalization and the situation improves
for larger values of g. We repeat the same procedure of
multiple runs, using optimal parameters from VQE runs,
including IBM-Lima runs for g ¼ 1.8, 2.2, 2.6. The QSE
results from the minimum run of VQE typically show better
performance than the QSE result from the median run of
VQE. For this reason we show only the minimum results in
Fig. 6. These results converge well to the low-truncation
exact diagonalization values at both large g≳ 1.8 and small

g≲ 1, and to the high-truncation values at large g. In
addition, the m0þ results on real hardware agree well with
the exact results, even in the worst case at g ¼ 2.2 (∼30%),
where the upward bias partially cancels in the energy
difference.
In Fig. 7 we show the string tension σ given by the

energy gap between the ground states of the eþ1 and Aþ
1

sectors, σL ¼ E0ðeþ1 Þ − E0ðAþ
1 Þ (where computationally

we work in units with L ¼ 1.) The tension is highly
suppressed for small couplings, reflecting the exponential
cost of tunneling through the quantum-induced barriers
separating center-conjugate vacua. The suppression dis-
appears at larger couplings as wave functions are more
readily able to penetrate the barrier, signalling the onset of
large volume physics.
We emphasize that the largest values of g we consider

coincide with the breakdown of the dimensionally reduced
effective quantum mechanics as a good description of the
low-lying states of the full 4D theory. Two neglected
physical effects come into play around the same time:
Kaluza-Klein masses become comparable to the lightest
glueball mass and string tension, as does the sphaleron

FIG. 4. VQE versus classical exact diagonalization result for eþ1
irrep.

FIG. 5. QSE versus classical exact diagonalization result for Aþ
1

irrep excited state.

FIG. 6. Lightest glueball mass in the Aþ
1 sector.
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energy barrier separating sectors of varying Chern-Simons
number [11]. These are large-volume effects that cannot be
captured by the matrix model effective theory.
Nonetheless, as we approach ΛL ∼ 1 from above, some

of the large-volume physics is quantitatively captured by

the matrix model. In Fig. 8 we plot the square root of the
string tension-to-glueball mass ratio

ffiffiffi
σ

p
=m0þ against

− log10ðΛLÞ, using the 2-loop MS estimate for Λ,

ΛL ¼ e
− 1

2β0g
2ðβ0g2Þ

−β1
2β2

0 , where β0 ¼ N
16π2

11
3

and β1 ¼
ð N
16π2

Þ2 34
3
with N ¼ 2. We have also added the continuum,

large-volume extrapolation from lattice results [15] as a
solid horizontal line. We see that the simulations converge
to within about 15% of the continuum, large-volume value
for this observable in the largest volumes (left-hand side of
the plot), and agreement is found using IBM-Lima for the
largest value of g. In Fig. 9 we zoom in on the large g region
of this plot.

V. CONCLUSIONS AND OUTLOOK

In the near-term, quantum simulations of the type
performed here will be limited by noise. We find, for
example, that IBM Lima does not give stable results with 4
qubits for our Hamiltonian. This is mainly because of the
increased circuit depth and thus the accumulated error from
noise. However, there are several directions for improve-
ment that could help push the reach of VQE simulations
future, including device-specific choices of gates, optimiz-
ing the complexity of the ansatz, quantum error correction
[25], and theoretical improvements in the algorithms, such
as utilizing commuting families of Pauli strings [26] to
reduce the number of measurements. Recent developments
of Koopman operator learning techniques for quantum
optimization [27] can accelerate VQE when using gradient-
based optimizers, saving quantum resources for other use.
Compared to the lattice approaches, the femtouniverse,

as an example of effective theory of the low-momentum
modes, represents a different step toward ultimate target of
quantum simulations for high energy physics. Using a
relatively small number of qubits on a quantum computer,
we can already simulate some 4D physics and obtain
qualitatively reasonable results in agreement with 4D lattice
simulations on classical computers. The dimensional reduc-
tion approach supplies a different type of regulator from the
lattice regulator, and is relevant to other models of interest
in high energy physics including models of quantum
gravity [28]. The manifest gauge invariance in the quantum
basis also helps reduce the number of dimension of the
Hilbert space and thus the number of qubits.
In this paper, using VQE and QSE, we find that the

currently available noisy quantum computers can already
produce the glueball mass and string tension for the 4D SU
(2) Yang-Mills theory qualitatively in agreement with other
approaches. Our approach only requires a very small
number of qubits, but the Hamiltonian matrix has a
relatively large number of elements, and thus may require
a relatively deep quantum circuit and big number of Pauli
strings. The encoding of the basis states into the qubit
computational basis is not fine tuned, and Hamiltonian
matrix elements are all kept without specific ordering or

FIG. 9. Square root of string tension to glueball mass ratio.

FIG. 8. Square root of string tension to glueball mass ratio
versus − log10ðΛLÞ.

FIG. 7. String tension, g∈ ½0.8; 2.6�.
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approximation. In addition, with more delicate choice of
the representation of the femtouniverse on the quantum
computer, it will be interesting to study if the depth of the
ansatz can be reduced without loss of essential physics.
The SU(2) Yang-Mills matrix quantummechanics model

studied here can be extended in a few different directions.
Adding higher-momentummodes and their interaction with
the zero-momentum modes can improve the approximation
to the complete 4D Yang-Mills theory, while adding
fermions can connect to more physical models of interest.
Future study on how the complexity and performance
scales with N for the SUðNÞ Yang-Mills theory will
likewise inform the scalability and generalizability of the
approach.
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APPENDIX A: ED RESULTS

Table I contains exact diagonalization results for ground
state energies of the irreps Aþ

1 , e
þ
1 and the first excited

energy for Aþ
1 denoted by ðAþ

1 Þ0.

APPENDIX B: DETAILS OF VQE AND QSE

The ansatz wave function for the ground state of
the Hamiltonian H can be constructed on a quantum circuit
as jψðθÞi ¼ UðθÞj0i, where UðθÞ is a unitary operator
consisting of quantum gates parametrized by θ ¼
ðθ0; θ1;…; θnpÞ, and j0i is the default starting state on
the quantum circuit. The target energy function to be
minimized is

EðθÞ≡ hψðθÞjHjψðθÞi: ðB1Þ

θ� ≡ argminθEðθÞ gives an approximate ground state of H,
and the energy evaluated at θ� gives the approximate
ground state energy. The Hamiltonian is encoded into
the quantum circuit by a linear decomposition in terms
of Pauli strings. We also refer to the review [13] for more
details of VQE.
In VQE computations we use the RealAmplitudes ansatz

with linear entanglement and reps ¼ 2. There are 9
parameters in the ansatz. RealAmplitudes only gives a
real-valued wave function, and the eigenstates of the
Hamiltonian we consider can always be constrained to
be real-valued, so this choice of ansatz is reasonable for our
task with a relatively small number of parameters. We use
the optimizer COBYLA [29] with maxiter ¼ 1000 (maxi-
mum number of iterations), rhobeg ¼ 0.5 (reasonable
initial changes to the variables), tol ¼ 0.001 (final accuracy
in the optimization). The number of shots for quantum
measurement is 10,000 so that the statistical error asso-
ciated with measurement is small. We also use the
measurement error mitigation with 10,000 shots when
constructing the calibration matrix.

TABLE I. Ground state and the first excited state energies of the irrep Aþ
1 , and the ground state energies of the irrep

eþ1 from exact diagonalization with truncationsM ¼ 1024, 16, 8. As described in the text, we change the basis used
for the truncation at g ¼ 1.2.

Aþ
1 ðAþ

1 Þ0 eþ1
g 1024 16 8 1024 16 8 1024 16 8

0.8 2.580 2.617 2.638 3.540 4.183 4.452 2.585 2.633 2.645
0.9 2.682 2.732 2.752 3.651 4.303 4.562 2.697 2.758 2.772
1.0 2.752 2.821 2.844 3.763 4.486 4.722 2.786 2.865 2.919
1.1 2.792 2.885 2.921 3.878 4.735 4.985 2.854 2.962 3.066
1.2 2.806 2.966 3.332 3.999 4.986 5.984 2.903 3.151 3.439
1.3 2.799 2.923 3.222 4.134 4.844 5.743 2.941 3.107 3.352
1.4 2.776 2.868 3.109 4.285 4.792 5.676 2.971 3.078 3.300
1.5 2.739 2.803 2.995 4.454 4.804 5.672 2.995 3.062 3.256
1.6 2.690 2.731 2.883 4.641 4.872 5.679 3.018 3.058 3.216
1.8 2.565 2.578 2.668 5.074 5.164 5.768 3.068 3.081 3.165
2.0 2.412 2.417 2.462 5.590 5.622 6.028 3.141 3.145 3.182
2.2 2.251 2.253 2.273 6.194 6.206 6.463 3.256 3.258 3.273
2.4 2.101 2.102 2.110 6.884 6.889 7.045 3.428 3.429 3.435
2.6 1.980 1.981 1.985 7.652 7.654 7.746 3.663 3.664 3.667
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When implementing QSE, we make measurements of all
43 ¼ 64 Pauli strings for the 3-qubit system, based on the
same ansatz as VQE at θ�. We again use 10,000 shots for
each Pauli string evaluation and also the measurement error
mitigation.
We denote the nonorthogonal basis by fjϕiig

(i ¼ 0; 1;…; dQSE − 1 where dQSE ¼ 4 in our case).
The transformation between fjϕiig and an orthonormal

basis fjψ iig is

jψ ii ¼ P�
ijjϕji: ðB2Þ

Then the following operator identity holds

PSP† ¼ I; ðB3Þ

where

Sij ¼ hϕiiϕj ðB4Þ

is the overlap matrix. In the QSE basis, S ¼ SQSE in the
main text. An operator O when acting on the nonortho-
normal basis transforms as

O0 ¼ SP†OPS: ðB5Þ

With the Hamiltonian matrix in the nonorthogonal basis

HQSE
ij ¼ hϕijHjϕji ðB6Þ

we need to solve the GEVP

HQSEv ¼ λSv: ðB7Þ

We can transform the eigenvector v back by

u ¼ PSv; ðB8Þ

where u is the wave function of the eigenstate in the
original orthonormal basis fjψ iig.

APPENDIX C: TOY MODEL OF VQE
UNDERSHOOT

As described in the main text and footnote 3, measuring
expectation values of the Hamiltonian with a Pauli string
decomposition and a finite number of shots can occasion-
ally lead to VQE estimates for the ground state energy
below the true value. This occurs when the state is actually
quite close to the true ground state and downward fluctua-
tions affect particular terms in the string expansion of the
Hamiltonian.
Since this phenomenon may be unfamiliar and somewhat

counter to variational principle intuition, we illustrate it
with a simple example. Consider the one-qubit Hamiltonian

H ¼ 1ffiffi
2

p ðσx þ σzÞ. In the computational basis the true

ground state jψgi is a certain linear combination aj0i þ
bj1i with energy Eg ¼ −1. Suppose we are given the exact
ground state and we wish to measure the energy with a
finite number of shots. In the Pauli string decomposition
approach, we first measure hψgjσxjψgi and then hψgjσzjψgi.
Even on a perfect quantum device, these two measurements
will experience uncorrelated shot noise. Suppose, for an
extreme example, that we estimate the two expectation
values with a single shot each. One of the four possible
outcomes is ð−1;−1Þ, and the resulting estimate for the
ground state energy is −

ffiffiffi
2

p
, below the true value.

This “strong violation of the variational principle” only
occurred because we performed an extremely poor stat-
istical estimate of the expectation values. Increasing Nshots,
the estimates improve and the likelihood of a strong
downward fluctuation decreases. Small downward fluctua-
tions, on the order of 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nshots

p
, are still possible, however.

In Fig. 10 we show the distribution of expectation values of
H obtained from shots-based measurements of hψgjσxjψgi
and hψgjσzjψgi given the exact ground state jψgi. We
perform 105 trials with 103 shots in the measurement of
each expectation value. The results are consistent with a
Gaussian centered on the true ground state energy with
variance 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nshots

p
.

In a real VQE experiment, the ground state is never
determined exactly. However, if the state obtained is
sufficiently close to the true ground state, such that the
true expectation value of the Hamiltonian in the state
matches the true ground state energy to within a fraction
of order Oð1= ffiffiffiffiffiffiffiffiffiffiffi

Nshots
p Þ, downward fluctuations of this type

can carry the shots-based expectation value estimate below

FIG. 10. Probability density function (PDF) of expectation
values of H ¼ 1ffiffi

2
p ðσx þ σzÞ, in the true ground state obtained

from separate shots-based measurements of σx and σz. 103 shots
are used in each separate measurement and the PDF is obtained
from 105 trials. Shot noise, which is uncorrelated between the two
operator measurements, can produce an estimated ground state
energy below the true value by an amount of order 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nshots

p
.

The solid curve shows a Gaussian centered on the true ground
state energy, −1, with variance 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nshots

p
.
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the true ground state energy. We observe this phenomenon
occasionally in our analysis (cf., Figs. 1 and 2.)

APPENDIX D: COMPARISON BETWEEN
GROUND STATE ENERGIES FROM

VQE AND QSE

We compare the ground state energy distributions
obtained from VQE and QSE in Fig. 11 which are the
same set of runs used for the figures in the main text. The
QSE runs are based on the states found by pure VQE runs
presented in the same figure. The distributions of VQE
and QSE generally overlap with each other within the

distributions’ standard deviation, which shows an internal
consistency. We in principle can choose either the VQE or
QSE ground state energies, but empirically, as is illus-
trated in Fig. 11, the VQE ground state energies are closer
than the exact values and thus are better to use. The QSE
ground state energies are obtained from solving the GEVP
instead of directly solving a optimization problem,
whereas VQE is an optimization procedure, so it is not
common for the ground state energy from the QSE to be
even lower than the VQE ground state energy. In the VQE
distributions we also see the shot-noise effect described in
Appendix C.

FIG. 11. Comparison of the ground state energies of the Aþ
1 irrep between VQE and QSE. 100 runs are performed for each value of g.

The QSE is based on the ground state found by VQE for each run. The two histograms for every g overlap generally within the standard
deviation of the two distributions.
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