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We construct the most general disorder operator for SU(N) lattice gauge theory in (2þ 1) dimensions by
using exact duality transformations. These disorder operators, defined on the plaquettes and characterized
by (N − 1) angles, are the creation and annihilation or the shift operators for the SU(N) magnetic vortices
carrying ðN − 1Þ types of magnetic fluxes. They are dual to the SU(N) Wilson loop order operators which,
on the other hand, are the creation-annihilation or shift operators for the ðN − 1Þ electric fluxes on their
loops. The new order-disorder algebra involving SU(N) Wigner D matrices is derived and discussed. The
ZNð∈SUðNÞÞ ’t Hooft operator is obtained as a special limit. In this limit we also recover the standard
Wilson-’t Hooft order-disorder algebra. The partition function representation and the free energies of these
SU(N) magnetic vortices are discussed.
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I. INTRODUCTION

Disorder operators, introduced originally in 1971 by
Kadanoff and Ceva in the context of the two-dimensional
Ising model [1], have been widely discussed and found
useful in the studies of phase structures of spin models as
well as Abelian and non-Abelian gauge theories [2–13].
They also play a pivotal role in differentiating the topo-
logical phases of matter [3] and in the boson-fermion
transmutation through the “order⊗ disorder” combinations
[14]. It is generally known that the duality transformations
in spin models and gauge theories naturally lead to these
disorder operators as the fundamental operators describing
the dual interactions. Under duality, the interacting and the
noninteracting terms also interchange their roles leading to
the inversion of the coupling constant in the dual inter-
actions. The Kramers-Wannier duality in (1þ 1) dimen-
sional Ising spin model [2] and the Wegner duality in
(2þ 1) dimensional Z2 gauge theory are the simplest
examples which illustrate the above facts [3–6]. In the
(1þ 1) dimensional Ising model the disorder operators are
simply the dual spin operators which describe the dual
interactions with inverse coupling. They also create Z2

kinks which are responsible for disordering the ground
state leading to the loss of magnetization above the Curie
temperature.
In Abelian and non-Abelian gauge theories the dis-

order operators acquire additional meaning of the dual
electric potentials as the duality transformations also
interchange the roles of the electric and magnetic degrees
of freedom [3–6]. Again, the Wegner dualities in the
simplest Z2 Ising gauge theory in (2þ 1) as well as in
(3þ 1) dimensions, clearly illustrate this additional rich
feature [3–6]. More explicitly, in (2þ 1)-dimension Z2

lattice gauge theory the disorder operators are the dual-spin
or dual-Z2 electric potential operators [4,5] which describe
the interactions in the dual formulation with inverse
coupling. Being conjugate to the Z2 magnetic fields, they
also create Z2 magnetic vortices. These vortices, in turn,
magnetically disorder the ground states in the confining
phase [4] and are thus responsible for the confinement-
deconfinement phase transition.
In general, the order (disorder) operators are related to

the potentials (dual potentials) which are conjugate to
electric (magnetic) fields, respectively. They can therefore
be interpreted as the “translation operators” for the
electric and magnetic fluxes, respectively. Moreover, the
order-disorder algebra is simply the canonical commuta-
tion relations between the dual conjugate operators, i.e.,
between the magnetic flux and the electric potential
operators [see the relations (1)–(3)]. In SU(3) lattice
gauge theory or QCD the color confinement can be viewed
as a consequence of magnetically disordered ground
state leading to area law for the Wilson loops. Like the
various cases discussed above, the magnetic disorder in
QCD is produced by the magnetic vortices, which in turn
are created by the SU(3) disorder operators leading to
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disordered ground state. A systematic study of these
disorder operators in SU(2), SU(3), and then SU(N) lattice
gauge theories, using exact duality transformations, is the
subject of this work.
In 1978 Mandelstam tried to construct the SU(N)

disorder operator in the continuum using the dual electric
non abelian vector potentials [7,8]. In 1978 ’t Hooft
emphasized the role of disorder operators in the context
of quark confinement in SU(N) gauge theory [8]. The
’t Hooft disorder operator creates magnetic fluxes which
belong to the center ZN of the gauge group SU(N). They
have been extensively studied in the past analytically as
well as using Monte Carlo techniques in the weak-coupling
continuum limit [9–11].
It is known that the ’t Hooft loop disorder operators are

dual to the Wilson loop order operators in a limited sense
[10,11] as they create only the center or ZN magnetic
fluxes. In this paper we construct the most general disorder
operator for SU(N) lattice gauge theory in (2þ 1) dimen-
sions by exploiting the exact duality transformations
[15,16]. These disorder operators Σ½θ⃗�ðpÞ are defined on

plaquettes p as

Σ�
½θ⃗�ðpÞ ¼ exp iðθ⃗ðpÞ · E⃗�ðpÞÞ: ð1Þ

In (1), E⃗�ðpÞ are the SU(N) “electric scalar potentials” on
the plaquette p. They are related to the SU(N) electric fields
through the exact duality transformations (12) in Sec. III
(also see Fig. 2). The SU(N) disorder operator Σ�

½θ⃗�ðpÞ in (1)
is characterized by a set of ðN − 1Þ angles which are
denoted by ½θ⃗�≡ ðθ1ðpÞ; θ2ðpÞ;…; θN−1ðpÞÞ on each pla-
quette. In this work, like the Kramers-Wannier spin and
Wegner gauge dualities discussed earlier, we show that the
exact SU(N) duality transformations naturally lead to
Σ�
½θ�ðpÞ in (1). We further show that they are the creation

and annihilation operators for the SU(N) magnetic vortices
on the spatial plaquettes.
The Wilson loop order operators W ½j⃗�ðCÞ, on the other

hand, are defined as a path-ordered product of the link
holonomies along a directed loop C,

W ½j⃗�ðCÞ ¼
Y
l∈ C

U½j⃗�ðlÞ: ð2Þ

In (2), U½j⃗�ðlÞ are the SU(N) link holonomies or the
“magnetic vector potentials” in a general ½j⃗� representation
of SU(N). Note that the SU(N) order operator W ½j⃗�ðCÞ is
characterized by a set of ðN − 1Þ integers on loop C and
½j⃗�≡ ðj1; j2;…; jN−1Þ. The representation index ½j⃗� denotes
the ðN − 1Þ eigenvalues ðj1; j2;…; jN−1Þ of the ðN − 1Þ
SU(N) Casimir operators. These Casimir operators (con-
structed purely out of the electric field operators) acting on
the SU(N) electric basis measure the net electric fluxes on

the loop states created by the loop operator Tr ðW ½j⃗�ðCÞÞ. In
this work we also obtain the SU(N) order-disorder oper-
ators algebra:

Σ½θ⃗�ðpÞðW ½j⃗�ðCÞÞαβΣ−1
½θ⃗� ðpÞ

¼
( ðD½j⃗�ðθ⃗ÞW ½j⃗�ðCÞÞαβ; if p inside C

ðW ½j⃗�ðCÞÞαβ; otherwise:
ð3Þ

In (3),D½j⃗�ðθ⃗Þ denotes the SU(N)-Wigner rotation matrix in
the ½j⃗� representation. If the angles ½θ⃗� correspond to the
centre element z∈ZN with zN ¼ 1, then using [17]

D½j⃗�ðzÞ ¼ ðzÞη½j⃗�, where η½j⃗�ð¼ 0; 1; 2 � � � ; ðN − 1ÞÞ is the
N-ality of the representation ½j⃗�, we recover the standard
’t Hooft-Wilson order-disorder algebra discussed in [8].
The plan of the paper is as follows. In Secs. II and III we

summarize the Hamiltonian framework and the SU(N)
duality transformations, respectively. These sections are
only for setting up the notations and to explain the SU(N)
duality relations which are then used directly in the
following sections. The details can be found in [15,16].
The SU(N) magnetic vortex creation and annihilation or
equivalently SU(N) disorder operators are discussed in
Sec. IV. In order to simplify the presentation, the SU(2),
SU(3), and SU(N) disorder operators are discussed one by
one in the increasing order of difficulty in Secs. IVA–IV C,
respectively. In the simplest SU(2) case, we construct the
magnetic basis in Sec. IVA 1 using the SU(2) prepotential
approach [18]. In Sec. IVA 2 we show that the SU(2)
disorder operators act as SU(2) magnetic vortex creation-
annihilation operators on the magnetic basis. The SU(2)
order-disorder algebra is discussed in Sec. IVA 3. Some of
the results in this section can also be found in [15]. We then
consider the SU(3) case in detail in Sec. IV B. As expected,
there are many new SU(3) features which are absent in the
simple SU(2) case. In particular, we emphasize the impor-
tance of the SU(3) prepotential operators representation of
the dual electric scalar potentials for constructing the
SU(3) magnetic flux basis [see (55)]. In Sec. IV C we
directly generalize these SU(3) results to the SU(N) case. In
Sec. V, we rewrite the SU(N) disorder operator in the
original Kogut-Susskind formulation. We show that they
now become non-local operators and are attached with the
invisible SU(N) Dirac strings. As expected, these unphys-
ical strings can be moved around by SU(N) gauge trans-
formations without changing their end points which specify
the locations of the SU(N) gauge invariant magnetic
vortices and antivortices. In Sec. VI we compute the path
integral expression for the SU(N) vortex-free energy.
This path integral representation should be useful for
Monte Carlo simulations and to understand the role of
these magnetic vortices and their condensation, if any, in
the color-confinement problem. It is expected that they will
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condense and disorder the vacuum state for any nonzero
coupling constant.
The prepotential operators create and annihilate the

SU(N) electric as well as the magnetic fluxes [18].
Therefore, they provide a common platform to construct
both the electric and magnetic bases in the physical loop
Hilbert space of SU(N) lattice gauge theory. In these two
dual bases we show that the order and disorder operators
have natural action of translating the electric and magnetic
fluxes respectively. These SU(N) electric and magnetic
bases and the action of the order and the disorder operators
on them are discussed in detail in Appendixes A and B,
respectively. Appendix C shows that the SU(N) Dirac
strings are unphysical.
As mentioned earlier, we work in the (2þ 1) dimension.

The notations used are as follows. The lattice sites are
denoted by ðn⃗Þ≡ ðm; nÞ and the links by l ¼ ðn⃗; îÞ where
î ¼ 1, 2 denotes unit vectors in the two spatial directions.
All the initial operators are vectors and assigned to the links
l. All the dual operators are scalars and are defined on the
plaquettes (p) of the spatial two-dimensional lattice. Many
times we will suppress the plaquette indices (p) on the dual
operators to avoid clutter.

II. HAMILTONIAN FORMULATION

In this section, we briefly discuss SU(N) Kogut-Susskind
Hamiltonian lattice gauge theory in (2þ 1) dimensions.
The Hamiltonian of SU(N) lattice gauge theory is [6,19]

H ¼
X
n⃗;î

E2ðn⃗; îÞ þ K
X
p

TrðUp þ U†
pÞ: ð4Þ

In Eq. (4), E2ðn⃗; îÞ≡PN2−1
a¼1 ðEa

�ðn⃗; îÞÞ2, Up ≡ Uðn⃗; îÞ×
Uðn⃗þ î; j⃗ÞU†ðn⃗þ ĵ; îÞU†ðn⃗; ĵÞ, and K is a coupling con-
stant. This is an electric field and magnetic-vector potential
description in which each link ðn⃗; îÞ carries an SU(N) link-
flux operator Uðn⃗; îÞ. We call Uðn⃗; îÞ the link holonomy.
Their left and right link electric fieldsEa

�ðn⃗; îÞ rotate the link
holonomies Uðn⃗; îÞ from the left and right, respectively or
equivalently satisfy the following commutation relations:

½Eaþðn⃗; îÞ; Uðn⃗; îÞαβ� ¼ −ðTaUðn⃗; îÞÞαβ;
½Ea

−ðn⃗þ î; îÞ; Uðn⃗; îÞαβ� ¼ ðUðn⃗; îÞTaÞαβ; ð5Þ

where Ta; a ¼ 1; 2;…;N2 − 1 are the generators of funda-
mental representation of SU(N). These left and right electric
fields are not independent and are related by the link
holonomy parallel transport

E−ðlÞ ¼ −U†ðlÞEþðlÞUðlÞ; ð6Þ

In (6) E�ðlÞ≡PN2−1
a¼1 Ea

�ðlÞTa. The commutation relations
(5) and Jacobi identity imply the electric fields Ea

�ðn⃗; îÞ
follow the SU(N) Lie algebra

½Eaþðn⃗; îÞ; Eb
−ðn⃗þ î; îÞ� ¼ 0;

½Ea
�ðn⃗; îÞ; Eb

�ðn⃗; îÞ� ¼ ifabcEc
�ðn⃗; îÞ: ð7Þ

Also, Eq. (6) implies that their magnitudes are equal,

E⃗2
þðn; îÞ ¼ E⃗2−ðnþ î; îÞ≡ E⃗2ðn; îÞ: ð8Þ

It is convenient to represent the independent conjugate oper-
ators on a link l by ðEþðlÞ; UαβðlÞÞ or ðE−ðlÞ; UαβðlÞÞ as
shown in Fig. 1(a). They are the initial (before duality)
electric variables representing the SU(N) electric fields EðlÞ
and their canonical conjugate magnetic vector potentials
UðlÞ on the link l. The SU(N) gauge transformations are

Uðn⃗; îÞ → Λðn⃗ÞUðn⃗; îÞΛ†ðn⃗þ îÞ;
E�ðn⃗; îÞ → Λðn⃗ÞE�ðn⃗; îÞΛ†ðn⃗Þ: ð9Þ

The generators of gauge transformation at site n⃗ are Gauss
operators defined by

Gaðn⃗Þ ¼
X2
i¼1

ðEaþðn⃗; îÞ þ Ea
−ðn⃗; îÞÞ: ð10Þ

In our earlier work [15], using canonical transforma-
tions in (2þ 1) dimensions, we solved the Gauss-law
constraints (10),

Gaðn⃗Þ ¼ 0; ∀ n⃗ ≠ ð0; 0Þ; ð11Þ

to write down the SU(N) Kogut-Susskind Hamiltonian as a
dual SU(N) spin model. We summarize the essential results
required for the present work in the next section.

III. DUALITY AND LOOPS

In our previous work [15], we obtained exact duality
transformations through a series of canonical transforma-
tions over the entire lattice in (2þ 1) dimensions. The dual
model is written in terms of the mutually independent
plaquette loops [see Fig. 1(b)] or scalar magnetic flux
operatorsWðpÞ and their conjugate electric scalar potential
E⃗ðpÞ operators satisfying (15). The advantage of iterative
canonical transformation is that the canonical commutation
relations are preserved at every stage [15] leading to the
exact canonical magnetic description at the end. Note that
the dual operators are defined on the plaquettes or dual
lattice sites while the initial Kogut-Susskind operators,
discussed in the previous section, are defined on the lattice
links. Such dual magnetic description has been useful in
the past to study compact U(1) and SU(N) lattice gauge
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theories in (2þ 1) and (3þ 1) dimension [15,16,20]. The
dual SU(N) physical and unphysical operators [15] are
summarized in the following two subsections, respectively.

A. Magnetic flux operators ðWαβðpÞ;Ea
+ ðpÞÞ

They are the physical magnetic operators which solve the
SU(N) Gauss law constraints and define the physical
Hilbert space Hphys. They represent the scalar SU(N)
magnetic fluxes ðWðpÞÞ on plaquette p and their con-
jugate electric scalar potentials E�ðpÞ. The SU(N) duality
relations are

Wðm; nÞ ¼ Tðm − 1; n − 1ÞUpðm; nÞT†ðm − 1; n − 1Þ;

Eþðm; nÞ ¼
X∞
n0¼n

S†ðm; n; n0ÞE−ðm; n0; 1̂ÞSðm; n; n0Þ: ð12Þ

The parallel transport operators Tðm; nÞ and Sðm; n; n0Þ in
(12) are required as the dual-plaquette conjugate operators
ðWðm; nÞ; Eðm; nÞÞ see only the gauge transformations
Λð0; 0Þ at the origin [see (18)] while the original Kogut-
Susskind conjugate pairs ðUðm; n; îÞ; Eaðm; n; îÞÞ have the
standard gauge transformations by Λðm; nÞ given in (9).
These parallel transports are given by [see Figs. 1(c) and 2]

Tðm; nÞ ¼
Ym
m0¼0

Uðm0; 0; 1̂Þ
Yn
n0¼0

Uðm; n0; 2̂Þ; ð13aÞ

Sðm; n; n0Þ≡ Tðm − 1; nÞUðm − 1; n; 1̂Þ

×
Yn0
h¼n

Uðm; h; 2̂Þ: ð13bÞ

Like in the Kogut-Susskind approach, the right electric
potentials are defined by

E−ðpÞ ¼ −W†ðpÞEþðpÞWðpÞ; ð14Þ

Note that Ea
−ðpÞ are attached to the initial end of plaquette

flux line WðpÞ as shown in Fig. 1(b). The dual-operator
commutation relations are [15]

½EaþðpÞ;WαβðpÞ� ¼ −ðTaWðpÞÞαβ;
½Ea

−ðpÞ;WαβðpÞ� ¼ ðWðpÞTaÞαβ: ð15Þ

The above commutation relations imply that EaþðpÞ
(Ea

−ðpÞ) rotate WαβðpÞ from left (right) and therefore are
the left (right) electric scalar potentials. They are mutually
independent and satisfy SU(N) algebra,

½EaþðpÞ; Eb
−ðpÞ� ¼ 0;

½Ea
�ðpÞ; Eb

�ðpÞ� ¼ ifabcEc
�ðpÞ: ð16Þ

Also, the relation (14) implies that their magnitudes are
equal,

E⃗þ
2ðpÞ ¼ E⃗−

2ðpÞ≡ E⃗2ðpÞ: ð17Þ

In the first two equations above we have defined E⃗�
2ðpÞ≡P

N2−1
a¼1 Ea

�ðpÞEa
�ðpÞ. The relations (14)–(17) in this (dual)

magnetic formulation are exactly analogous to the initial
relations (5)–(8), respectively in the original Kogut-
Susskind electric formulation. The dual spin or magnetic
flux operators transform as SU(N) adjoint matter field at the
origin

FIG. 1. (a) Kogut-Sussking link formulation. Link operator Uðn⃗; îÞ and its left (right) Eaþðn⃗; îÞ (Ea
−ðn⃗þ î; îÞ) electric field. Gauss law

operator at site n⃗, Gaðn⃗Þ ¼P2
i¼1½Eaþðn⃗; îÞ þ Ea

−ðn⃗; îÞ� is also shown, (b) Dual physical plaquette holonomy Wðn⃗Þ and its left (right)
Eþðn⃗Þ (E−ðn⃗Þ) electric field, (c) Unphysical string holonomy Tðm; nÞ and its left Eþðn⃗Þð¼ Gðn⃗ÞÞ and right E−ðn⃗Þ electric field.
respectively. The convention chosen for the loop (string) electric fields is that Ea−ðn⃗ÞðEa−ðn⃗ÞÞ and Eaþðn⃗ÞðEaþðn⃗ÞÞ are located at the initial,
end points of the flux loop (string). These string holonomies decouple from the physical Hilbert space.
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Wðm; nÞ → Λð0; 0ÞWðm; nÞΛ†ð0; 0Þ;
E�ðm; nÞ → Λð0; 0ÞE�ðm; nÞΛ†ð0; 0Þ: ð18Þ

The canonical transformations (12) can also be easily
inverted to give the Kogut-Susskind electic fields in terms
of the dual-electric scalar potentials [15]. These inverse
relations will not be discussed as they are not relevant for
the present work.

B. String operators ðEa− ðn⃗Þ;Tðn⃗ÞÞ
String operators are unphysical operators and represent

SU(N) gauge degrees of freedom at every lattice site away
from the origin. They are shown in Fig. 1(c),

Tðm; nÞ ¼
Ym
m0¼0

Uðm0; 0; 1̂Þ
Yn
n0¼0

Uðm; n0; 2̂Þ;

Eaþðm; nÞ ¼ Gaðm; nÞ ≃ 0: ð19Þ

Thus, all string operators Tðm; nÞ become cyclic as their
conjugate electric fields Eaþðm; nÞ turns out to be the
Gauss-law operator Gaðm; nÞ [15]. Therefore they vanish
on the physical Hilbert space Hp where the SU(N) Gauss
laws are satisfied. The string operators, being unphysical,
will not be relevant in this work and will not be considered
henceforth.

IV. DISORDER OPERATORS

As mentioned earlier, the order and disorder operators in
SU(N) lattice theory are simply the shift or the creation-
annihilation operators for the gauge invariant electric and
magnetic fluxes respectively. Note that the Wilson loop
operators W ½j⃗�ðCÞ, constructed in terms of the magnetic
vector potentials UðlÞ in (2), shift their conjugate electric
fluxes along the loop C. In this section, we construct the
gauge-invariant disorder operators which are dual to the

Wilson loop operators W ½j⃗�ðCÞ and shift the magnetic
fluxes instead. For the sake of simplicity, we first consider
SU(2) case and then generalize it to SU(3) and finally to the
SU(N) gauge group. All the algebraic details for the SU(N)
electric and magnetic basis are given in Appendixes A
and B, respectively.

A. SU(2) disorder operator

The SU(2) magnetic plaquette flux operator is

W ½j¼1
2
�ðpÞ≡ exp

i
2
ðn̂ðpÞ · σ⃗ωðpÞÞ: ð20Þ

In (20) n̂ðpÞ ¼ ðn̂1ðpÞ; n̂2ðpÞ; n̂3ðpÞÞ is the unit vector on
every plaquette p and σ⃗ð≡σ1; σ2; σ3Þ are the 3 Pauli
matrices. In the angle-axis representation:

W ½j¼1
2
�ðpÞ≡ cos

�
ωðpÞ
2

�
σ0 þ iðn̂ðpÞ · σ⃗Þ sin

�
ωðpÞ
2

�
;

n̂ðpÞ · n̂ðpÞ ¼ 1; ∀ ðpÞ: ð21Þ

In (21), σ0 is 2 × 2 unit matrix. Note that the relations (21)

implies n̂aðpÞ ¼ 1

2i sinðωðpÞ
2
ÞTrðσ

aWðpÞÞ and cosðωðpÞ
2
Þ ¼

1
2
TrW. Under global gauge transformation Λ≡ Λð0; 0Þ

in (18), ðω; n̂Þ transform as

ωðpÞ → ωðpÞ;

nðpÞ≡X3
a¼1

n̂aðpÞσa → Λð0; 0ÞnðpÞΛ†ð0; 0Þ: ð22Þ

Thus the rotation angle ωðpÞ is invariant and the axis n̂aðpÞ
transforms as a vector.
We now define two unitary operators:

Σþ
θ ðpÞ≡ exp iðn̂ðpÞ · EþðpÞθÞ;

Σ−
θ ðpÞ≡ exp iðn̂ðpÞ · E−ðpÞθÞ; ð23Þ

which are located on a plaquette p. They both are gauge
invariant because Ea

�ðpÞ and n̂ðpÞ gauge transform like
vectors as shown in (18) and (22). In other words,
½Ga;Σ�

θ ðpÞ� ¼ 0, where Ga is defined in (10). As the left
and right electric scalar potentials are related through (14),
Σ�
θ ðpÞ are not mutually independent and satisfy

Σþ
θ ðpÞΣ−

θ ðpÞ ¼ Σ−
θ ðpÞΣþ

θ ðpÞ ¼ I : ð24Þ

In (24), I denotes the unit operator in the physical Hilbert
space Hp. The identities (24) can be easily obtained by
using E−ðpÞ ¼ −Rabðn̂;ωÞEþðpÞ and Rabðn̂;ωÞn̂b ¼ n̂a,
where Rabðn̂;ωÞ ¼ 1

2
TrðσaWσbW†Þ (see [21]).

1. SU(2) prepotential operators

It is extremely convenient to use the prepotential [15,18]
representation for the dual electric potential on the pla-
quette loops to construct the electric loop (Appendix A)
as well the magnetic loop (Appendix B) basis. This sim-
plification is illustrated in Fig. 3. A further advantage is that
this simple procedure can be directly generalized to all
SU(N). We write the SU(2) dual plaquette loop electric
potentials on any plaquette p satisfying (16) as [22]

EaþðpÞ≡ a†ðpÞ σ
a

2
aðpÞ;

Ea
−ðpÞ≡ −bðpÞ σ

a

2
b†ðpÞ: ð25Þ
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In (25), a†αðpÞ and b†αðpÞ are the two mutually commuting
SU(2) doublets of harmonic-oscillator creation operators
on every plaquette loop. The standard commutation rela-
tions are

½aαðpÞ; a†βðp0Þ� ¼ δpp0δαβ;

½bαðpÞ; b†βðp0Þ� ¼ δpp0δαβ: ð26Þ

Using (26), it is easy to check that the representation (25)
satisfies (16). The constraints (17) imply that

NðpÞ≡ a†ðpÞ · aðpÞ ¼ b†ðpÞ · bðpÞ: ð27Þ
The plaquette holonomy in this representation is [18]

WαβðpÞ ¼ FðNÞ½b†αðpÞa†βðpÞ þ b̃αãβ�FðNÞ: ð28Þ

In (28), FðNÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNðpÞþ1Þ

p is the normalization factor and

x̃α ≡ ϵαβxβ. The harmonic oscillator representation (25)
implies that a†α and b†α transform like doublets from the
right and antidoublets from the left, respectively on every
plaquette (p),

½EaþðpÞ; a†αðpÞ� ¼
�
a†ðpÞ σ

a

2

�
α

;

½Ea
−ðpÞ; b†αðpÞ� ¼ −

�
σa

2
b†ðpÞ

�
α

: ð29Þ

The strong coupling vacuum on every plaquette in the dual
formulation j0ip satisfies:

Ea
�ðpÞj0ip ¼ 0; ∀p: ð30Þ

This is equivalent to demanding

aαðpÞj0ip ¼ 0; bαðpÞj0ip ¼ 0: ð31Þ

The relations (29) and (31) are useful to study the action of
SU(2) disorder operators on the magnetic basis discussed
below. Note that under SU(2) gauge transformations (18)
with Λð0; 0Þ at the origin [see Fig. 1(b)] these oscillators
transform doublets:

a†αðpÞ → a†βðpÞΛβαð0; 0Þ; ∀p;

b†αðpÞ → Λ†
αβð0; 0Þb†βðpÞ ∀p: ð32Þ

These relations are useful to construct the gauge-invariant
operators in the magnetic basis constructed in the next
section.

2. SU(2) magnetic basis

The physical meaning of the operators Σ�
θ ðpÞ is simple.

The non-Abelian electric scalar potentials Ea
�ðpÞ are

conjugate to the magnetic flux operators W
½j¼1

2
�

αβ ðpÞ.
They satisfy the canonical commutation relations (15).
Therefore, the gauge-invariant vortex operator Σ�

θ ðpÞ act-
ing on the magnetic basis of a plaquette changes the
magnetic flux on it continuously as a function of θ in
(43). To see this explicitly, we first construct the SU(2)
magnetic basis. We note that

½WαβðpÞ;Wγδðp0Þ� ¼ 0; ∀p; p0:

Therefore, we can diagonalize all four operators
ðW11ðpÞ;W12ðpÞ;W21ðpÞ;W22ðpÞÞ simultaneously on
every plaquette. The common eigenstates jZðpÞi≡
jz1ðpÞ; z2ðpÞi satisfy

WαβðpÞjZðpÞi ¼ ZαβðpÞjZðpÞi; α; β ¼ 1; 2: ð33Þ

FIG. 3. SU(2) prepotential operators in the dual formulation. The
two ends of the plaquette flux operator WðpÞ are associated with
two doublets of the harmonic oscillators at the origin (0,0) [15,18].
Under gauge transformations at the origin, ða†αðpÞ; b†βðpÞÞ trans-
form as SU(2) doublets. The dotted plaqette on the right-hand side
is a compact way to represent the plaquette holonomy WðpÞ.

FIG. 2. Graphical representation of canonical relation (12). We
have used diamond symbol to represent Kogut-Susskind electric
fields Ea

−ðm; n0; 1̂Þ and black dot to represent new plaquette
electric fields Eaþðm; nÞ. The thick gray line represents parallel
transport Sðm; n; n0Þ defined in Eq. (13b).
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In (33) the SU(2) matrix on the plaquette p is

Z ¼
 

z1 z2
−z�2 z�1

!
; jz1j2 þ jz2j2 ¼ 1: ð34Þ

The SU(2) Z matrices can also be written in the SU(2)
angle-axis representation

Z ¼ eiωn̂
aσa
2 : ð35Þ

The two SU(2) representations (34) and (35) are related by

z1 ¼ cos

�
ω

2

�
þ in̂3 sin

�
ω

2

�
; z2 ¼ ðn̂2 þ in̂1Þ sin

�
ω

2

�
:

We now construct jZðpÞi and show that on this basis the
vortex operator Σ�

θ ðpÞ act as the shift operators for the
plaquette magnetic fluxes. The magnetic eigenstates jZðpÞi
can be explicitly constructed in terms of SU(2) prepotential
operators [18] (see Appendix B),

jZðpÞi ¼
X∞

jðpÞ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðjðpÞÞ

p ða†ðpÞZðpÞb†ðpÞÞ2jðpÞ
ð2jðpÞÞ! j0ip:

ð36Þ
In (36) dðjÞ≡ ð2jþ 1Þ is the dimension of the j repre-
sentation and ða†Zb†Þ≡P2

α;β¼1 ða†αZαβb
†
βÞ. From now

onwards we will ignore the plaquette index p on all the
operators and the states as they are all defined on the lattice
plaquettes. The magnetic eigenstates (36) have simple
SU(2) gauge-transformation properties

jZi → jΛZΛ†i; Λ≡ Λð0; 0Þ: ð37Þ

The transformations (37) are clear from (32) and (36). In
the angle-axis representation (35) the gauge transforma-
tions (37) take the simpler form

ωðpÞ→ωðpÞ; n̂ðpÞ→Λn̂ðpÞΛ†; Λ≡Λð0;0Þ: ð38Þ

Thus, ωðpÞ; ∀p are gauge-invariant angles and n̂ðpÞ∀p
transform globally like SU(2) adjoint vectors. The eigen-
values of the plaquette magnetic-field operators in the
Hamiltonian (4) are

TrðW ½j¼1
2
�ÞjZðω; n̂Þi ¼ 2 cos

�
ω

2

�
jZðω; n̂Þi: ð39Þ

Now we evaluate the action of disorder operator using the
prepotential relations,

Σþ
θ a

†
αΣ−

θ ¼ ða†ei
2
θn̂aσaÞα;

Σ−
θ b

†
αΣþ

θ ¼ ðe−i
2
θn̂aσab†Þα: ð40Þ

The relations (40) can be easily established using (23) and
the prepotential representation of E�ðpÞ in (25),

Σþ
θ jZðω; n̂Þi ¼ jei

2
θn̂aσaZðω; n̂Þi ¼ jZðωþ θ; n̂Þi;

Σ−
θ jZðω; n̂Þi ¼ jZðω; n̂Þe−i

2
θn̂aσai ¼ jZðω − θ; n̂Þi: ð41Þ

Thus, the SU(2) plaquette disorder operator Σ�
θ translates

the plaquette magnetic fluxes. This is precisely dual to
the action of the Wilson loop operators which translate the
SU(2)-loop electric fluxes as shown in Appendix A [see
Eq. (A10) and Fig. 6].

3. SU(2) order-disorder algebra

The dual-canonical commutation relations (15) involv-
ing magnetic-plaquette flux operators WðpÞ and their
conjugate-electric scalar potential EðpÞ immediately lead
to the SU(2) order-disorder algebra:

Σþ
θ ðpÞW

½j¼1
2
�

αβ ðpÞΣ−
θ ðpÞ ¼ D

½j¼1
2
�

αγ ðn̂; θÞW ½j¼1
2
�

γβ ðpÞ;
Σ−
θ ðpÞW

½j¼1
2
�

αβ ðpÞΣþ
θ ðpÞ ¼ W

½j¼1
2
�

αγ ðpÞD½j¼1
2
�

γβ ðn̂; θÞ: ð42Þ

In (42) the Wigner matrix D½j¼1
2
� ≡ ein̂

a·σaθ
2 is the rotation

matrix in j ¼ 1
2
representation around the magnetic axis

n̂ðpÞ defined through the plaquette loops WðpÞ. In any
higher-[j] representation, we can write

W ½j�
αβ ¼ W ½j¼1=2�

fα1β1 W ½j¼1=2�
α2β2

� � �W ½j¼1=2�
α2jβ2jg ;

where all the α (and therefore β) indices are completely
symmetrized. Inserting the disorder operators (Σ) and their
inverses ðΣ†Þ in the middle, we get the SU(2) order-disorder
algebra relation in j representation,

Σþ
θ ðpÞW ½j�

αβðpÞΣ−
θ ðpÞ ¼ D½j�

αγðn̂; θÞW ½j�
γβðpÞ;

Σ−
θ ðpÞW ½j�

αβðpÞΣþ
θ ðpÞ ¼ W ½j�

αγðpÞD½j�
γβðn̂; θÞ: ð43Þ

In the special case when the rotations are restricted to the
center Z2 of the SU(2) group then θ ¼ 0 or 2π in (43) and
we recover the ’t Hooft Wilson order-disorder algebra with

D½j�
αβðθ ¼ 2πÞ ¼ ð−1Þ2jδαβ,

Σ�
θ¼2πW

½j�
αβ ¼ ð−1Þ2jW ½j�

αβΣ�
θ¼2π: ð44Þ

In (44), ð−1Þ2j is the N-ality of the j representation. We thus
recover the standardWilson-’t Hooft loop Z2 algebra [8–11]
for SU(2) at θ ¼ 2π. The operator Σ2π ≡ Σþ

2π ¼ Σ−
2π is the

SU(2) ’t Hooft operator.
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B. SU(3) disorder operator

In this section, we construct the disorder operator for
SU(3) lattice gauge theory before going to SU(N) gauge
group. As in the previous SU(2) case, they are the SU(3)
magnetic vortex creation-annihilation operators and are
expected to magnetically disorder the weak coupling ground
state [11,12]. The SU(3) plaquette magnetic flux operators
can be written as

W ½p¼1q¼1�ðpÞ ¼ exp iðn̂ðpÞ · λ⃗ωðpÞÞ: ð45Þ

In (45) n̂ðpÞ ¼ ðn̂1ðpÞ; n̂2ðpÞ;…; n̂8ðpÞÞ is the unit vector
on every plaquette p and λaða ¼ 1;…; 8Þ are the 8 Gell-
Mannmatrices.We can also use the angle-axis representation
[23] to write:

W ½p¼1q¼1�ðpÞ≡ AI þ Bn⃗ · λ⃗þ Cn⃗⋆n⃗ · λ⃗: ð46Þ

In (46) ðn⃗⋆n⃗Þa ≡ dabcn⃗bn⃗c defines the second independent
vector with the help of the SU(3) symmetric tensors dabc.
Instead of following the standard polar decomposition (46), it
is more convenient for us to construct the two independent
SU(3) axes operators as [24]

n⃗a½1�ðpÞ ¼ TrλaðW ½1;1�ðpÞ þW†½1;1�ðpÞÞ; ð47aÞ

n⃗a½2�ðpÞ ¼
ffiffiffi
3

p
dabcn⃗b½1�ðpÞn⃗c½1�ðpÞ: ð47bÞ

Note that n⃗a½1�ðpÞ; n⃗a½2�ðpÞ are real. Under SU(3) gauge
transformations (18) the above two operators transform as:

n⃗a½1�ðpÞ → RabðΛÞn⃗b½1�ðpÞ
n⃗a½2�ðpÞ → RabðΛÞn⃗b½2�ðpÞ: ð48Þ

In (48) RabðΛÞ ¼ 1
2
TrðλaΛλbΛ†Þ and Λ≡ Λð0; 0Þ. These

two axes are linearly independent. It can be shown that
in SU(3) case there exist only two independent axes as
the third axis defined using another dabc is the first axis
n⃗½1� [25]:

fabcn⃗b½2�ðpÞn⃗c½1�ðpÞ ¼ 0;

da bcn⃗b½2�ðpÞn⃗c½1�ðpÞ ¼
1ffiffiffi
3

p ðn⃗b½1�ðpÞn⃗b½1�ðpÞÞn⃗a½1�ðpÞ:

Now we define the SU(3) disorder operators which translate
these two gauge invariant magnetic fluxes:

Σþ
θ1;θ2

ðpÞ≡ exp i

��X2
h¼1

θhðpÞn̂a½h�
�
EaþðpÞ

�
;

Σ−
θ1;θ2

ðpÞ≡ exp i

��X2
h¼1

θhðpÞn̂a½h�
�
Ea
−ðpÞ

�
: ð49Þ

In (49) ðθ1; θ2Þ≡ ðθ1ðpÞ; θ2ðpÞÞ are the external angular
parameters characterizing the SU(3) disorder operator. Like
in the SU(2) case, the two operators in (49) are unitary and
Hermitian conjugate of each other

Σþ
θ1;θ2

ðpÞΣ−
θ1;θ2

ðpÞ ¼ I ¼ Σ−
θ1;θ2

ðpÞΣþ
θ1;θ2

ðpÞ: ð50Þ

Like SU(2) case this can also be proved using the properties
of the SU(3) λ matrices.

1. SU(3) prepotential operators

The SU(3) prepotential operators on plaquettes are
defines as

Eaþ ≡X2
h¼1

a†½h� λ
a

2
a½h�;

Ea
− ≡ −

X2
h¼1

b½h� λ
a

2
b†½h�: ð51Þ

In (51), ða†α½h�; aα½h�Þ and ðb†α½h�; bα½h�Þ where α ¼ 1; 2; 3;
h ¼ 1, 2 are the mutually independent SU(3) triplets of
harmonic oscillator creation-annihilation operators on every
plaquette [26]. They are attached to the initial and the end
points of the plaquette loops [see Fig. 1(b)]. The summation
over ½h� ¼ 1, 2 is over the rank of the group. As all operators
are defined on plaquettes, we suppress the plaquette index
“p” throughout this section. The harmonic oscillator com-
mutation relations and (51) imply that a†α½h� and b†α½h�
transform like triplets from right and anti-triplets from left
respectively on every plaquette (p): transformations:

½Eaþ; a
†
α½h�� ¼

�
a†½h� λ

a

2

�
α

; h ¼ 1; 2;

½Ea
−; b

†
α½h�� ¼ −

�
λa

2
b†½h�

�
α

; h ¼ 1; 2: ð52Þ

Like in the SU(2) case (32), the SU(3) gauge transformations
(18) with Λð0; 0Þ at the orgin [see Fig. 1(b)] the SU(3)
oscillators on every plaquette transform as SU(3) triplets,

a†α½h� → a†β½h�Λβαð0; 0Þ; h ¼ 1; 2;

b†α½h� → Λ†
αβð0; 0Þb†β½h�; h ¼ 1; 2: ð53Þ

These relations are again useful for the gauge covariant
parametrization of the SU(3) magnetic basis in the angle-
axis representation and is discussed in the next section. The
SU(3) strong coupling vacuum in the dual description j0i
satisfies

aα½h�j0ip ¼ 0; bα½h�j0ip ¼ 0; h ¼ 1; 2: ð54Þ
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This strong coupling vacuum state j0ip ≡ j0i is used to
construct the SU(3) magnetic basis in the next section.

2. SU(3) magnetic basis

We now show that Σ�
θ1;θ2

operating on the SU(3)
plaquette magnetic basis act like a translation operators
for the two gauge-invariant magnetic fields. As shown in
Appendix B, the SU(3) magnetic basis can be written in
terms of SU(3) prepotentials [18] as

jZi¼
X∞
p;q¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dðp;qÞ

p ða†½1�Zb†½1�Þp
p!

ða†½2�Zb†½2�Þq
q!

j0i: ð55Þ

In the above equation, the plaquette index has been
suppressed and

dðp; qÞ ¼ 1

2
ðpþ 1Þðqþ 1Þðpþ qþ 2Þ;

is the dimension of the ½p; q� representation of SU(3) [27],
Zαβ are the elements of SU(3) matrix and correspond to the

eigenvalues of W ½p¼1;q¼1�
αβ ðpÞ, and we have ignored pla-

quette index p in (55). In the axis-angle representation Z
can be written as [28]

ZðpÞ ¼ Zðω1;ω2Þ ¼ exp iðω1n̂a½2� þ ω2n̂a½2�Þ
λa

2
: ð56Þ

In (56) we have labeled the SU(3) group manifold by
Zðω1;ω2Þ≡ Zðn̂½1�; n̂½2�;ω1;ω2Þ. The two axes ðn̂½1�; n̂½2�Þ
are suppressed for the notational simplicity. Under SU(3)
gauge transformations at the origin (18),

jZi → jΛZΛ†i; Λ≡ Λð0; 0Þ: ð57Þ

We have used (53) and the defining Eq. (56) to obtain the
above covariant transformations. The gauge transforma-
tions (57) show that

ωh → ωh; n̂½h� → Λn̂½h�Λ†h ¼ 1; 2: ð58Þ

Thus ðω1;ω2Þ are the gauge-invariant angles and the two
axes n̂½h� ≡P8

a¼1 n̂
a
½h�λ

a transform like the adjoint vectors

on every plaquette.
In order to evaluate the action of the disorder operator

on this magnetic basis we first write down the following
equations, which can be easily established using the com-
mutation relations in (52),

Σþ
θ1;θ2

a†α½h�Σþ†
θ1;θ2

¼
�
a†½h�eiðθ1n̂a½2�þθ2n̂a½2�Þλ

a
2

�
α
; ð59aÞ

Σ−
θ1;θ2

b†α½h�Σ−†
θ1;θ2

¼
�
e−iðθ1n̂

a
½1�þθ2n̂a½2�Þλ

a
2 b†½h�

�
α
: ð59bÞ

Using the above equations we can easily prove that

Σþ
θ1;θ2

jZðω1;ω2Þi ¼ jeðiðθ1n̂a½1�þθ2n̂a½2�Þλ
a
2
ÞZðω1;ω2Þi

¼ jZðω1 þ θ1;ω2 þ θ2Þi;
Σ−
θ1;θ2

jZðω1;ω2Þi ¼ jZðω1;ω2Þeð−iðθ1n̂
a
½1�þθ2n̂a½2�Þλ

a
2
Þi

¼ jZðω1 − θ1;ω2 − θ2Þi;

or

Σ�
θ1;θ2

jZðω1;ω2Þi ¼ jZðω1 � θ1;ω2 � θ2Þi: ð60Þ

Therefore, the disorder operator in (49) translates the two
gauge-invariant angles. We can thus interpret them as
the creation-annihilation operators for the SU(3) magnetic
vortices.

3. SU(3) order-disorder algebra

The SU(3) order-disorder algebra is

Σþ
½θ⃗�ðpÞW

½p;q�
αβ ðpÞΣþ†

½θ⃗� ðpÞ ¼ D½p;q�
αγ ðθ⃗ÞW ½p;q�

γβ ðpÞ;

Σ−
½θ⃗�ðpÞW

½p;q�
αβ ðpÞΣ−†

½θ⃗� ðpÞ ¼ W ½p;q�
αγ ðpÞD½p;q�

γβ ðθ⃗Þ: ð61Þ

In (61), D½p;q�ðθ1; θ2Þ≡ exp ðiðθ1n̂a½1� þ θ2n̂a½2�Þ λ
a

2
Þ is SU(3)

Wigner D-matrix in the ½p; q� representation. Similar to the
SU(2) case, we have used the dual-canonical commutation
relations (15) to obtain the SU(3) order-disorder algebra
in (61).

C. SU(N) disorder operator

We now use the SU(N) dual electric scalar potentials
EðpÞ in (12) to define the SU(N) disorder operator

Σ�
½θ1θ2���θN−1�ðpÞ ¼ exp ifθ⃗ðpÞ · E⃗�ðpÞg: ð62Þ

In (62) θ⃗ðpÞ≡ ½θ1ðpÞ; θ2ðpÞ;…; θN−1ðpÞ� are the ðN − 1Þ
external angular parameters characterizing the SU(N)
disorder operator on the plaquette (p) and

θ⃗aðpÞ≡ XðN−1Þ
h¼1

θhðpÞn̂a½h�ðpÞ: ð63Þ

The invariance (18) demands that the operator θ⃗ðpÞ in (62)
is the most general vector operator constructed out of
the magnetic-flux operator WαβðpÞ. In other words, they
depend on the ðN − 1Þ directions of the SU(N) magnetic
fields. In the SU(2) and SU(3) cases in the previous sections
we have already constructed one and two independent axes,
respectively, using the plaquette magnetic-flux operators.
In the same way we now iteratively define the ðN − 1Þ
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linearly independent “SU(N) magnetic axes” using the
SU(N) symmetric structure constants dabc as follows:

n⃗a½hþ1�ðpÞ≡ dabcn⃗b½h�ðpÞn⃗c½1�ðpÞh ¼ 1; 2;…;N − 2: ð64Þ

The first magnetic axis is defined as n⃗a½1�ðpÞ≡
TrðΛaðW þW†ÞÞ where Λaða ¼ 1; 2;…; ðN2 − 1ÞÞ are
the SU(N) fundamental representation matrices. The iter-
ative procedure ends as [29] n⃗a½N� ≡ dabcn⃗b½N−1�ðpÞn⃗c½1�ðpÞ ¼
n⃗a½1�ðpÞ. The ðN − 1Þ SU(N) magnetic-field operators

n⃗a½h�; h ¼ 1; 2;…; ðN − 1Þ are Hermitian as the symmetric

structure constants dabc are always real. Under the gauge
transformation (18), these axes transform as vectors

n⃗a½h�ðpÞ → RabðΛÞn⃗b½h�ðpÞ; h ¼ 1; 2;…; ðN − 1Þ: ð65Þ

The disorder operator is invariant under the gauge trans-
formations (18) as θ⃗ðpÞ and the dual electric potentials

E⃗ðpÞ both transform as vectors. As in the case of SU(2)
[see (24)] and SU(3) [see (50)], Σþ

½θ⃗�ðpÞ and Σ−
½θ⃗�ðpÞ are not

independent and satisfy

Σþ
½θ⃗�ðpÞΣ−

½θ⃗�ðpÞ ¼ I ¼ Σ−
½θ⃗�ðpÞΣ

þ
½θ⃗�ðpÞ: ð66Þ

Here I is unity operator in the physical Hilbert space. The
relations (66) follow from the parallel transport relating the
two electric scalar potentials: Ea

−ðpÞ ¼ −RabðWðpÞÞEbþðpÞ
and n̂a½h�ðpÞ ¼ −RabðWðpÞÞn̂b½h�ðpÞ; h ¼ 1; 2 � � � ; ðN − 1Þ.
We now briefly discuss the SU(N) prepotential operators
to be used in the Sec. IV C 2 for the construction of the
SU(N) magnetic basis.

1. SU(N) prepotential operators

The SU(N) dual-electric scalar potentials EaðpÞ can be
written in terms of the ðN − 1Þ N-plets of harmonic
oscillators at each of the two ends of the plaquette p.
We define

EaþðpÞ ¼
XðN−1Þ
h¼1

	XN
α;β¼1

a†α½h�
�
Λa

2

�
αβ

aβ½h�



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Ea

þ½h�

;

Ea
−ðpÞ ¼

XðN−1Þ
h¼1

	XN
α;β¼1

bα½h�
�
−
Λa

2

�
αβ

b†β½h�



|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡Ea−½h�

: ð67Þ

In (67), we have introduced prepotential N-plets
ðaα½h�; a†α½h�Þ and ðbα½h�; b†α½h�Þ for each of the ðN − 1Þ
fundamental representations of SU(N). They are denoted
by h ¼ 1; 2;…; ðN − 1Þ and we have suppressed the

additional plaquette index on the right-hand side of (67)
for convenience. The Λa

2
are the ðN2 − 1Þ SU(N) matrices in

the fundamental representation. The harmonic-oscillator
commutation relations of the SU(N) prepotentials imply

½Eaþ½h�; a†α½h0�� ¼ δh;h0
1

2
a†β½h�Λa

βα;

½Eaþ½h�; b†α½h0�� ¼ −δh;h0
1

2
Λa
αβb

†
β½h�: ð68Þ

We also note that under SU(N) gauge transformations (18)
with Λ≡ Λð0; 0Þ [see Fig. 1(b)] these oscillators trans-
form as

a†α½h� → a†β½h�Λβα; ∀ h ¼ 1; 2;…; ðN − 1Þ;
b†α½h� → Λ†

αβb
†
β½h�; ∀ h ¼ 1; 2;…; ðN − 1Þ: ð69Þ

Like in SU(2) and SU(3) cases, the relations (68) and (69)
will be useful in constructing the SU(N) magnetic basis in
the next section.

2. SU(N) magnetic basis

In this section, we construct the SU(N) magnetic basis
for all SU(N) and show that the disorder operators on a
magnetic basis act as shift operators for the N − 1magnetic
fields. The SU(N) magnetic basis has been constructed in
Appendix B and is given by

jZi ¼
X∞
½j⃗�¼0

ffiffiffiffiffiffiffiffiffi
dðj⃗Þ

q YN−1
h¼1

1

jh!
ða†½h�Zb†½h�Þ2jh j0i: ð70Þ

In (70)
ffiffiffiffiffiffiffiffiffi
dðj⃗Þ

q
is the dimension of the SU(N)

½j⃗�ð≡ðj1; j2;…; jN−1Þ representation. The SU(N) strong-
coupling vacuum j0i in the dual description on every
plaquette satisfies

aα½h�j0i¼ 0; bα½h�j0i¼ 0; h¼ 1;2;…; ðN−1Þ: ð71Þ

Like in SU(2) and SU(3) cases we parametrize the
SU(N) matrix Z≡ ZðpÞ in (70) on every plaquette p in
the angle-axis representation as

Z ¼ Zðω1;ω2;…;ωN−1Þ ¼ exp i

�
ωhn̂a½h�

Λa

2

�
: ð72Þ

In (72) the ðN − 1Þ linearly independent unit vectors are
defined as

n⃗a½rþ1�ðpÞ≡dabcn̂b½r�ðpÞn̂c½1�ðpÞ; r¼ 1;2;…;N−2: ð73Þ

We have again suppressed the ðN − 1Þ axes n̂a½h� in

Zðω1;ω2;…;ωN−1Þ for the notational simplicity.
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In order to evaluate the action of disorder operators on
the magnetic basis (70), we use (68) to obtain,

Σþ
½θ⃗�a

†
α½h�Σþ†

½θ⃗� ¼
�
a†½h�eiðθhn̂a½h�ÞΛ

a
2

�
α
; ð74Þ

Σ−
½θ⃗�b

†
α½h�Σ−†

½θ⃗� ¼
�
e−iðθhn̂

a
½h�ÞΛ

a
2 b†½h�

�
α
: ð75Þ

Therefore, the action of disorder operators on the magnetic
basis is given by

Σþ
½θ⃗�jZi ¼ jeiðθhn̂a½h�ÞΛ

a
2 Zi; ð76Þ

Σ−
½θ⃗�jZi ¼ jZeiðθhn̂a½h�ÞΛ

a
2 i: ð77Þ

We now use axis-angle representation (72) to get

Σþ
½θ⃗�jZðωhÞi¼ jeiðθhn̂a½h�ÞΛ

a
2 eiðωhn̂a½h�ÞΛ

a
2 i¼ jZðωhþθhÞi;

Σ−
½θ⃗�jZðωhÞi¼ jeiðωhn̂a½h�ÞΛ

a
2 e−iðθhn̂

a
½h�ÞΛ

a
2 i¼ jZðωh−θhÞi: ð78Þ

Therefore, the disorder operator on a plaquette p translates
the N − 1 gauge invariant angles defining the SU(N)
magnetic fluxes.

3. SU(N) order-disorder algebra

Using the canonical commutation relations in the dual
description (15) we get Similarly, the SU(N) order-disorder
algebra is

Σþ
½θ⃗�ðpÞW

½j⃗�
αβðpÞΣ−

½θ⃗�ðpÞ ¼ D½j⃗�
αγð½θ⃗�ÞW ½j⃗�

γβðpÞ;

Σ−
½θ⃗�ðpÞW

½j⃗�
αβðpÞΣþ

½θ⃗�ðpÞ ¼ W ½j⃗�
αγðpÞD½j⃗�

γβð½θ⃗�Þ: ð79Þ

In (79) the Wigner matrix D½j⃗�ð½θ⃗�Þ represent the SU(N)
rotations around the magnetic axes n̂½h� by θh with
h ¼ 1; 2;…; ðN − 1Þ.

4. Reduction to ’t Hooft algebra

In the special case when the rotations are in the center of
SU(N) with Z∈ZN and ZN ¼ 1, we get

D½j⃗�ðZÞ ¼ ðzÞη½j⃗�I ; zN ¼ 1; ð80Þ

where I is the unit matrix and η½j⃗� is the N-ality of the ½j⃗�
representation. The SU(N) center elements in (80) are

z ¼ e
2πim
N ; m ¼ 0; 1;…; ðN − 1Þ: ð81Þ

Wethusget the ’tHooftWilsonorder-disorder algebra [8–11].

Σþ
½ZN�ðpÞW

½j⃗�
αβðpÞΣ−

½ZN�ðpÞ ¼ ðzÞη½j⃗�W ½j⃗�
αβðpÞ;

Σ−
½ZN�ðpÞW

½j⃗�
αβðpÞΣþ

½ZN�ðpÞ ¼ ðzÞη½j⃗�W ½j⃗�
αβðpÞ: ð82Þ

V. SU(N) DIRAC STRINGS

The disorder operators defined in the previous section
can also be written in terms of the Kogut-Susskind link
holonomies and their electric fields using the exact duality
transformations (12). As expected, these disorder operators
ΣðpÞ are highly nonlocal operators in the original descrip-
tion but their physical action is completely local. This leads
to the invisible SU(N) Dirac strings discussed in this
section. Using the exact duality relations we write

Σþ
½θ1θ2���θN−1�ðm;nÞ

¼ exp
�
iθ⃗aðm;nÞ ·

X∞
n0¼nþ1

RabðSðm;n;n0ÞÞEb
−ðm;n0; 1̂Þ

�
:

ð83Þ

In (83) we have used (12)

Eaðm; nÞ ¼
X
b

RabðSðm; n; n0ÞÞEb
−ðm; n0; 1̂Þ;

where the parallel transports Sðm; n; n0Þ and the vectors
θ⃗aðm; nÞð≡θ⃗aðpÞ) are defined in (13b) and (63) respectively.
Thus, the local SU(N) disorder operator (62) in the dual
description becomes a nonlocal operator (83) when rewritten
in terms of the original Kogut-Susskind link operators. As is
clear from (83), it now rotates all the horizontal Kogut-
Susskind link operators Uðm − 1; n0; 1̂Þ; n0 ≥ n. We can
define the axis of rotation associated with each rotated
link as

Θ⃗aðm; n0 > nÞ ¼ RabðSðm; n; n0ÞÞθ⃗bðm; nÞ; ð84Þ

which can also be recast in an iterative relation

Θ⃗aðm; n0 þ 1Þ ¼ RabðUðm; n0; 2̂ÞÞΘ⃗bðm; n0Þ: ð85Þ

We can similarly obtain Σ−
½θ⃗� by using (12), (14), and (62).

Now we have

Σþ
½θ⃗�ðm; nÞ ¼ exp

�
i
X∞

n0¼nþ1

Θ⃗aðm; n0Þ · Ea
−ðm; n0; 1̂Þ

�
: ð86Þ
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They rotate the links

Σþ
½θ⃗�ðm; nÞUαβðm; n0; 1̂ÞΣþ†

½θ⃗� ðm; nÞ
¼ Uαγðm; n0; 1̂ÞDγβðΘ⃗ðm; n0ÞÞ; ∀ n0 ≥ n: ð87Þ

These rotations of the horizontal link holonomies are
shown in Fig. 4(a). The rotational axes of these link
holonomies are related through the parallel transport
equations (85) which, in turn, are obtained by the exact
duality transformations (12). These special relations ensure
that they create magnetic flux only on the plaquette located
at the end point ðm; nÞ keeping all the other plaquette fluxes
unaffected (see Appendix C). Therefore, this local action
by the nonlocal operator (86) creates an invisible non-
Abelian Dirac string S originating from the corresponding
plaquette [see Fig. 4(b)]. In Appendix C is shown that using
gauge transformations these Dirac strings can be deformed
arbitrarily except their gauge invariant endpoints.

VI. PATH INTEGRAL REPRESENTATION

In this section, we construct the path integral represen-
tation of the SU(N) disorder operators so that their behavior
can also be studied using Monte Carlo simulations in future
studies. Such construction for the Z2 ’t Hooft disorder
operator in pure SU(2) lattice gauge theory can be found
in [9,11]. The ground-state wave functional depends on the
links in the two-dimensional surface Σ at time t ¼ 0 [9],

Ψ0ðUÞ≡ hUjψð0Þi ¼
Z Y

l>0

dUðlÞeβ
P

p>0
TrðUpþU†

pÞ: ð88Þ

In (88) the integration is done over all links l > 0 which are
the links at time t > 0. Similarly the plaquettes involved
in the summation are in the upper half lattice at t > 0. Thus
the ground state Ψ0ðUÞ depends only on the spatial links at
t ¼ 0. The expectation values of any functional F½UðlÞ� in
the ground state jψð0Þi is defined as

hF½UðlÞ�i ¼ hψð0ÞjF½UðlÞ�jψð0Þi:

The path integral representation is

hF½UðlÞ�i ¼ 1

ZðβÞ
Z

dμðUÞF½UðlÞ�eβtrðUpþU†
pÞ; ð89Þ

where dμðUÞ≡Ql dUðlÞ and l, p now denote all the links
and plaquettes in the three-dimensional lattice and β ¼ 2N

g2 .

The partition function ZðβÞ is given by

ZðβÞ ¼
Z Y

l

dUðlÞeβ
P

p
ðtrðUpþU†

pÞÞ: ð90Þ

The action of Σþ
½θ⃗�ðm; nÞ rotates all the links crossing the

Dirac string by the appropriate SU(N) Wigner-D matrices
as shown in Fig. 4(a). Therefore the expectation value

FIG. 4. (a) The disorder operator Σþ
½θ⃗�ðm; nÞ, defined in Eq. (83) rotates all horizontal links Uðm − 1; n0; 1̂Þ; ∀ n0 ≥ n around an axis

Θ⃗ðm; n0Þ (for n0 ¼ n; nþ 1; nþ 2;… they are denoted by Θ⃗0; Θ⃗1; Θ⃗2;…), (b) Invisible SU(N) Dirac string S. The rotated links l∈S are
the dark horizontal links, (c) Shape of Dirac string can be deformed without affecting the endpoint or the location of the magnetic vortex.
The SU(N) gauge transformations at site ðm; nþ 2Þ changes the shape of the Dirac string from S to S̃.
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Σþ
½θ⃗�ðm; nÞ or the free energy of the SU(N) magnetic vortex

can be defined as

hΣþ
½θ⃗�ðm; nÞi ¼ he−β

P
l∈S

½trðDðθ⃗ÞUpþU†
pD†ðθ⃗ÞÞ−trðUpþU†

pÞ�i

≡ e−βFmagðθ⃗Þ: ð91Þ
In (91) the summation sign includes only those plaquettes
which protrude from the links l∈ fSg [see Fig. 4(b)] in the
þve time direction and Fmagðθ⃗Þ denotes the free energy of
the magnetic vortex. Note that the path integral represen-
tation for the SU(N) vortex (91) is analogous to the path
integral representations for the defects in the 2D Ising
model [1] and ZN vortices in SU(N) gauge theory [8]
obtained by Kadanoff and ’t Hooft, respectively. We can
also define SU(N) electric free energy of the vortex as the
SU(N) Fourier transform

e−βFelecðj⃗Þ≡
Z

dθ1

Z
dθ2 ���

Z
dθN−1χ½j⃗�ðθ⃗Þe−βFmagðθ⃗Þ: ð92Þ

In (92), χ½j⃗�ðθ⃗Þ is the SU(N) character in the ½j⃗� ¼
ðj1; j2;…; jN−1Þ representation of SU(N).
The Monte Carlo simulation of hΣþ

½θ⃗�ðm; nÞi in (91) is

problematic because of the presence of the infinite Dirac
string attached to a vortex contradicts the periodic boun-
dary conditions imposed on a finite lattice. On the other
hand one can easily compute the vortex-antivortex corre-
lation functions as shown in Fig. 5,

hΣþ
½θ⃗�ðm; nÞΣ−

½θ⃗�ðmþ R; nÞi

≡ e−βFðθ⃗;RÞ

¼ he−β
P

l0 ∈S0 ½trðDðθ⃗ÞUpþU†
pD†ðθ⃗ÞÞ−trðUpþU†

pÞ�i: ð93Þ

In (93) S0 denotes the set of dark links l0 in Fig. 5 and the
summation sign includes only those plaquettes which

protrude from the links l0 ∈ fS0g in the þve time direction.
It will be interesting to study the above free energies
and hence the role of SU(N) vortices in the ground state
and their magnetic disorder in the large R limit using
Monte Carlo simulations near the continuum β → ∞.

VII. SUMMARY AND DISCUSSION

In this work we have constructed the most general
disorder operators for SU(N) lattice gauge theory in
(2þ 1) dimensions in the Hamiltonian formulation.
Being exactly dual to the Wilson loop operators, these
operators create and annihilate ðN − 1Þ types of SU(N)
magnetic fluxes. The SU(N) order-disorder algebra is
simply the canonical commutation relations in the dual
formulation, i.e., the commutation relations between the
electric scalar potentials and their conjugate magnetic
fluxes.
In the strong coupling limit the disorder and order

operators satisfy,

h0jΣ�
½θ⃗�j0i ⟶ g2 → ∞1; ∀ ½θ⃗�; ð94aÞ

h0jTrðW ½j⃗�
C Þj0i ⟶ g2 → ∞0; ∀ ½j⃗�: ð94bÞ

In the first limit equation we used the nonlocal expression
for Σ�

½θ⃗� in (83). The strong coupling limits in (94a) and

(94b) show a complete magnetic disorder at least in the
strong coupling ground state j0i. The study of hΣ�ðθÞi and
the vacuum correlation functions of hΣ�

θ ðpÞΣ∓
θ ðp0Þi, as

jp − p0j → ∞ for different ½θ⃗� in the weak-coupling con-
tinuum limit is required to further probe the relevance of
these magnetic disorder operators in the problem of color
confinement. These studies across the finite temperature
confinement-deconfinement transition will also be useful to
understand the magnetic disorder in confining vacuum. We
further note that the SU(N) disorder operators are mean-
ingful even in the presence of dynamical matter fields in

FIG. 5. Action of the disorder operators Σþ
½θ⃗�ðm; nÞΣ−

½θ⃗�ðmþ R; nÞ creating SU(N) vortex-antivortex at a distance R apart. The SU(N)
transformations rotate the dark vertical links denoted by l0 ∈S0 in (93). This set of vertical dark links l0 is denoted by fS0g.
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any SU(N) representation. These canonical transformation
techniques can also be generalized to obtain the SU(N)
disorder operator in (3þ 1) dimensions where the dual
electric potentials are also the dual gauge fields on the dual
links. Thus, likeWilson loop operatorsW ½j⃗�ðCÞ, the disorder
operator Σ½θ⃗�ðC0Þ will also be defined on the closed curves C0
on the dual lattice. Thework in these directions is in progress.
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APPENDIX A: ELECTRIC LOOP BASIS

It is easy to construct the loop basis in terms of the dual-
electric scalar potentials on the plaquette loops (see Fig. 3).
In the prepotential representation

Ea
−ðpÞ≡a†ðpÞσ

a

2
aðpÞ; EaþðpÞ≡−bðpÞσ

a

2
b†ðpÞ: ðA1Þ

Using the facts that the left and the right electric fields
are independent, ½EaþðpÞ; Eb

−ðpÞ� ¼ 0, and their magnitudes
are equal,

P
3
a¼1 E

aþEaþ ¼P3
a¼1 E

a
−Ea

− ≡ E2, we define the
first set of a complete set of commuting operators on every
plaquette p as: ½E2; Ea¼3þ ; Ea¼3

− �. The SU(2) electric-loop
decoupled basis on every plaquette p is

jjmþm−i≡ jjmþi ⊗ jjm−i
¼ ϕj

mþða†1; a†2Þj0ia ⊗ ϕj
m−ðb†1; b†2Þj0ib; ðA2Þ

where we have defined

ϕj
mða†1; a†2Þ ¼

ða†1ÞjþmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþmÞ!p ða†2Þj−mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj −mÞ!p : ðA3Þ

Under SU(2) gauge transformations at the origin
Λ ¼ Λð0; 0Þ

ϕj
mþða†1; a†2Þ → Dj

mþm0
þ
ðΛÞϕj

m0
þ
ða†1; a†2Þ;

ϕj
m−ðb†1; b†2Þ → Dj

m−m0
−
ðΛ†Þϕj

m0
−
ðb†1; b†2Þ: ðA4Þ

The electric flux states transform as

jjmþm−i ¼
X
m0

þ;m
0
−

Dj
mþm0

þ
ðΛÞDj

m−m0
−
ðΛ†Þjjm0þm0

−i: ðA5Þ

At this stage, it is convenient to work with the coupled
basis instead of the decoupled basis (A5). We define the

complete set of commuting operators (CSCO) on every
plaquette as

E2¼E2þ¼E2
−; La≡EaþþEa

−; La¼3≡Ea¼3
− þEa¼3þ : ðA6Þ

The loop coupled basis on every lattice plaquette jnlmi can
be constructed as

jnlmi ¼ NnlmðkþÞn−l−1ðL−Þl−mða†1Þlðb†2Þlj0; 0i: ðA7Þ

In (A7) kþ ≡ a† · b† ≡P2
α¼1 a

†
αb

†
α and

Nnlm ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðlþmÞ!
ðl −mÞ!ðl!Þ2ðn − l − 1Þ!ðmþ lÞ!

s
:

The corresponding eigenvalue equations are

E2jnlmip ¼
�
n2 − 1

4

�����nlmip;

L⃗2jnlmip ¼ lðlþ 1Þjnlmip;
La¼3jnlmip ¼ mjnlmip: ðA8Þ

In above l ¼ 0; 1; 2;…; n − 1 and m ¼ −l;−lþ 1;…; l.
Under gauge transformations at the origin Λ ¼ Λð0; 0Þ,
these states have much simpler transformation property

jnlmi ¼
X
m̄

Dl
mm̄ðΛÞjnlm̄i: ðA9Þ

In other words the principal (n) and the angular momentum
(l) quantum numbers remain invariant.

1. The Wilson loops as translation operators

In the loop basis (A8), the plaquette operators, WðpÞ
which are unit size Wilson loop order operator acts as
a translation operator for the electric flux n. Using (28)
we get

TrWðpÞjnlmi ¼ Apjn − 1lmi þ Bpjnþ 1lmi: ðA10Þ

Here we have ignored the plaquette index p on all the three
quantum numbers and

Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn− l−1Þðnþ lÞp

ðn−1Þ ; Bp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ l−1Þðn− lÞp

ðnþ1Þ :

The above translative action of the fundamental plaquette
loop operator W ≡WðpÞ is valid on each plaquette p and
we have suppresses the plaquette index p on both sides of
(A10). The action (A10) is illustrated in Fig. 6. An arbitrary
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Wilson loop operator WðCÞ can be written in terms of the
fundamental plaquette Wilson loop operators as

WðCÞ ¼
Y
p∈ C

WðpÞ ¼ Wðp1ÞWðp2Þ � � �WðpnCÞ: ðA11Þ

The above product over plaquettes is taken from the bottom
right corner as shown in Fig. 7. More explicitly, the curve C
is obtained by traversing the nC plaquettes in the order
p1 → p2 � � � → pnC as shown in Fig. 7. These nC plaquette
paths are shown in Fig. 3. Therefore, the end effect ofWðCÞ
is to translate the electric fluxes of all plaquette loops inside
the closed curve C,

WðCÞ
Y
p∈ C

jnlmip

¼
Y
p∈ C

ðApjn − 1lmip þ Bpjnþ 1lmipÞ: ðA12Þ

Note that in the SU(N) case the Wilson loop operators will
shift all the (N − 1) eigenvalues of the Casimir E2½h�
(h ¼ 1; 2;…; ðN − 1Þ) on the plaquettes p∈ C by �1.

APPENDIX B: MAGNETIC LOOP BASIS

We now construct the magnetic basis for plaquette flux
operators and show that the disorder operator has natural
translative action on them. The group manifold for SU(2)
group is S3. We define it on every plaquette p through
complex doublets z⃗ðpÞ≡ ðz1ðpÞ; z2ðpÞÞ that satisfy the
constraint jz1ðpÞj2 þ jz2ðpÞj2 ¼ 1; ∀ p. A configuration
on S3 is

ZðpÞ ¼
	

z1ðpÞ z2ðpÞ
−z�2ðpÞ z�1ðpÞ



: ðB1Þ

We write eigenvalue equations for the magnetic flux
operators as

WαβðpÞjZðpÞi ¼ ZαβðpÞjZðpÞi: ðB2Þ

Here ZαβðpÞ are the matrix elements of the matrix ZðpÞ in
(B1). These states form a complete orthonormal basis on S3Z

S3
dμðz⃗ÞjZðpÞihZðpÞj ¼ 1;

hZðpÞiZ0ðpÞ ¼ δðZðpÞ − Z0ðpÞÞ: ðB3Þ

The SU(2) group manifold integrations is defined asR
SUð2Þ dμðz⃗Þ≡ 1

16π2

R
d2z1d2z2δðz�1z1 þ z�2z2 − 1Þ.

The magnetic eigenvectors jZðpÞi can be expanded in
the complete orthonormal electric basis as

jZðpÞi≡ jz1ðpÞ; z2ðpÞi

¼
X∞
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p X
mþ;m−

Dj
mþm−ðZðpÞÞjjmþm−i:

ðB4Þ

The construction of magnetic states can be easily checked
by directly applying W on both sides above equations
and realizing that W acts on the electric field basis as the
raising and lowering operators for ðj; mþ; m−Þ and using
the recurrence relations for the D-functions connecting

Dj
mþm− toD

j�1
2

mþ�1
2
m−�1

2

. For SU(N), N ≥ 3, this approach gets

FIG. 6. The action of the Wilson loop on the loop state jn ¼ 4; l ¼ 2; mi described in the coupled basis. The circles in the three figures
represent the SU(2) electric flux circulating in a loop within the plaquette and 2l is the number of open flux lines. The action of Tr ðWÞ
simply translates n to n� 1 in (A10).

FIG. 7. The Wilson loop WðCÞ of any shape and size can be
written as an ordered product of all plaquette operators WðpÞ
inside C as in (A11). These dotted plaquettes inside C are
illustrated in Fig. 3.
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extremely complicated as it requires the recurrence rela-
tions for the SU(N) Winger D-functions. We will first
write down these states in terms of SU(2) prepotentials
where they take a much simpler form and then verify the
eigenvalues equations (B2). Now use Eq. (A2)

jZðpÞi ¼
X∞
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p
×
X
mþ;m−

Dj
mþm−ðZðpÞÞϕj

mþða†1; a†2Þϕj
m−ðb†1; b†2Þj0i:

ðB5Þ

We call ϕj
mðx1; x2Þ the SU(2) structure functions. These

SU(2) structure functions have the following orthonormal
properties:Z
SUð2Þ

dμðz⃗Þϕj�
m ðz1;z2Þϕj

m0 ðz1;z2Þ¼
δm;m0

ð2jþ1Þ! ;X
m

ϕj�
m ðz1;z2Þϕj

mðw1;w2Þ¼
ðz�1w1þz�2w2Þ2j

ð2jÞ! : ðB6Þ

Further, we can also write SU(2) Wigner D-function in
terms of these structure functions as follows:

Dj
m;nðz1; z2Þ ¼ dj

Z
SUð2Þ

d2w1d2w2ϕ
j�
m ðw1; w2Þϕj

nðzw1 ; zw2 Þ;

ðB7Þ

where	
zw1
zw2



≡
	

z1 z2
−z�2 z�1


	
w1

w2



; dj ≡ ð2jþ 1Þ:

Using properties of structure functions and Wigner D
functions,

Xj
m−¼−j

Dj
mþm−ðz1; z2Þϕj

m−ðw1; w2Þ ¼ ϕj
mþðwz

1; w
z
2Þ

in (B5), we get

jZðpÞi ¼
X∞
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ

p
×
X
mþ

ϕj
mþða†1; a†2Þϕj

mþðbz†1 ; bz†2 Þj0i; ðB8Þ

where

	
bz†1
bz†2



≡
	

z1 z2
−z�2 z�1


	
b†1
b†2



:

Now we can sum the remaining magnetic index to get

jZðpÞi ¼
X∞
j¼0

ffiffiffiffiffi
dj

q ða†ZðpÞb†Þ2j
ð2jÞ! j0; 0i; ðB9Þ

where dj ¼ ð2jþ 1Þ is the dimension of [j] representation.
The eigenvalues equation (B2) holds at each point of the
group manifold. We first prove it for Z ¼ I where I is the
identity element of SU(2) group. First, we prove that

Wj¼1=2
αβ jIi ¼ δαβjIi; ðB10Þ

where

jIi ¼
X∞
j¼0

ð2jþ 1Þ1=2
ð2jÞ! ða† · b†Þ2jj0; 0i: ðB11Þ

We have suppressed the plaquette index p. Using prepo-
tential representation (28) for Wαβ we get

WαβjIi ¼
X∞
j¼0

ð2jþ 1Þ1=2
ð2jÞ!

	
aβbα
ð2jÞ1=2 −

ã†αb̃
†
β

ð2jþ 2Þ1=2



×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þp ða† · b†Þ2jj0i:

Now we replace 2j by 2jþ 1 in the first term and 2j by
2j − 1 in the second term of above equation to get

WαβjIi ¼
X∞
j¼0

ð2jþ 1Þ1=2
ð2jÞ!

	
1

ð2jþ 1Þ2 aβbαða
† · b†Þ2jþ1

−
ð2jÞ

ð2jþ 1Þ a
†
αb

†
βða† · b†Þ2j−1



j0i

we evaluate first term using the prepotential commuta-
tion relations, aαbβða† ·b†Þ2jþ1j0i ¼ aαbβðã† · b̃†Þ2jþ1j0i ¼
½ð2jþ1Þ2δαβða† ·b†Þ2jþð2jÞð2jþ1Þã†αb̃†βða† ·b†Þ2j−1�j0i
and substitute in above equation to get

WαβjIi ¼
X∞
j¼0

ð2jþ 1Þ1=2
ð2jÞ! δαβða† · b†Þ2jþ1j0i ¼ δαβjIi:

Now we can prove the eigenvalue equation (B2), by
considering a transformation of oscillators b†α → ðZ†b†Þα.
Under these transformations

Wαβ → Z†
αγWγβ; jIi → jZi

which yields

Z†
αγW

j¼1=2
γβ ðpÞjZðpÞi ¼ jZðpÞi: ðB12Þ

As Z†Z ¼ I, we get the eigenvalue equation (B2).
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The conjugate electric fields act on this basis as differ-
ential operators on this plaquette holonomy basis,

EaþjZi ¼ −
σaαβ
2

Zγβ
∂

∂Zαγ
jZi; ðB13Þ

Ea
−jZi ¼

σaαβ
2

Zγα
∂

∂Zγβ
jZi: ðB14Þ

For SU(3) these magnetic states are given by

jZi ¼
X
p;q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðp; qÞ

p ða†½1�Zb†½1�Þp
p!

ða†½2�Zb†½2�Þq
q!

j0i;

ðB15Þ

where dðp; qÞ ¼ 1
2
ðpþ 1Þðqþ 1Þðpþ qþ 2Þ is the dimen-

sion of ½p; q� representation. For the general SU(N) case,
these magnetic states are given as

jZi ¼
X∞
½j⃗�¼0

ffiffiffiffiffiffiffiffiffi
dðj⃗Þ

q YN−1
h¼1

1

jh!
ða†½h�Zb†½h�Þ2jh j0i; ðB16Þ

where dðj⃗Þ is the dimension of the ½j⃗� representation and Z
represents (N × N) SU(N) matrix.

APPENDIX C: INVISIBILITY OF DIRAC STRING

In this appendix, we explicitly show that disorder
operators in (83) creates magnetic flux only on one
plaquette Upðm; nÞ located at ðm; nÞ. They leave all
the other plaquettes unaffected. The disorder operator
involves Kogut-Susskind electric fields E−ðm; n0 ≥ n; 1̂Þ,
therefore it trivially commutes with all other plaquettes
which do not involve Uðm; n ≥ n0; 1̂Þ. The only relevant
plaquette are Upðm; n0 ≥ nÞ. Now we evaluate its action
case by case:
(1) First we consider n0 ¼ n, plaquette Up≡

Upðm; nÞ. For convenience we define Upðm; nÞ ¼
Uðm − 1; n − 1; 1̂ÞUðm; n − 1; 2̂ÞU†ðm − 1; n; 1̂Þ×
U†ðm − 1; n − 1; 2̂Þ≡ U1U2U

†
3U

†
4. The disorder

operator Σþ
½θ⃗� will only rotate link U†

3 around the

axis Θ⃗a
0 ¼ RabðU1U2Þθ⃗b,

Σþ
½θ⃗�U

p
αβΣ

þ†
½θ⃗� ¼ ½U1U2ðΣþ

½θ⃗�U
†
3Σ

þ†
½θ⃗� ÞU

†
4�
αβ

¼ ½U1U2DðΘ⃗0ÞU†
3U

†
4�αβ

¼ ½U1U2DðU†
2U

†
1θ⃗U1U2ÞU†

3U
†
4�αβ:

Now we use a property of Wigner D-matrices
namely DðU†

2U
†
1θ⃗U1U2Þ ¼ U†

2U
†
1Dðθ⃗ÞU1U2 to get

Σþ
½θ⃗�U

p
αβΣ

þ†
½θ⃗� ¼ ½Dðθ⃗ÞUp�αβ:

Therefore, the disorder operators Σþ
½θ⃗�ðm; nÞ create

magnetic flux at plaquette Upðm; nÞ.
(2) For n0 > n, consider plaquette Up ≡Upðm; n0Þ

For convenience we define Upðm;n0Þ ¼
Uðm− 1; n0 − 1; 1̂ÞUðm;n0 − 1; 2̂ÞU†ðm− 1; n0; 1̂Þ×
U†ðm− 1; n0 − 1; 2̂Þ≡U1U2U

†
3U

†
4. The disorder

operator Σþ
½θ⃗� will rotate two horizontal links U1

and U†
3 around the axes Θ⃗n0 and Θ⃗n0þ1, respectively.

Due to Eq. (85), these two axes are related as
Θ⃗a

n0þ1 ¼ RabðU2ÞΘ⃗b
n0 ,

Σþ
½θ⃗�U

p
αβΣ

þ†
½θ⃗� ¼ ½ðΣþ

½θ⃗�U1Σ
þ†
½θ⃗� ÞU2ðΣþ

½θ⃗�U
†
3Σ

þ†
½θ⃗� ÞU

†
4�
αβ

¼ ½U1D†ðΘ⃗n0 ÞU2DðΘ⃗n0þ1ÞU†
3U

†
4�αβ

¼ ½U1D†ðΘ⃗n0 ÞU2DðU†
2Θ⃗n0U2ÞU†

3U
†
4�αβ

¼ ½U1D†ðΘ⃗n0 ÞU2U
†
2DðΘ⃗n0 ÞU2U

†
3U

†
4�αβ

¼ Up
αβ:

Therefore, the disorder operators Σþ
½θ⃗�ðm; nÞ leave all

plaquette Upðm; n0 > nÞ unaffected.
Thus we have shown that the disorder operator rotates a
plaquette by a Wigner-D matrix and hence creates a SU(N)
magnetic vortex there. Now we will show that the shape of
the Dirac string which is a vertical line S in Fig. 4 can be
deformed by gauge transformations and is therefore
unphysical. Deformation of Dirac string by unit plaquette
at site ðm; n0Þ can be achieved by replacing Eaþðm; n0; 1̂Þ by
−ðEa

−ðm; n0; 1̂Þ þ Eaþðm; n0; 2̂Þ þ Ea
−ðm; n0; 2̂ÞÞ in Eq. (83).

Deformed string S̃ is shown in Fig. 4. Applying similar
replacements we can change the shape of the Dirac string
arbitrarily with a fixed endpoint.
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changing any results of this section. The same strategy will
be adapted in the next SU(N) section to keep the discussion
simple.

[27] H. Georgi, Lie Algebras in Particle Physics: From Isospin
to Unified Theories (Perseus Books, Reading, Massachu-
setts, 1999).

[28] Advantage of this representation is that it has the following
property:

Zðω1;ω2ÞZðθ1; θ2Þ ¼ eðiðω1n̂a½1�þω2n̂a½2�Þλ
a
2
Þeðiðθ2n̂

b
½1�þθ2n̂b½2�Þλ

b
2
Þ

∵ eXeY ¼ eXþYþ1
2
½X;Y�þ���; ½λa; λb� ¼ 2ifabcλc;

fabcn̂b½h�n̂
c
½h0 � ¼ 0; h; h0 ¼ 1; 2

¼ eðiððω1þθ1Þn̂a½1�þðω1þθ2Þn̂a½2�Þλ
a
2
Þ

¼ Zðω1 þ θ1;ω2 þ θ2Þ

Which we will use to show the translation of two
gauge invariant angles through the action of the disorder
operator.

[29] We have used the property: ðdabedcde þ dacedbde þ
dadedbceÞ ¼ 1

3
ðδabδcd þ δacδbd þ δbcδadÞ for SU(3). It can

be similarly generalized to SU(N) with ðN − 1Þ d structure
functions.
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