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Disorder operators and magnetic vortices in SU(N) lattice gauge theory
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We construct the most general disorder operator for SU(N) lattice gauge theory in (2 + 1) dimensions by
using exact duality transformations. These disorder operators, defined on the plaquettes and characterized
by (N — 1) angles, are the creation and annihilation or the shift operators for the SU(N) magnetic vortices
carrying (N — 1) types of magnetic fluxes. They are dual to the SU(N) Wilson loop order operators which,
on the other hand, are the creation-annihilation or shift operators for the (N — 1) electric fluxes on their
loops. The new order-disorder algebra involving SU(N) Wigner D matrices is derived and discussed. The
Zn(€SU(N)) *t Hooft operator is obtained as a special limit. In this limit we also recover the standard
Wilson-’t Hooft order-disorder algebra. The partition function representation and the free energies of these

SU(N) magnetic vortices are discussed.
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I. INTRODUCTION

Disorder operators, introduced originally in 1971 by
Kadanoff and Ceva in the context of the two-dimensional
Ising model [1], have been widely discussed and found
useful in the studies of phase structures of spin models as
well as Abelian and non-Abelian gauge theories [2—13].
They also play a pivotal role in differentiating the topo-
logical phases of matter [3] and in the boson-fermion
transmutation through the “order ® disorder” combinations
[14]. It is generally known that the duality transformations
in spin models and gauge theories naturally lead to these
disorder operators as the fundamental operators describing
the dual interactions. Under duality, the interacting and the
noninteracting terms also interchange their roles leading to
the inversion of the coupling constant in the dual inter-
actions. The Kramers-Wannier duality in (1 + 1) dimen-
sional Ising spin model [2] and the Wegner duality in
(2+ 1) dimensional Z, gauge theory are the simplest
examples which illustrate the above facts [3-6]. In the
(1 + 1) dimensional Ising model the disorder operators are
simply the dual spin operators which describe the dual
interactions with inverse coupling. They also create Z,
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kinks which are responsible for disordering the ground
state leading to the loss of magnetization above the Curie
temperature.

In Abelian and non-Abelian gauge theories the dis-
order operators acquire additional meaning of the dual
electric potentials as the duality transformations also
interchange the roles of the electric and magnetic degrees
of freedom [3-6]. Again, the Wegner dualities in the
simplest Z, Ising gauge theory in (2 + 1) as well as in
(3 + 1) dimensions, clearly illustrate this additional rich
feature [3-6]. More explicitly, in (2 4 1)-dimension Z,
lattice gauge theory the disorder operators are the dual-spin
or dual-Z, electric potential operators [4,5] which describe
the interactions in the dual formulation with inverse
coupling. Being conjugate to the Z, magnetic fields, they
also create Z, magnetic vortices. These vortices, in turn,
magnetically disorder the ground states in the confining
phase [4] and are thus responsible for the confinement-
deconfinement phase transition.

In general, the order (disorder) operators are related to
the potentials (dual potentials) which are conjugate to
electric (magnetic) fields, respectively. They can therefore
be interpreted as the “translation operators” for the
electric and magnetic fluxes, respectively. Moreover, the
order-disorder algebra is simply the canonical commuta-
tion relations between the dual conjugate operators, i.e.,
between the magnetic flux and the electric potential
operators [see the relations (1)—(3)]. In SU(3) lattice
gauge theory or QCD the color confinement can be viewed
as a consequence of magnetically disordered ground
state leading to area law for the Wilson loops. Like the
various cases discussed above, the magnetic disorder in
QCD is produced by the magnetic vortices, which in turn
are created by the SU(3) disorder operators leading to
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disordered ground state. A systematic study of these
disorder operators in SU(2), SU(3), and then SU(N) lattice
gauge theories, using exact duality transformations, is the
subject of this work.

In 1978 Mandelstam tried to construct the SU(N)
disorder operator in the continuum using the dual electric
non abelian vector potentials [7,8]. In 1978 ’t Hooft
emphasized the role of disorder operators in the context
of quark confinement in SU(N) gauge theory [8]. The
’t Hooft disorder operator creates magnetic fluxes which
belong to the center Zy of the gauge group SU(N). They
have been extensively studied in the past analytically as
well as using Monte Carlo techniques in the weak-coupling
continuum limit [9-11].

It is known that the *t Hooft loop disorder operators are
dual to the Wilson loop order operators in a limited sense
[10,11] as they create only the center or Zy magnetic
fluxes. In this paper we construct the most general disorder
operator for SU(N) lattice gauge theory in (2 + 1) dimen-
sions by exploiting the exact duality transformations
[15,16]. These disorder operators 2[5] (p) are defined on
plaquettes p as

-

5 (p) = exp i(0(p) - E(p)). (1)

In (1), Ei (p) are the SU(N) “electric scalar potentials” on
the plaquette p. They are related to the SU(N) electric fields
through the exact duality transformations (12) in Sec. III
(also see Fig. 2). The SU(N) disorder operator 2?5] (p)in (1)

is characterized by a set of (N —1) angles which are

-,

denoted by [0] = (0,(p),0»(p), ...,On-1(p)) on each pla-
quette. In this work, like the Kramers-Wannier spin and
Wegner gauge dualities discussed earlier, we show that the
exact SU(N) duality transformations naturally lead to
E[jé]( p) in (1). We further show that they are the creation

and annihilation operators for the SU(N) magnetic vortices
on the spatial plaquettes. _

The Wilson loop order operators WV!(C), on the other
hand, are defined as a path-ordered product of the link
holonomies along a directed loop C,

wil(e) = [JuP ). (2)

leC

In (2), Um(l) are the SU(N) link holonomies or the

-.

“magnetic vector potentials” in a general [j] representation

of SU(N). Note that the SU(N) order operator WV(C) is
characterized by a set of (N — 1) integers on loop C and
(/1= (ji.jas - jno1 ). The representation index [j] denotes
the (N —1) eigenvalues (ji, ja, ..., jn_1) of the (N—1)
SU(N) Casimir operators. These Casimir operators (con-
structed purely out of the electric field operators) acting on

the SU(N) electric basis measure the net electric fluxes on

the loop states created by the loop operator Tr WWUI(C)). In
this work we also obtain the SU(N) order-disorder oper-
ators algebra:

25 (P) V(€))7 ()

{(D[ﬂ(é)wm (C))yp. if pinsideC

= . (3)
(W) op-

otherwise.

In (3), Dl (5) denotes the SU(N)-Wigner rotation matrix in

the [f] representation. If the angles [6] correspond to the
centre element z€Zy with zN =1, then using [17]
DUl(z) = ()", where [j](=0,1,2---,(N=1)) is the
N-ality of the representation [;], we recover the standard
’t Hooft-Wilson order-disorder algebra discussed in [8].
The plan of the paper is as follows. In Secs. II and III we
summarize the Hamiltonian framework and the SU(N)
duality transformations, respectively. These sections are
only for setting up the notations and to explain the SU(N)
duality relations which are then used directly in the
following sections. The details can be found in [15,16].
The SU(N) magnetic vortex creation and annihilation or
equivalently SU(N) disorder operators are discussed in
Sec. IV. In order to simplify the presentation, the SU(2),
SU(3), and SU(N) disorder operators are discussed one by
one in the increasing order of difficulty in Secs. I[IVA-IV C,
respectively. In the simplest SU(2) case, we construct the
magnetic basis in Sec. [IVA 1 using the SU(2) prepotential
approach [18]. In Sec. IVA2 we show that the SU(2)
disorder operators act as SU(2) magnetic vortex creation-
annihilation operators on the magnetic basis. The SU(2)
order-disorder algebra is discussed in Sec. IV A 3. Some of
the results in this section can also be found in [15]. We then
consider the SU(3) case in detail in Sec. IV B. As expected,
there are many new SU(3) features which are absent in the
simple SU(2) case. In particular, we emphasize the impor-
tance of the SU(3) prepotential operators representation of
the dual electric scalar potentials for constructing the
SU(3) magnetic flux basis [see (55)]. In Sec. IVC we
directly generalize these SU(3) results to the SU(N) case. In
Sec. V, we rewrite the SU(N) disorder operator in the
original Kogut-Susskind formulation. We show that they
now become non-local operators and are attached with the
invisible SU(N) Dirac strings. As expected, these unphys-
ical strings can be moved around by SU(N) gauge trans-
formations without changing their end points which specify
the locations of the SU(N) gauge invariant magnetic
vortices and antivortices. In Sec. VI we compute the path
integral expression for the SU(N) vortex-free energy.
This path integral representation should be useful for
Monte Carlo simulations and to understand the role of
these magnetic vortices and their condensation, if any, in
the color-confinement problem. It is expected that they will
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condense and disorder the vacuum state for any nonzero
coupling constant.

The prepotential operators create and annihilate the
SU(N) electric as well as the magnetic fluxes [18].
Therefore, they provide a common platform to construct
both the electric and magnetic bases in the physical loop
Hilbert space of SU(N) lattice gauge theory. In these two
dual bases we show that the order and disorder operators
have natural action of translating the electric and magnetic
fluxes respectively. These SU(N) electric and magnetic
bases and the action of the order and the disorder operators
on them are discussed in detail in Appendixes A and B,
respectively. Appendix C shows that the SU(N) Dirac
strings are unphysical.

As mentioned earlier, we work in the (2 + 1) dimension.
The notations used are as follows. The lattice sites are
denoted by (7) = (m, n) and the links by [ = (77, 1) where
i =1, 2 denotes unit vectors in the two spatial directions.
All the initial operators are vectors and assigned to the links
[. All the dual operators are scalars and are defined on the
plaquettes (p) of the spatial two-dimensional lattice. Many
times we will suppress the plaquette indices (p) on the dual
operators to avoid clutter.

II. HAMILTONIAN FORMULATION

In this section, we briefly discuss SU(N) Kogut-Susskind
Hamiltonian lattice gauge theory in (2 + 1) dimensions.
The Hamiltonian of SU(N) lattice gauge theory is [6,19]

H=> E

;i) + Ky Te(U, + Up). (4)
i.i P
In Eq. (4), E2(7i;7) = SNT (EL(7131))2 U, = U(ii; 1) x
Uit + 1)U (i 4 ;1)U (; ), and K is a coupling con-
stant. This is an electric field and magnetic-vector potential
description in which each link (i7; ) carries an SU(N) link-
flux operator U(ii;1). We call U(ii;1) the link holonomy.
Their left and right link electric fields E% (ii; 1) rotate the link

holonomies U (7i; 2) from the left and right, respectively or
equivalently satisfy the following commutation relations:

[E%(78:7), U (73 ) o) = ~(T*U(7837)) ap.
i gl = (U DT . (5)

where T®,a = 1,2, ...,N? — 1 are the generators of funda-
mental representation of SU(N). These left and right electric
fields are not independent and are related by the link
holonomy parallel transport

E_(I) = =U'(DE.()U (1), (6)

In (6) E (1) = S.N'7" E4 (I)T*. The commutation relations

(5) and Jacobi identity imply the electric fields E% (7i;1)
follow the SU(N) Lie algebra

A A

[E3 (71;1), E° (7 + 1
[E% (7:1), E% (7

Also, Eq. (6) implies that their magnitudes are equal,
EX(n)7) = E*(n.}). (8)

Itis convenient to represent the independent conjugate oper-
ators on a link [ by (E. (), Uys(1)) or (E_(I), Uys(l)) as
shown in Fig. 1(a). They are the initial (before duality)
electric variables representing the SU(N) electric fields E()
and their canonical conjugate magnetic vector potentials
U(1) on the link /. The SU(N) gauge transformations are

)] =0,
1)) = if ™ ES (75 1). (7)

= EX(n+1:1)

The generators of gauge transformation at site 7 are Gauss
operators defined by

i .

i=1

i)+ E (1)) (10)

In our earlier work [15], using canonical transforma-
tions in (2 4+ 1) dimensions, we solved the Gauss-law
constraints (10),
G'n)=0, Vn#(0,0), (11)
to write down the SU(N) Kogut-Susskind Hamiltonian as a

dual SU(N) spin model. We summarize the essential results
required for the present work in the next section.

III. DUALITY AND LOOPS

In our previous work [15], we obtained exact duality
transformations through a series of canonical transforma-
tions over the entire lattice in (2 + 1) dimensions. The dual
model is written in terms of the mutually independent
plaquette loops [see Fig. 1(b)] or scalar magnetic flux
operators YV(p) and their conjugate electric scalar potential

E (p) operators satisfying (15). The advantage of iterative
canonical transformation is that the canonical commutation
relations are preserved at every stage [15] leading to the
exact canonical magnetic description at the end. Note that
the dual operators are defined on the plaquettes or dual
lattice sites while the initial Kogut-Susskind operators,
discussed in the previous section, are defined on the lattice
links. Such dual magnetic description has been useful in
the past to study compact U(1) and SU(N) lattice gauge
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B3 (71; 2)
@) [ @i - -
VV\)(m n)A -
Ei(f; 1) B4 1;1) A A
i U(»’ i) i+ i Y
) E2 (m,n)
E%(m,n)
(2) (b) (©)

FIG. 1. (a) Kogut-Sussking link formulation. Link operator U (7; 1) and its left (right) E% (ii; 1) (E (7 + i; 1)) electric field. Gauss law
operator at site 7, G*(ii) = > 2, [E% (ii; 1) + E(ii; 1)] is also shown, (b) Dual physical plaquette holonomy W(ii) and its left (right)
E.(n) (E_(n)) electric field, (c) Unphysical string holonomy T(m, n) and its left E, (77)(= G(i7)) and right E_(#) electric field.

respectively. The convention chosen for the loop (string) electric fields is that £% () (E“ (7)) and £% (71)(E4 (77)) are located at the initial,
end points of the flux loop (string). These string holonomies decouple from the physical Hilbert space.

theories in (2 + 1) and (3 + 1) dimension [15,16,20]. The  Like in the Kogut-Susskind approach, the right electric
dual SU(N) physical and unphysical operators [15] are  potentials are defined by
summarized in the following two subsections, respectively.
E(p) =-W(P)E(P)WV(p), (14)
A. Magnetic flux operators (W,s(p).£% (p))

They are the physical magnetic operators which solve the
SU(N) Gauss law constraints and define the physical g i
Hilbert space HP"WS. They represent the scalar SU(N) commutation relations are [15]
magnetic fluxes (WW(p)) on plaquette p and their con-

Note that £2 (p) are attached to the initial end of plaquette
flux line W(p) as shown in Fig. 1(b). The dual-operator

jugate electric scalar potentials £, (p). The SU(N) duality [E5.(P): Wap(p)] = =(TW(P)) op-
relations are [€2(P): Wap(P)] = OV (P)T?) op- (15)
W(m,n) =T(m—1,n=1)U,(m,n)T (m—1,n-1), The above commutation relations imply that &% (p)
® . (E%(p)) rotate W,s(p) from left (right) and therefore are
Ep(m,n) = Z St(m,nyn)E_(m,n"; 1)S(m.n;n'). (12)  the left (right) electric scalar potentials. They are mutually
n'=n independent and satisfy SU(N) algebra,

The parallel transport operators T(m, n) and S(m,n;n’) in s b —0
(12) are required as the dual-plaquette conjugate operators [£3(p). £2(P)] = 0.

(W(m,n),E(m,n)) see only the gauge transformations [EL(p), E%(p)] = if™ & (p). (16)
A(0,0) at the origin [see (18)] while the original Kogut-

Susskind conjugate pairs (U (m, nj), E“(m, nj)) have the Also, the relation (14) implies that their magnitudes are
standard gauge transformations by A(m,n) given in (9). equal,
These parallel transports are given by [see Figs. 1(c) and 2]

Elp)=E2(p)=E(p). (17)

_ 01 1.4 N
Tm, n) = 1:[0 U(m',0;1) 1:[0 Um, n'32), (132) 1 the first two equations above we have defined £, °(p) =
" " Zgﬁﬂ E4L(p)E4L(p)- The relations (14)—(17) in this (dual)
magnetic formulation are exactly analogous to the initial

S(m.n;n') =T(m —1,n)U(m = 1,n;1) relations (5)—(8), respectively in the original Kogut-
" . Susskind electric formulation. The dual spin or magnetic
X H U(m, h;2). (13b)  flux operators transform as SU(N) adjoint matter field at the

h=n origin
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W(m,n) = A0,0)W(m,n)A(0,0),
E.(m,n) = A0,0)E,(m,n)AT(0,0). (18)

The canonical transformations (12) can also be easily
inverted to give the Kogut-Susskind electic fields in terms
of the dual-electric scalar potentials [15]. These inverse
relations will not be discussed as they are not relevant for
the present work.

-

B. String operators (E? (11),T(n))

String operators are unphysical operators and represent
SU(N) gauge degrees of freedom at every lattice site away
from the origin. They are shown in Fig. 1(c),

T(m,n) = H U(m’,O;i) H U(m,n’;ﬁ),

m'=0 n'=0
E4 (m,n) = G*(m,n) ~0. (19)

Thus, all string operators T(m, n) become cyclic as their
conjugate electric fields E¢ (m,n) turns out to be the
Gauss-law operator G*(m, n) [15]. Therefore they vanish
on the physical Hilbert space H” where the SU(N) Gauss
laws are satisfied. The string operators, being unphysical,
will not be relevant in this work and will not be considered
henceforth.

IV. DISORDER OPERATORS

As mentioned earlier, the order and disorder operators in
SU(N) lattice theory are simply the shift or the creation-
annihilation operators for the gauge invariant electric and
magnetic fluxes respectively. Note that the Wilson loop
operators WVI(C), constructed in terms of the magnetic
vector potentials U() in (2), shift their conjugate electric
fluxes along the loop C. In this section, we construct the
gauge-invariant disorder operators which are dual to the

Wilson loop operators WU/(C) and shift the magnetic
fluxes instead. For the sake of simplicity, we first consider
SU(2) case and then generalize it to SU(3) and finally to the
SU(N) gauge group. All the algebraic details for the SU(N)
electric and magnetic basis are given in Appendixes A
and B, respectively.

A. SU(2) disorder operator
The SU(2) magnetic plaquette flux operator is
i

W= (p) = exp5 (a(p) - Ga(p)).  (20)

In (20) A(p) = (A'(p), A*(p), A*(p)) is the unit vector on
every plaquette p and 6(=o6,,0,,03) are the 3 Pauli
matrices. In the angle-axis representation:

WU (p) = cos (“’(2”)> o0 + i(A(p) - 3) sin (“’(2”)> :
a(p)-a(p) =1, VY (p). (21)

In (21), 64 is 2 x 2 unit matrix. Note that the relations (21)
2isin1(@) Tr(¢“W(p)) and COS(#) =
ITrW. Under global gauge transformation A = A(0,0)
in (18), (w, ) transform as

implies 7A%(p) =

o(p) = o(p),

3
n(p) =Y _ i*(p)o* — A(0.0)n(p)AT(0,0). (22)

a=1

Thus the rotation angle w(p) is invariant and the axis 2 (p)
transforms as a vector.
We now define two unitary operators:

35 (p) =expi(a(p)-E.(p)d),
%5 (p) =expi(i(p) - E_(p)0). (23)

which are located on a plaquette p. They both are gauge
invariant because &% (p) and 7(p) gauge transform like
vectors as shown in (18) and (22). In other words,
(G, 2% (p)] = 0, where G* is defined in (10). As the left
and right electric scalar potentials are related through (14),
X% (p) are not mutually independent and satisfy

Z; (P)%5(p) = Z5(p)Z (p) = T. (24)

In (24), 7 denotes the unit operator in the physical Hilbert
space ‘HP. The identities (24) can be easily obtained by
using £_(p) = —R® (7, w)€(p) and R® (7, w)a® = A2,
where R (71, w) = S Tr(c*We W) (see [21]).

1. SU(2) prepotential operators

It is extremely convenient to use the prepotential [15,18]
representation for the dual electric potential on the pla-
quette loops to construct the electric loop (Appendix A)
as well the magnetic loop (Appendix B) basis. This sim-
plification is illustrated in Fig. 3. A further advantage is that
this simple procedure can be directly generalized to all
SU(N). We write the SU(2) dual plaquette loop electric
potentials on any plaquette p satisfying (16) as [22]

& (p)=d'(p) %aa(p),

£1(p) = ~b(p) G b'(p). (25)
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B2 (m,n51) |

2
2
—
2

*

(m,n)

S(m,n; n')

Ex(m,n)

0

FIG. 2. Graphical representation of canonical relation (12). We
have used diamond symbol to represent Kogut-Susskind electric
fields E*(m,n’; i) and black dot to represent new plaquette
electric fields &3 (m,n). The thick gray line represents parallel
transport S(m, n;n’) defined in Eq. (13b).

A

Il
=
=

bl (p)
(0,0) e——— |

al,(p)

FIG. 3. SU(2) prepotential operators in the dual formulation. The
two ends of the plaquette flux operator W(p) are associated with
two doublets of the harmonic oscillators at the origin (0,0) [15,18].

Under gauge transformations at the origin, (a}(p). b;( p)) trans-
form as SU(2) doublets. The dotted plagette on the right-hand side
is a compact way to represent the plaquette holonomy W(p).

In (25), al(p) and b}, (p) are the two mutually commuting
SU(2) doublets of harmonic-oscillator creation operators
on every plaquette loop. The standard commutation rela-
tions are

[aa(p)’ a;(p’)] = 6pp’ aff>
[ba(p)’ b/T}(p,)] = 5[717' o+ (26)

Using (26), it is easy to check that the representation (25)
satisfies (16). The constraints (17) imply that

N(p)=a'(p)-a(p)=b'(p)-b(p). (27)

The plaquette holonomy in this representation is [18]

Wep(p) = F(N)[bi(p)a(p) + badig F(N).  (28)

In (28), F(N) = =b—

Xq = €4pxg. The harmonic oscillator representation (25)

is the normalization factor and

implies that aj; and bj; transform like doublets from the
right and antidoublets from the left, respectively on every
plaquette (p),

) abip)] = (¢ (1)) .
ekl =-(F00) .

The strong coupling vacuum on every plaquette in the dual
formulation |0), satisfies:

&L(p)l0), =0, Vp. (30)

This is equivalent to demanding

aq(p)[0), =0, by(p)[0), = 0. (31)
The relations (29) and (31) are useful to study the action of
SU(2) disorder operators on the magnetic basis discussed
below. Note that under SU(2) gauge transformations (18)
with A(0,0) at the origin [see Fig. 1(b)] these oscillators
transform doublets:

alb(p) = ay(p)Ap(0,0),  Vp,
bi(p) = Ny(0,0)bj(p)  V p. (32)

These relations are useful to construct the gauge-invariant
operators in the magnetic basis constructed in the next
section.

2. SU(2) magnetic basis

The physical meaning of the operators 5 (p) is simple.
The non-Abelian electric scalar potentials &% (p) are

i—L
conjugate to the magnetic flux operators W([IJ/?] (p).

They satisfy the canonical commutation relations (15).
Therefore, the gauge-invariant vortex operator £ (p) act-
ing on the magnetic basis of a plaquette changes the
magnetic flux on it continuously as a function of 6 in
(43). To see this explicitly, we first construct the SU(2)
magnetic basis. We note that

/

Was(p): Wys(P')] =0, VYp,p.

Therefore, we can diagonalize all four operators
Wi (p) Wia(p), Wai(p), Wa(p)) simultaneously on
every plaquette. The common eigenstates |Z(p))=

21(p), z2(p)) satisfy

Was(P)IZ(p)) = Zop(p)|Z(p)),  a.p=1,2.  (33)
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In (33) the SU(2) matrix on the plaquette p is

{1 Vo)
ZZ( . *) |21 + [z = 1. (34)

SRS

The SU(2) Z matrices can also be written in the SU(2)
angle-axis representation

AR (35)

The two SU(2) representations (34) and (35) are related by

Z) = CoS +in?sin( 2 7, = (A% +in')sin @
! 2 2) 7 2)

We now construct |Z(p)) and show that on this basis the
vortex operator 5 (p) act as the shift operators for the
plaquette magnetic fluxes. The magnetic eigenstates |Z(p))
can be explicitly constructed in terms of SU(2) prepotential
operators [18] (see Appendix B),

p*

S 5 (a"(p)Z(p)b* (p))*7)

(36)

In (36) d(j) = (2j + 1) is the dimension of the j repre-
sentation and (a'Zb") =372, (aZ,Zaﬁb;). From now
onwards we will ignore the plaquette index p on all the
operators and the states as they are all defined on the lattice
plaquettes. The magnetic eigenstates (36) have simple
SU(2) gauge-transformation properties

|Z) — |AZAT), A= A(0,0). (37)
The transformations (37) are clear from (32) and (36). In
the angle-axis representation (35) the gauge transforma-
tions (37) take the simpler form
w(p) = w(p), #(p)—>Aa(p)A', A=A(0,0). (38)
Thus, w(p), V p are gauge-invariant angles and 7(p) V p
transform globally like SU(2) adjoint vectors. The eigen-
values of the plaquette magnetic-field operators in the
Hamiltonian (4) are

Te(WIi=H)|Z(w, n))—2cos( )|z< ). (39)

Now we evaluate the action of disorder operator using the
prepotential relations,

2+a‘129 - (aT )a’
YobeTy = (e pT (40)

The relations (40) can be easily established using (23) and
the prepotential representation of £.(p) in (25),

551Z(w. 1)) = |77 Z(w, 7)) =
%51Z(w. 7)) = |Z(w, 2)e ") =

Z(w + 6, 7)),
Z(w—6.7)).  (41)

Thus, the SU(2) plaquette disorder operator X3 translates
the plaquette magnetic fluxes. This is precisely dual to
the action of the Wilson loop operators which translate the
SU(2)-loop electric fluxes as shown in Appendix A [see
Eq. (A10) and Fig. 6].

3. SU(2) order-disorder algebra

The dual-canonical commutation relations (15) involv-
ing magnetic-plaquette flux operators WV(p) and their
conjugate-electric scalar potential £(p) immediately lead
to the SU(2) order-disorder algebra:

=5 (P2 (p)Z5(p) = Dl ? (. )WY (),

S (WS )z () = W (p)D (R 0).  (42)

In (42) the Wigner matrix DU=2 = ¢/ ig the rotation
matrix in j:% representation around the magnetic axis
i(p) defined through the plaquette loops W(p). In any
higher-[j] representation, we can write

U] _ =2y i=1/2 =172
Wi = W=y

{a1py afy afai}

where all the @ (and therefore ) indices are completely
symmetrized. Inserting the disorder operators (X) and their
inverses (X") in the middle, we get the SU(2) order-disorder
algebra relation in j representation,

S5 (PWE(p)Z; (p) = D, e)vvif;(p),
S5 (P)WI(p)Zs (p) = Wil (p)DUy(7.6).  (43)

In the special case when the rotations are restricted to the
center Z, of the SU(2) group then § = 0 or 2z in (43) and
we recover the 't Hooft Wilson order-disorder algebra with

DL};(Q =2r) = ( 1)2j5a/37

= (~DPWTis, (44)
In (44), (—1)% is the N-ality of the j representation. We thus
recover the standard Wilson-"t Hooft loop Z, algebra [8—11]

for SU(2) at @ = 2x. The operator Xy, =X, = %5 is the
SU(2) ’t Hooft operator.
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B. SU(3) disorder operator

In this section, we construct the disorder operator for
SU(3) lattice gauge theory before going to SU(N) gauge
group. As in the previous SU(2) case, they are the SU(3)
magnetic vortex creation-annihilation operators and are
expected to magnetically disorder the weak coupling ground
state [11,12]. The SU(3) plaquette magnetic flux operators
can be written as

-

W[pzlq:l](p) = exp i(ﬁ(p) '/160(17))- (45)

In (45) a(p) = (2'(p), A*(p), ..., A%(p)) is the unit vector
on every plaquette p and A*(a=1,...,8) are the 8 Gell-
Mann matrices. We can also use the angle-axis representation
[23] to write:

WI=19=11(p) = AT + Bii - J + Ciixii- 1. (46)

In (46) (7i%7)* = d***7i°7i° defines the second independent
vector with the help of the SU(3) symmetric tensors d*°.
Instead of following the standard polar decomposition (46), it
is more convenient for us to construct the two independent
SU(3) axes operators as [24]

ﬁ?l] (p) —_ Trﬂa(W[l‘l] (p) + WT[I,I] (p))’ (478.)

iity (p) = V3d™iify ()it (p). (47b)

Note that ﬁfl]( P)s ﬁfz] (p) are real. Under SU(3) gauge
transformations (18) the above two operators transform as:

i, (p) = R®(A)TE (p)

ﬁ?z] (p) = Rab(/\)ﬁtfz] (p)- (48)

In (48) R*®(A) = 3 Tr(A*A2°A™) and A = A(0,0). These
two axes are linearly independent. It can be shown that
in SU(3) case there exist only two independent axes as

the third axis defined using another d* is the first axis
ﬁm [25]

f<ity (p)iicy (p) =0,

Ed = 1 7 n n
dabC”Fz] () (p) = ﬁ(”l[)l](p)nFl}(p))n?”(p)'

Now we define the SU(3) disorder operators which translate
these two gauge invariant magnetic fluxes:

0 (0) =expif (Z iy )£ 0) .

h=1

%,0(0) =expi{ (Z o)y e} (9

h=1

In (49) (0,6,) = (6,(p),6,(p)) are the external angular
parameters characterizing the SU(3) disorder operator. Like
in the SU(2) case, the two operators in (49) are unitary and
Hermitian conjugate of each other

25 0,(P)Z5 0. (p) =T =25 5 (P)Zg ,(P)-  (50)

Like SU(2) case this can also be proved using the properties
of the SU(3) 1 matrices.

1. SU(3) prepotential operators

The SU(3) prepotential operators on plaquettes are
defines as

£ Ez_:a"'[h]ga[h],
gaz—zzjb[h]gbwh]. (51)

In (51), (ak[h], a,[h)) and (bL[h], by[h]) where a = 1,2,3;
h =1, 2 are the mutually independent SU(3) triplets of
harmonic oscillator creation-annihilation operators on every
plaquette [26]. They are attached to the initial and the end
points of the plaquette loops [see Fig. 1(b)]. The summation
over [h] = 1,2 is over the rank of the group. As all operators
are defined on plaquettes, we suppress the plaquette index
“p” throughout this section. The harmonic oscillator com-
mutation relations and (51) imply that al[h] and b}[h]
transform like triplets from right and anti-triplets from left
respectively on every plaquette (p): transformations:

e allh] = () . n=1.2

[Ei,bl[h]]——(gbﬂh])a, h=12  (52)

Likein the SU(2) case (32), the SU(3) gauge transformations
(18) with A(0,0) at the orgin [see Fig. 1(b)] the SU(3)
oscillators on every plaquette transform as SU(3) triplets,

aglh] = aj[hAg(0.0), h=1.2,
bi[h] > ALy(0.0)bj[h]. h=1.2. (53)

These relations are again useful for the gauge covariant
parametrization of the SU(3) magnetic basis in the angle-
axis representation and is discussed in the next section. The
SU(3) strong coupling vacuum in the dual description |0)
satisfies

aq[h]|0), =0, bu[h][0), = 0.

) h=12 (54)
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This strong coupling vacuum state |0), = [0) is used to
construct the SU(3) magnetic basis in the next section.

2. SU(3) magnetic basis

We now show that Zgﬁ o, operating on the SU(3)
plaquette magnetic basis act like a translation operators
for the two gauge-invariant magnetic fields. As shown in
Appendix B, the SU(3) magnetic basis can be written in
terms of SU(3) prepotentials [18] as

® at T at i
2= . [1]259 [1)P( [Z}Zfa 2])¢
p.q=0 p: a

0). (55)

In the above equation, the plaquette index has been
suppressed and

P+ 1@+ 1)(pp+q+2),

N =

d(p.q) =

is the dimension of the [p, q] representation of SU(3) [27],
Z,p are the elements of SU(3) matrix and correspond to the

eigenvalues of Wp ha= ](p), and we have ignored pla-

quette index p in (55). In the axis-angle representation Z
can be written as [28]

a

. Ha Ha A’
= Z(w;,w,) = exp l(a)lnm + 0)2”[2]) —

. (56)

Z(p)
In (56) we have labeled the SU(3) group manifold by
Z(a)l, a)2) = Z(fl[l], fl[z]; wy, a)z). The two axes (fl[l], fl[z])
are suppressed for the notational simplicity. Under SU(3)
gauge transformations at the origin (18),
|Z) — |AZAT), A = A(0,0). (57)
We have used (53) and the defining Eq. (56) to obtain the
above covariant transformations. The gauge transforma-
tions (57) show that
wy = Wy, l,’\l[h] d Afl[h]ATh = 1, 2. (58)
Thus (w;, w,) are the gauge-invariant angles and the two
axes Ay =y 5| it A* transform like the adjoint vectors
on every plaquette.
In order to evaluate the action of the disorder operator
on this magnetic basis we first write down the following

equations, which can be easily established using the com-
mutation relations in (52),

Z;rly%ai[h]il;:@ = <aT[h] Oy +0}y )5 ) ,

a

(59a)

%5, 0,0 H1Z5 g, = (OIS ]) o (59b)

a

Using the above equations we can easily prove that

(0,75, +6‘2n[ ])

wli

%5 0| Z(01.02)) = "D 70y )

= |Z(w; + 0, 0, + 6)),
|Z (w1, a)z)e(_i(a"l[ | +O20y )7 >>

— 01,0, = 0y)).

25,0,/ Z(@1, @) =

= |Z(w,
or

2911’92|Z(a),,a)2)) = |Z(w, £0,,0, £ 6,)). (60)

Therefore, the disorder operator in (49) translates the two
gauge-invariant angles. We can thus interpret them as
the creation-annihilation operators for the SU(3) magnetic
vortices.

3. SU(3) order-disorder algebra
The SU(3) order-disorder algebra is

=5 (PYWVE ()2 (p) = DET @)W (p).

=5 (PIWa (P25 (p) = WE(p)DJ (0).  (61)

i

In (61), DP9(6,,6,) = exp (i(6,7if), + 627y ) 5) is SU(3)
Wigner D-matrix in the [p, q] representation. Similar to the
SU(2) case, we have used the dual-canonical commutation
relations (15) to obtain the SU(3) order-disorder algebra
in (61).

C. SU(N) disorder operator

We now use the SU(N) dual electric scalar potentials
E(p) in (12) to define the SU(N) disorder operator

5 .0 (P) = expi{(p) - Ex(p)}.  (62)

In (62) O(p) = [01(p). 02(p). ... On-1(p)] are the (N - 1)
external angular parameters characterizing the SU(N)
disorder operator on the plaquette (p) and

(N-1)

0'(p)= > Oulp)ity(p)- (63)

h=1

The invariance (18) demands that the operator 5( p) in (62)
is the most general vector operator constructed out of
the magnetic-flux operator W,4(p). In other words, they
depend on the (N — 1) directions of the SU(N) magnetic
fields. In the SU(2) and SU(3) cases in the previous sections
we have already constructed one and two independent axes,
respectively, using the plaquette magnetic-flux operators.
In the same way we now iteratively define the (N —1)
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linearly independent “SU(N) magnetic axes” using the
SU(N) symmetric structure constants d**° as follows:

i,y (p) = d®<if (p)iicy (P)h = 1,2, ,N =2, (64)

The first magnetic axis is defined as ﬁ‘[‘l]( p)=
Tr(A*(W + WT)) where A*(a=1,2,...,(N>=1)) are
the SU(N) fundamental representation matrices. The iter-
ative procedure ends as [29] 7y, = dabcﬁ'[JN_l]( p)it(p) =
iy (p). The (N—1) SU(N) magnetic-field operators
ﬁfh]; h=1,2,...,(N=1) are Hermitian as the symmetric
structure constants d** are always real. Under the gauge
transformation (18), these axes transform as vectors

i (p) = RO(N)i (p). h=1.2.... (N=1). (65)

The disorder operator is invariant under the gauge trans-
formations (18) as 5( p) and the dual electric potentials
E(p) both transform as vectors. As in the case of SU(2)

[see (24)] and SU(3) [see (50)], Z[g] (p) and Z[_g] (p) are not
independent and satisfy
+ - T y- +

Here 7 is unity operator in the physical Hilbert space. The
relations (66) follow from the parallel transport relating the
two electric scalar potentials: £2(p) = —R®(W(p))ES(p)
and 7y, (p) = =RV (p))il, (p)ih=1.2--- (N-1).
We now briefly discuss the SU(N) prepotential operators
to be used in the Sec. IV C 2 for the construction of the
SU(N) magnetic basis.

1. SU(N) prepotential operators

The SU(N) dual-electric scalar potentials £*(p) can be
written in terms of the (N —1) N-plets of harmonic
oscillators at each of the two ends of the plaquette p.
We define

£ (p) = %i) Z al[h] (%) aﬂa/}[h}}

h=1 lap=1
=& [h]
(N-1) - N A2
E(p)= > Zth](—;) b;[h]] (67)
h=1 Lap=1 ap
=4[]
In (67), we have introduced prepotential N-plets

(ag[h]. al[n]) and (b,[h].b[h]) for each of the (N —1)
fundamental representations of SU(N). They are denoted
by h=1,2,....,(N—1) and we have suppressed the

additional plaquette index on the right-hand side of (67)
for convenience. The 4" are the (N* — 1) SU(N) matrices in
the fundamental representation. The harmonic-oscillator
commutation relations of the SU(N) prepotentials imply

€8 4], Gl = By 5 ay[H1AG
€4 BN = 6 g ABIE. (68)

We also note that under SU(N) gauge transformations (18)
with A = A(0,0) [see Fig. 1(b)] these oscillators trans-
form as

ablh] = ajlhlAg,. Vh=12... (N=1),
bulh] = Albilh]. Vh=12.. (N=1).  (69)

Like in SU(2) and SU(3) cases, the relations (68) and (69)
will be useful in constructing the SU(N) magnetic basis in
the next section.

2. SU(N) magnetic basis

In this section, we construct the SU(N) magnetic basis
for all SU(N) and show that the disorder operators on a
magnetic basis act as shift operators for the N — 1 magnetic
fields. The SU(N) magnetic basis has been constructed in
Appendix B and is given by

2= Y- \ai) [T @ mzei)20). - (70
[71=0 '

h=1

In (70) /d(j) is the dimension of the SU(N)

[71(=(j1. jar - ju_1) representation. The SU(N) strong-
coupling vacuum |0) in the dual description on every
plaquette satisfies

a.[h]|0) =0, b,[h]|0)=0, h=1,2,..., (N=1). (71)
Like in SU(2) and SU(3) cases we parametrize the
SU(N) matrix Z = Z(p) in (70) on every plaquette p in
the angle-axis representation as

ol A
Z = Z(a)l, @y, ..., a)N_l) = exXp!? ((l)hl’l?h] 7) . (72)

In (72) the (N —1) linearly independent unit vectors are
defined as

ﬁ?rJrl] (p) = dabcﬁb

[r}(l’)ﬁfu(l?)’ r=1,2,...N=2. (73)

We have again suppressed the (N —1) axes Al in

Z(wy, 0y, ...,wn-;) for the notational simplicity.

114507-10



DISORDER OPERATORS AND MAGNETIC VORTICES IN SU(N) ...

PHYS. REV. D 108, 114507 (2023)

In order to evaluate the action of disorder operators on
the magnetic basis (70), we use (68) to obtain,

+ ‘t] — t (ahn[])/\a
ZgaalhlZy (“ (ke ) (74)

S bR = ( ~HORE b [ ])a (75)

Therefore, the action of disorder operators on the magnetic
basis is given by

AR

£512) = ), (76)

2512) = |z W), (77)
We now use axis-angle representation (72) to get

=5 Z(wy)) = | T T) | Z(w, +6))).

_ oy ilen it OB —i(@,08 A _
X5 |Z(@y)) = [T ONT) = | Z(w,~6,)).  (78)

Therefore, the disorder operator on a plaquette p translates
the N —1 gauge invariant angles defining the SU(N)
magnetic fluxes.

3. SU(N) order-disorder algebra

Using the canonical commutation relations in the dual
description (15) we get Similarly, the SU(N) order-disorder
algebra is

=5 ()Wa(p)5 (p) = DREIWp).

=5 ()WaN(p)E5 (p) = W(P)DI(B).  (719)

In (79) the Wigner matrix DU ([ ]) represent the SUN)
rotations around the magnetic axes i by 6, with
h=1,2,....,(N=1).

4. Reduction to 't Hooft algebra
In the special case when the rotations are in the center of
SU(N) with Z€ Zy and ZN = 1, we get
pUl(z) = ()T, N=1, (80)

where 7 is the unit matrix and 7[J] is the N-ality of the []
representation. The SU(N) center elements in (80) are

(N=1).  (81)

We thus get the t Hooft Wilson order-disorder algebra [8—11].

= (PWh(p)E (p) =

o (PP (p) = WA (p).  (82)

V. SU(N) DIRAC STRINGS

The disorder operators defined in the previous section
can also be written in terms of the Kogut-Susskind link
holonomies and their electric fields using the exact duality
transformations (12). As expected, these disorder operators
¥(p) are highly nonlocal operators in the original descrip-
tion but their physical action is completely local. This leads
to the invisible SU(N) Dirac strings discussed in this
section. Using the exact duality relations we write

z:Eglez"'@r\l—l](m’n)

:exp{iéa(m n)- f: Rab(S(m,n;n’))Ell(m,n’;i)}.

n'=n+1

(83)

In (83) we have used (12)

ZRab

m,n;n'))ER (m, n'; 1),

where the parallel transports S(m,n;n’) and the vectors
6" (m,n)( =" (p)) are defined in (13b) and (63) respectively.
Thus, the local SU(N) disorder operator (62) in the dual
description becomes a nonlocal operator (83) when rewritten
in terms of the original Kogut-Susskind link operators. As is
clear from (83), it now rotates all the horizontal Kogut-
Susskind link operators U(m — l,n’;i),n’ >n. We can
define the axis of rotation associated with each rotated
link as

-

0 (m.n' > n) = R®(S(m, n;n'))0° (m,n), (84)

which can also be recast in an iterative relation
0" (m.n' + 1) = R®(U(m,n';2))0(m.n').  (85)

We can similarly obtain Z[ 3 by using (12), (14), and (62).
Now we have

Z[g](m,n)—exp{i i: éa(m,n’).Ei(m,n’;i)}. (86)

n'=n+1
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FIG. 4. (a) The disorder operator Z[E] (m, n), defined in Eq. (83) rotates all horizontal links U(m — 1, n’; i), VY n' > n around an axis

é(m n') (forn’ =n,n+ 1,n+ 2, ... they are denoted by éo, @1 , éz, ...), (b) Invisible SU(N) Dirac string S. The rotated links | € S are
the dark horizontal links, (c) Shape of Dirac string can be deformed without affecting the endpoint or the location of the magnetic vortex.

The SU(N) gauge transformations at site (m, n + 2) changes the shape of the Dirac string from S to S.

They rotate the links

.1 T
Z[g](m, n)Uyp(m, n'; I)Z[g] (m, n)

= Uy, (m,n; 1)Dy(O(m,n')), V' 2n. (87
These rotations of the horizontal link holonomies are
shown in Fig. 4(a). The rotational axes of these link
holonomies are related through the parallel transport
equations (85) which, in turn, are obtained by the exact
duality transformations (12). These special relations ensure
that they create magnetic flux only on the plaquette located
at the end point (m, n) keeping all the other plaquette fluxes
unaffected (see Appendix C). Therefore, this local action
by the nonlocal operator (86) creates an invisible non-
Abelian Dirac string S originating from the corresponding
plaquette [see Fig. 4(b)]. In Appendix C is shown that using
gauge transformations these Dirac strings can be deformed
arbitrarily except their gauge invariant endpoints.

VI. PATH INTEGRAL REPRESENTATION

In this section, we construct the path integral represen-
tation of the SU(N) disorder operators so that their behavior
can also be studied using Monte Carlo simulations in future
studies. Such construction for the Z, ’t Hooft disorder
operator in pure SU(2) lattice gauge theory can be found
in [9,11]. The ground-state wave functional depends on the
links in the two-dimensional surface X at time t = 0 [9],

#(U) = (Ul ) = [ [Jav@eEem. s

>0

In (88) the integration is done over all links / > 0 which are
the links at time 7 > 0. Similarly the plaquettes involved
in the summation are in the upper half lattice at ¢ > 0. Thus
the ground state ¥ (U) depends only on the spatial links at
t = 0. The expectation values of any functional F[U(/)] in
the ground state |y (0)) is defined as

(FIUD]) = (w(OFUD)]lw(0)).

The path integral representation is

(FIUD)]) = % / du(U)FIU(D) PVt U, (89)

where du(U) = [[,dU(l) and [, p now denote all the links
and plaquettes in the three-dimensional lattice and f = %71\1

The partition function Z(f3) is given by

2(p) = / [Javme=a ) (90)

The action of Z[E] (m, n) rotates all the links crossing the

Dirac string by the appropriate SU(N) Wigner-D matrices
as shown in Fig. 4(a). Therefore the expectation value
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FIG. 5. Action of the disorder operators E[ﬁ](m n
transformations rotate the dark vertical links denoted

Z[%] (m, n) or the free energy of the SU(N) magnetic vortex

can be defined as

< ﬂsttr

= e_ﬂFmag (5) .

<Z[+é] (m,n)> U +U! D*(H)) tr(U,,+U};)]>

(1)

In (91) the summation sign includes only those plaquettes
which protrude from the links | € {S} [see Fig. 4(b)] in the
+ve time direction and F',, (5) denotes the free energy of
the magnetic vortex. Note that the path integral represen-
tation for the SU(N) vortex (91) is analogous to the path
integral representations for the defects in the 2D Ising
model [1] and Zy vortices in SU(N) gauge theory [8]
obtained by Kadanoff and ’t Hooft, respectively. We can
also define SU(N) electric free energy of the vortex as the
SU(N) Fourier transform

e ﬁFe[eL /d@l/dez /deN 1){

In (92), m(é) is the SU(N) character in the [J]
(ji»Jjos ---» jn—1) representation of SU(N).

The Monte Carlo simulation of <Z[%] (m,n)) in (91) is

problematic because of the presence of the infinite Dirac
string attached to a vortex contradicts the periodic boun-
dary conditions imposed on a finite lattice. On the other
hand one can easily compute the vortex-antivortex corre-
lation functions as shown in Fig. 5,

e PFmag(0 ) (92)

(2[2] (m, n)Z[_é] (m+ R, n))

— o—PF(O.R)

= (e Yy eslnD

6)U,+U, D' (@)=uw(U,+U}))y. (93)

In (93) &' denotes the set of dark links " in Fig. 5 and the
summation sign includes only those plaquettes which

ﬂ)y reS i

(m + R, n) creating SU(N) vortex-antivortex at a distance R apart. The SU(N)
n (93). This set of vertical dark links I' is denoted by {S'}.

protrude from the links I’ € {S’} in the +ve time direction.
It will be interesting to study the above free energies
and hence the role of SU(N) vortices in the ground state
and their magnetic disorder in the large R limit using
Monte Carlo simulations near the continuum f — oo.

VII. SUMMARY AND DISCUSSION

In this work we have constructed the most general
disorder operators for SU(N) lattice gauge theory in
(2+1) dimensions in the Hamiltonian formulation.
Being exactly dual to the Wilson loop operators, these
operators create and annihilate (N — 1) types of SU(N)
magnetic fluxes. The SU(N) order-disorder algebra is
simply the canonical commutation relations in the dual
formulation, i.e., the commutation relations between the
electric scalar potentials and their conjugate magnetic
fluxes.

In the strong coupling limit the disorder and order
operators satisfy,

v (6],

<0|2[§]|0> — ¢ = ool, (94a)

O TrOWVH|0) — ¢ — 00, V¥ []. (94b)
In the first limit equation we used the nonlocal expression

for Z?g] in (83). The strong coupling limits in (94a) and
(94b) show a complete magnetic disorder at least in the
strong coupling ground state |0). The study of (£*(8)) and

the vacuum correlation functions of (X3 (p)Zf(p)), as

|p = p'| > oo for different [6] in the weak-coupling con-
tinuum limit is required to further probe the relevance of
these magnetic disorder operators in the problem of color
confinement. These studies across the finite temperature
confinement-deconfinement transition will also be useful to
understand the magnetic disorder in confining vacuum. We
further note that the SU(N) disorder operators are mean-
ingful even in the presence of dynamical matter fields in
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any SU(N) representation. These canonical transformation
techniques can also be generalized to obtain the SU(N)
disorder operator in (3 + 1) dimensions where the dual
electric potentials are also the dual gauge fields on the dual
links. Thus, like Wilson loop operators W (C), the disorder

operator X (C’ ) will also be defined on the closed curves '
onthe dual lattlce The work in these directions is in progress.
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APPENDIX A: ELECTRIC LOOP BASIS

It is easy to construct the loop basis in terms of the dual-
electric scalar potentials on the plaquette loops (see Fig. 3).
In the prepotential representation

('"3

o
/-\
\_/
|II

& (p)=-b(p) (A1)

Ga

a'(p)5a(p). S5 b'(p)-

Using the facts that the left and the right electric fields
are independent, [€%(p), £ (p)] = 0, and their magnitudes
are equal, Y 3 £4E% =33 £2E% = £2, we define the
first set of a complete set of commuting operators on every
plaquette p as: [2,E%3, %3], The SU(2) electric-loop
decoupled basis on every plaquette p is

ljmym_) = |jm,) ® |jm_)
= . (a].a})|0), ® Ph_(b].b})[0),. (A2)
where we have defined
. T\ j+m TV\j—m
phial.a) — " (@) (A3)

VG+m) /(G =m)t

Under SU(2) gauge transformations at the origin
A = A(0,0)
J (a';" a;) rn m < )¢] (al ’ a2)
¢ (b].0}) = D) <m>¢¢n,_<b;, b).  (A4)
The electric flux states transform as
mam_) = 37 D)y (M) (M) ljmml). (a5)
" _m.

4

At this stage, it is convenient to work with the coupled
basis instead of the decoupled basis (AS). We define the

complete set of commuting operators (CSCO) on every
plaquette as
E=E=E, L*sE&+E, LT =8548 (A6)
The loop coupled basis on every lattice plaquette |n/m) can
be constructed as

= ]anm(k-ﬁ-)n_l_1 (L—)l_m (a-Dl(b;)l

Inim) L0). (A7)

In (A7) ky =at-b" =32, alb} and

B n(l+m)!
Noyim = \/(l—m)!(l!) tn—1-1D)(m+ D

The corresponding eigenvalue equations are

21
Enim) , = <n , >

L?|nim), = I(1 + 1)|nlm),,,

L*=3|nlm) , = m|nlmy),,.

nlm)

p’

(A8)

In above [ =0,1,2,....n—1 and m=-I[,-1+1, ..., L
Under gauge transformations at the origin A = A(0,0),
these states have much simpler transformation property

ZDVMW!

|nlm) = )|nlm). (A9)

In other words the principal (n) and the angular momentum
() quantum numbers remain invariant.

1. The Wilson loops as translation operators

In the loop basis (AS8), the plaquette operators, W(p)
which are unit size Wilson loop order operator acts as
a translation operator for the electric flux n. Using (28)
we get

TrW(p)|nlm) = Ap|n — 1im) + B,|n + 1lm).  (A10)

Here we have ignored the plaquette index p on all the three
quantum numbers and

CEEICES)
Ap= (n—1) ’

B (n+1-1)(n-1)
" (n+1)

The above translative action of the fundamental plaquette
loop operator W = W(p) is valid on each plaquette p and
we have suppresses the plaquette index p on both sides of
(A10). The action (A10) is illustrated in Fig. 6. An arbitrary
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Tr W, — A,

FIG. 6. The action of the Wilson loop on the loop state |n = 4,1 = 2, m) described in the coupled basis. The circles in the three figures
represent the SU(2) electric flux circulating in a loop within the plaquette and 2/ is the number of open flux lines. The action of Tr (W)

simply translates n to n £ 1 in (A10).

Wilson loop operator YW(C) can be written in terms of the
fundamental plaquette Wilson loop operators as

W) = [[W(p) = Wp)W(ps) - W(p,.)- (Al

peC

The above product over plaquettes is taken from the bottom
right corner as shown in Fig. 7. More explicitly, the curve C
is obtained by traversing the n. plaquettes in the order
P1 = P2+ = Py, as shown in Fig. 7. These n; plaquette
paths are shown in Fig. 3. Therefore, the end effect of W(C)
is to translate the electric fluxes of all plaquette loops inside
the closed curve C,

W(C) H |nlm),

peC

= H(Ap|n— Um), + Bp|n + 1lm) ).
peC

(A12)

Note that in the SU(N) case the Wilson loop operators will
shift all the (N —1) eigenvalues of the Casimir &[h]
(h=1,2,...,(N —1)) on the plaquettes p €C by *1.

° L EJNC
....... S N
° [ ] :
Wips)
O S NI >
L4

FIG. 7. The Wilson loop W(C) of any shape and size can be
written as an ordered product of all plaquette operators W(p)
inside C as in (All). These dotted plaquettes inside C are
illustrated in Fig. 3.

APPENDIX B: MAGNETIC LOOP BASIS

We now construct the magnetic basis for plaquette flux
operators and show that the disorder operator has natural
translative action on them. The group manifold for SU(2)
group is S°. We define it on every plaquette p through
complex doublets Z(p) = (z;(p).z2(p)) that satisfy the
constraint |z;(p)|* + |z2(p)|* =1, V¥ p. A configuration
on S is

Z(p) = zi1(p) Zi(l’)

) 4 (B1)

We write eigenvalue equations for the magnetic flux
operators as

Was(P)IZ(P)) = Zap(P)IZ(P))- (B2)

Here Z,4(p) are the matrix elements of the matrix Z(p) in
(B1). These states form a complete orthonormal basis on $°

A; du(@)|Z(p)){Z(p)| = 1,

(Z(p)Z'(p) = 6(Z(p) = Z'(p))- (B3)

The SU(2) group manifold integrations is defined as
Jsv (@) =gz [ P2 d28(zi2 + 2322 = 1).

The magnetic eigenvectors |Z(p)) can be expanded in
the complete orthonormal electric basis as

1Z(p)) =z1(p). 22(p))

(B4)

The construction of magnetic states can be easily checked
by directly applying ¥V on both sides above equations
and realizing that V) acts on the electric field basis as the
raising and lowering operators for (j, m,,m_) and using
the recurrence relations for the D-functions connecting

. 1
D{mm_ to Dfn Jiz Ll For SU(N), N > 3, this approach gets
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extremely complicated as it requires the recurrence rela-
tions for the SU(N) Winger D-functions. We will first
write down these states in terms of SU(2) prepotentials
where they take a much simpler form and then verify the
eigenvalues equations (B2). Now use Eq. (A2)

P =3 Vi)
Jj=
x D) Jo (al,a))h, (b7, b1)|0).
mym_ my\%1, %2 )¥m_\Y1, )

(B5)

We call ¢{;1(x1,x2) the SU(2) structure functions. These
SU(2) structure functions have the following orthonormal
properties:

jt j _ O
AUQ) dﬂ(z_)¢'n (Z17Z2)¢m’(zlvz2) - (2]+ 1) | ’
. . * * 2j
§;¢xwzhzg¢a<whwa>:ﬁiﬂﬂgg%ﬁﬁlf (B6)

Further, we can also write SU(2) Wigner D-function in
terms of these structure functions as follows:

Dm&mﬁ—%/ Py sl (wy wa )P 28).
SU(2)
(B7)

where

44 Z Z w
B
%) —Z 1w '

Using properties of structure functions and Wigner D
functions,

J 4 .
Z Di?um_ (Z] s Z2)¢{n_ (Wl ’ WZ) =

m_=—j

P, (W5, w3)

in (B5), we get

. (b7, 631)]0),

where

=1 310
b3 -z i ]Llbil

Now we can sum the remaining magnetic index to get

Z\/7 (2]

where d; = (2j + 1) is the dimension of [ j] representation.
The eigenvalues equation (B2) holds at each point of the
group manifold. We first prove it for Z = I where [ is the
identity element of SU(2) group. First, we prove that

,0), (BY)

WIS (L) = 8.411). (B10)

where

’r.bT>2j|0,()>'

:i 2]+

Jj=0

(B11)

We have suppressed the plaquette index p. Using prepo-
tential representation (28) for W,; we get

o 2] +1 1/2 |: ba
Wasll) = -
p 12; 1 21)1/2

aub)
(2j+2)"2

1
VTS

Now we replace 2j by 2j + 1 in the first term and 2j by
2j — 1 in the second term of above equation to get

= 2] —|— 1)1/2 1 PR
Wosll) = Z ' 1) agh,(a" - T2
=

(aT .bT)2j|()>_

(2j) Tt pF\2j-1

we evaluate first term using the prepotential commuta-
tion relations, a,bg(a’ - b7)%*10) = a,by(a’-b")%+1(0) =

[(2)+1)%8up(a’ - b7) +(2))(2j + Dakbj(a® - b7)>~')|0)
and substitute in above equation to get

W(zﬂ | I Z 2] +

Jj=0

(Jzﬁ(aT : bT)2j+1|O> = (1/3|I>'

Now we can prove the eigenvalue equation (B2), by

considering a transformation of oscillators bj; — (Z'b7),.
Under these transformations
Weas = ZiW,po  |I) = |Z)
which yields
ZLWIS 2 (p)Z(p)) = |2(p)).- (B12)

As Z'Z = I, we get the eigenvalue equation (B2).
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The conjugate electric fields act on this basis as differ-
ential operators on this plaquette holonomy basis,

vz =07, % |z (B13)
* 2 "oz, "

o 0
alzy =%z = 7). Bl4
&z) =5 yaazyﬂl ) (B14)

For SU(3) these magnetic states are given by

(B15)

where d(p,q) =1 (p+1)(q+ 1)(p + q + 2) is the dimen-
sion of [p, q] representation. For the general SU(N) case,
these magnetic states are given as

] %(af[h]zb*[h])”hlo% (B16)

=
Il
(=)
=
I

where d(j) is the dimension of the [}] representation and Z
represents (N x N) SU(N) matrix.

APPENDIX C: INVISIBILITY OF DIRAC STRING

In this appendix, we explicitly show that disorder
operators in (83) creates magnetic flux only on one
plaquette U,(m,n) located at (m,n). They leave all
the other plaquettes unaffected. The disorder operator
involves Kogut-Susskind electric fields E_(m,n" > n; T),
therefore it trivially commutes with all other plaquettes
which do not involve U(m,n > n';1). The only relevant
plaquette are U,(m,n’ > n). Now we evaluate its action
case by case:

(1) First we consider n' =n, plaquette UP=
U,(m,n). For convenience we define U,(m,n) =
Um—=1,n=11)U(m.n—1,2)U (m—1,n;1) x
Ut(m—1,n-1;2) = U,U,ULU]. The disorder
operator ZEE] will only rotate link U; around the

axis @0 Rab(U U2)9

st Uy? EJrT

U\U, (St USEEHU
) aff () [ 1 2( ) ]ﬂ

0] 0]
= [U1U2D(®O)U3U1]aﬂ

Now we use a property of Wigner D-matrices
namely D(USUTOU,U,) = USUD(0)U, U, to get

Z[;]Ug/iz[g =[D (Q)Up}a/}'

i+
g
magnetic flux at plaquette U ,(m, n).
(2) For n' > n, consider plaquette U” = U ,(m,n’'
For  convenience we define U,(m,n')=
Um—-1,n" -1, i)U(m,n’ - 1;2)U+(m —-1,n; i)x
Ut(m—1,n' —1;2) = U,U,ULU}. The disorder
operator Z[g] will rotate two horizontal links U,
and U;' around the axes (:jn/ and (:jn/ 11, respectively.
Due to Eq. (85), these two axes are related as

Therefore, the disorder operators X (m,n) create

é:’+l = Rab(Uz)(:jz/,
+ P v+t (vt + +Uisthy
2[9] U"ﬁZW] [(E[ ]U 2[9] )UZ(E[G] 2[9]) ] ap
= [UIDT((:jn’)UZD(G)n’-H)UéUAL]aﬁ
= [U,D'(8,/)U,D(U}6,,U,)USU}],,

= [U1D+(én’)UZU;D((:)n’)UZU;Ui]aﬂ
_ P
- U,

Therefore, the disorder operators Z[g] (m, n) leave all

plaquette U ,(m,n’ > n) unaffected.

Thus we have shown that the disorder operator rotates a
plaquette by a Wigner-D matrix and hence creates a SU(N)
magnetic vortex there. Now we will show that the shape of
the Dirac string which is a vertical line S in Fig. 4 can be
deformed by gauge transformations and is therefore
unphysical. Deformation of Dirac string by unit plaquette
at site (m, n') can be achieved by replacing E2 (m,n’; 1) by
—(E~(m,n'; 1) + E& (m,n';2) + E*(m,n’;2)) in Eq. (83).
Deformed string S is shown in Fig. 4. Applying similar
replacements we can change the shape of the Dirac string
arbitrarily with a fixed endpoint.
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[21] We have used the relation n*(p)E:(p)= —n*(p) x
RO (W' (p))E%(p) and

n*(p)R®(W(p))

= THeW(p)) 3 TH (W (p)"W(p)

(GZﬂJ;lé)ngWﬁa (p)Wj;q (p)Wpy (p)

—_— N | =

= 5 (261166/37 - 5a/3575)63/)w/3a (p)W(‘Sq (p)W/)y ([3)

= GE/JW/H’[([)) = nb(p)

[22] In defining £ (p) we have used the fact that like (¢), their
transpose with a negative sign (—6“) also satisfies the same
SU(2) Lie algebra.

[23] K. S. Mallesh and N. Mukunda, The algebra and geometry
of SU(3) matrices, Pramana 49, 371 (1997).

[24] The two definitions for 7 (p) and 7ip(p) in (47a) and
(47b) respectively are easily generalizable to SU(N) case
discussed in the next section.

[25] We have used the following two identities

(1) ( fabe ddee + face bde + fade dbce) =0.
) ( dabe gdce + dace 4bde + q2de dbce) — % ( 52 sed iy Sbd +
5bc 5ad) .

[26] We are ignoring the SU(3) multiplicity problem here as the
aim in this work is to construct the SU(3) magnetic
eigenstates and not to worry about SU(3) multiplicities.

(27]

(28]

(29]
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One can trivially replace all SU(3) prepotentials by
SU(3) irreducible prepotentials [18] at the end without
changing any results of this section. The same strategy will
be adapted in the next SU(N) section to keep the discussion
simple.

H. Georgi, Lie Algebras in Particle Physics: From Isospin
to Unified Theories (Perseus Books, Reading, Massachu-
setts, 1999).

Advantage of this representation is that it has the following

property:

(w0 A2 sa \AY  (ig ab ob AP
Z(wy, 02)Z(0,,0,) = i@ty oaiy)3) o ({Bafy +02)7)

XY — €X+Y+%[X.Y]+~ [ﬂa,ﬂb] _ 2l~](‘abc/1v:7

FOR, A = 0. = 1,2

— (@400 +(@1+0:)it o)

=Z(w, + 01,0, + 6,)

Which we will use to show the translation of two
gauge invariant angles through the action of the disorder
operator.

We have used the property: (d*™ded 4 giceqbde +
diegbee) = L(5%06% + 56 + 5*5*) for SUQ). It can
be similarly generalized to SU(N) with (N — 1) d structure
functions.
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