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Recently, a variety of quantum algorithms have been devised to estimate thermal averages on a genuine
quantum processor. In this paper, we consider the practical implementation of the so-called Quantum-
Quantum Metropolis Algorithm. As a test bed for this purpose, we simulate a basic system of three
frustrated quantum spins and discuss its systematics, also in comparison with the Quantum Metropolis
Sampling algorithm.
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I. INTRODUCTION

The advent of quantum computation is expected to lead
to breakthroughs in various fields of computational science
[1–3]. In fact, it may disclose novel pathways to the
solution of notable unsolved questions lying at the basis
of classically intractable problems, from quantum chem-
istry to condensed-matter and high-energy physics [4,5].
One such example deals with the physics of fundamental
interactions, in particular, when considering the strongly
coupled regime, which is not treatable by perturbative
analytical tools. Classical computational schemes, based on
a discretized path-integral formulation, are indeed known to
face hard, yet unsolved difficulties. This happens, for
instance, when considering real-time processes and non-
equilibrium physics, or even in the equilibrium case when
the path-integral measure is not positive defined (as it
happens at finite baryon density), a fact which prevents the
application of classical Monte Carlo algorithms. Such an
algorithmic obstruction is, for example, the main reason for

our incomplete knowledge of the QCD phase diagram and
of the physics of strongly interacting matter at finite
density, which is required for the investigation of compact
astrophysical objects [6,7].
In the case of equilibrium physics, one needs to devise

quantum algorithms capable of efficiently exploring the
Gibbs ensemble of the target quantum system. At present,
the availability of quantum resources adequate for the
numerical investigation of systems of direct physical
interest, such as QCD, is still far from being achieved.
Nevertheless, a variety of candidate quantum algorithms
have already been proposed, either by directly computing
observables on the (mixed) thermal state [8–12] or by
preparing an ensemble of pure states, sampled with the
proper thermal distribution [13–25]. At the present stage, it
is thus important to investigate how the practical imple-
mentation of such algorithms works in simplified models,
in order to better understand their systematics and pave the
way to future and more realistic applications.
In Ref. [26], some of the present authors have already

focused on the so-called Quantum Metropolis Sampling
(QMS) algorithm [13], applied to a simple frustrated
system made up of three quantum spins, which presents
a sign problem when formulated in the path-integral
approach. The QMS algorithm is based on a quantum
Metropolis step, by which one can implement a quantum
Markov chain across the Hamiltonian eigenstates of the
system, which is capable of correctly sampling, after a
proper thermalization time, the quantum eigenstates with
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the desired ensemble probability. In this paper, we also
consider the alternative Quantum-Quantum Metropolis
Algorithm (Q2MA) [14], which is based on a quite different
strategy. In a few words, the idea is to search for a pure
quantum state, the so-called coherent encoding of the
thermal state (CETS), with the property that a measurement
of the Hamiltonian on such a state returns a given eigenstate
with the correct Gibbs distribution. The search follows a
Grover-like quantum approach, hence the double
“Quantum” in the name of the algorithm, which therefore,
at least in principle, promises a more effective quantum
advantage.
A fundamental ingredient for both approaches is the

Quantum Phase Estimation (QPE) algorithm [27–30],
which allows one to estimate the energy eigenvalues once
the Hamiltonian has been properly encoded in the quantum
computer. However, the overall strategy used in the two
methods is quite different: In the QMS algorithm the
distribution is sampled via the Metropolis step, while in
the Q2MA algorithm it is encoded in the superposition
amplitudes of a pure state, which contains information
about the finite-temperature density matrix of the system,
once the auxiliary registers are traced out.
We are not aware of practical implementations and

benchmarks of the Q2MA algorithm in concrete examples,
and the main purpose of the present study is to fill this gap
by considering the same target system as in Ref. [26]. As
we will discuss in more detail later, there are some aspects
of the algorithm which make its practical implementation
nontrivial.
Another issue regards the numerical efficiency, measured

in terms of the number of quantum gates needed to reach a
given uncertainty on the final determination of the quantum
thermal averages, for which we present a preliminary
comparison between the two algorithms. In carrying out
such an analysis, particular attention is given to both
statistical and systematic contributions to the final error
budget.
The paper is organized as follows. In Sec. II, we first

review the basic features of the QMS and the Q2MA
algorithms, and then comment on the possible sources of
systematical errors. In Sec. III, we introduce the specific
quantum spin system tested here and all the metrics used to
benchmark the systematical errors. In Sec. IV, we present
the results of our investigation, first assuming an exact
encoding of the energy levels and then relaxing such
constraint. Finally, our conclusions are drawn in Sec. V.

II. ALGORITHMS

The main focus of the present study is on the Q2MA
algorithm since a practical implementation of the QMS
algorithm has already been presented and discussed in
Ref. [26]. However, we find it useful to give a brief
overview of both algorithms, in order to clarify their
computational requirements and to better identify the

possible sources of systematical errors in both cases. A
summary of the resources and gate counts is reported in the
Appendix for both algorithms.

A. Quantum Metropolis Sampling

The QMS algorithm follows quite closely the scheme of
the classical Metropolis algorithm (see Refs. [13,26] for
further details): A Markov chain is built in such a way that,
at each step, one gets an eigenstate jφki of the Hamiltonian
of the system under study, with eigenvalue Ek. This is
selected with a probability given (asymptotically after
thermalization) by its Boltzmann weight e−βEk=ZðβÞ,
where β ¼ 1=ðkBTÞ is the inverse temperature and ZðβÞ
is the partition function.
Four registers are required: a register encoding the state

of the system (denoted by the subscript 1), two energy
registers encoding the energies before (denoted by 2) and
after (denoted by 3) the Metropolis step, if accepted, and
finally a single-qubit acceptance register (denoted by 4).
Thus, the layout of the quantum state needed by the QMS
algorithm is the following:

jacci4jEnewi3jEoldi2jstatei1: ð1Þ

The first step of the Markov chain is the initialization of
the system state in register 1 to an arbitrary eigenstate of the
Hamiltonian (and of register 2 to the corresponding
eigenvalue). If the quantum state of the QMS algorithm
has been prepared in the initial state j0i4j0i3j0i2j0i1, this
can be realized by using a QPE between registers 1 and 2,
followed by a measure of register 2:

j0i2j0i1 ⟶
QPE1;2

X
k0

αk0 jEk0 i2jφk0 i1

⟶
Meas2jEki2jφki1: ð2Þ

Registers 3 and 4 are unmodified in this initial step.
A single step of the Markov chain involves an appro-

priate generalization of the Metropolis accept/reject algo-
rithm [31] to the quantum case. In order to update the state,
we apply to register 1 a unitary operator C randomly
selected from a set C; this set has to be large enough to
ensure mixing between all eigenstates (ergodicity) and that
if A∈ C then also A−1 ∈ C (reversibility). Apart from these
general requirements, there is still much freedom in the
choice of the operators entering the set C, freedom that can
eventually be used to optimize the algorithm. Thus

jφki1 ⟶
C∈ C X

p

xðCÞk;p jφpi1: ð3Þ

At this point, we perform a second QPE between the
register of the system (labeled as 1) and the new energy
register (labeled as 3):
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X
p

xðCÞk;p j0i4j0i3jEki2jφpi1

⟶
QPE1;3

X
p

xðCÞk;p j0i4jEpi3jEki2jφpi1: ð4Þ

To introduce the information about the Boltzmann
weights, one applies an oracle operator G which reads
out the difference between the two energy registers and acts
on the acceptance qubit as follows:

j0i4jEpi3jEki2jψpi1
⟶
G

� ffiffiffiffiffiffiffiffi
fp;k

q
j1i4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−fp;k

q
j0i4

�
⊗ jEpi3jEki2jψpi1; ð5Þ

where

fp;k ¼ min ð1; e−βðEp−EkÞÞ ð6Þ

is the usual Metropolis acceptance probability. At this
stage, one performs a measurement in the acceptance
register 4, which can only have two outcomes: the value

1 with probability
P

p jxðCÞk;p j2fp;k and the value 0 with the
complementary probability. The first case corresponds to
the “accepted” move, and the resulting state will be a
superposition of eigenstates of the form

X
p

xðCÞk;p

ffiffiffiffiffiffiffiffi
fp;k

q
j1i4jEpi3jEki2jφpi1: ð7Þ

The new configuration of the Markov chain (and thus the
corresponding eigenstate in register 1) is obtained by
measuring the new energy register 3. From this configu-
ration, the update procedure can be iterated by applying a
new randomly chosen unitary operator from set C. If, on the
other hand, the outcome of the measure on the acceptance
register is 0, one needs to revert the system to an eigenstate
with the same energy as the one that was previously
present.1 This reversal operation can be performed by
applying the previous sequence of unitary operators (i.e.,
QPE and C) in reverse, followed by a measurement on the
energy register until the energy measured matches Ek (see
Refs. [13,26] for further details).
The above description of the QMS follows the original

paper [13], where two different energy registers were used.
We should, however, stress that it is possible to use just a
single energy register: Since Eold is measured only at the
beginning of each MC step, its value can be stored in a
classical register to be used later by the oracle G in Eq. (5),

thus halving the number of qubits needed to represent the
energies.

B. Quantum-Quantum Metropolis Algorithm

The goal of the Q2MA [14] is to build a CETS containing
all the information on the Gibbs ensemble in the entangle-
ment between the quantum registers. Its explicit form can
be written as

jα0ðβÞi ¼
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−βEi=ZðβÞ

q
jφiijφ̃iij0i; ð8Þ

where jφii denotes, as in the previous section, the
Hamiltonian eigenstate with eigenvalue Ei, jφ̃ii is its
complex conjugate copy, while j0i is an ancillary register
needed for an operation analogous to the one of Eq. (5).
There are two reasons for the presence of the complex
conjugate copy of the system state: building the system’s
density matrix and computing energy differences through a
QPE routine. The reason for the suffix 0 of α0 will become
clear in the following. The state jα0ðβÞi is (apart from the
irrelevant ancilla j0i) the purified form of the system’s
density matrix

ρðβÞ ¼ 1

ZðβÞ
X
i

e−βEi jφiihφij: ð9Þ

The core of the Q2MA algorithm resides in the con-
struction of the so-called generalized Szegedy operator W,
which is described in Ref. [14]. A fundamental ingredient
for this construction is the so-called “kick” operator K,
which is a unitary operator that is symmetric in the
computational basis. The matrix elements of K between
eigenstates of the quantum Hamiltonian correspond to an
a priori selection probability that, together with the
Metropolis filter, can be used to sample the energy
eigenstates by a Markov chain which has CETS as the
invariant distribution (corresponding to the eigenvalue 1 of
the Markov chain stochastic matrix). This procedure is very
general, however; until an operator K is specified for a
given quantum Hamiltonian, it cannot be shown that the
corresponding Markov chain is ergodic and thus that the
CETS is the unique eigenvector with eigenvalue 1 of
the Szegedy operator. Let us assume for the moment that
this is the case; we will come back to this point at the end of
this section.
At this point, it is important to recall what the main

conceptual differences are between the QMS and the
Q2MA algorithm, which have already been illustrated in
Ref. [14]. The QMS is a quantum algorithm in the sense
that its purpose is to exploit a quantum computing device to
implement a Markov chain within the Hilbert space of a
given quantum system. Apart from this, the main con-
ceptual scheme is that of classical Markov chains, with
additional limitations related to the no-cloning theorem.

1There is no need for the system state to be reverted exactly to
the same state that was present before the application of the
unitary operator C because this kind of rejection can be
considered as a microcanonical step in the classical Metropolis
algorithm.
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On the other hand, the conceptual scheme of the Q2MA is
typical of quantum searching algorithms attaining a quad-
ratic advantage, the searched state being the CETS, hence
the double “quantum” in the name. In fact, it is not by
chance that the Szegedy operator W is built by means of a
Grover-like reflection algorithm, which requires the com-
putation of the eigenvalues and eigenstates of the
Hamiltonian, performed by means of a QPE, as in the
QMS. Moreover, an operation analogous to the one in
Eq. (5) is required, for which a single-qubit dedicated
register has to be used.
Thus, the layout of the quantum state needed by Q2MA

is the following:

jwi5jacci4jΔEi3jstatei2jgstatei1; ð10Þ

where registers 2 and 1 are used to store the system state
and its complex conjugate, respectively; register 3 is used in
the QPE of the energy differences, which can be directly
computed thanks to the presence of the complex conjugate
copy of the system; and register 4 is used by an oracle
analogous to that in Eq. (5).
Once the generalized Szegedy operator (obviously

depending on β) is constructed, it can be used as the time
evolution of a QPE, storing the phases in register 5, onwhich
a classical measure is finally performed. If the outcome of
this measure is 0 (which corresponds to the eigenvalue 1
ofW), the input state is projected onto the CETS jα0ðβÞi (up
to systematical errors due, e.g., to the finite number of qubits
adopted in the QPE) and can thus be used to estimate
observables. If, on the contrary, the measure returns a
nonvanishing result, the state has to be rejected, and one
should restart the algorithm.
If the Q2MA procedure is successful, the registers jwi5

and jacci4 in the final state are both equal to j0i, and also
jΔEi3 is in j0i since in the construction of the Szegedy
operator W, both a QPE in energy and its inverse are
applied. The entire procedure can be formally thought of as
the application of the projector

ΠðβÞ ¼ jα0ðβÞihα0ðβÞj ⊗ j0ih0j5
þ
�X
k≠0

jαkðβÞihαkðβÞj
�
⊗ ½15 − j0ih0j5� ð11Þ

to the initial system state, where the jαki are the eigenstates
of the Szegedy operator W (and jα0i is the CETS), and the
subscript 5 refers to the ancilla register in which the phase
of the W-generated QPE is stored.
To increase the probability of measuring the eigenphase 0

in the QPE using the Szegedy operatorW (and to reduce the
effects of the systematics that will be discussed in the
following), it is possible to exploit two facts: The first one
is that CETS states with close temperatures have a good
overlap, which differs from 1 by a quantity of the order of

ðΔβÞ2 [14]. The second fact is that, in the infinite temperature
limit (β ¼ 0), the CETS is formally equivalent to the
maximally entangled state in the computational basis [14],
which can be easily prepared with a combination of
Hadamard and C-NOT gates. To obtain, with high proba-
bility, the CETS at the desired inverse temperature β, we can
thus resort to Quantum Simulated Annealing (QSA) [32] by
creating a sequence of CETS starting from the analytically
known one at β ¼ 0, and then lowering the temperature in
steps of Δβ ¼ β=na, where na is the length of the annealing
sequence:

jα00i⟶
Π1 jα10i⟶

Π2 � � �⟶Πna jαna0 i: ð12Þ

In this equation jαj0i is the CETS at βj ¼ jβ=na (with
j∈ f0;…; nag) and Πj ≡ ΠðβjÞ.
Therefore, the Q2MA can be summarized as follows:
(1) Start at j ¼ 0 with the maximally entangled state in

the computational basis and initialize all ancilla
registers to zero.

(2) Compute the Szegedy operator W corresponding to
βj ¼ jβ=na and use it to perform a QPE on the
ancilla register 5.

(3) Perform a classical measurement on jwi5; if the
result is 0, then proceed to the next step (the state has
been correctly projected into the CETS at βj);
otherwise, reset all quantum registers and restart
from step 1.

(4) Iterate steps 2 and 3 with j → jþ 1 until jþ1¼ na.
At the end of the algorithm, we obtain the final state

j0i5j0i4j0i3
X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−βEi=ZðβÞ

q
jφii2jφ̃ii1; ð13Þ

which is equivalent to Eq. (9) as far as the probability of
selecting a state with energy Ei is concerned, i.e., once all
the ancilla registers 3–5 have been traced out. In practice, to
measure observables on the CETS, one performs a QPE
using the auxiliary register jΔEi3, followed by a measure
on the same register, in order to extract with the correct
probability energy eigenstates on which to perform the
measure. Finally, all quantum registers are reset and the
algorithm is restarted, preparing the CETS for another
measurement.
We now come back to the choice of the kick operator K.

To the best of our knowledge, this point has never been
fully addressed in the literature, and an operator satisfying
all the “optimal” requirements is assumed to exist and to
have been selected in the discussion of the algorithm.
However, the selection of K is far from trivial since such an
operator has to generate an ergodic selection probability in
the basis of the Hamiltonian eigenstates, which is obviously
unknown for nontrivial problems.
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If K does not generate an ergodic Markov chain, the
eigenvalue 1 of the stochastic matrix associated with the
Markov chain (and thus of the Szegedy operator W) can
have degeneracy larger than 1. This implies that the
projection on the phase zero of the Szegedy-generated
QPE does not ensure the selection of the CETS. An
operative way to eliminate this problem, or at least to
reduce its consequences, is to use different kick operators in
the different annealing steps j ¼ 1;…; na, thus projecting
at step j on the eigenspace corresponding to the eigenvalue
1 of the Szegedy operator Wj built using the kick operator
Kj. Since the CETS always corresponds to an eigenstate
with eigenvalue 1 of the Szegedy operator for any Kj, in
this way we expect to correct the ergodicity problem of the
single-kick naive implementation of the Q2MA.
Let us stress that, in principle, one should require all the

kick operators, and the corresponding Szegedy operators,
to be considered at the same time for each annealing step, in
order to guarantee that CETS is the only possible outcome
in the case of acceptance. However, the implementation in
which different single kick operators are used in different
annealing steps is expected to work well in practice, at least
as long as there is a large overlap between CETS corre-
sponding to different annealing steps, i.e., as long as the
annealing procedure is slow enough. In particular, it is
reasonable to guess that the convergence of the annealing
process scales as 1=na, provided that na is larger than the
minimum number of Szegedy operators required to univ-
ocally identify the CETS. Since the aim of the algorithm is
to generate a (large) sample of measures from which to
extract averages and standard errors, the operators Kj could
also be generated stochastically, as long as the CETS is
most likely identified (i.e., with probability 1).

C. Sources of systematical errors

Several sources of systematical errors exist both in the
QMSand in theQ2MAsimulation schemes. In the following,
we try to understand their impact on the simulation results in
a controlled setting by using a simple toymodel to separately
investigate the different contributions.
To avoid overcomplicating our analysis, and since here

the focus is on the quantum algorithms themselves, we
consider a basic spin model, for which no digitization error
is present, unlike more complex systems, like QCD and
systems with continuous gauge symmetries.
It should be clear that a common source of systematical

error, in both QMS and Q2MA, is also the digitization error
of the energies used in the QPE performed by using the
system Hamiltonian. In the QMS this step is required by the
oracle of Eq. (5), while in the Q2MA this step is hidden in
the construction of the generalized Szegedy operator [14].
Note that problems related to the accuracy of the energy
representation adopted are present virtually in any impor-
tance sampling Monte Carlo computation (also classical

ones), although this issue is usually overlooked in most
practical computations [33,34]. Since our aim is to test the
effectiveness of quantum algorithms in computing thermal
averages, the sensitivity to the energy digitization is a
relevant property to be investigated. For the model we study
(as for all two-level systems), it is, however, possible to find
an encoding in which energies have no digitization error.
This is obviously impossible for generic systems with
incommensurate energy levels, but it allows us to focus on
other sources of systematical error which are instead
intrinsic to the algorithms we are studying (i.e., not simply
inherited by the energy QPE). In the following, when not
specified, we will always assume that such an exact
encoding of the energy is being used. We will investigate
what happens when such a constraint is relaxed in a later
section.
The systematical error that is specific to the QMS, and

that is avoided by the Q2MA, is the one related to the
thermalization time of the algorithm: Hamiltonian eigen-
states are sampled with the Boltzmann statistics only
asymptotically for large times, i.e., after many iterations.
The leading correction to this asymptotic behavior scales as
exp½−ð1 − λ2Þt�, where t is the number of Monte Carlo
steps (the so-called Monte Carlo time) and λ2 is the second-
largest eigenvalue of the Markov chain transition matrix,
the largest eigenvalue being 1 by construction. In a classical
Monte Carlo sampling, nothing but the computational
power prevents us from using very long Markov chains,
and the algorithm is thus stochastically exact since typical
statistical errors scale as 1=

ffiffi
t

p
. This is also the case for the

QMS only if one is interested in the thermal averages of
observables compatible with the Hamiltonian. If instead the
aim is to compute hAi, with an operator A which does not
commute with the Hamiltonian, the Markov chain breaks
down: By measuring A on the energy eigenstate jφki
extracted by the QMS, the state is projected to an
eigenvector of A, which is generically a linear combination
of different energy eigenstates. Therefore, after such a
measure, the QMS needs to be reinitialized. The number of
updates performed between subsequent measures of A thus
puts an upper bound on the attainable accuracy.
In the Q2MA, QPE is used not only with the time

evolution generated by the Hamiltonian but also with the
unitary Szegedy operator. In this case, the typical system-
atical error is the digitization error on the phase of this
evolution, related to the number of qubits used for the
register jwi5 in Eq. (10). We noted before that, for simple
enough systems, it is possible to find an exact encoding of
the energies, thus removing the systematic associated to the
Hamiltonian-related QPE. An analogous procedure is
generically not possible for the QPE with the Szegedy
operator W as time evolution since W and its eigenvalues
depend on the (inverse) temperature value β.
Analogously as for the QMS, which becomes exact in

the large-time limit, the Q2MA is also exact in the adiabatic
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limit of infinite annealing steps, provided that the single
kick K generates an ergodic chain. Indeed, if we denote by
ϵ the magnitude of the error introduced on the state by the
inaccuracy of the Szegedy QPE, the global error at each
step of the annealing procedure is of the order of
ϵðΔβÞ2 ¼ ϵβ2=n2a, and the final error is thus Oðϵβ2=naÞ
[14]. Note that if the Szegedy QPEs were performed
exactly (i.e., ϵ ¼ 0), the algorithm would be exact for
any number of annealing steps na; however, the success
probability of step 3 in Sec. II B would be extremely small
if na is not large enough.
When different kick operators Ki are used to effectively

restore ergodicity (see the discussion at the end of Sec. II B),
this is a priori no longer true: The eigenspace corresponding
to the eigenvalue 1 of each Szegedy operator Wi has
dimensionality larger than 1, so the global error at each step
of the annealing procedure can be, at least in principle, of the
order of ϵΔβ ¼ ϵβ=na. That would make the final error
independent of the number of annealing steps; i.e., the
quantum annealing would just increase the success proba-
bility of the CETS generation, with no effect on the
systematical error, so that the only way of removing
systematics from the final estimate would be to reduce ϵ,
i.e., to reduce the inaccuracy of the Szegedy QPE.
Contrary to such expectations, as we will show in the

following, the systematic errors of the Q2MA algorithm
appear, instead, to depend on the number of annealing
steps, as if a single ergodic kick operator was used. A
possible interpretation is that, once the system collapses
onto the correct CETS during the annealing procedure
(actually one surely starts from the correct CETS at β ¼ 0),
it is highly probable to stay on CETS due to the good
overlap of CETS states at different annealing steps, thus
making single-step errors of OðΔβ2Þ again.

III. MODEL AND METRICS

The first part of this section is dedicated to a description
of the particular quantum system used as a test bed for our
analysis. Then, we introduce some quantities that will be
used to quantify the systematical errors of the explored
quantum algorithms.

A. Frustrated triangle

To compare the QMS and Q2MA algorithms described in
the previous sections, we consider a system of three
quantum spin-1=2 variables with Hamiltonian [26]

H¼ Jðσx ⊗ σx ⊗ 1þσx ⊗ 1⊗ σxþ1⊗ σx ⊗ σxÞ; ð14Þ

where σj stands for the usual Pauli matrices, 1 is the 2 × 2

identity operator, and the coupling J is positive (i.e.,
antiferromagnetic), to make the system frustrated.
It is easy to find a basis of the Hilbert space which makes

the problem trivial: On the basis in which all σx operators

are diagonal, it is immediate to see that two distinct
degenerate energy levels exist: the fundamental one with
energy E0 ¼ −J and degeneracy 6 (corresponding to the
case of two spins aligned) and the excited one with energy
E1 ¼ 3J and degeneracy 2 (corresponding to three spins
aligned). However, to mimic a realistic situation, we work
in the standard computational basis, where all σz operators
are diagonal. Using this basis to evaluate the thermody-
namical quantities by means of the Trotter-Suzuki decom-
position, it is possible to verify that here the standard
path-integral importance sampling Monte Carlo fails, due
to a sign problem (see Ref. [26]). This problem is obviously
absent in the quantum computational approach.
As discussed in Secs. II A and II B, both QMS and

Q2MA require the application of unitary operators to
sample the state space: In the QMS, we need the set of
operators denoted by C in Sec. II A to evolve the Markov
chain; for the Q2MA, we need the kick operatorsKi to build
the Szegedy operators Wj (see Sec. II B). For both algo-
rithms, the adopted unitary operators are Hadamard gates
(Had) acting on a single qubit of the register of the system
state, i.e., C≡ fK0; K1; K2g, where K0 ¼ 1 ⊗ 1 ⊗ Had,
K1 ¼ 1 ⊗ Had ⊗ 1, and K2 ¼ Had ⊗ 1 ⊗ 1.

B. Quantifying systematical errors

Systematical errors induce biases in the thermal averages
computed by means of QMS or Q2MA. In the simple test
system adopted here, these biases can be identified by
comparing the numerically estimated values with the ana-
lytically known exact ones. Since systematic errors affect, in
a different way, the various observables, to quantify themwe
decided to use the following three metrics:
(1) The bias in the expectation value of the Hamiltonian

(i.e., in the internal energy):

dEne ≡ jE − hEiexactj; ð15Þ

where Ē is the mean energy estimated by using the
quantum algorithm, while hEiexact is the exact
expectation value of the energy at (inverse) temper-
ature β, given by

hEiexact ¼ 3J
e−3βJ − eβJ

e−3βJ þ 3eβJ
: ð16Þ

(2) The bias in the expectation value of an observable A
which does not commute with H. For this purpose,
we choose A≡ σx ⊗ σx ⊗ ð1þ σyÞ and define

dAop ≡ jĀ − hAiexactj; ð17Þ

where Ā is the value estimated by using the quantum
algorithm and hAiexact ¼ hEiexact=3 is the analyti-
cally known result.
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(3) The distance in the space of the density matrices

dTrD ≡ 1

2
kρ̄ − ρexactk1; ð18Þ

where for a matrix M the norm kMk1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffiffi
M†M

p
is used.

The figure of merit in Eq. (18) is particularly significant
since it directly quantifies the bias in the probability
distribution and not only in some specific average value,
which could be small. However, its definition requires
some comments. While the computation of Ē (and analo-
gously of Ā) can be carried out (at least from a theoretical
point of view) on a quantum simulator by using
Ē ¼ 1

N

P
N
i¼1 Ei, where Ei is the energy observed in the

ith draw, this is not the case for ρ̄ since it is not possible to
measure at once the density matrix ρi of the ith draw.
However, since we are testing the algorithms using a
quantum simulator and not a real quantum machine, for
the purpose of investigating the systematical errors, we can
actually pick up the full state of the algorithm, extract ρi,
and compute ρ̄≡ 1

N

P
i ρi.

IV. RESULTS

The particular features of the explored model permit us
to disentangle effects related to the inexact energy repre-
sentation from the QPE of other systematics. For this
reason, in the first part of this section we work within an
exact energy representation scheme, switching to the
inexact one in the second part.
The practical implementations of the explored algo-

rithms are carried out on a hybrid quantum-classical
algorithm emulator [35] developed by one of the authors
(G.C.).

A. Exact energy representation

The frustrated triangle can be described with an exact
encoding of its degrees of freedom using three qubits only.
Moreover, as mentioned in Sec. III A, the system has two
energy levels, which can be represented exactly with one
qubit for the energy registers, thus removing any system-
atical error related to the QPE with the Hamiltonian.
Energy differences (needed for the Q2MA) can thus be
exactly represented by using two qubits.
As previously discussed, when this exact energy encod-

ing is used, QMS and Q2MA have different sources of
systematical errors, which will be investigated below.

1. Quantum Metropolis Sampling

As discussed in Sec. II C, the QMS is not stochastically
exact when used to compute the thermal average of an
observable which does not commute with the Hamiltonian
(as for the operator A defined in Sec. III B) since the
measurement of A breaks the Markov chain evolution.

The only parameter which controls the size of the system-
atical error introduced by this breaking is the number of
updates performed between consecutive measures of A.
Once a measurement of A has been performed, two

different strategies are possible: One can either restart the
chain from the beginning or make the state (which is now
an eigenstate of A) collapse back to an energy eigenstate
(possibly different from the original one) by performing a
QPE on the energy register followed by a measurement
[26]. In the first case, the number of updates between
different measurements is called thermalization time, while
in the second case it is more natural to call it rethermaliza-
tion time. As in Ref. [26], we follow the second strategy,
which seems to be slightly more efficient.
The density matrix after the ith rethermalization step is

evaluated, before breaking the state with the A-measure-
ment, by reading the state from the system register jψkðiÞi
and building the projector ρi ≡ jψkðiÞihψkðiÞj. Of course,
any single instance of ρi will be far from the exact density
matrix ρexact, irrespective of the number of rethermalization
steps. However, in the large sample limit, the (nonvanish-
ing) discrepancy between ρ̄ and ρexact is only due to the
systematic introduced by rethermalization, and it is
expected to vanish in the limit of an infinite number of
rethermalization steps.
Results obtained for the three accuracy metrics dEne,

dAop, and dTrD introduced in the previous section are shown
in Fig. 1 (respectively, top, middle, and bottom panels), for
three values of the inverse temperature βJ ¼ 0.25, 0.5, and
1.0. The statistics accumulated for the different points is not
homogeneous since runs are stopped when dTrD reaches a
fixed accuracy. For this reason, runs performed at larger
values of rethermalization steps, for which the bias is
smaller, are significantly longer than the ones performed at
smaller values. The stopping criterium adopted, together
with the fact that dTrD is the most observable independent
among the adopted metrics, also explains why data reported
in the top and central panels, respectively, for dEne and dAop,
have significantly larger relative errors compared to those
in the bottom panel, for dTrD. It is also clear that, for all the
metrics considered, the systematic bias approaches zero
exponentially in the number of rethermalization steps, as
expected on theoretical grounds.
Note that the size of the systematic errors observed in

Fig. 1 (at a fixed number of rethermalization steps)
decreases with decreasing β. This is the same behavior
expected in standard Monte Carlo sampling, which can be
easily explained: In the high-temperature limit almost any
proposed update is accepted, and as a consequence, the
exponential autocorrelation time of the Markov chain
decreases by decreasing β. Since the size of the systematics
depends on the ratio between the rethermalization time
and the autocorrelation time, systematics decrease when
increasing the temperature at fixed rethermalization steps.
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2. Quantum-Quantum Metropolis Algorithm

As explained in Sec. II C, when using an exact energy
representation, the systematic errors of the Q2MA algo-
rithm are only due to the inexactness of the Szegedy QPE
and to the finite number of annealing steps. However, we
recall that it is generally not possible to make the Szegedy
QPE exact, as the W operator depends on β. Results

presented in this section have been obtained by using
the range [0.5, 1] for the Szegedy QPE (we are only
interested in the eigenvalue 1) and fixing the number of
qubits in the jwi5 register to 3, studying the dependence of
systematic errors on the number of annealing steps.
Consistent results are obtained when using four qubits
for the register jwi5.
Contrary to what happens in the QMS case, it is not

possible to measure A and E during the same run, and a new
CETS reconstruction is required after each measurement.
Since here we are only interested in systematics related to
the incorrect determination of CETS, we evaluated the
density matrix after each run of the algorithm and then
exploited the use of an emulator (rather than a real
machine) to determine the exact average values of A and
E corresponding to the given density matrix. Therefore,
statistical errors shown in the following analysis are only
due to fluctuations in the CETS determination from run to
run and are in fact small and well below the symbol size in
most cases.
In Fig. 2, we present the results for dEne (top panel), dAop

(middle panel), and dTrD (bottom panel) for the same three
values of temperature explored in the previous subsection.
In order to achieve a target precision on dTrD, the runs
performed with higher numbers of annealing steps required
more Q2MA iterations, as the systematic error decreases
with increasing steps. It can be observed that error bars are
visible and not homogeneous only in the middle panel,
where the systematic error also shows a nonmonotonic
behavior as a function of the number of annealing steps na:
This is partially due to a change of sign in the bias of A as a
function of na, which occurs accidentally for this particular
choice of parameters.
A clear difference of Fig. 2, with respect to Fig. 1, is that

the scale is logarithmic on both axes. The reason is that, in
this case, systematics appear to decrease polynomially
(instead of exponentially) with the number of annealing
steps. In particular, it is interesting to notice that, for large
enough na, i.e., when the annealing step is small enough,
data are very compatible with a 1=na behavior. This result
agrees with the prediction reported in Ref. [14] for a single
ergodic kick operator. However, in the light of the discussion
reported in Sec. II, the result is far from trivial, and it can be
interpreted heuristically as evidence that randomly alternat-
ing different kick operators in the different annealing steps
effectively reproduces, in the large annealing step limit, the
ideal behavior predicted for a single ergodic kick operator.
We close this section by noting that the scaling of the

systematic errors at fixed annealing steps is the opposite of
the naively expected one. As discussed in the previous
section, systematic errors typically decrease when decreas-
ing β in a standard Markov chain Monte Carlo; in Fig. 2 we
instead see the systematics decreasing by increasing the
value of β. While a detailed analysis of this phenomenon
goes beyond the scope of the present study, it is natural to
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FIG. 1. QMS: behavior of dEne (top panel), dAop (middle panel),
and dTrD (lower panel), as a function of the number of retherm-
alization steps, for βJ ¼ 0.25, 0.5, and 1.0.
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interpret it as a consequence of the fact that for large β
values the spectral gap of the Szegedy operator increases
with eigenvalue 1, which becomes more clearly separated
from the rest of the spectrum. As a consequence, the
annealing becomes more efficient since there is an

increasing probability for the state to be projected on the
correct CETS jαi0i after each subsequent annealing step.

B. Inexact energy representation

In the previous analysis, working with an exact energy
representation was instrumental to isolate some algorith-
mic-specific sources of systematical errors. This was
possible because the considered quantum system only
has two different exactly known energy levels, but it is
clearly unrealistic in any case of direct physical interest. In
such general cases, one has to use an inexact energy
representation with ne qubits in the energy register(s), thus
introducing further systematics.
Denoting by E0 and E1 the exact energy eigenstates of

the frustrated triangle system (see Sec. III A), we consider
for the QPE an interval larger than ½E0; E1� by an amount of
about 2δ. Two natural prescriptions exist to place the 2ne

grid points of the QPE: the “fixed extrema grid” and the
“refined grid” cases.
In the fixed extrema case the interval is fixed to be

½E0 − δ; E1 þ δ�, and the 2ne points are uniformly distrib-
uted in this interval. As ne is increased, the grid becomes
finer, but the position of all the grid points changes with ne.
On the other hand, in the refined grid case we use the
interval

½E0 − δ; E1 þ δþ ðE1 − E0 þ 2δÞð1 − 21−neÞ�; ð19Þ

which is chosen in such a way that, by increasing ne, all
points of the coarser grid are also present in the finer grid
(with the exception of the largest value).
Figure 3 shows the behavior of hEi as a function of the

number of rethermalization steps for different values of ne
in the fixed extrema scheme. It is clear that, for a large
enough number of rethermalization steps, a plateau
emerges in hEi, signaling the presence of a systematical
difference between hEi and hEiexact. This systematic is
expected to vanish for ne → ∞; however, the approach to
the large ne limit is obviously nonmonotonic, at least in the
range of ne values explored. This could make the diagnostic
of the convergence nontrivial in realistic cases, in which the
exact expectation value is not known and the number of
values of ne is limited by the hardware capabilities.
For this reason we also investigated the refined grid

method, which could be expected to have a smoother
approach to the large ne limit. However, this is not the case,
as can be seen from Fig. 4, in which a comparison of the
two approaches is performed using ten rethermalization
steps (note that this number of rethermalization steps is well
within the plateau of Fig. 3). Both the approaches show a
nonmonotonic scaling for an intermediate range of ne
values and converge to the correct asymptotic result for
ne > 8. It is, however, reasonable to guess the nonmono-
tonic behavior to continue also for larger values of ne,
where it is hidden by the statistical accuracy of our data.

10
0

10
1

10
2

10
3

annealing steps

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d E
n

e
� J = 0.25

� J = 0.5

� J = 1.0

10
0

10
1

10
2

10
3

annealing steps

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d A
o

p

� J = 0.25

� J = 0.5

� J = 1.0

10
0

10
1

10
2

10
3

annealing steps

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d T
rD

� J = 0.25

� J = 0.5

� J = 1.0

FIG. 2. Q2MA: behavior of dEne (top panel), dAop (middle
panel), and dTrD (bottom panel), as a function of the annealing
steps na, for βJ ¼ 0.25, 0.5 and 1.0, when using three qubits in
the register jwi5; see Eq. (10). Solid lines represent fits to the
1=na behavior, well reproducing data at large enough na.
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The reason for the nonmonotonic behavior is related to
the fact that, for a given value of ne, an eigenvalue can, by
chance, be well within one of the QPE grid intervals or
close to the boundary between two consecutive grid
intervals. Which of the two cases happens depends on
ne and changes by increasing ne, as can be seen in Fig. 5.
Obviously, the oscillations induced by this effect get
smaller and smaller as ne is increased; ultimately, con-
vergence is reached with an arbitrary accuracy, but the
approach to the asymptotic value presents oscillations. This
effect is particularly evident in the system studied in this
paper since the spectrum is very simple, consisting of just
two points. In more complex systems, with a less simple
spectrum, it seems reasonable to assume this discretization
effect is less significant, with some form of self-averaging
happening.

We tried to repeat a similar analysis to investigate the
effect of an inexact energy representation also in the Q2MA
case; however, the results turned out to be much less clear, a
fact that is probably due to several aspects. First of all, the
way in which energies enter the construction of the
Szegedy operator is much more involved than the way
in which they enter the Metropolis filter in the QMS
algorithm, so “error propagation” is nontrivial for the
limited number of qubits that can be used in the simulator.
Another important point is the fact that in the Q2MA other
sources of systematics are also present, like the discretiza-
tion error in the Szegedy-related QPE, and different
systematics can interact in a nontrivial way with each
other. For this reason we were not able to identify a
reasonable trend in our data for the case of the inexact
energy representation in the Q2MA.

V. DISCUSSION AND CONCLUSIONS

This study is a step along a research line dedicated to the
exploration of quantum algorithms for the computation of
quantum thermal averages, in view of future applications to
complex and interesting physical systems, like the funda-
mental theory of strong interactions, when technological
developments will allow for reliable and scalable quantum
machines.
In Ref. [26], some of the present authors already

explored the QMS algorithm and applied it to a frustrated
three-spin system. In this case, we have considered the
same physical system to develop a practical implementa-
tion of the Q2MA, proposed in Ref. [14]. This algorithm, in
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FIG. 5. Comparison between the exact energy distribution and
the one computed from the QMS using an energy grid in the QPE

with fixed extrema and with an inexact range ½EðgridÞ
min ; EðgridÞ

max � ¼
½−1.1; 3.1� (in units of J), for three values of the number of qubits
of the energy register ne. In all cases the figure refers to measures
separated by ten rethermalization steps. Insets provide a zoom of
the regions close to the exact energy levels E0 and E1.
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principle, represents a conceptual improvement over the
QMS, as it enjoys a further quantum advantage. Such an
advantage stems from the fact that, while the QMS
performs a Markov chain among the quantum states of
the system which is classical in spirit and which faces the
difficulties of the no-cloning theorem, the Q2MA acts like a
quantum searching algorithm, where the searched state is
the so-called CETS, which is a pure state in a doubled
Hilbert space, whose amplitudes encode the thermal dis-
tribution of the target system. Provided that the CETS is
found, the algorithm is exact, in principle; however, an
annealing procedure, in which one finds iteratively differ-
ent CETS states corresponding to a descending sequence of
temperatures, is used to improve the success probability of
the searching algorithm.
A first result of our investigation is that the practical

implementation of the Q2MA algorithm might be far less
trivial. The searching algorithm is based on the construction
of a Szegedy operator, which is assumed to have a single
eigenstate with eigenvalue λ ¼ 1, corresponding to the
CETS, which is actually the eigenstate the algorithm looks
for. On the other hand, the construction of the Szegedy
operator is based on the definition of a kick operator K,
which is representative of a Markov chain and should be
ergodic to guarantee the nondegeneracy of the λ ¼ 1

eigenstate: If this is not the case, the algorithm is not
guaranteed to find the correct CETS, leading to possible
systematics.
As we have discussed in Sec. II, finding an ergodic kick

operator is a nontrivial assumption. However, a possible
conceptual modification of the algorithm is to make use of
different kick operators, which are randomly alternated
during the annealing procedure: Even if the single kick
operators are nonergodic, the fact that a CETS correspond-
ing to close-enough temperatures has a good overlap is
expected to strongly enhance the probability that the correct
CETS is found along the annealing sequence, at least if the
annealing step is small enough.
As we have shown, this conceptual modification works

well in practice, so one is able to reproduce quantum
thermal averages through annealing with different kick
operators; on the contrary, using a single nonergodic
operator does not work. However, a consequence of this
modification is that now the annealing step, or in other
words the number of annealing steps na, is not only relevant
to the success probability (i.e., of finding an eigenstate of
the Szegedy operator with eigenvalue 1) but also to the fact
that the selected state is actually the CETS. In other words,
there is a systematic effect in the algorithm, related to the
fact that one might find the wrong state, and this systematic
is a function of na. In particular, we have shown that the
error scales as 1=na, at least for large enough na.
Returning to the comparison with the QMS, the final

situation seems different from initial expectations. In the
QMS, the main algorithm-specific systematics is related to

the number of rethermalization steps performed along the
Markov chain: In this case, the systematic error is exponen-
tially suppressed in such a number. The outcome of our study
is that the main algorithm-specific systematics of Q2MA
scales as the inverse of the number of annealing steps, which
is a less favorable polynomial scaling, compared to QMS.
Finally, we have explored the systematic effects related

to the inexact representation of the system energy spectrum
obtained through the QPE, which is a problem affecting a
large class of quantum algorithms and could be avoided for
the particular explored system, due to its simplicity. In this
case, the systematic error is expected to be suppressed as
the number of qubits used to represent the energy register is
increased, i.e., as the grid of possible outcomes of the QPE
is made finer and finer. We have shown that this is indeed
the case when the number of qubits is large enough, with a
nontrivial intermediate regime due to the interplay between
the energy level spacing, the grid spacing, and the overall
range explorable by QPE. As a final comment, one should
consider that this intermediate regime is likely to be less
relevant for real and more complex many-body systems, for
which the distribution of energy levels is more chaotic.
Future developments along the same research line should

consider and compare different approaches, like those
based on variational quantum algorithms or on quantum
simulators [36], as well as less trivial models, including
gauge degrees of freedom.
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APPENDIX: RESOURCE REQUIREMENTS

Both the QMS and the Q2MA algorithms require
resources which are not yet available (at the time of
writing) on real quantum hardware, even for the application
to the three-spin frustrated triangle system. In terms of the
number q of qubits, the QMS algorithm requires a register
with qsys qubits to represent pure states of the system, a
register with a variable number rene of qubits to represent
energy estimates, and a 1-qubit register for the Metropolis
test, for a total of

qðQMSÞ ¼ qsys þ rene þ 1acc: ðA1Þ

The Q2MA algorithm requires a register with 2qsys qubits
to represent the two copies of the system, a register with a
variable number of qubits rΔE to represent energy
differences, a register with rSz qubits to perform QPE
for the Szegedy operator, and a 1-qubit register for the
annealing test, for a total of

qðQ2MAÞ ¼ 2qsys þ rΔE þ rSz þ 1ann: ðA2Þ

In terms of algorithmic depth, information about the gate
count estimates for 1-qubit (n1) and 2-qubit (n2) gates for
different code sections is reported in Table I for a run of the
QMS algorithm, and in Table II for a run of the Q2MA
algorithm. For both algorithms, the reported numbers refer
to the case of the frustrated triangle in the exact energy
representation (qsys ¼ 3, rene ¼ 1, rΔE ¼ 2, and rSz ¼ 3),
which results in a total usage of qðQMSÞ ¼ 5 qubits in the
QMS case and qðQ2MAÞ ¼ 11 in the Q2MA one.
The exact number of 1-qubit and 2-qubit gates depends

on the specific decomposition of multiqubit gates, which
might be dependent on the hardware adopted and other
circuit optimization strategies. For example, to implement

the oracles, we used multiple-control Toffoli (MCTqc) gates
with qc ≥ 3 qubits. These gates are represented efficiently
as a single operation in the emulator used [37], but, in terms
of the actual representation with 1-qubit and 2-qubit gates,

on some hardware one might need to use n
ðMCTqc Þ
1 ¼ 18qc −

27 gates acting on one qubit and n
ðMCTqc Þ
2 ¼12qc−17

gates acting on two qubits (for an improved representation
see, for example, Ref. [38]).
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TABLE I. Gate counts for the QMS algorithm with 20
rethermalization steps for the frustrated triangle at β ¼ 0.25.
The Metropolis acceptance rate is about 90%. The (possibly
overlapping) named sections are the following: “Metro step”
refers to a single Metropolis step, “revert” to the revert procedure
once a move is rejected, “sample” to the extraction of a single
sample, and “measure” to the preparation for measurement. The
relative number of executions for each section with respect to a
single measurement is reported in the “frequency” column.

Section Frequency n1 n2

Metro step 20 ∼240 ∼200
Revert 2 ∼500 ∼450
Sample 1 ∼5200 ∼4500
Measure 1 ∼120 ∼110

TABLE II. Gate counts for the Q2MA algorithm with 100
iterations and 100 annealing steps for the frustrated triangle at
β ¼ 0.25. The (possibly overlapping) named sections are the
following: “Ann. step” refers to a single annealing step,
“annealing” to the whole annealing sequence before measure-
ment, and “measure” to the preparation for measurement. The
relative number of executions for each section with respect to a
single measurement is reported in the “frequency” column.

Section Frequency n1 n2

Annealing step 100 1.6 × 103 1.8 × 103

Annealing 1 1.6 × 105 1.8 × 105

Measure 1 1.2 × 102 1.2 × 102
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