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We investigate the connection between localization of low-lying Dirac modes and Polyakov-loop
ordering in the lattice SU(2) Higgs model at finite temperature, probed with the staggered Dirac operator.
After mapping out the phase diagram of the model at a fixed temporal extension in lattice units, we study
the localization properties of the low-lying modes of the staggered Dirac operator, how these
properties change across the various transitions, and how these modes correlate with the gauge and
Higgs fields. We find localized low modes in the deconfined and in the Higgs phase, where the Polyakov
loop is strongly ordered, but in both cases they disappear as one crosses over to the confined phase.
Our findings confirm the general expectations of the “sea/islands” picture, and the more detailed
expectations of its refined version concerning the favorable locations of localized modes, also in the
presence of dynamical scalar matter.
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I. INTRODUCTION

Although it is well established that the finite-temperature
QCD transition is an analytic crossover [1,2], the micro-
scopic mechanism that drives it is still being actively
studied. The main goals of this line of research are a better
understanding of the connection between deconfinement
and restoration of chiral symmetry, both taking place in the
crossover region; and of the fate of the anomalous Uð1ÞA
symmetry, especially in the chiral limit. In this context, the
fact that also the nature of the low-lying Dirac eigenmodes
changes radically in the crossover region has aroused some
interest. While delocalized in the low-temperature, con-
fined and chirally broken phase, these modes become in
fact spatially localized in the high-temperature, deconfined,
and (approximately) chirally restored phase, up to a critical
point in the spectrum known as “mobility edge” [3–9] (see
Ref. [10] for a recent review). As the strength of chiral
symmetry breaking is controlled by the density of low-
lying Dirac modes [11], while the change in their locali-
zation properties is mainly due to the ordering of the
Polyakov loop in the high-temperature phase [10,12–16],
low-lying eigenmodes could provide the link between
deconfinement and restoration of chiral symmetry.

The connection between low-mode localization and
Polyakov-loop ordering is qualitatively explained by the
“sea/islands” picture, initially proposed in Ref. [12], and
further developed in Refs. [10,13–16]. In the deconfined
phase, typical gauge configurations display a “sea” of
ordered Polyakov loops, which on the one hand provides a
spatially (approximately) uniform region where Dirac
modes can easily delocalize, and on the other hand opens
a (pseudo)gap in the near-zero spectrum. Polyakov-loop
fluctuations away from order, and more generally gauge-
field fluctuations with reduced correlation in the temporal
direction, allow for eigenvalues below the gap; since in the
deconfined phase these fluctuations typically form well-
separated “islands,” they tend to “trap” the low eigenm-
odes, causing their localization.
The sea/islands mechanism is quite general, and requires

essentially only the ordering of the Polyakov loop for low-
mode localization to take place [17]. This leads one to
expect localization of low Dirac modes to be a generic
phenomenon in the deconfined phase of a gauge theory, an
expectation so far fully confirmed by numerical results,
both for pure gauge theories [12,16,18–27] and in the
presence of dynamical fermionic matter [28,29]. An inter-
esting aspect of the deconfinement/localization relation is
that while the thermal transition can be a smooth, analytic
crossover, the appearance of a mobility edge can only be
sudden, taking place at a well-defined temperature. If the
connection between deconfinement and localization is
indeed general, one can then associate the (possibly
smooth) thermal transition with a (definitely sharp) “geo-
metric” transition (a similar suggestion, although in con-
nection with deconfinement and center vortices, was made
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in Ref. [30], from which we borrowed the terminology).
This point of view is supported by the fact that the
geometric and the thermodynamic transition coincide when
the latter is a genuine phase transition [16,23–29].
As a further test of the universality of the sea/islands

mechanism, one can investigate whether a change in the
localization properties of low modes takes place across
other thermal transitions where the Polyakov loop gets
ordered, besides the usual deconfinement transition. As an
example, Ref. [27] studied low-mode localization across
the “reconfinement” transition in trace-deformed SU(3)
gauge theory at finite temperature [31–35]. While localized
modes are present in the deconfined phase also at nonzero
deformation parameter, where the Polyakov-loop expect-
ation value is different from zero, they disappear as the
system reconfines and the Polyakov-loop expectation value
vanishes.
Yet another test of universality consists in changing the

type of dynamical matter from fermionic to scalar. As long
as a phase with ordered Polyakov loops exists, this should
not affect the expectations of the sea/islands picture, and
localized modes should appear in the spectrum of the Dirac
operator in that phase. In this context, the Dirac operator
can be seen simply as a mathematical probe of certain
properties of the gauge fields or, more physically, as a probe
of how these fields couple to external, static (i.e., infinitely
heavy) fermion fields.
A model allowing one to carry out both these tests at

once is the lattice fixed-length SU(2)-Higgs model [36]. At
zero temperature the phase diagram of this model has been
studied in depth both with analytical [36] and numerical
[37–42] methods. This model has two parameters, namely
the (inverse) gauge coupling β and the Higgs-gauge
coupling κ, and it displays two lines of transitions in the
ðβ; κÞ plane as follows [42]:

(i) A line of crossovers at β ≈ βbulk, starting from the
bulk transition (crossover) of the pure gauge SU(2)
theory [43] at ðβ; κÞ ¼ ðβbulk; 0Þ, and ending at some
point ðβe; κeÞ.

(ii) A line of crossovers coming down from large κ at
small β, meeting the first line at ðβe; κeÞ, turning into
a line of first-order transitions at ðβf; κfÞ, and
tending to κ ≈ 0.6 as β → ∞.

These transition lines separate three phases of the system: a
confined phase at low β and low κ; a deconfined phase at
high β and low κ; and a Higgs phase at high κ. A similar
phase diagramwas found at finite temperature, although the
transition lines were all identified as crossovers in that case
[42]. The absence of a sharp transition between the confined
and theHiggs phase at any κ at sufficiently low βwas proved
in Ref. [36], where it was also shown that in this region all
local correlation functions, and so the spectrum of the
theory, depend analytically on the couplings.
While fermions are absent in the SU(2)-Higgs model,

one can still probe this system using static external

fermions coupled to the SU(2) gauge field, as pointed
out above. One can then study how the corresponding Dirac
spectrum behaves, and check what happens to the locali-
zation properties of its low modes across the various
transitions, in particular as one crosses over to the Higgs
phase starting from either the confined or the deconfined
phase. Since eigenvalues and eigenvectors of the Dirac
operator are nonlocal functions of the gauge fields, they can
display nonanalytic behavior even in the strip of the ðβ; κÞ
plane where all local correlators are analytic functions of
the couplings, and so they could allow one to sharply
distinguish the confined and the Higgs phase. (A different
approach to this issue, based on the analogies between
gauge-Higgs theories and spin glasses, is discussed in the
review Ref. [44] and references therein.)
In this paper we study the spectrum and the eigenvectors

of the staggered lattice Dirac operator in the SU(2)-Higgs
model at finite temperature. After briefly describing the
model, in Sec. II we introduce the tools we use to
investigate the localization properties of staggered eigenm-
odes. In Sec. III we map out the phase diagram of the model
at finite temperature, working at fixed temporal extension
in lattice units. In Sec. IV we analyze the staggered
eigenmodes, focussing in particular on how their localiza-
tion properties change across the transitions between the
confined, deconfined, and Higgs phases. We then study in
detail the correlation between eigenmodes and the gauge
and Higgs fields, to identify the field fluctuations mostly
responsible for localization. Finally, in Sec. V we draw our
conclusions and show some prospects for the future.

II. SU(2) HIGGS MODEL AND LOCALIZATION

In this section we describe the fixed-length SU(2) Higgs
model, and discuss how to characterize the localization
properties of Dirac modes, and how these correlate with the
gauge and Higgs fields.

A. SU(2) Higgs model on the lattice

We study the lattice SU(2) Higgs model in 3þ 1
dimensions, defined by the action

S ¼ −
β

2

X
n

X
1≤μ<ν≤4

trUμνðnÞ −
κ

2

X
n

X
1≤μ≤4

trGμðnÞ; ð1Þ

where we omitted an irrelevant additive constant. Here
n ¼ ðx⃗; tÞ, nμ ¼ 0;…; Nμ − 1, are the sites of a hypercubic
N3

s × Nt lattice, i.e., N1;2;3 ¼ Ns and N4 ¼ Nt, where μ ¼
1;…; 4 denotes the lattice directions and μ̂ the correspond-
ing unit vectors. The dynamical variables are the SU(2)
matrices UμðnÞ and ϕðnÞ, representing respectively the
gauge variables associated with the link connecting n and
nþ μ̂, and the unit-length Higgs field doublet (recast as a
unitary matrix) associated with site n, and

GYÖRGY BARANKA and MATTEO GIORDANO PHYS. REV. D 108, 114508 (2023)

114508-2



UμνðnÞ ¼ UμðnÞUνðnþ μ̂ÞUμðnþ ν̂Þ†UνðnÞ†;
GμðnÞ ¼ ϕðnÞ†UμðnÞϕðnþ μ̂Þ; ð2Þ

are the plaquette variables associated with the elementary
lattice squares, and the nontrivial part of the discretized
covariant derivative of the Higgs field, which we will refer
to as the Higgs-gauge field coupling term. Periodic
boundary conditions are imposed on UμðnÞ and ϕðnÞ in
all directions. In what follows we will also make use of the
Polyakov loop winding around the temporal direction,

Pðx⃗Þ ¼ tr
YNt−1

t¼0

U4ðx⃗; tÞ: ð3Þ

Expectation values are defined as

hOi ¼ 1

Z

Z
DU

Z
Dϕe−SðU;ϕÞOðU;ϕÞ;

Z ¼
Z

DU
Z

Dϕe−SðU;ϕÞ; ð4Þ

where DU and Dϕ denote the products of the SU(2) Haar
measures associated with UμðnÞ and ϕðnÞ.
We study this model at finite temperature T ¼ 1=ðaNtÞ,

where a is the lattice spacing, which can be set by suitably
tuning the parameters of the model, namely the inverse
gauge coupling β and the Higgs-gauge field coupling κ.
However, since we are not interested here in taking
the continuum limit, we treat the model simply as a
two-parameter anisotropic statistical mechanics system,
keeping Nt fixed as we take the thermodynamic limit
Ns → ∞, and as we change β and κ freely. To study
the phase diagram in the ðβ; κÞ plane we use the ave-
rage plaquette, Polyakov loop, and Higgs-gauge field
coupling term,

hUi ¼ 1

NtV

X
n

hUðnÞi; hPi ¼ 1

V

X
x⃗

hPðx⃗Þi;

hGi ¼ 1

NtV

X
n

hGðnÞi; ð5Þ

where V ¼ N3
s is the lattice volume, and the correspond-

ing susceptibilities,

χU ¼ 1

NtV

���X
n

UðnÞ
�

2
�
−
�X

n

UðnÞ
�

2
�
;

χP ¼ 1

V

���X
x⃗

trPðx⃗Þ
�

2
�
−
�X

x⃗

trPðx⃗Þ
�

2
�
;

χG ¼ 1

NtV

���X
n

GðnÞ
�

2
�
−
�X

n

trGðnÞ
�

2
�
: ð6Þ

In Eqs. (5) and (6) we denoted with UðnÞ and GðnÞ the
average plaquette and gauge-Higgs coupling term touch-
ing a lattice site n,

UðnÞ ¼ 1

24

X
1≤μ<ν≤4

trðUμνðnÞ þUμνðn − μ̂Þ

þ Uμνðn − ν̂Þ þUμνðn − μ̂ − ν̂ÞÞ;

GðnÞ ¼ 1

8

X
1≤μ≤4

trðGμðnÞ þGμðn − μ̂ÞÞ: ð7Þ

B. Localization of staggered eigenmodes

We are interested in the spectrum of the staggered Dirac
operator in the background of the SU(2) gauge fields for
fermions in the fundamental representation,

Dstag ¼ 1

2

X
μ

ημðUμTμ − T†
μU†

μÞ; ð8Þ

where ημ are the usual staggered phases and Tμ are the
translation operators with periodic (resp. antiperiodic)
boundary conditions in space (resp. time), i.e.,

ημðnÞ ¼ ð−1Þ
P

α<μ
nα ;

ðTμÞn;n0 ¼ bμðnμÞδnμþ1;n0μ

Y
α≠μ

δnα;n0α ; ð9Þ

with nμ ¼ Nμ identified with nμ ¼ 0, and bμðnμÞ ¼ 1,
∀ μ; nμ, except for b4ðNt − 1Þ ¼ −1. Since the staggered
operator is anti-Hermitian and anticommutes with εðnÞ ¼
ð−1Þ

P
α
nα , its spectrum is purely imaginary and symmetric

about the origin. We write

Dstagψ lðnÞ ¼ iλlψ lðnÞ; λl ∈R; ð10Þ

with eigenvectors ψ lðnÞ carrying an internal “color”
index, ψ l;cðnÞ, c ¼ 1, 2, that has been suppressed for
simplicity, and focus on λl ≥ 0 only. Notice that since
σ2UμðnÞσ2 ¼ UμðnÞ�, Dstag commutes with the antiunitary
“time-reversal” operator T ¼ σ2K, where K denotes com-
plex conjugation. Since T2 ¼ −1,Dstag displays in this case
doubly degenerate eigenvalues, and belongs to the sym-
plectic class in the symmetry classification of random
matrices [45,46]. In the following it is understood that
we work with the reduced spectrum, including only one
eigenvalue from each degenerate pair.

1. Participation ratio

The localization properties of the staggered eigenmodes
can be studied directly by looking at the eigenvectors, or
indirectly by looking at the corresponding eigenvalues. In
the first case one can study the volume scaling of the so-
called participation ratio (PR) of the modes,
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PRl ¼
1

NtV
IPR−1

l ; IPRl ¼
X
n

kψ lðnÞk4; ð11Þ

where kψ lðnÞk2 ¼
P

2
c¼1 jψ l;cðnÞj2, modes are normalized

to 1,
P

n kψ lðnÞk2 ¼ 1, and IPR is the inverse participation
ratio. The quantity PRl measures the fraction of lattice
volumeNtV occupied by a given mode, and similarlyNtV ·
PRl ¼ IPR−1

l gives the “mode size.” After averaging over
an infinitesimally small spectral bin around a point λ in the
spectrum and over gauge configurations, as the spatial size
Ns grows the resulting average PRðλ; NsÞ tends to a
constant if modes near λ are delocalized on the entire
lattice, and goes to zero as the inverse of the lattice volume
if they are localized in a finite region. Equivalently, the
similarly averaged mode size diverges linearly in the lattice
volume for delocalized modes and tends to a constant for
localized modes. In this paper we denote the average of any
observable Ol associated with mode l, following the
procedure described above, as

Oðλ; NsÞ ¼
hPlδðλ − λlÞOli
hPlδðλ − λlÞi

; ð12Þ

having made explicit the dependence on the spatial size of
the lattice. The volume scaling of PRðλ; NsÞ defines the
fractal dimension of modes in the neighborhood of λ,

αðλÞ ¼ 3þ lim
Ns→∞

log PRðλ; NsÞ
logNs

: ð13Þ

The multifractal properties of eigenmodes can be inves-
tigated by looking at the generalized inverse participation
ratios,

ðIPRqÞl ¼
X
n

kψ lðnÞk2q; ð14Þ

with ðIPR2Þl ¼ IPRl [47]. Their average according to
Eq. (12) scales with the system size as IPRqðλ; NsÞ ∝
N

−DqðλÞðq−1Þ
s , with generalized fractal dimensions Dq

(notice D2 ¼ α). One has Dq ¼ 3 for delocalized modes
and Dq ¼ 0 for localized modes, while a nontrivial Dq

signals eigenmode multifractality [48].

2. Spectral statistics

The localization properties of the eigenmodes reflect on
the statistical properties of the eigenvalues [49]; for
localized modes one expects independent fluctuations of
the eigenvalues, while for delocalized modes one expects to
find the correlations typical of dense random matrix
models. It is convenient in this context to study the
probability distribution of the so-called unfolded level
spacings [45,46],

sl ¼
λlþ1 − λl

hλlþ1 − λliλ
; ð15Þ

computed locally in the spectrum, i.e.,

pðs; λ; NsÞ ¼
hPlδðλ − λlÞδðs − slÞi

hPlδðλ − λlÞi
: ð16Þ

In Eq. (15), hλlþ1 − λliλ denotes the average spacing in the
relevant spectral region, which for large volumes equals
hλlþ1 − λliλ → 1

NtVρðλÞ, where ρðλÞ is the spectral density,

ρðλÞ ¼ lim
V→∞

1

NtV

�X
l

δðλ − λlÞ
�
: ð17Þ

The statistical properties of the unfolded spacings are
expected to be universal [45], i.e., independent of the details
of the model, and can be compared to the theoretical
predictions obtained from exactly solvable models. As
the system size increases, for localized modes pðs; λ; NsÞ
should approach the exponential distribution, pPðsÞ ¼ e−s,
appropriate for independent eigenvalues obeying Poisson
statistics [45]. For delocalized modes pðs; λ; NsÞ should
instead approach the distribution pRMTðsÞ predicted by the
appropriate Gaussian ensemble of random matrix theory
(RMT), which is the Gaussian symplectic ensemble in the
case at hand [45,46]. This quantity is known exactly, but is
not available in closed form. An accurate approximation is
provided by the symplectic Wigner surmise,

pWSðsÞ ¼
�
64

9π

�
3

s4e−
64
9πs

2

: ð18Þ

3. Mobility edge

Localized and delocalized modes are generally found in
disjoint spectral regions separated by critical points known
as mobility edges, where the localization length diverges
and the system undergoes a phase transition along the
spectrum, known as Anderson transition [48]. At the
mobility edge the critical eigenmodes display a fractal
dimension different from those of localized or delocalized
modes, as well as a rich multifractal structure. This is
reflected in critical spectral statistics different from both
Poisson and RMT statistics. To monitor how the localiza-
tion properties change along the spectrum using its stat-
istical properties, it is convenient to use the integrated
unfolded level spacing distribution,

Is0ðλ; NsÞ ¼
Z

s0

0

dspðs; λ; NsÞ; ð19Þ

where s0 ≃ 0.563 is chosen so to maximize the difference
between the expectations for Poisson and RMT distribu-
tions, Is0;P ≃ 0.431 and Is0;RMT ≃ 0.0797, estimated using
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pP and pWS, see Eq. (18) above. This quantity allows one to
determine the mobility edge very accurately by means of a
finite-size-scaling analysis [50]. In fact, as the system size
increases Is0ðλ; NsÞ tends to Is0;P or Is0;RMT depending on
the localization properties of the modes in the given
spectral region, except at the mobility edge where it is
volume-independent and takes the value Is0;c correspond-
ing to the critical statistics. This, however, requires large-
scale simulations to achieve a sufficient quality of the data,
and several large volumes.
One can give up some of the accuracy but save a

lot in computing effort by using the critical value of the
spectral statistic, expected to be universal, to determine
the mobility edge simply by looking for the point where the
curve for Is0 crosses its critical value, Is0;c (see, e.g.,
Refs. [23,25,28,29]). This critical value is not known for
the symplectic class, but it can be determined by identifying
the scale-invariant point in the spectrum at some point
in the parameter space of the model under study (if one can
find an Anderson transition, of course); the corresponding
critical value can then be used in the rest of the analysis.
Notice that one could estimate the mobility edge in a finite
volume as the point where Is0 takes any chosen value
intermediate between the RMTand the Poisson predictions,
and this would converge to the correct value in the infinite-
volume limit. In this respect, the choice of Is0;c is only the
most convenient, as it is expected to minimize the magni-
tude of finite-size effects.

4. Correlation with bosonic observables

To investigate the correlation between staggered eigenm-
odes and gauge and Higgs fields we considered the
following observables,

U l ¼
X
n

UðnÞkψ lðnÞk2; Pl ¼
X
t;x⃗

Pðx⃗Þkψ lðx⃗; tÞk2;

Gl ¼
X
n

GðnÞkψ lðnÞk2; ð20Þ

averaged according to Eq. (12). Recall that UðnÞ and GðnÞ
are the average plaquette and gauge-Higgs coupling term
touching a lattice site n, defined in Eq. (7). For delocalized
modes kψ lk2 ∼ 1

V, and the averages Uðλ; NsÞ, Pðλ; NsÞ, and
Gðλ; NsÞ of the observables in Eq. (20) are approximately
equal to the average of the corresponding bosonic observ-
able, i.e., hUi, hPi, and hGi, respectively [see Eq. (5)]. For
localized modes kψ lk2 is non-negligible only inside a
region of finite spatial volume, so Pðλ; NsÞ measures the
average Polyakov loop inside the localization region, and
Uðλ; NsÞ and Gðλ; NsÞ measure respectively the average
plaquette and gauge-Higgs coupling term in a neighbor-
hood of the localization region. One should, however, keep
in mind that there are 24 neighboring squares and eight
neighboring links to each site, so that a possible correlation

of modes with the plaquette and gauge-Higgs coupling
term fluctuations get diluted.
More informative than the averages of the observables

in Eq. (20) are the corresponding centered and rescaled
averages,

Ûðλ; NsÞ ¼
Uðλ; NsÞ − hUi

δU
;

ðδUÞ2 ¼ hUðnÞ2i − hUðnÞi2;

P̂ðλ; NsÞ ¼
Pðλ; NsÞ − hPi

δP
;

ðδPÞ2 ¼ hPðx⃗Þ2i − hPðx⃗Þi2;

Ĝðλ; NsÞ ¼
Gðλ; NsÞ − hGi

δG
;

ðδGÞ2 ¼ hGðnÞ2i − hGðnÞi2: ð21Þ

These quantities measure the correlation of the eigenmodes
with fluctuations in the gauge and Higgs fields, normalized
by the average size of these fluctuations. Indeed, writing
these quantities out explicitly, one has, e.g.,

Ûðλ; NsÞ ¼
�X

n

P
lδðλ − λlÞkψ lðnÞk2

NtVρðλÞ
UðnÞ − hUi

δU

�
:

ð22Þ

As a consequence, the observables in Eq. (21) vanish
in the absence of correlation, and are strongly suppressed
for delocalized modes. The normalization factor takes into
account that for observables with a strongly peaked
probability distribution even a correlation with small
deviations from average is significant, indicating that
eigenmodes are attracted by the corresponding type of
fluctuations, and favor the locations where they show up in
a field configuration. In particular, for localized modes this
allows one to identify the most favorable type of fluctua-
tions for localization.

5. Sea/islands picture

We also study the correlation between eigenmodes and
the “islands” of the refined “sea/islands” picture of locali-
zation discussed in Ref. [16]. These are defined using the
Dirac-Anderson Hamiltonian representation of the stag-
gered Dirac operator [14], obtained by diagonalizing
the temporal hopping term in Dstag [i.e., the term with
μ ¼ 4 in the sum in Eq. (8)] by means of a unitary
transformation Ω [16],

HDA ≡Ω†ð−iDstagÞΩ ¼ E1s þ
1

2i

X3
j¼1

ηjðVjTj − T†
jV

†
jÞ;

ð23Þ
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where 1s is the V × V identity matrix ð1sÞx⃗;y⃗ ¼ δx⃗;y⃗, Tj are
here the spatial translation operators ðTjÞx⃗;y⃗ ¼ δx⃗þ|̂;y⃗ (with
periodic boundary conditions understood), E is an x⃗-
dependent 2Nt × 2Nt diagonal matrix,

Eðx⃗Þkalb¼ δklδabekaðx⃗Þ; ekaðx⃗Þ¼η4ðx⃗Þsinωkaðx⃗Þ; ð24Þ

and Vj are x⃗-dependent 2Nt × 2Nt unitary matrices,

Vjðx⃗Þkalb ¼
1

Nt

XNt−1

t¼0

e−iðωkaðx⃗Þ−ωlbðx⃗þ|̂ÞÞtUtdg
j ðx⃗; tÞab; ð25Þ

with k; l ¼ 0;…Nt − 1 and a, b ¼ 1, 2. Here “tdg” stands
for “temporal diagonal gauge,” i.e., Utdg

j are the spatial
links in the temporal gauge where all Polyakov loops are
diagonal [51],

Utdg
j ðx⃗; tÞ ¼ uðx⃗Þ†Pðx⃗; tÞUjðx⃗; tÞPðx⃗þ |̂; tÞ†uðx⃗þ |̂Þ;

Pðx⃗; tþ 1Þ ¼ Pðx⃗; tÞU4ðx⃗; tÞ; ð26Þ

with Pðx⃗; 0Þ ¼ 1, and uðx⃗Þ a suitable unitary matrix such
that [notice Pðx⃗Þ ¼ Pðx⃗; NtÞ]

Pðx⃗Þ ¼ uðx⃗Þdiagðeiϕ1ðx⃗Þ; eiϕ2ðx⃗ÞÞuðx⃗Þ†; ð27Þ

with ϕ1;2ðx⃗Þ∈ ½−π; πÞ and eiðϕ1ðx⃗Þþϕ2ðx⃗ÞÞ ¼ 1. Moreover,
ωkaðx⃗Þ are effective Matsubara frequencies,

ωkaðx⃗Þ ¼
ϕaðx⃗Þ þ ð2nka þ 1Þπ

Nt
; ð28Þ

with nka ∈ f0;…; Nt − 1g chosen for each a so that the
“energies” eka satisfy 0 ≤ e1aðx⃗Þ ≤ e2aðx⃗Þ ≤ … ≤ eNt

2
−1a,

and ekþNt
2
aðx⃗Þ ¼ −ekaðx⃗Þ, for k ¼ 0;… Nt

2
− 1. Notice that

thanks to the simple relation between ϕ1 and ϕ2, one has
ek1 ¼ ek2. This double degeneracy is a consequence of the
temporal hopping term being invariant under the time-
reversal transformation T (see Sec. II B). With this choice
for eka, HDA has the general structure

HDA ¼
�
E 0

0 −E

�

þ 1

2i

X3
j¼1

ηj

��
Aj Bj

Bj Aj

�
Tj−Tj

†
�
Aj

† Bj
†

Bj
† Aj

†

��
; ð29Þ

where E;Aj; Bj are Nt × Nt matrices.
It was argued in Ref. [16] that sites where the diagonal

blocks Aj are larger are the most favorable for the locali-
zation of lowmodes in a phasewhere the Polyakov loops are
ordered. In general, spatial regions with larger Aj, which
correspond to lower correlation among spatial links on

different time slices, are expected to be favored by low
modes; in an ordered phase such regions are localized, and
so lead to low-mode localization. One can check this by
looking at the correlation between modes and the quantity

Aðx⃗Þ ¼ 1

6Nt

X3
j¼1

trAjðx⃗Þ†Ajðx⃗Þ þ trAjðx⃗ − |̂Þ†Ajðx⃗ − |̂Þ;

ð30Þ

i.e., using the observable

Al ¼
X
x⃗

Aðx⃗Þ
XNt−1

t¼0

kψ lðx⃗; tÞk2; ð31Þ

averaged according to Eq. (12) to getAðλ; NsÞ, and centered
and rescaled according to Eq. (22) to get Âðλ; NsÞ, i.e.,

Âðλ; NsÞ ¼
Aðλ; NsÞ − hAi

δA
;

ðδAÞ2 ¼ hAðx⃗Þ2i − hAðx⃗Þi2: ð32Þ

III. PHASE DIAGRAMAT FINITE TEMPERATURE

In this section we report our results on the phase diagram
of the model. We worked at finite temperature, fixing the
lattice temporal extension to Nt ¼ 4, and performing
numerical simulations with a standard heat bath algorithm.
Theoretical arguments [36] and previous numerical

studies [42] lead us to expect three phases: a confined
phase at small β and small κ; a deconfined phase at large β
and small κ; and a Higgs phase at large κ. Based on the
finite-temperature results of Ref. [42], and on the observed
weakening of the transition for smaller temporal extensions
reported there, we expect that the transitions between the
three phases are analytic crossovers. A detailed study of
this issue is beyond the scope of this paper, so we limited
most of our simulations to a single lattice volume with
Ns ¼ 20, for 784 different ðβ; κÞ pairs, using 3000 con-
figurations at each point. We took κ∈ ½0; 1.35� in steps of
Δκ ¼ 0.05 and β∈ ½1.5; 2.85� in steps of Δβ ¼ 0.05. A
detailed volume-scaling study was done on a subset of
these points: we discuss this below.
We show our results for hGi, hUi, and hPi in Fig. 1 as

heatmap plots, obtained by cubic interpolation of the
numerical results at the simulation points. These confirm
our expectations, and allow us to characterize the confined
phase at small β and κ by small hGi, hUi, and hPi; the
deconfined phase at large β and small κ by small hGi and
large hUi and hPi; and the Higgs phase at large κ by large
hGi, hUi, and hPi. We estimated errors with a standard
jackknife procedure: they are not shown, but relative errors
are always within 7 × 10−5 for hUi; 2 × 10−3 for hGi; and
within 1 × 10−3 for hPi, except deep inside the confined
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phase where the average becomes very small and indis-
tinguishable from zero within errors. More precisely, the
expectation value of the gauge-Higgs coupling term (Fig. 1,
top panel) divides the phase diagram into two pieces: the
Higgs phase at large κ, with large hGi, and the (undivided)
confined and deconfined phases at small κ, with similar and
small values of hGi. The expectation value of the plaquette
and of the Polyakov loop (Fig. 1, center and bottom panel)
divide the phase diagram into two parts in a different way:
the confined phase at low β and κ, where both hUi and hPi
are small, and the (undivided) Higgs and deconfined
phases, where both hUi and hPi are large.

We show our results for the corresponding susceptibil-
ities as heatmap plots in Fig. 2. Also in this case we
estimated errors (not shown in the figure) with a standard
jackknife procedure, finding them to be always within 3%.

FIG. 1. Heatmap plot of the expectation value of G (top panel),
U (center panel), and P (bottom panel), see Eq. (5). HereNs ¼ 20
and Nt ¼ 4.

FIG. 2. Heatmap plot of the susceptibility χG of the gauge-
Higgs coupling termG (top panel), the plaquette susceptibility χU
(center panel), and the logarithm of the Polyakov-loop suscep-
tibility χP (bottom panel), see Eqs. (5) and (6). Here Ns ¼ 20 and
Nt ¼ 4. In the top panel, the black point shows where the
mobility edge λc ¼ λcðκÞ has an inflection point along the line at
constant β ¼ 2.6, see Fig. 17. In the center panel, it shows where
the mobility edge λc ¼ λcðβÞ vanishes along the line at constant
κ ¼ 1.0, see Fig. 16. In the bottom panel, it shows where the
mobility edge λc ¼ λcðβÞ vanishes along the line at constant
κ ¼ 0.3, see Fig. 15.
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In the top panel we show our results for χG. This quantity
has a narrow ridge, visualized here as a bright line,
providing a clear separation between the Higgs phase
and the rest in most of the explored parameter space; a
weakening of the transition is visible in the top left part of
the phase diagram. In the center panel we show the
plaquette susceptibility χU. This separates clearly the
confined phase from the Higgs phase, while the ridge
broadens at the transition between confined and deconfined
phase (as well as in the top left part of the phase diagram).
In the bottom panel we show the logarithm of the
Polyakov-loop susceptibility. This plot shows a bright line
of strong transitions separating the confined and deconfined
phases. This line continues in the top left part of the plot,
still clearly separating the confined and Higgs phases, but it
is much dimmer there as the signal is two orders of
magnitude weaker than at the transition from the confined
to the deconfined phase [see Figs. 4 (top) and 5 (top)]. At
the transition between the deconfined and Higgs phase χP
shows an inflection point instead of a peak (see Fig. 6), with
a sizeable decrease in susceptibility corresponding here to a
noticeable darkening of the plot.
A sketch of the resulting phase diagram is shown in

Fig. 3, obtained by merging the various transition lines,
defined by the peaks of the suceptibilities. The dashed line
at low β and large κ signals a sizeable reduction in the
strength of the transition there, as shown by all three
observables. Except in this region, where they slightly
deviate from each other, the transition lines between
confined and Higgs phase obtained from the three different
susceptibilities agree with each other, so we drew a single
line. Similarly, the transition lines between confined and
deconfined phase obtained from the plaquette and the
Polyakov loop susceptibility agree with each other, so
we drew a single line in this case as well.

To verify the expected crossover nature of the transitions,
we studied the volume dependence of the various suscep-
tibilities in detail on three lines, one at constant κ ¼ 0.5 and
two at constant β ¼ 2.0 and β ¼ 2.6, using lattices with
Ns ¼ 22, 28, 34, 40. For each simulation point and each
lattice volume we used 4500 configurations. We estimated
errors by first averaging over configurations in blocks of
size bsize and computing the standard jackknife error on the
blocked ensemble, and then increasing bsize until the error
stabilized. For our final estimates we used samples of size
bsize ¼ 20, except at κ ¼ 0.5 where we used bsize ¼ 50,
although this was really needed only around β ¼ 2.3. We
show our results in Figs. 4–6.
In Fig. 4 we show χP, χU, and χG along a line of constant

κ ¼ 0.5 across the transition from the confined to the
deconfined phase. The signal is very strong in χP, and a

FIG. 3. Schematic drawing of the phase diagram, obtained
combining the maxima of the susceptibilities shown in Fig. 2. A
dashed line is used to indicate the weakening of the transition.

FIG. 4. Polyakov-loop (top), plaquette (center), and gauge-
Higgs coupling term (bottom) susceptibility across the transition
between the confined and the deconfined phase at κ ¼ 0.5. Here
Nt ¼ 4. The volume scaling is consistent with an analytic
crossover.
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small peak is visible also in χU. The location of these peaks
is not far from the critical point βc ≈ 2.3 of the pure gauge
theory at κ ¼ 0 [52–55]. The relatively large error bars
found for Ns ¼ 22 between β ¼ 2.28 and β ¼ 2.31, espe-
cially at β ¼ 2.3, are most likely a finite-size effect due to
the vicinity of the critical point of the pure gauge theory,
and are not observed on larger volumes. On the other hand,
no peak is visible in χG, which is constant within errors
across the transition. This makes the gauge-Higgs coupling
term G unsuitable to detect this transition.
In Fig. 5 we show χP, χU, and χG along a line of constant

β ¼ 2.0 across the transition from the confined to the Higgs
phase. A clear peak is visible in all three observables, with
χP two orders of magnitude smaller than in Fig. 4 (top), and
χU a factor of 2 larger than in Fig. 4 (bottom).
Finally, in Fig. 6 we show χP, χU, and χG along a line of

constant β ¼ 2.6 across the transition from the deconfined to

the Higgs phase. We observe a peak in χG, of similar
magnitude as the one in Fig. 5 (bottom) for the transition
from the confined to the Higgs phase. Neither χU nor χP
show any significant peak: χU changes slope at the tran-
sition, while χP shows an inflection point. This makesU and
P not quite suitable observables to detect this transition.
While these results do not logically exclude the pos-

sibility of genuine phase transitions at some points in the
phase diagram, combined with the results of Ref. [42] they
make it implausible.

IV. LOCALIZATION PROPERTIES OF
DIRAC EIGENMODES

In this section we discuss the localization properties
of the eigenmodes of the staggered operator and how

FIG. 5. Polyakov-loop (top), plaquette (center), andgauge-Higgs
coupling term (bottom) susceptibility near the transition between
the confined and the Higgs phase at β ¼ 2.0. Here Nt ¼ 4. The
volume scaling is consistent with an analytic crossover.

FIG. 6. Polyakov-loop (top), plaquette (center), and gauge-
Higgs coupling term (bottom) susceptibility near the transition
between the deconfined and the Higgs phase at β ¼ 2.6. Here
Nt ¼ 4. The volume scaling is consistent with an analytic
crossover.
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these correlate with the gauge and Higgs fields, and we
present a detailed test of the sea/islands mechanism. We
obtained the lowest modes of Dstag using the PRIMME

package [56,57] for sparse matrices, exploiting Chebyshev
acceleration for faster convergence. The use of algorithms
for sparse matrices allows us to reduce the scaling of
computational time from N9

s , expected for full diagonaliza-
tion, down to N6

s .
We first analyzed the eigenmodes in detail at three points

of the phase diagram, using several lattice volumes to study
the scaling of eigenvector and eigenvalue observables with
the system size. These points are β ¼ 1.9, κ ¼ 1.0, in the
confined phase, right below the transition to the Higgs
phase at constant κ (β=βc ≈ 0.97, with βc ≈ 1.95 corre-
sponding to the peak in the Polyakov-loop susceptibility);
β ¼ 2.1, κ ¼ 1.0, in the Higgs phase, not far above the
transition between the two phases (β=βc ≈ 1.08) and
β ¼ 2.6, κ ¼ 0.3, deep in the deconfined phase. We looked
at two lattice volumes in the confined phase, and at four
lattice volumes in the deconfined and Higgs phases; see
Table I for details about system size, configuration sta-
tistics, and number of eigenmodes. We then computed the
relevant observables locally in the spectrum, approximating
Eq. (12) by averaging over spectral bins of size Δλ ¼
0.0025 at β ¼ 1.9, κ ¼ 1.0 (confined phase), Δλ ¼ 0.01 at
β ¼ 2.6, κ ¼ 0.3 (deconfined phase), and Δλ ¼ 0.0075 at
β ¼ 2.1, κ ¼ 1.0 (Higgs phase). Our results, reported in
Secs. IVA and IV B, demonstrate low-mode localization in
the deconfined and in the Higgs phase.
This detailed study also allowed us to estimate the

critical value of Is0 , which we could then use to efficiently
determine the dependence of the mobility edge, λc, on the
parameters β and κ. We did this on two lines at constant κ:
one in the deconfined phase with κ ¼ 0.3, changing β in the
interval [2.35, 2.60] with incrementsΔβ ¼ 0.05; and one in

the Higgs phase with κ ¼ 1.0, changing β in [2.1, 2.4] with
increments Δβ ¼ 0.05. We also studied one line at constant
β ¼ 2.6, changing κ in [0.35, 1.0] in increments of
Δκ ¼ 0.05. Here we used a single volume (Ns ¼ 20,
Nt ¼ 4) and 3000 configurations at each point (except
for the three points already discussed above). In all these
calculations we computed Is0 locally in the spectrum
averaging over bins of size Δλ ¼ 0.008. Our results,
reported in Sec. IV C, show that along both lines at constant
κ the mobility edge disappears at a critical β near the
crossover to the confined phase; and that along the line at
constant β the mobility edge is always nonzero, but it
changes behavior at the crossover between the deconfined
and the Higgs phase.
We then studied the correlation between localized modes

and the fluctuations of the gauge and Higgs fields, and
tested the refined sea/islands picture of Ref. [16]. Our

TABLE I. Configuration statistics and number of (nondegen-
erate) eigenvalues used to study the volume scaling of the
localization properties of staggered eigenmodes in the confined
phase (top table) and in the deconfined and Higgs phases (bottom
table).

ðβ ¼ 1.9; κ ¼ 1.0Þ
Ns #configurations #eigenvalues

16 3000 33
20 1500 63

ðβ ¼ 2.1; κ ¼ 1.0Þ and ðβ ¼ 2.6; κ ¼ 0.3Þ
Ns #configurations #eigenvalues

20 8970 63
24 8000 110
28 3000 174
32 1150 260

FIG. 7. Participation ratio, Eq. (11), of the low staggered
eigenmodes at β ¼ 1.9 and κ ¼ 1.0 in the confined phase for
two different spatial volumes (top panel) and corresponding
fractal dimension estimated using Eq. (33) with Ns1 ¼ 16, Ns2 ¼
20 (bottom panel). Here Nt ¼ 4.
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results, reported in Sec. IV D, show a strong correlation
with Polyakov-loop and plaquette fluctuations, and an even
stronger correlation with the fluctuations identified in
Ref. [16] as the most relevant to localization.

A. Eigenvector observables

In the top panel of Fig. 7 we show the PR of the modes in
the confined phase. The PR is slightly larger for Ns ¼ 16
than for Ns ¼ 20, signaling that the fractal dimension is
smaller than 3. This is shown explicitly in the bottom panel,
where we plot αðλÞ, see Eq. (13). This is estimated
numerically from a pair of volumes as

αnumðλ;Ns1; Ns2Þ ¼ 3þ
log PRðλ;Ns1Þ

PRðλ;Ns2Þ
log Ns1

Ns2

: ð33Þ

The fractal dimension of near-zero modes is slightly below
3, and approaches 3 as one moves up in the spectrum.
Taken at face value, this means that these modes are only
slightly short of being fully delocalized. Clearly, this effect
could be just a finite-size artifact due to the small volumes
employed here. However, it could also signal that a “geo-
metric” transition is approaching, where a mobility edge
and, correspondingly, critical modes appear at the origin.
In the top panels of Figs. 8 and 9 we show the size

NtV · PR ¼ IPR−1 of the modes in the deconfined and in
the Higgs phase, respectively. In both cases the size of the
lowest modes does not change with the volume, showing
that they are localized. Higher up towards the bulk of the
spectrum the mode size shows a strong volume depend-
ence. Above a certain point in the spectrum this is
compatible with a linear scaling in the volume, indicating

FIG. 8. The mode size NtV · PR ¼ IPR−1, Eq. (11), of the low
staggered eigenmodes for different volumes (top panel), and
corresponding fractal dimension estimated using Eq. (33) with
three different volume pairs (bottom panel), at β ¼ 2.6 and κ ¼
0.3 in the deconfined phase. Here Nt ¼ 4. The vertical solid line
shows the position of the mobility edge, vertical dashed lines
indicate the corresponding error band. In the bottom panel,
horizontal dotted lines mark the values α ¼ 0, corresponding
to localized modes, and α ¼ 3, corresponding to totally delocal-
ized modes.

FIG. 9. As in Fig. 8, but at β ¼ 2.1 and κ ¼ 1.0 in the Higgs
phase.
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that these modes are delocalized. The point where this
starts to happen is consistent with the mobility edge,
determined below in Sec. IV B using spectral statistics,
and marked in these plots by a solid vertical line (with an
error band shown with dashed lines). The localization
properties of low and bulk modes in the deconfined and in
the Higgs phase are made quantitative in the bottom
panels of Figs. 8 and 9, where we show their fractal
dimension. For low modes this is zero within errors. Near
the mobility edge our estimates for α increase towards 3,
which they almost reach at the upper end of the available
spectral range. The rise should become steeper when
using pairs of larger volumes, leading to a jump from 0 to
3 at the mobility edge in the infinite-volume limit. Such a
tendency is visible in the Higgs phase. Our results are also
consistent with modes at the mobility edge displaying
critical localization properties, with a fractal dimension
between 1 and 2.

The nontrivial multifractal properties of the eigenmodes
at the mobility edge are made evident in Fig. 10, where we
show the ratio

IPR2ðλ; NsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IPR3ðλ; NsÞ

p ∼ N−ðD2ðλÞ−D3ðλÞÞ
s ; ð34Þ

where the generalized IPRs have been defined in Eq. (14).
This quantity tends to a constant both in the localized
(Dq ¼ 0) and in the delocalized regime (Dq ¼ 3), while it
has a nontrivial volume scaling for modes displaying
multifractality, i.e., with q-dependent Dq. This is expected
to be a feature of the critical modes found at the mobility
edge. This point in the spectrum is indeed characterized by
a nontrivial volume scaling of the ratio in Eq. (34), which
also reaches its minimum in the vicinity of the mobil-
ity edge.
Comparing results in the confined and in the Higgs

phase, that lie on the same line at constant κ near the
transition, one sees that the rapid change in the localization
properties of the low modes takes place precisely in the
crossover region. This issue is studied in more detail below
in Sec. IV C.

B. Eigenvalue observables and mobility edge

We now discuss eigenvalue observables, starting from
the spectral density, Eq. (17), shown in Fig. 11. In the
confined phase (top panel) the spectral density is practically
constant in the lowest bins (except for the very lowest,
which is depleted due to the smallness of the lattice
volume), and grows as one moves towards the bulk of
the spectrum. If we were in the chiral limit of massless
fermions, a nonzero spectral density near the origin would
indicate the spontaneous breaking of chiral symmetry [11].
Being in the opposite limit of infinitely massive fermions,
we can speak of spontaneous chiral symmetry breaking
only in a loose sense. In the deconfined and in the Higgs
phase (bottom panels) we see instead that the spectral
density is close to zero for near-zero modes, corresponding
(again, loosely speaking) to the restoration of chiral
symmetry. As we increase λ the spectral density increases,
and does so faster as one approaches the mobility edge.
However, no sign of critical behavior is visible along the
spectrum.
We now move on to discuss the spectral statistic Is0 ,

Eq. (19), for the low modes in the three different phases of
the system. To estimate this quantity numerically we
unfolded the spectrum, averaging then Is0 in small spectral
bins and over gauge configurations. More precisely, we
defined the unfolded spacings using Eq. (15), using for
hλlþ1 − λliλ the average level spacing found in a given
spectral bin, including all pairs of eigenvalues for which the
smaller one fell in the bin.
In Fig. 12 we show Is0 in the confined phase. As

expected, Is0 is compatible with the value predicted by

FIG. 10. Ratio of generalized IPRs, Eq. (34), at β ¼ 2.6 and
κ ¼ 0.3 in the deconfined phase (top panel), and at β ¼ 2.1 and
κ ¼ 1.0 in the Higgs phase (bottom panel). The vertical solid line
shows the position of the mobility edge, vertical dashed lines
indicate the corresponding error band. A nontrivial volume
scaling indicates nontrivial multifractal properties of the eigenm-
odes at the mobility edge.
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RMT in the whole available spectral range for both
volumes, further confirming that these modes are delocal-
ized. In Figs. 13 and 14 we show the value of Is0 in the
deconfined and in the Higgs phase. For modes near the
origin Is0 approaches the value expected for Poisson
statistics as we increase the volume, signaling that these
are localized modes. For higher modes the value of Is0

tends instead to the RMT prediction as the volume
increases, showing that modes are delocalized in this
spectral region. Between these two regimes, we can find
the mobility edge λc as the point where Is0 is scale-invariant
and the curves cross each other.
To find λc and the critical value Is0;c of the spectral

statistic we interpolated the numerical data with natural
cubic splines, and determined the crossing point for the
various pairs of system sizes using Cardano’s formula. The
statistical error on each determination of λc and Is0;c

FIG. 12. The integrated unfolded level spacing distribution Is0 ,
Eq. (19), at β ¼ 1.9 and κ ¼ 1.0 in the confined phase. Here
Nt ¼ 4. The horizontal dotted line shows the value of Is0
expected for RMT statistics.

FIG. 13. The integrated unfolded level spacing distribution Is0 ,
Eq. (19), at β ¼ 2.6 and κ ¼ 0.3 in the deconfined phase. Here
Nt ¼ 4. The upper and lower horizontal dotted lines show the
value of Is0 expected for Poisson statistics and for RMT statistics,
respectively. The vertical solid and dashed lines indicate the
position and the error band of the mobility edge. The horizontal
solid and dashed lines correspond to the estimate for the critical
value Is0;c of Is0 at the mobility edge and its error band.

FIG. 11. The spectral density at β ¼ 1.9 and κ ¼ 1.0 in the
confined phase (top panel; here Ns ¼ 20), at β ¼ 2.6 and κ ¼ 0.3
in the deconfined phase (center panel; here Ns ¼ 32), and at β ¼
2.1 and κ ¼ 1.0 in the Higgs phase (bottom panel; here Ns ¼ 32).
In all plots Nt ¼ 4.

LOCALIZATION OF DIRAC MODES IN THE SU(2) HIGGS … PHYS. REV. D 108, 114508 (2023)

114508-13



originating in the numerical uncertainty on Is0 in the
various bins is estimated by obtaining the interpolating
splines and their crossing point for a set of synthetic data,
generating 100 datasets by drawing for each bin a number
from a Gaussian distribution with mean equal to the
average Is0 in the bin and variance equal to the square
of the corresponding error. The systematic errors on λc and
Is0;c due to finite-size effects are estimated as the variance
of the set of values for the crossing point and corresponding
value of Is0 obtained from all the pairs of volumes. We
finally estimated the mobility edge and the critical Is0 as
those obtained from the crossing point of the biggest volume
pair (Ns ¼ 28, 32), as it should be the closest to the actual
value in the infinite-volume limit, and the corresponding
error by adding quadratically its statistical error with the
finite-size systematic error discussed above. The total error
is largely dominated by the finite-size contribution. We did
this separately for the configurations in the deconfined and
in the Higgs phase. The results for λc and Is0;c are reported in
Table II, and shown in Figs. 13 and 14 as solid lines, with
dashed lines marking the corresponding error bands. The
two determinations of Is0;c, obtained in the deconfined
and in the Higgs phase, agree within errors. Despite the
uncertainty on Is0;c being 10–15%, we could determine λc
with a 1–2% uncertainty thanks to the steepness of Is0 near
the mobility edge.

C. β and κ dependence of the mobility edge

Having obtained estimates of Is0;c we can now use them
to efficiently determine λc throughout the phase diagram
using a single lattice volume at each point, and looking for
the point in the spectrum where Is0 takes the value Is0;c. We
use again natural cubic splines to interpolate the numerical
data, using the more precise determination of Is0;c obtained
in the deconfined phase and generating synthetic data as
discussed above to estimate the statistical error. To estimate
the magnitude of finite size effects, we determined also the
crossing points λc;� of Is0 with Is0;c � δIs0;c, with δIs0;c the
uncertainty on Is0;c. This is meant to determine just how
much the crossing point of Is0 may change with the volume,
as the error band on Is0;c is determined by the fluctuations
of the crossing point of the various pairs of volumes used to
find the mobility edge and the critical statistics in Sec. IV B,
and has nothing to do with the fact that Is0;c is not known
exactly. As explained in Sec. II B, one could in fact use any
value intermediate between the RMT and the Poisson
expectations to give an estimate of the mobility edge in
a finite volume, and this would converge to the correct
value in the thermodynamic limit.
We can then study how λc depends on κ and β. In Fig. 15

we show how λc changes in the deconfined phase as one
decreases β towards the confined phase at fixed κ. We
expect that the mobility edge disappears as we enter the
confined phase and the Polyakov loop loses its strong
ordering. To estimate the value βlocðκÞ of β where this
happens we fitted our results with a power-law function,

λcðβÞ ¼ A · ðβ − βlocÞB; ð35Þ

FIG. 14. As in Fig. 13, but at β ¼ 2.1 and κ ¼ 1.0 in the Higgs
phase. Here Nt ¼ 4.

TABLE II. Mobility edge and critical value of Is0 estimated at
two points of the phase diagram, one in the deconfined and one in
the Higgs phase.

β κ Phase λc Is0;c

2.6 0.3 Deconfined 0.2493(20) 0.164(16)
2.1 1.0 Higgs 0.1367(24) 0.177(26)

FIG. 15. The dependence of the mobility edge on β in the
deconfined phase on the line at constant κ ¼ 0.3. The solid line is
a power-law fit, Eq. (35), to the numerical data; the band
corresponds to the finite-size systematic uncertainty discussed
in the text. The point where the mobility edge vanishes is
estimated at βloc ¼ 2.2997ð57Þ, in the crossover region between
the confined and deconfined phases, see Fig. 2 (bottom).
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using the MINUIT library [58] to minimize the χ2,
computed using only the statistical errors on λc. We then
repeated the fit using λc�ðβÞ to find the corresponding
βloc� where they extrapolate to zero, and used these to
estimate the systematic uncertainty due to finite-size
effects as 1

2
jβlocþ − βloc−j. We obtained for the critical

value βlocð0.3Þ ¼ 2.2997ð22Þstatð53Þsyst ¼ 2.2997ð57Þ,
where the total error is the sum in quadrature of the
statistical error from the fit and of the systematic error.
The other fit parameters and the χ2 per degree of freedom,
χ2=d:o:f. ¼ χ2=ðndata − nparametersÞ, are reported in
Table III. The critical point is shown also in Fig. 2 (bottom),
where we see that the vanishing of the mobility edge
matches well with the crossover between the phases.
In Fig. 16 we show how λc changes in the Higgs phase as

one decreases β towards the confined phase at fixed κ.
Again, we expect the mobility edge to disappear at the
crossover. For the critical βlocðκÞ we find βlocð1.0Þ ¼
2.0101ð25Þstatð13Þsyst ¼ 2.0101ð28Þ, again from a fit with
a power law, Eq. (35), using statistical errors only (see

Table III for the other fit parameters), and estimating
systematic effects by fitting λc�, as discussed above. This
is shown also in Fig. 2 (center), where one sees that the
vanishing of λc takes place again in the crossover region.
Instead of extrapolating in β, one could in principle

explore the crossover region directly without particular
problems, as there is no critical slowing down taking place
there. However, our extrapolations convincingly show that
λc will be close to zero near the crossover to the confined
phase. In the near-zero region the spectral density is low,
and the effects of the approximate taste symmetry of
staggered fermions on the spectrum is prominent. These
effects consist in the formation of nearly degenerate
multiplets of eigenvalues that distort the spectral statistics
away from the expected universal behavior (see Ref. [4]),
making our method unreliable. To cure this problem one
needs to make the lattice volume large enough, so that the
size of the would-be multiplets (which is controlled by the
lattice spacing) becomes larger than the typical level
spacing (which is controlled by the inverse lattice volume),
and the approximate taste symmetry does not affect the
short-range spectral statistics. This is numerically expen-
sive, and we have preferred to adopt here a computationally
less intensive method, leaving the direct investigation of the
crossover region to future work.
The third case we examined is the transition from the

Higgs phase to the deconfined phase as we decrease κ at
fixed β. This is shown in Fig. 17. One can see that at first λc
decreases quickly with κ, but below a critical value κlocðβÞ
it becomes practically constant. The critical value is defined
here as the point where the behavior changes from

FIG. 16. The dependence of the mobility edge on β in the
Higgs phase on the line at constant κ ¼ 1.0. The solid line is a
power-law fit, Eq. (35), to the numerical data; the band corre-
sponds to the finite-size systematic uncertainty discussed in the
text. The point where the mobility edge vanishes is estimated at
βloc ¼ 2.0101ð28Þ, in the crossover region between the confined
and Higgs phases, see Fig. 2 (center).

FIG. 17. The dependence of the mobility edge on κ on the line
at constant β ¼ 2.6 in the deconfined and Higgs phases. The solid
line is a fit to the data with Eq. (36); the band corresponds to the
finite-size systematic uncertainty discussed in the text. A change
of behavior is found at κloc ¼ 0.7303ð59Þ in the crossover region
between the two phases, see Fig. 2 (top), marked here by a
vertical solid line, with dashed lines giving the corresponding
error band.

TABLE III. Parameters of a best fit of the β dependence of the
mobility edge in the deconfined (κ ¼ 0.3) and Higgs (κ ¼ 1.0)
phases, with the fitting function in Eq. (35). Only statistical errors
are reported.

Deconfined Higgs

βloc 2.2997(22) 2.0101(25)
A 0.3836(17) 0.3851(14)
B 0.3592(54) 0.4344(59)
χ2=d.o.f. 1.48 1.64
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approximately constant to approximately linear, as
obtained by fitting with the following function,

λcðκÞ ¼ a · ð1 − σðd · ðκ − κlocÞÞÞ
þ ðbκ þ cÞσðd · ðκ − κlocÞÞ; ð36Þ

where σðxÞ ¼ 1=ð1þ e−xÞ is the sigmoid function.
Following the same procedure discussed above to
estimate errors, we found κlocð2.6Þ¼0.7303ð57Þstatð17Þsyst¼
0.7303ð59Þ for the critical point (see Table IV for the other
fit parameters). As shown in Fig. 2 (top), also in this case
the critical value matches well with the position of the
crossover. Notice that here the critical point is not as
sharply defined as in the previous two cases, as it simply
corresponds to a change in the κ dependence of the mobility
edge, rather than its very appearance. However, it is
possible that the change in the behavior of λcðκÞ becomes
singular in the infinite-volume limit, e.g., due to a dis-
continuity in its derivative. If so, one would find a sharply
defined critical point for the geometric transition also in this
case. At the present stage this is only speculation, and a
more careful determination of the mobility edge is needed
to test this possibility, either by a proper finite-size scaling
analysis, or by checking the volume dependence of the
crossing point of Is0 with Is0;c.
It is interesting to compare the estimates of βloc and κloc

obtained from eigenvalue observables to similar estimates
obtained from eigenvector observables. In particular, if λc
vanishes continuously at βloc, then in the thermodynamic
limit the localization length of the low modes should
correspondingly diverge. We have then looked at the size
of the low modes averaged over the lowest half of the
localized spectral region,

NtV · hPRiλ<λc
2
¼ 1

N ðλc
2
Þ

Z λc
2

0

dλρðλÞNtV · PRðλ; NsÞ;

N ðλ0Þ ¼
Z

λ0

0

dλρðλÞ: ð37Þ

In Fig. 18 we show this quantity as a function of β for
constant κ ¼ 0.3 in the deconfined phase (top panel) and
κ ¼ 1.0 in the Higgs phase (center panel). This quantity

does indeed grow large as one approaches the confined
phase. Fits with a power-law function,

NtV · hPRiλ<λc
2
¼ a · ðβ − βlocÞ−b; ð38Þ

TABLE IV. Parameters of a best fit of the κ dependence of the
mobility edge in the deconfined and Higgs phases at β ¼ 2.6,
with the fitting function in Eq. (36). Only statistical errors are
reported.

κloc 0.7303(56)
a 0.24915(13)
b 0.1185(53)
c 0.1874(52)
d 26.4(2.0)
χ2=d.o.f. 2.05

FIG. 18. Mode size averaged up to λc=2, Eq. (37), at κ ¼ 0.3 in
the deconfined phase (top panel) and at κ ¼ 1.0 in the Higgs
phase (center panel), as a function of β, and at β ¼ 2.6 across the
transition from the deconfined to the Higgs phase (bottom panel),
as a function of κ. In all plots Ns ¼ 20 and Nt ¼ 4. The solid line
in the top and center panels is a fit with a power-law function. The
vertical and dashed lines in the bottom panel mark the critical
value κloc and the corresponding error band [see after Eq. (36)].
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yield βloc ¼ 2.3318ð15Þ in the deconfined phase, and
βloc ¼ 2.0499ð92Þ in the Higgs phase, both in the crossover
region, and in reasonable agreement with the determina-
tions based on the extrapolation of the mobility edge. Here
one should take into account that the functional form
Eq. (38) is not fully justified, as the mode size cannot
diverge in a finite volume, and there is no reason to assume
that the mode size goes to zero at large β. Nonetheless, one
obtains decent fits (see the resulting fit parameters and χ2

in Table V); adding a constant term makes them worse. On
top of this, the error estimates do not include any
uncertainty due to finite-size effects, which are large near
βloc. For completeness, in the bottom panel of Fig. 18 we
show NtV · hPRiλ<λc

2
as a function of κ at constant β ¼ 2.6

across the two phases. Here the data indicate a finite mode
size at all κ, with a change from a constant to a steadily
decreasing trend taking place at the crossover between the
deconfined and the Higgs phase, showing that localized
modes shrink rapidly as one moves deeper in the Higgs
phase and the Polyakov-loop expectation value increases
(see Fig. 1).

D. Correlation with bosonic observables and
sea/island mechanism

We now proceed to discuss our results on the correlation
of staggered eigenmodes with the gauge and Higgs fields.
To this end, the most informative quantities are the centered
and normalized observables Û, P̂, and Ĝ, defined in
Eq. (21), that take into account the width of the distribution
of the relevant bosonic observables. Our results for these
quantities are shown in Figs. 19–21. The statistical error on
the numerical estimate of these quantities is obtained by
first determining the jackknife error on U, P, and G, and
correspondingly on hUi, hPi, hGi and on ðδUÞ2, ðδPÞ2,
ðδGÞ2, followed by linear error propagation. Correlations
with Polyakov-loop and plaquette fluctuations are always
negative, showing that low modes prefer locations where
these quantities fluctuate to values below their average.
Correlations with gauge-Higgs coupling term fluctuations
are again negative in the confined and in the Higgs phase,
while they are essentially compatible with zero in the
deconfined phase.
The correlation of low modes with Polyakov-loop fluc-

tuations is shown in Fig. 19. In the confined phase this is

small but significant, and decreasing very little inmagnitude
as one goes up in the spectral region that we explored. The
strength of this correlation is considerably larger in the
Higgs phase, and even larger in the deconfined phase. Since
Polyakov-loop fluctuations are typically localized in these
phases, this increased correlation is possible only if the low

TABLE V. Parameters of a best fit of the β dependence of the
average size of the lowest modes, hNtV · PRiλ<λc

2
, Eq. (37), with

the fitting function in Eq. (38).

Deconfined Higgs

βloc 2.3318(15) 2.0499(92)
a 67.2(2.1) 52.0(2.9)
b 0.501(17) 0.424(43)
χ2=d.o.f. 1.96 0.34

FIG. 19. Polyakov loop weighted by Dirac modes, centered to
its average and rescaled by the square root of its susceptibility,
Eq. (21), at β ¼ 1.9 and κ ¼ 1.0 in the confined phase (top panel;
here Ns ¼ 20), at β ¼ 2.6 and κ ¼ 0.3 in the deconfined phase
(center panel; here Ns ¼ 32), and at β ¼ 2.1 and κ ¼ 1.0 in the
Higgs phase (bottom panel; here Ns ¼ 32). In all plots Nt ¼ 4. In
the center and bottom panels the solid line shows the value of the
mobility edge, and the dashed lines indicate the corresponding
error band.
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modes tend to localize on the corresponding locations. In
both the deconfined and the Higgs phase one sees also a
more rapid decrease in the magnitude of the correlation as
one moves up in the spectrum. This, however, remains
stronger than for the lowestmodes in the confined phase also
above the mobility edge.

The correlation of low modes with plaquette fluctuations
is shown in Fig. 20. Also in this case a significant
correlation is found in all three phases, generally stronger
(and comparable in size) in the deconfined and Higgs
phases than in the confined phase. Compared to the
correlation with Polyakov-loop fluctuations, one finds a
similar magnitude in the deconfined phase, and a larger

FIG. 20. Plaquette weighted by Dirac modes, centered to its
average and rescaled by the square root of its susceptibility,
Eq. (21), at β ¼ 1.9 and κ ¼ 1.0 in the confined phase (top panel;
here Ns ¼ 20), at β ¼ 2.6 and κ ¼ 0.3 in the deconfined phase
(center panel; here Ns ¼ 32), and at β ¼ 2.1 and κ ¼ 1.0 in the
Higgs phase (bottom panel; here Ns ¼ 32). In all plots Nt ¼ 4. In
the center and bottom panels the solid line shows the value of the
mobility edge, and the dashed lines indicate the corresponding
error band.

FIG. 21. Gauge-Higgs coupling term weighted by Dirac modes,
centered to its average and rescaled by the square root of its
susceptibility, Eq. (21), at β ¼ 1.9 and κ ¼ 1.0 in the confined
phase (top panel; here Ns ¼ 20), at β ¼ 2.6 and κ ¼ 0.3 in the
deconfined phase (center panel; here Ns ¼ 32), and at β ¼ 2.1
and κ ¼ 1.0 in the Higgs phase (bottom panel; here Ns ¼ 32). In
all plots Nt ¼ 4. In the center and bottom panels the solid line
shows the value of the mobility edge, and the dashed lines
indicate the corresponding error band.
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magnitude in the Higgs phase. Since also plaquette fluc-
tuations are typically localized, this means that they are at
least as relevant as Polyakov-loop fluctuations for the
localization of low modes. A clear upturn is visible for
the lowest modes in the deconfined phase and, to a much
smaller extent, also in the Higgs phase. We do not have an
explanation for this. Even though the density of near-zero
modes is very small in both cases, leading to large
fluctuations, this upturn might be significant, as the mode
size displays a similar behavior (see Figs. 8 and 9), with an
increase in size for the lowest modes. (The downturn seen
in Is0 , Figs. 13 and 14, may also be related, but could also
be a finite-size artifact caused by the low and rapidly
changing density of modes, that makes our unfolding
procedure not fully reliable in that spectral region.) The
same upturn in the mode size is observed also in QCD [4],
where it can be explained by the topological origin of the
near-zero modes [59,60]. Such modes are in fact expected
to originate in the mixing of the localized zero modes
associated with topological lumps in the gauge configura-
tion at finite temperature, so extending over more than one
such lump. While they fail to become delocalized due to the
low density of lumps at high temperature, they nonetheless
should display a larger size than localized modes not of
topological origin. This picture is consistent with the strong
correlation between localized near-zero modes and the
local topology of the gauge configuration, demonstrated in
Ref. [7], and with the lumpy nature of near-zero Dirac
modes in high-temperature QCD, demonstrated in
Ref. [61]. A similar mechanism could explain the larger
size of the lowest modes observed here. Interestingly, no
upturn in the size of the lowest modes is observed in (2þ 1)
dimensional pure SU(3) gauge theory [24] or in (2þ 1)
dimensional discrete gauge theories [16,26], where the
topology of gauge field configurations is trivial.
Finally, the correlation of low modes with fluctuations of

the gauge-Higgs coupling term is shown in Fig. 21. A very
mild correlation is visible in the confined phase, no
significant correlation is found in the deconfined phase,
and a clear but small correlation is found in the Higgs phase,
weaker than the correlation with Polyakov-loop and pla-
quette fluctuations. This leads us to conclude that these
fluctuations aremuch less relevant to low-mode localization.
We then studied the sea/island mechanism directly by

looking at the correlation of the staggered eigenmodes with
the local fluctuations of the hopping term in the Dirac-
Anderson Hamiltonian, measured by the quantity A of
Eq. (30). To this end we analyzed 450 configurations with
Ns ¼ 16 in the confined phase, and 1400 configurations
with Ns ¼ 20 in the deconfined and Higgs phases, with
Nt ¼ 4 in both cases. The average value of A drops
substantially as one moves from the confined to the
deconfined or to the Higgs phase: for the given lattice
sizes (but this quantity is not expected to show a strong
volume dependence), hAi ¼ 0.2761ð11Þ at β ¼ 1.9,

κ ¼ 1.0 in the confined phase, hAi ¼ 0.15828ð64Þ at
β ¼ 2.6, κ ¼ 0.3 in the deconfined phase, and hAi ¼
0.20518ð86Þ at β ¼ 2.1, κ ¼ 1.0 in the Higgs phase.
This is expected to happen, as a consequence of the
ordering of the Polyakov loop and the resulting strong
correlation in the temporal direction [16].
The centered and normalized quantity Â defined in

Eq. (32) is shown in Fig. 22. This quantity correlates

FIG. 22. The quantity Â, Eq. (32), measuring the correlation of
staggered modes with fluctuations of Aðx⃗Þ, Eq. (31), at β ¼ 1.9
and κ ¼ 1.0 in the confined phase (top panel; here Ns ¼ 16), at
β ¼ 2.6 and κ ¼ 0.3 in the deconfined phase (center panel; here
Ns ¼ 20), and at β ¼ 2.1 and κ ¼ 1.0 in the Higgs phase (bottom
panel; here Ns ¼ 20). In all plots Nt ¼ 4. In the center and
bottom panels the solid line shows the value of the mobility edge,
and the dashed lines indicate the corresponding error band.
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positively with the spatial density of low modes in all
phases, in agreement with the refined sea/islands picture of
Ref. [16]. In the confined phase the magnitude of the
correlation with fluctuations in this quantity is comparable
with the correlation with plaquette fluctuations, and inde-
pendent of the position in the spectrum in the available
region, within errors. In the Higgs and, especially, in the
deconfined phase this correlation is much stronger than
those with Polyakov-loop and with plaquette fluctuations.
Although it remains strong also at the beginning of the bulk
region, it reduces by about a third when going from the
lowest modes to the first delocalized modes right above the
mobility edge. Since fluctuations of Aðx⃗Þ are typically
localized in the deconfined and Higgs phases, this result
strongly suggests that they are the ones mainly responsible
for trapping the eigenmodes in space.

V. CONCLUSIONS

A strong connection has emerged in recent years
between the deconfinement phase transition in gauge
theories with or without fermionic matter, and the change
in the localization properties of low Dirac modes [3–10,12–
16,18–29]. In this paper we extended this line of research
by studying the lattice SU(2) Higgs model with a Higgs
field of fixed length [36–42] at finite temperature, probed
with external static fermions. The extension is twofold. On
the one hand, this model has dynamical scalar rather than
fermionic matter: while one still expects localized modes in
the deconfined phase of the model, as the nature of the
dynamical matter does not affect the general argument for
localization [10,12–16], it is nonetheless useful to verify
this explicitly. On the other hand, and more interestingly,
the two-parameter phase diagram of this model displays a
third phase besides the confined and deconfined phases,
i.e., the Higgs phase: one can then check whether or not
modes are localized in this phase, and if so whether the
onset of localization is related in any way to the thermo-
dynamic transition.
A survey of the phase diagram shows the expected

tripartition into a confined, a deconfined, and a Higgs
phase, separated by analytic crossovers [42]. The decon-
fined and the Higgs phases are distinguished from the
confined phase by a much larger expectation value of the
Polyakov loop, and from each other by the expectation
value of the Higgs-coupling term, much larger in the
Higgs phase than in the deconfined and in the confined
phases. Since the Polyakov loop is strongly ordered, one
expects localization of low Dirac modes to take place in
both phases [10,12–16].
By means of numerical simulations, we have demon-

strated that localized modes are indeed present both in the
deconfined and in the Higgs phase. In both cases, the
mobility edge separating localized and delocalized modes

in the spectrum decreases as one moves towards the
confined phase, and extrapolates to zero as one reaches
the crossover region. At the transition between the decon-
fined and the Higgs phase, instead, the dependence of the
mobility edge on the gauge-Higgs coupling constant
changes from almost constant to steadily increasing.
These findings provide further support to the universal
nature of the sea/islands picture of localization [10,12–16]
in a previously unexplored setup in the presence of
dynamical scalar matter.
We have then studied the sea/islands mechanism in more

detail, measuring the correlation between localized modes
and fluctuations of the gauge and Higgs fields. We found a
strong correlation with Polyakov-loop and plaquette fluc-
tuations both in the deconfined and in the Higgs phase, and
a mild but significant correlation with fluctuations of the
gauge-Higgs coupling term only in the Higgs phase.
Moreover, we found in both phases a very strong corre-
lation (stronger than that with Polyakov-loop or plaquette
fluctuations) with the type of gauge-field fluctuations
identified in Ref. [16] as the most relevant to localization.
This provides further evidence for the validity of the refined
sea/islands picture proposed in Ref. [16].
A straightforward extension of this work would be the

direct study of the region near the crossover to the confined
phase, where larger volumes are required to apply our
method than the ones employed here, in order to avoid the
distortion effects of the approximate taste symmetry of
staggered fermions on the spectral statistics [4]. Another
possible extension would be a study of the low β, large κ
corner of the phase diagram, where the crossover becomes
very weak, in order to check if the line of “geometric”
transitions where the mobility edge in the Dirac spectrum
vanishes extends all the way to β ¼ 0, or if instead it has an
endpoint. This is interesting also in connection with the
“spin glass” approach of Ref. [44]: since in that region of
parameter space this predicts a transition line clearly
distinct from the one found with more traditional
approaches based on gauge fixing, one would like to
compare this line with the one defined by the vanishing
of the mobility edge (if the latter exists). A different
direction would be the study of the localization properties
of the eigenmodes of the covariant Laplacian, extending to
finite temperature and dynamical scalar matter the work of
Refs. [62,63].
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