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This work presents a determination of the quark Collins-Soper kernel, which relates transverse-
momentum-dependent parton distributions at different rapidity scales, using lattice QCD. This is the first
lattice QCD calculation of the kernel at quark masses corresponding to a close-to-physical value of the pion
mass, with next-to-next-to-leading logarithmic matching to transverse-momentum-dependent parton
distributions from the corresponding lattice-calculable distributions, and includes a complete analysis
of systematic uncertainties arising from operator mixing. The kernel is extracted at transverse momentum
scales 240 MeV ≲ qT ≲ 1.6 GeV with a precision sufficient to begin to discriminate between different
phenomenological models in the nonperturbative region.
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I. INTRODUCTION

Since the 1970s it has been understood that the intrinsic
motion of partons inside hadrons in the direction transverse
to the hadron’s momentum plays an important role in
experimentally observed processes, beginning historically
with Drell-Yan scattering (DY) [1–3]. The effect of this
motion on the DY cross section has been rigorously
derived in QCD in the form of a factorization theorem
[4–6] and thereby described in terms of transverse-
momentum-dependent parton distribution functions
(TMDs). TMDs are universal, appearing in the factoriza-
tion of cross sections for processes including also semi-
inclusive deep inelastic scattering (SIDIS) and dihadron
production in eþe− collisions. Constraints on TMDs,
particularly for the nucleon, have thus been the target
of experimental programs since the 2000s (see Refs. [7,8]
for a review) and remain key targets of current and future
experiments at facilities including the Thomas Jefferson
National Accelerator Facility [9,10], the Large Hadron
Collider [11,12], and the Electron-Ion Collider [13–19].
Simultaneously, significant efforts are being made from
the theoretical perspective to constrain TMDs, including
through lattice QCD calculations [20–37].
TMDs have a functional dependence on two scales: a

virtuality scale μ and a rapidity scale ζ, which is related to

the hadron momentum in a scattering process. While the
renormalization group (RG) evolution of TMDs with μ is
perturbative for perturbative scales μ and ζ, the evolution
with ζ is inherently nonperturbative in certain regions of
parameter space, even for perturbative μ. The ζ evolution of
TMDs is encoded in the Collins-Soper (CS) kernel [4–6],
which can be defined as the rapidity anomalous dimension
entering the relevant RG evolution equations (up to a
conventional factor):

γpðbT; μÞ ¼ 2
d

d ln ζ
lnϕpðbT; μ; x; ζÞ; ð1Þ

where ϕpðbT; x; μ; ζÞ is a TMD, chosen here as a TMD
wave function (TMD WF) encoding the transverse motion
of a parton p∈ fq; gg in a meson state [38–41]. The TMD
WF is defined in a factorization formula valid in the limit of
ultrarelativistic hadron momentum P and depends on the
fraction x of the parton’s momentum collinear with P, as
well as the parton’s momentum transverse to P as given
by its Fourier conjugate bT , the transverse displacement.
The CS kernel depends on μ, bT and parton type p, but is
independent of x and the hadronic state.
Experimental DY and SIDIS data has been used to

constrain phenomenological parametrizations of the quark
CS kernel [42–56]. A number of parametrizations are in
some tension in the region bT ≳ 0.2 fm (at μ ¼ 2 GeV),
which may be partially understood to arise from different
approaches to modelling nonperturbative effects. In the
more recent analyses [55,56], the tensions have been
reduced as larger sets of experimental data sensitive to
the CS kernel in the nonperturbative regime [53,57] were
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included. Further improvements are expected with future
data from the LHC [12] and the Electron-Ion Collider
[17,18]. A direct way of constraining the kernel from cross
section ratios has also been proposed and demonstrated on
synthetic data [58] and could be applied to experimental
data in the future. A more precise determination of the
nonperturbative CS kernel is important in particular for
measurements of electroweak observables such as the W�-
boson mass [59] and especially for studies of nucleon and
nuclear structure via deep inelastic scattering [17].
Complementing phenomenological approaches, lattice

QCD offers a pathway towards first-principles constraints
of the CS kernel in the nonperturbative regime. One
approach to such calculations is provided by large-momen-
tum effective theory (LaMET) [60–62], in which physical
TMDs, defined by matrix elements of lightlike-separated
operators, and quasidistributions, defined by the matrix
elements of the corresponding spacelike-separated opera-
tors which are computable in lattice QCD, are perturba-
tively matched at large hadron momentum jPj ≫ ΛQCD
[41,63–74]. For example, a TMD WF ϕpðbT; μ; x; ζÞ is
matched to a quasi-TMDWF ϕ̃pðbT; μ; x; ζÞ with matching
coefficients computed perturbatively in LaMET [71,75] up
to a nonperturbative soft factor independent of x and ζ and
power corrections that vanish in the limit of infinite boost.
To date, several lattice QCD calculations have been carried
out using quasi-TMD WFs and other quasidistributions to
extract the quark CS kernel [24–29,32,34,37] and the soft
function [26,27,37], as well as the full kinematic depend-
ence of TMDs [33,35].
Using quasi-TMD WFs and LaMET, this work presents

the first lattice QCD calculation of the quark CS kernel at
valence quark masses corresponding to a close-to-physical

value of the pion mass, mπ ¼ 148.8ð1Þ MeV, thereby
addressing the systematic uncertainty arising from the
sensitivity of the kernel to the QCD vacuum structure
[76] and reducing those arising from perturbative
LaMET matching and proportional to m2

π=ðxjPjÞ2 and
m2

π=ðð1 − xÞjPjÞ2. Other bT-dependent systematic uncer-
tainties associated with matching are better quantified
relative to previous calculations. The matching is per-
formed at next-to-next-to-leading order (NNLO) and next-
to-next-to-leading logarithmic (NNLL) accuracies for the
first time in a calculation of the CS kernel, using recent
results of Refs. [77,78]. Moreover, previously dominant
[28] systematic uncertainties from the Fourier transfor-
mation of quasi-TMDs are reduced in this work, and
the associated model dependence is eliminated. Finally,
renormalization-induced mixing effects for the nonlocal
operators associated with quasi-TMDs are fully quantified
for the first time in the RI=xMOM renormalization
scheme [79–81]. Taken together, this work achieves
sufficient control and precision to begin to discriminate
in the nonperturbative region between phenomenological
parametrizations [44,51,52,55,56] of the quark CS kernel
and provides a better understanding of perturbative con-
vergence in LaMET matching and the associated power
corrections.

II. THE COLLINS-SOPER KERNEL FROM
QUASI-TMD WAVE FUNCTIONS

The quark CS kernel can be computed in lattice QCD
from ratios of matrix elements of nonlocal staple-shaped
Wilson line operators in hadron states at different finite
boost momenta Pz

1, P
z
2 [41,63,65]:

γMS
q ðbT;μÞ¼ lim

l→∞

1

lnðPz
1=P

z
2Þ
ln

R
∞
−∞

dbz
2π e

iðx−1
2
ÞPz

1
bzPz

1NΓðPz
1Þ
P

Γ0ZMS
ΓΓ0 ðμÞWð0Þ

Γ0 ðbT;bz;Pz
1;lÞR∞

−∞
dbz
2π e

iðx−1
2
ÞPz

2
bzPz

2NΓðPz
2Þ
P

Γ0ZMS
ΓΓ0 ðμÞWð0Þ

Γ0 ðbT;bz;Pz
2;lÞ

þδγMS
q ðμ;x;Pz

1;P
z
2Þþp:c: ð2Þ

Here the dependence on the lattice spacing, a, is suppressed.

δγMS
q ðμ; x; Pz

1; P
z
2Þ denotes the perturbative matching cor-

rection defined at the end of this section, and p.c. denotes the
associated power corrections that are power series in
1=ðbTðxPzÞÞ2, Λ2

QCD=ðxPzÞ2, m2
h=ðxPzÞ2, where mh is the

meson mass andPz ∈ fPz
1; P

z
2g, and analogous forms with x

replaced by 1 − x. Wð0Þ
Γ ðbT; bz; Pz;lÞ denote ratios of bare

quark quasi-TMD WFs (defined further below), such that

Wð0Þ
Γ ðbT; bz; Pz;lÞ ¼ ϕ̃ΓðbT; bz; Pz;lÞ

ϕ̃γ4γ5ðbT; 0; 0;lÞ
: ð3Þ

As only quark quasi-TMD WFs are studied in this work,
parton labels on WFs and WF ratios are omitted. Subscripts

Γð0Þ denote Dirac structures; in the limit of infinite boosts
Pz
1; P

z
2 → ∞, quasi-TMD WFs with Γ∈ fγ3γ5; γ4γ5g ap-

proach γþγ5. Renormalization factors ZMS
ΓΓ0 ðμÞ are 16 × 16

matrices, detailed further below, and the normalization
factors NΓðPzÞ correspond to

NΓðPzÞ ¼
8<
:

−imh
Pz ; Γ ¼ γ3γ5
mh

EhðPzẑÞ ; Γ ¼ γ4γ5
; ð4Þ

where EhðPzẑÞ and mh are the meson energy and mass,
respectively.
Bare quark quasi-TMD WFs in position space are given

by Euclidean equal-time correlation functions
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ϕ̃ΓðbT; bz; Pz;lÞ ¼ h0jOΓ
ud̄
ðbT; bz; 0;lÞjhðPzÞi; ð5Þ

where j0i and jhðPzÞi denote the QCD vacuum and a
pseudoscalar meson state, respectively. The meson is taken
to contain the isovector ud̄ valence quark-antiquark pair,
and the operator OΓ

ud̄
ðbT; bz; y;lÞ is depicted in Fig. 1 and

defined as

OΓ
ud̄
ðbT; bz; y;lÞ

¼ d̄

�
yþ b

2

�
Γ
2
W ẑ

�
yþ b

2
;
l − bz

2

�

×W−n̂T

�
yþ l

2
ẑþ bT

2
; bT

�

×W−ẑ

�
yþ l

2
ẑ −

bT
2
;
lþ bz

2

�
u

�
y −

b
2

�
;

≡ d̄

�
yþ b

2

�
Γ
2
W⊐

�
yþ b

2
; y −

b
2
;l
�
u

�
y −

b
2

�
; ð6Þ

where b ¼ ðbT; bz; 0Þ, uðyÞ and dðyÞ denote up- and down-
quark fields, respectively, W n̂ðx; ξÞ denotes a Wilson line
of length ξ starting at x directed along n̂, n̂T denotes a unit
four-vector along bT , and l denotes the total collinear
length of the staple-shaped Wilson line. The transformation
properties of these operators and quasi-TMD WFs under
sign changes of bT and bz as well as other discrete
symmetries are presented in Appendix A. Forming ratios
in Eq. (3) cancels divergences logarithmic in a, as well as

power divergences linear in l=a and bT=a, in the quasi-
TMD WFs [79,80,82]. Furthermore, forming the ratios
eliminates l dependence up to discretization artifacts and
power corrections of order 1=ðPzlÞ and bT=l. This leads to
finite l → ∞ limits of infinite collinear staple length for the

ratios Wð0Þ
Γ ðbT; bz; Pz;lÞ.

The 16 × 16 renormalization matrices ZMS
ΓΓ0 ðμÞ appearing

in Eq. (2) may be computed as

ZMS
ΓΓ0 ðμÞ ¼ CMS

RI=xMOMðμ; pR; ξRÞZRI=xMOM
ΓΓ0 ðpR; ξRÞ; ð7Þ

where

ZRI=xMOM
ΓΓ0 ðpR; ξRÞ ¼ Tr½½ZRI=xMOM

Λd;−z
�†ðpR; ξRÞΓ

× ZRI=xMOM
Λu;þz

ðpR; ξRÞ½Γ0�†�: ð8Þ

Here Tr denotes a spinor trace and Γ0 runs over the 16 Dirac
matrices. Conversion from the RI=xMOM renormalization
scheme [79–81] at the scale defined by pμ

R and ξμR to the MS
scheme at the scale μ is achieved with the conversion

coefficient CMS
RI=xMOMðμ; pR; ξRÞ computed in continuum

perturbation theory [81]. ZRI=xMOM
Λq;�z

, where q∈ fu; dg, are
4 × 4 matrices in spinor space renormalizing the corre-
sponding Green’s functions Λq;�zðp; ξÞ defined as

Λq;�zðp;ξÞ¼ h0jW∓zð�ξ;ξÞj0i
× h0jW�zð0;ξÞqð0Þq̄ðpÞj0ih0jS−1q ðpÞj0i; ð9Þ

where SqðpÞ denotes the momentum-space quark propa-

gator. ZRI=xMOM
Λq;�z

ðpR; ξRÞ is computed from the renormal-

ization condition

ZRI=xMOM
Λq;�z

ðpR; ξRÞΛq;�zðpR; ξRÞ ¼ Λtree; ð10Þ

in a fixed gauge, where Λtree is the tree-level Green’s
function corresponding toΛq;�zðpR; ξRÞ. Further details are
provided in Appendix B.
Since CMS

RI=xMOM has no Dirac structure, it cannot change
the mixing patterns encoded by ZRI=xMOM

Λq;�z
ðpR; ξRÞ and their

dependence on the auxiliary renormalization scales pμ
R and

ξμR. Moreover, if determined for any given pμ
R and ξμR,

CMS
RI=xMOM simply cancels in the ratio of Eq. (2). However,

in practice, if a calculation of ZMS
ΓΓ0 ðμÞ is realized as an

average over multiple auxiliary scales, conversion [in both
the numerator and the denominator in Eq. (2) before
averaging] may affect the value and systematic uncertain-
ties in the lattice QCD determination of the CS kernel.
The matching correction δγMS

q ðμ; x; Pz
1; P

z
2Þ appearing in

Eq. (2) is perturbative and given by

FIG. 1. Diagrammatic representation of the nonlocal operator
OΓ

ud̄
ðbT; bz; y; lÞ defined in Eq. (6). The operator comprises a

staple-shaped Wilson line of length lþ bT connecting a quark-
antiquark pair ud̄ separated by b ¼ ðbT; bz; 0Þ (blue). The
origin is defined at the midpoint between the quark and the
antiquark (red).
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δγN
kLO

q ðμ; x; Pz
1; P

z
2Þ

≡ −
1

lnðPz
1=P

z
2Þ
�
ln
CNkLO
ϕ ðμ; xPz

1Þ
CNkLO
ϕ ðμ; xPz

2Þ
þ ðx ↔ x̄Þ

�
; ð11Þ

where NkLO denotes a fixed-order accuracy, x̄≡ 1 − x, the
renormalization scheme dependence is omitted for brevity,
and CNkLO

ϕ ðμ; pzÞ, with pz ∈ fxPz
1; xP

z
2; x̄P

z
1; x̄P

z
2g denote

the TMD WF matching coefficients. The corresponding
matching formula between physical and quasi-TMD WF
receives power corrections as discussed around Eq. (2).
The CNkLO

ϕ ðμ; pzÞ are computed perturbatively in the
strong coupling αsðμÞ, with CLO

ϕ ¼ 1. The NLO contri-
bution has been computed in Refs. [71,75]; the NNLO
contribution may be inferred from the matching formula
for quasi-TMD PDFs [77,78]. For further discussion, see
Appendix C 1.
Fixed-order coefficients CNkLO

ϕ ðμ; pzÞ may be resummed
from initial scales ðμ0; pz

0Þ ¼ ð2pz; pzÞ as [68,72]

CNkLL
ϕ ðμ; pzÞ ¼ CNk−1LO

ϕ ð2pz; pzÞ exp ½−KNkLL
ϕ ð2pz; μÞ�;

ð12Þ

where NkLL denotes a logarithmic accuracy and
KNkLL

ϕ ðμ0; μÞ is a resummation kernel. Since the μ depend-
ence cancels in the ratio of quasi-TMD WFs (excluding
the effects of conversion to the MS schemewhich may arise
in practice as discussed above), the CS kernel in Eq. (2)
is dependent on μ only through perturbative corrections,
and the above choice of μ0 ¼ 2pz further isolates the μ
dependence to the resummation kernel. Resummations are
independent of initial scale at infinite order but differ by
higher-order terms at finite order. For any choice of μ0,
variations around μ0 provide a measure of the associated
perturbative uncertainties. The resummed matching cor-
rection to the CS kernel is given by Eqs. (11) and (12) as

δγN
kLL

q ðμ; x; Pz
1; P

z
2Þ

¼ −
1

lnðPz
1=P

z
2Þ
�
ln
CNk−1LO
ϕ ð2pz

1; p
z
1Þ

CNk−1LO
ϕ ð2pz

2; p
z
2Þ

− ðKNkLL
ϕ ð2pz

1; μÞ

− KNkLL
ϕ ð2pz

2; μÞÞ þ ðx ↔ x̄Þ
�
; ð13Þ

where the logarithmic ratio is expanded perturbatively
in αsð2pz

1Þ and αsð2pz
2Þ. For further discussion, see

Appendix C 2.
To partially account for the bT-dependent power correc-

tions, a practical choice is to replace δγN
kLO

q ðμ; x; Pz
1; P

z
2Þ in

Eq. (2) with a bT-unexpanded correction:

δγuN
kLO

q ðbT; μ; x; Pz
1; P

z
2Þ

≡ −
1

lnðPz
1=P

z
2Þ
�
ln
CuNkLO
ϕ ðbT; μ; xPz

1Þ
CuNkLO
ϕ ðbT; μ; xPz

2Þ
þ ðx ↔ x̄Þ

�

¼ δγN
kLO

q ðμ; x; Pz
1; P

z
2Þ þ…; ð14Þ

where the ellipsis denotes terms that are power- and
exponentially suppressed in bTðxPz

1Þ, bTðxPz
2Þ, and the

analogous terms with x replaced by x̄. CuNkLO
ϕ ðbT; μ; pzÞ

are the bT-unexpanded TMD WF coefficients such that
CuNkLO
ϕ ðbT; μ; pzÞ is equal to CNkLO

ϕ ðμ; pzÞ in the limit
bT ≫ 1=pz. They are computed perturbatively, with
CuLO
ϕ ¼ CLO

ϕ . The NLO contribution may be inferred from
the corresponding TMD PDF coefficients [66,75].
CuNkLO
ϕ ðbT; μ; pzÞ may be resummed as in Eq. (12),

using the same kernel KNkLL
ϕ ðμ; μ0Þ. Both CuNkLO

ϕ ðbT; μ; pzÞ
and the corresponding resummed unexpanded correction
δγuN

kLL
q ðbT; μ; x; Pz

1; P
z
2Þ are conjectured in this work to

reduce the bT-dependent power corrections relative to the
resummed matching correction in Eq. (13) at the same
accuracy, as is investigated numerically in the following
section and in Appendix C 3; further study and a more
systematic treatment of power corrections is left to
future work.

III. NUMERICAL INVESTIGATION

The quark CS kernel is computed numerically using an
ensemble of lattice gauge-field configurations produced by
theMILCcollaboration [83]with 2þ 1þ 1 dynamical quark
flavors and four-volume V ¼ L3 × T ¼ ð48aÞ3 × 64a with
a ¼ 0.12 fm. The one-loop Symanzik improved gauge
action [84–87] and the highly improved staggered quark
action with sea quark masses tuned to produce a close-to-
physical pion mass [88–90] are used for gauge field gen-
eration. Gauge field configurations are subjected to Wilson
flow with flow-time t ¼ 1.0 [91] to enhance the signal-to-
noise ratio in numerical results, and are gauge fixed to Landau
gauge. Calculations are performed in a mixed-action setup
with the tree-level OðaÞ-improved Wilson clover fermion
action [92–94] used for propagator computation, with
hopping parameter κ ¼ 0.125 47 and clover term coefficient
csw ¼ 1.0, resulting in a pion mass of mπ ¼ 149ð1Þ MeV.
The following subsections detail the steps of the calcu-

lation of the quark CS kernel, including calculations of the
bare quasi-TMD WF ratios and renormalization matrices,
the Fourier transform to bT space, and finally the extraction
of the CS kernel from ratios of quasi-TMDWF ratios with
perturbative matching corrections.

A. Bare quasi-TMD WF ratios

The CS kernel is computed according to Eq. (2), using
quasi-TMD WF ratios with a pion jhðPzÞi ¼ jπðPzÞi
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chosen as the hadronic state. The ratios Wð0Þ
Γ ðbT; bz; Pz;lÞ

in Eq. (3) are extracted from fits to pion two-point
correlation functions. In particular, Euclidean correlation
functions both with and without staple-shaped operators are
constructed as

Cπ
2ptðt;PÞ≡ a6

X
y

eiP·yhχPðyÞχ†Pð0Þi; ð15Þ

and

CΓ
2ptðt; bT; bz;P;lÞ≡ a6

X
y

eiP·yhOΓ
ud̄
ðbT; bz; y;lÞχ†Pð0Þi;

ð16Þ

where P ¼ Pzẑ, t ¼ y4, and pion states are created with
momentum-smeared interpolating fields

χ†PðxÞ ¼ ūFP=2
ðxÞγ5dF−P=2

ðxÞ; ð17Þ

where the quasilocal quark fields are constructed using a
Gaussian momentum smearing kernel FK withK ¼ �P=2
realized iteratively with nsmear ¼ 50 smearing steps and a
smearing kernel width defined by ε ¼ 0.2 [95]. These
correlation functions have spectral representations

Cπ
2ptðt;PÞ¼ a3

X∞
n¼0

jZS
nπðPÞj2

2EnπðPÞ
½e−EnπðPÞtþe−EnπðPÞðT−tÞ�þ…;

ð18Þ

and

CΓ
2ptðt; bT; bz;P;lÞ

¼ a3
X∞
n¼0

ZS
nπðPÞ

2EnπðPÞ
ϕ̃nΓðbT; bz;P;lÞ

× ½e−EnπðPÞt � e−EnπðPÞðT−tÞ� þ…; ð19Þ

where Enπ denotes the energy of the nth eigenstate of the
LQCD transfer matrix with quantum number of the pion,
denoted jπni, and in particular EπðPÞ≡ E0πðPÞ. Staple-
shaped operator matrix elements are defined as

ϕ̃nΓðbT; bz; Pz;lÞ≡ h0jOΓ
ud̄
ðbT; bz; 0;lÞjπnðPÞi; ð20Þ

where ϕ̃ΓðbT; bz; Pz;lÞ≡ ϕ̃0ΓðbT; bz; Pz;lÞ. The overlap
factors of the pion interpolating field between jπni and the
vacuum state are defined as

ZS
nπðPÞ≡ h0jχPð0ÞjπnðPÞi: ð21Þ

In Eqs. (18) and (19), T denotes the temporal extent of the
lattice, and the ellipses denote additional contributions

where the vacuum state is replaced by finite-temperature
excited states. These contributions are suppressed by
factors of order e−2mπðT=2Þ or smaller in comparison with
the terms shown and are therefore neglected below.
The ground-state overlap ZS

πðPÞ≡ ZS
0πðPÞ is guaranteed

to be real-valued and positive up to discretization artifacts.1

This ensures thatZS
πðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jZS

πðPÞj2
p

can be extracted from
fits to Eq. (18) and therefore that both the magnitude and
phase of the complex-valued TMD WF ϕ̃ΓðbT; bz; Pz;lÞ
can be extracted from joint fits to Eqs. (18) and (19). The�
sign appearing in Eq. (19) depends on Γ as detailed in
Appendix A and in particular is negative for γ4γ5 and
positive for γ3γ5.
The operator geometries and number of configurations

NcfgðPzÞ used to compute the two-point correlation func-
tions for each choice of pion momentum Pz ¼ 2π

L nz are
summarized in Table I. Correlation functions are computed
with propagators calculated from sources on a 24 grid
bisecting the lattice along each dimension for all of the 16
Dirac structures.2 The operator geometries used, illustrated
in Fig. 1, are such that for each bT=a∈ f0;…7g along

TABLE I. Momenta Pz ¼ 2π
L nz, number of configurations Ncfg,

and operator extents l=a, used in the computation of two-point
correlation functions in Eq. (19). For a given extent l=a,
geometries with all of the 16 Dirac structures, asymmetries
−l=a ≤ bz ≤ l=a and transverse displacements 0 ≤ bT=a ≤ 7
along n̂T ∈ f�x̂;�ŷg are computed.

nz Pz (GeV) l=a Ncfg

0 0 f11; 14; 17; 20; 26; 32g 79
4 0.86 f26; 32g 469
6 1.29 f17; 20g 472
8 1.72 f14; 17g 523
10 2.15 f11; 14g 481

1A combination of the nonsinglet axial Ward identity in the
isospin limit and the partially conserved axial current relation
guarantee that

2mqh0jPð0Þjπi ¼ h0j∂μJμ5ð0Þjπi ¼ m2
πfπ;

where mq is the renormalized light quark mass, PðxÞ is a local
pseudoscalar interpolating field for an isovector pion, Jμ5ðxÞ is
the corresponding axial vector current, and fπ is the pion’s decay
constant [96]. The above applies to renormalized fields—for the
bare pseudoscalar interpolating field, the pion overlap factor is
therefore real and positive up to discretization artifacts from
possible mixing with higher-dimension operators. This continues
to hold for boosted pion states and if the quark fields in PðxÞ are
smeared with a self-adjoint smearing kernel.

2For nz ¼ 10 measurements were performed on slightly fewer
configurations [corresponding to at least 80% of the NcfgðPzÞ
shown in Table I] for some Dirac structures that are found to
make negligible contributions to the renormalized quantities
studied here.
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n̂T ∈ f�x̂;�ŷg, all possible staple asymmetries bz
are constructed with the fixed values of l=a specified,
i.e., −l=a ≤ bz ≤ l=a, which are by construction
restricted to be either even or odd integers for any
fixed l=a. This choice is convenient as power
divergences are proportional to the total length of the
Wilson line [79,80,82] in the operator, so all operator
geometries computed for a given l and bT have equal
power divergences across all bz, simplifying renormali-
zation. This is in contrast to the staple geometries
chosen in the work of Refs. [24,25,28] where various
geometries with a given bT were constructed with fixed
values of 1

2
ðlþ bzÞ, leading to bz-dependent renormal-

ization factors.
Correlation functions computed on each gauge-field

configuration are averaged over sources, forward and
backwards propagation in time, and operator structures
with n̂T ∈ f�x̂;�ŷg for CΓ

2pt. The bare quasi-TMD WF

ratios Wð0Þ
Γ ðbT; bz; Pz;lÞ in Eq. (3) are then determined

using a multistep fitting procedure:
(1) Determination of EπðPÞ and ZS

πðPÞ from a simulta-
neous fit to Cπ

2pt and the statistically most precise
CΓ
2pt for a given P.

(2) Determination of ϕ̃Γ from fits to the t dependence
of combinations of CΓ

2pt using the results for
EπðPÞ and ZS

πðPÞ, accounting for correlations
between quasi-TMD WF ratios with different
staple geometries using bootstrap resampling.

(3) Construction ofWð0Þ
Γ ðbT; bz; Pz;lÞ from ratios of ϕ̃Γ

as in Eq. (3) for each bootstrap sample.
Each of these steps is detailed in the following
subsections.

1. Determination of EπðPÞ and ZS
πðPÞ

As the exponential t dependencies of both Cπ
2pt

and CΓ
2pt are governed by EnπðPÞ, these correlation

functions may be fit simultaneously to extract EnπðPÞ
and ZS

nπðPÞ. In practice, only the statistically most
precise CΓ

2pt for a given P is used, corresponding to the
two-point function constructed with the operator geom-
etry with the minimum value of l=a computed, bT=a ¼ 1,
bz ¼ 0 (even l=a), or an average of bz=a ¼ �1 (odd
l=a), and Γ ¼ γ4γ5. For each P, the two correlation
functions Cπ

2pt and CΓ
2pt are jointly fit to the spectral

representations of Eqs. (18) and (19) for a variety
of fit ranges using correlated χ2 minimization with the
fitting procedures detailed in Refs. [25,97] and summa-
rized here.
Results using t ≤ tmax are used for fitting, where tmax is

chosen to be the largest t for which a given correlation
function has signal-to-noise ratio ≥1=3. Fits are performed
with all possible fit windows ½tmin; tmax� such that tmin ≥ 2
and tmax − tmin ≥ 3, where tmin is chosen independently for

Cπ
2pt and CΓ

2pt.
3 For each fit range, the covariance matrix is

estimated using bootstrap resampling [98] with optimal
linear shrinkage [99,100]. First, fits using one-state trunca-
tions of Eqs. (18) and (19) are performed. For Pz > 0,
VarPro methods [101,102] are used in which the best-fit
ZS
0πðPzẑÞ, which enters χ2 linearly, is determined using

linear methods during each step of nonlinear optimization
for E0πðPzẑÞ. For Pz ¼ 0, where there is negligible signal-
to-noise degradation, VarPro methods lead to less efficient
χ2 minimization and are not employed. Fits to two-state
truncations of Eqs. (18) and (19) are then performed
analogously.
The Akaike Information Criterion (AIC) [103] is used to

select whether one- or two-state fits are preferred for each fit
range. Topenalize overfitting, two-state fits are only accepted
if they improve the AIC by at least two times the number of
degrees of freedom and if excited-state contributions do not
severely dominate over ground-state contributions—in par-
ticular ZS

0πðPzẑÞ > 0.2ZS
1πðPzẑÞ and ϕ̃0ΓðbT; bz;P;lÞ >

0.2ϕ̃1ΓðbT; bz;P;lÞ is required. In cases where two-state
fits are preferred, three-state fits are also performed but are
not found to be preferred by the AIC in any case. Further
selection cuts are then applied as described in Ref. [97]: fits
are discarded for which two nonlinear optimizers disagree on
the ground state bymore than 10−5, the bootstrapmedian and
mean disagree by more than 2σ, or correlated and uncorre-
lated fits disagree by more than 5σ.
Weighted averages of all results from fits passing these cuts

are then used to determine the final results for ZS
πðPzẑÞ and

EπðPzẑÞ. The sameweights are used as in Refs. [25,97,104],
which for each fit parameter (ZS

nπ andEnπ) correspond to the
p value of each fit divided by the variance of the fitted
parameter. For each momentum, at least six fit ranges are
found to lead to fits passing the cuts described above and are
therefore included in these weighted averages. The
same weights are also used to perform averages of the
bootstrap samples of ZS

πðPzẑÞ and EπðPzẑÞ generated using
a commonset of bootstrap ensembles for each fit range,which
are used below to enable correlated determinations of
ϕ̃ΓðbT; bz; Pz;lÞ for different Γ, bT , bz, and l.
Figure 2 shows a comparison of the fit results for

EπðPzẑÞ with effective energy functions constructed from
each correlation function as

aEeff
π

�
tþ 1

2
a;P ¼ Pzẑ

�

¼ log

"
Cπ=Γ
2pt ðt;PÞ

Cπ=Γ
2pt ðtþ a;PÞ

#
⟶

T≫t≫0
aEπðPÞ þ…; ð22Þ

3The final results are insensitive to changes in the smallest
allowed tmax − tmin and other numerical tolerances included in the
fitting procedure, as verified by performing analyses with a range
of alternative choices.
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where the ellipsis denotes exponentially suppressed
corrections from excited states and the finite temporal
extent of the lattice geometry. The momentum depend-
ence of the choice of NcfgðPzÞ and lðPzÞ leads to a
complicated dependence of the statistical uncertainties of
the determination of EπðPzẑÞ on Pz. The momentum
dependence of the extracted values of EπðPzẑÞ and
ZS
πðPzẑÞ is shown in Fig. 3. The continuum dispersion

relation EπðPzẑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eπð0Þ2 þ jPzẑj2

p
is also shown for

comparison. The relative differences between EπðPzẑÞ
and the continuum dispersion relation in order of increas-
ing Pz are 0.03ð2Þ, 0.06ð1Þ, 0.10ð1Þ, and 0.13ð1Þ for the
four nonzero aPz values studied. The increase in these
differences with aPz is observed to be approximately
linear, which is consistent with the expected form of
lattice artifacts since the clover term has not been non-
pertubatively tuned to remove OðaÞ chiral symmetry
breaking effects. Further calculations at other values of
the lattice spacing are required to study these lattice
artifacts in more detail.

2. Determination of bare quasi-TMD WFs ϕ̃½Γ�

The results for EnπðPÞ and ZS
nπðPÞ, detailed in the

previous section, are subsequently used to determine
ϕ̃nΓðbT; bz; Pz;lÞ from fits of CΓ

2ptðt; bT; bz; Pzẑ;lÞ to
Eq. (19) with all operator geometries. Combinations of
CΓ
2pt, EπðPÞ and ZS

πðPÞ are formed at the bootstrap level:

RΓðt; bT; bz; Pz;lÞ ¼ CΓ
2ptðt; bT; bz; Pzẑ;lÞ

×
2EπðPzẑÞ

ZS
πðPzẑÞ½e−EπðPÞt � e−EπðPÞðT−tÞ�

⟶
T≫t≫0

ϕ̃ΓðbT; bz; Pz;lÞ þ…; ð23Þ

which are fit to the appropriate spectral representations
obtained by multiplying Eq. (19) by RΓðt; bT; bz; Pz;lÞ=
CΓ
2ptðt; bT; bz; Pzẑ;lÞ.
The same procedure described in Sec. III A 1 is used to

choose tmax for these fits; however, for some staple-shaped
operator geometries CΓ

2pt is consistent with zero within the

FIG. 2. Effective energies defined in Eq. (22) and constructed
using Cπ

2pt (squares, offset slightly on the horizontal axis) and the
most statistically precise CΓ

2pt (triangles) for each choice of Pz.
The gray bands show the weighted average of EπðPzẑÞ from fits
with all possible tmin using the number of excited states preferred
by the AIC, as described in the main text. The colored bands
show the corresponding highest-weight fit included in the
average.

FIG. 3. Fitted momentum-smeared overlap factors ZS
πðPzzÞ

normalized by ZS
πð0Þ (top panel) and energies EπðPzẑÞ (bottom

panel, red data points) as functions of Pz. The gray dashed line
represents the energy determined from the continuum dispersion
relation.
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statistical precision of this work. Therefore, tmax ≥ 9 is
imposed in cases where the signal-to-noise criterion
described above would lead to a smaller tmax. The same
procedure described above is then used to sample over
possible values of tmin, construct the bootstrap covariance
matrix with optimal linear shrinkage for each choice of fit
range, and determine weighted averages of the fit parameter
ϕ̃ΓðbT; bz; Pz;lÞ for each operator geometry. Examples of
the resulting fits are shown in Fig. 4.

3. Construction of bare quasi-TMD WF ratios W̃ ½Γ�

Bare quasi-TMD WF ratios are obtained at the boostrap
level from bare quasi-TMDWFs via Eq. (3) for each Γ, Pz,
l, bz, and bT combination considered. For the symmetric
staple geometries used here, bz=a is necessarily odd (even)
for odd (even) l=a. For the geometries where l=a and
therefore bz=a are odd, bz ¼ 0matrix elements are replaced
by averaging over those with bz=a ¼ �1. The replacement
leads to differences in the normalization of even and odd
l=a matrix elements at nonzero lattice spacing; however,
these differences vanish in the continuum limit and can be

analyzed in conjunction with other lattice artifacts when the

continuum limit is performed. Wð0Þ
Γ ðbT; bz; Pz;lÞ are

shown as a function of Pzbz at different bT for each Γ
and l, with examples for particular choices of Pz and bT , in
Fig. 6(a). Additional examples are provided in Appendix D.
The statistical precision of the quasi-TMD WF ratios

diminishes with increasing bT , with the smallest signal-to-
noise ratio observed for the largest computed bT=a ¼ 7 for
quasi-TMD WF ratios with the largest collinear length,
l=a ¼ 32 at nz ¼ 4 (Pz ¼ 0.86 GeV). Signal-to-noise
ratio also decreases with increasing Pz; however, the use
of smaller l at larger Pz with roughly constant Pzl leads to
relatively mild signal-to-noise scaling with Pz in the quasi-
TMD WF results.
Both real and imaginary parts of Wð0Þ

Γ ðbT; bz; Pz;lÞ are
symmetric in Pzbz within uncertainties, which is consistent
with expectations given the symmetric definition of the
staple-shaped operator’s origin (shown in Fig. 1) placed at
the midpoint between the quarks. For further discussion,
see Appendix A.

B. Renormalized quasi-TMD WF ratios

The renormalization factors ZMS
ΓΓ0 ðμÞ are determined

fromCMS
RI=xMOMðμ; pR; ξRÞ andZRI=xMOM

Λ�z
ðpR; ξRÞ via Eq. (7)

for Wilson lines along �ẑ and the set of renormalization
scales defined by Wilson line lengths ξR=a∈ f2; 3; 4g and
off-shell quark momenta pμ

R ¼ 2π
L ð0; 0; nz; 0Þ, with

nz ∈ f8; 10; 12g. The coefficients CMS
RI=xMOMðμ; pR; ξRÞ are

computed perturbatively, with αsðμÞ determined as pre-
scribed in Ref. [105], setting μ ¼ 2 GeV, and neglecting the
running from the scale set by μ2 ¼ p2

R. The factors
ZRI=xMOM
Λ�z

ðpR; ξRÞ are calculated numerically from the
RI=xMOM renormalization condition in Eq. (10) using
32 gauge-field configurations. Quark propagators are com-
puted using wall sources with fixed four-momentum pR.
Means and standard errors are estimated with bootstrap
resampling with 200 bootstrap ensembles.
Renormalization affects the determination of the CS

kernel only via mixing induced between staple-shaped
operators. The mixing is characterized by off-diagonal
elements of ZRI=xMOM

ΓΓ0 normalized relative to their diagonal
components:

MRI=xMOM
ΓΓ0 ðpR;ξRÞ≡ Abs½ZRI=xMOM

ΓΓ0 ðpR;ξRÞ�
1
16

P
ΓAbs½ZRI=xMOM

ΓΓ ðpR;ξRÞ�
: ð24Þ

The central values of ZRI=xMOM
ΓΓ0 ðpR; ξRÞ are calculated at

ξR=a ¼ 3 and pR ¼ 2.15 GeV, and systematic uncertainty
for each pair Γ;Γ0 is estimated as half the difference between
the maximum and the minimum of ZRI=xMOM

ΓΓ0 ðpR; ξRÞ over
all values of pR and ξR studied. Systematic and statistical
uncertainties are added in quadrature. Figure 5(a) illustrates

FIG. 4. Examples of fits of real and imaginary parts of the bare
quasi-TMD WFs ϕ̃ΓðbT; bz; Pz;lÞ defined in Eq. (5) to combi-
nations RΓðt; bT; bz; Pz;lÞ defined in Eq. (23). The gray bands
show the weighted average of ϕ̃ΓðbT; bz; Pz;lÞ from fits with all
possible tmin, as described in the main text. The colored bands
show the corresponding single highest-weight fit included in the
average. The imaginary part in the top panel is multiplied by −1
for visual clarity.
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MRI=xMOM
ΓΓ0 ðpR; ξRÞ computed from the central values of

ZRI=xMOM
ΓΓ0 ðpR; ξRÞ, and Fig. 5(b) illustrates the auxiliary-

scale dependence of dominant off-diagonal contributions to
MRI=xMOM

ΓΓ0 ðpR; ξRÞ for Γ∈ fγ3γ5; γ4γ5g, which are given
by Γ0 ∈ fγ3γ5; γ4γ5; γ5g.
At the level of renormalization constants as

defined by Eq. (24), mixing effects for collinear con-
figurations of pμ

R and ξμR are consistent with constraints
on staple-shaped operator mixing from C, P, and T
transformations [36,106], and the dominant contribu-
tions are as expected from lattice perturbation theory at
one-loop order [107]. While noncollinear momentum
configurations are not used in the determination of the
kernel, an investigation of mixing effects using such a
definition of the associated renormalization scales, sum-
marized in Appendix B, reveals contributions to mixing
in addition to those expected in lattice perturbation
theory at one-loop order. The additional contributions
may be understood as artifacts of an off-shell renormal-
ization scheme.
The ratios of the MS-renormalized quasi-TMD WFs,

WMS
Γ ðbT; μ; bz; Pz;lÞ, are computed according to

WMS
Γ ðbT; μ; bz; Pz;lÞ ¼

X
Γ0

ZMS
ΓΓ0 ðμÞWð0Þ

Γ0 ðbT; bz; Pz;lÞ;

ð25Þ

using Wð0Þ
Γ0 ðbT; bz; Pz;lÞ and ZMS

ΓΓ0 ðμÞ for all of the 16 Γ0

structures; the uncertainties are combined in quadrature.
The effects of mixing on quasi-TMD WF ratios are
illustrated in Figs. 6(a) and 6(b).

C. Fourier-transformed quasi-TMD WF ratios

The Fourier transform of the MS-renormalized position-
space quasi-TMDWF ratios is realized as a discrete fourier
transform (DFT), i.e.,

WMS
Γ ðbT; μ; x; PzÞ

¼ Pz

2π
NΓðPÞ

X
jbzj≤bzmax

eiðx−1
2
ÞPzbzW̄MS

Γ ðbT; μ; bz; PzÞ; ð26Þ

where bmax
z denotes the truncation point in position space

and W̄MS
Γ ðbT; μ; bz; PzÞ denotes a position-space quasi-

TMD WF ratio whose real and imaginary parts have been
averaged at each Pz over �bz and all values of lðPzÞ
relevant for a given bz with weights proportional to the
inverse variance of each contribution. As can be seen in
Appendix D, the values that are averaged are in all cases
consistent within ≈1σ. As demonstrated in Fig. 7, with
additional examples provided in Fig. 39 of Appendix D, the
values of quasi-TMD WF ratios are robust to decreasing
bmax
z =a from the largest computed values, remaining

constant within uncertainties for Pzbmax
z ≳ 12 for all bT

and momenta studied.

FIG. 5. An example of renormalization-induced mixing effects as defined by the mixing matrix MRI=xMOM
ΓΓ0 ðpR; ξRÞ in Eq. (24).

(a) The mixing matrix at the renormalization scale used in the analysis of the CS kernel. White disks denote off-diagonal elements with
contributions expected at one-loop order in lattice perturbation theory [106]. Examples for other renormalization scales are provided in
Fig. 16 of Appendix B. (b) Dominant off-diagonal Γ;Γ0 elements of the mixing matrix for Γ∈ fγ3γ5; γ4γ5g as a function of pR. Data
corresponding to ξR=a ¼ f2; 3; 4g are denoted by squares, circles and triangles, respectively. Statistical and systematic uncertainties,
denoted by error bars and color bands, respectively, are computed as described in text.
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Selected x-space quasi-TMDWF ratios obtained via DFT
are shown in Fig. 8 (with further examples provided in
Appendix D). Consistent with their symmetry properties in
bzPz space, WMS

Γ ðbT; x; Pz;lÞ are generally complex dis-
tributions, with a vanishing imaginary part as bT → 0 or
Pz → 0, where WMS

Γ ðbT; x; Pz;lÞ is expected to be real.
Finally, since the LaMET matching coefficients to NLO are

independent of Dirac structure, WMS
Γ ðbT; bz; Pz;lÞ for

Γ∈ fγ3γ5; γ4γ5g are expected to agree up to power correc-
tions. The magnitude of both real and imaginary parts of the
quasi-TMD WFs are reduced outside of the physical region
x∈ ½0; 1� as Pz increases, which is consistent with expect-
ations from the factorization formula [41,65,66,68,71,72,75].
Since the factorization scales are proportional to the hard

FIG. 6. Example comparison of quasi-TMD WF ratios before and after accounting for renormalization-induced mixing effects.
(a) Examples of real and imaginary parts of the bare quasi-TMD WF ratios Wð0Þ

Γ ðbT; bz; Pz;lÞ, computed as described in Sec. III A.

(b) Examples of real and imaginary parts of the renormalized quasi-TMDWF ratiosWMS
Γ ðbT; μ; bz; Pz;lÞ, μ ¼ 2.0 GeV, computed as

described in Sec. III B. Further examples are shown Figs. 23–38 of Appendix D.

FIG. 7. Examples of MS-renormalized quasi-TMDWF ratios in x space, defined in Eq. (26), evaluated at x ¼ 0.5 and μ ¼ 2.0 GeV,
as a function of the truncation of the position-space data at bzmax for different momenta and Dirac structures. Further examples are shown
in Fig. 39 of Appendix D.
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partonmomentaxPz and ð1 − xÞPz, the power corrections are
alwaysenhancednear the endpoint regionsx → 0 andx → 1,
and lead to nonvanishing tails when Pz is finite.

D. Perturbative matching

The final determination of the CS kernel in this work
employs the bT-unexpanded resummed perturbative cor-
rection at NNLL accuracy, denoted uNNLL,

δγMS;uNNLL
q ðbT;μ;x;Pz

1;P
z
2Þ

¼−
1

lnðPz
1=P

z
2Þ

 
ln
CMS;uNLO
ϕ ðbT;2pz

1;p
z
1Þ

CMS;uNLO
ϕ ðbT;2pz

2;p
z
2Þ

−
�
KMS;NNLL

ϕ ðμ;2pz
1Þ−KMS;NNLL

ϕ ðμ;2pz
2Þ
�
þðx↔ x̄Þ

!
;

ð27Þ
which is derived from Eq. (14) by resumming the

bT-unexpanded coefficients CMS;uNLO
ϕ ðbT; μ0; pzÞ with the

kernel KMS;NNLL
ϕ ðμ; μ0Þ for μ0 ¼ 2pz. The logarithmic ratio

of the uNLO coefficients is expanded in αsð2pz
1Þ and

αsð2pz
2Þ analogously to that of the bT-independent coef-

ficients in Eq. (C4).
In addition to bT-unexpanded NNLL (uNNLL), cor-

rections at several other accuracies are computed to
study perturbative convergence: fixed-order NLO and
NNLO corrections computed according to Eq. (11),
bT-unexpanded NLO (uNLO) corrections computed
analogously, and NLL and NNLL resummations com-
puted according to Eq. (13). In all comparisons beyond
LO, for example that of NNLL and NLL illustrated in

Fig. 9, the Re½δγMS
q ðμ; x; Pz

1; P
z
2Þ� exhibit qualitative agree-

ment between different accuracies for x∈ ½0.3; 0.7� at each
pair ðPz

1; P
z
2Þ, with better agreement at larger momenta.

When compared analogously, the Im½δγMS
q ðμ; x; Pz

1; P
z
2Þ�

exhibit worse agreement and are larger in magnitude than
the real parts. This indicates different rates of perturbative
convergence in real and imaginary parts of matching
corrections. The same qualitative picture is observed
for fixed-order corrections in Fig. 19 of Appendix C 1.
Sensitivity to bT-dependent power corrections is also
different between real and imaginary parts, as may be

FIG. 8. Examples of real and imaginary parts of the Fourier-transformed MS-renormalized quasi-TMD WF ratios WMS
Γ ðbT; μ; x; PzÞ,

μ ¼ 2.0 GeV, computed as described in Sec. III C. Further examples are shown in Figs. 40–43 of Appendix D.

FIG. 9. Examples of real and imaginary parts of resummed matching corrections to the CS kernel, defined in Eq. (13), at NLL (solid)
and NNLL (dashed) for each momentum pair nz1=n

z
2. Analogous comparison of fixed-order corrections at NLO and NNLO is illustrated

in Fig. 19 of Appendix C 1.
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seen by comparing corrections expanded and unexpanded
in bT , such as the comparison of NLO and uNLO
illustrated in Fig. 10 and further examples provided in
Appendix C 3. These comparisons reveal a bT-dependent
sensitivity to power corrections which, for momenta used
in this work, is significant for bT=a≲ 3 in the real part and
across the entire range in bT=a in the imaginary part.

E. The Collins-Soper kernel

Using Eq. (2) and replacing integral Fourier transforms
of quasi-TMDWF ratios with the DFTs defined in Eq. (26),
the MS-renormalized quark CS kernel is determined via the
estimator

γ̂MS
Γ ðbT;μ;x;Pz

1;P
z
2Þ

¼ 1

lnðPz
1=P

z
2Þ
ln

"
WMS

Γ ðbT;μ;x;Pz
1Þ

WMS
Γ ðbT;μ;x;Pz

2Þ

#
þδγMS

q ðbT;μ;x;Pz
1;P

z
2Þ;

ð28Þ

for each chosen perturbative accuracy in the correction

δγMS
q . The estimator coincides with the kernel up to

power corrections and discretization artifacts, whereby
the dependence on x, Pz

1, P
z
2, Γ, and the implicit depend-

ence on a is introduced. Examples of Re½γ̂MS
Γ � with LO and

uNNLL matching are illustrated in Fig. 8, with additional
examples illustrated in Figs. 44–47 of Appendix D.
The contribution of aPz-dependent discretization artifacts

to γ̂MS
Γ can be expected to be comparable to that of

xPz-dependent power corrections in the intermediate x
region. Since both effects are Pz dependent, they can not be
disentangled and it is left to future work to quantify their
separate contributions to systematic uncertainty in the
CS kernel determination. Here, the overall systematic
uncertainty arising from these effects is estimated from

the variation of γ̂MS
Γ over the choices of x, P1

z , P2
z , and Γ for

each choice of matching.

Precisely, the CS kernel is determined from an average

of Re½γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ� over Γ∈ fγ4γ5; γ3γ5g, com-

puted pairs fPz
1; P

z
2g, and a range of x. In particular,

FIG. 10. Examples of real and imaginary parts of bT-dependent uNLO matching corrections to the CS kernel (dashed), defined in
Appendix C 3, compared with those of the bT-independent corrections at NLO (solid). Further examples of bT-unexpanded matching
are illustrated in Figs. 21 and 22 of Appendix C 3.

FIG. 11. Examples of real parts of CS kernel estimators

γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ, computed with matching corrections at

LO (top panel) and uNNLL (bottom panel) accuracies as
described in Sec. III E, using bT ¼ 0.48 fm and Γ ¼ γ4γ5. The
black dashed lines enclose the region in x used to determine the
CS kernel. The notation nz ¼ Pz

1=P
z
2 displays momenta in lattice

units. Further examples are shown in Fig. 44–47 of Appendix D.

AVKHADIEV, SHANAHAN, WAGMAN, and ZHAO PHYS. REV. D 108, 114505 (2023)

114505-12



x∈ ½0.3; 0.7� is taken to be the largest range of intermedi-
ate x for which perturbative matching corrections
including resummation avoid significant effects from
singularities near x ¼ 0 and x ¼ 1. Weighted averages

of Re½γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ� are computed at the bootstrap

level with weights taken to be proportional to the inverse

variance of Re½γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ�. The estimator

Re½γ̂MS
q;Γ � is computed for a uniform grid of points in x

with spacing Δx ¼ 0.05; a wide range of different choices
of Δx lead to indistinguishable results as long as corre-

lations between Re½γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ� with different x

are accounted for. Comparisons of these averaged estima-
tors with different choices of Γ, perturbative matching
accuracy, and momentum pairs, are shown in Figs. 12

and 13. The fitting procedure for Im½γ̂MS
Γ � is identical.

Whereas the CS kernel is a real quantity, averages of

Im½γ̂MS
q;Γ� at different perturbative accuracies indicate a

nonzero imaginary part as illustrated in Fig. 14. By
comparing to the LO estimate, where the matching cor-
rection vanishes, it is clear that matching is a dominant
source of the imaginary part. As discussed in Sec. III D, the

imaginary part from the matching is attributed to bT-
dependent power corrections enhanced at small bT and
mitigated by uNLO and uNNLL corrections. Consistent

with this explanation, for small bT , Im½γ̂MS
q;Γ� at uNLO and

FIG. 12. CS kernel in bT space evaluated separately for each
momentum pair with LO (top panel) and uNNLL (bottom panel)
matching.

FIG. 13. CS kernel in bT space for different choices
of Dirac structure Γ with uNNLL matching (top panel) and
for all computed accuracies of the matching correction

δγMS
q ðbT; μ; x; Pz

1; P
z
2Þ (bottom panel).

FIG. 14. Imaginary part of the CS kernel estimator shown
for various accuracies of the perturbative matching correction

δγMS
q ðbT; μ; x; Pz

1; P
z
2Þ.
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uNNLL are reduced relative to all other orders of matching;
as bT increases and power corrections are suppressed, they
approach NLO and NNLL results, respectively. However,
uNLO and uNNLL accuracies still do not lead to values of

Im½γ̂MS
q;Γ� that are consistent with zero within the accessible

range of bTPz. This suggests that power corrections beyond
those that have been accounted for by the unexpanded
matching are relevant at the level of precision of this
calculation.
Since matching corrections with smallest expected

power corrections are given by uNNLL, this accuracy is
used for the final estimate of the CS kernel. Furthermore,
considering both the larger qualitative difference between

Im½γ̂MS
q;Γ� for different accuracies and momenta, as well as

the parametrically larger estimates of bT-dependent power

corrections compared to Re½γ̂MS
q;Γ�, the central value of the

CS kernel is determined from fits to Re½γ̂MS;uNNLL
q;Γ � while

Im½γ̂MS
q;Γ� is not treated as a direct source of systematic

uncertainty. Finally, scale variation in resummed correc-
tions around μ0 ¼ 2pz, with pz ∈ fxPz; ð1 − xÞPzg, is not
used to estimate the associated perturbative uncertainties.
This choice is motivated by the range of pz used to
determine the CS kernel, and in particular because results
at scales μ0=2 are sensitive to nonperturbative effects. The
significance of higher-order perturbative effects may
instead be judged by comparing the final uNNLL CS
kernel determination to those obtained with other accu-
racies, as shown in Fig. 13.

The final CS kernel results of this work are summarized
in Table II. These results are shown as a function of bT and
compared with phenomenological determinations of the CS
kernel in Fig. 15.

IV. OUTLOOK

This work presents a numerical determination of the
quark Collins-Soper kernel γMS

q ðbT; μ ¼ 2 GeVÞ in
the nonperturbative range of bT corresponding to trans-
verse momentum scales 240 MeV≲ qT ≲ 1.6 GeV,
through a lattice QCD calculation at a fixed lattice
spacing and volume, quark masses corresponding
to an approximately physical value of the pion mass
mπ ¼ 148.8ð1Þ MeV, and uNNLL perturbative matching
power corrections in LaMET. Additionally, this work
presents improved estimates of systematic uncertainties
associated with perturbative matching from LaMET,
the associated power corrections, and mixing effects
in staple-shaped operators using the RI=xMOM renorm-
alization scheme.
While a complete quantification of systematic uncer-

tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and con-
trol over systematic uncertainties achieved in this work
is sufficient to preliminarily compare the CS kernel
determination with phenomenological parametrizations
of the kernel fit to experimental data. In Fig. 15 the final
determination is compared with the following para-
metrizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavia19) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parametrization based on the work of Brock,
Landry, Nadolsky, and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations
relevant to precision electroweak measurements [111,112].
Within quantified uncertainties, the data agrees with all
models in the range 0.12 fm≲ bT ≲ 0.24 fm, with all but
BLNY for 0.24 fm≲ bT ≲ 0.6 fm, and with SV19,
MAPTMD22, and ART23 for bT ≳ 0.6 fm. Finally, for
bT ≥ 0.6 fm, the results are consistent with a constant,
as suggested for the large-bT behavior in Ref. [108].
Discretization artifacts and power corrections, both
enhanced at small bT , will be studied in more detail in
futurework.More refined comparisonswould also take into
account the differences in the number of quark flavors and
their masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].

FIG. 15. CS kernel with uNNLL matching in bT space (green
squares) compared to phenomenological parametrizations of
experimental data in Refs. [44,51,52,55,56] labeled BLNY,
SV19, Pavia19, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108–110] labeled N3LL.

TABLE II. Quark Collins-Soper kernel γMS
q ðbT; μ ¼ 2 GeVÞ as a function of bT .

bT [fm] 0.12 0.24 0.36 0.48 0.60 0.72 0.84

γMS;uNNLL
q

0.12(12) −0.20ð9Þ −0.43ð11Þ −0.64ð15Þ −0.80ð15Þ −0.94ð41Þ −1.24ð68Þ
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The first-principles QCD calculations achieved in this
work provide new constraints on the quark CS kernel, with
better control of the associated systematic uncertainties.
The results are complementary to those achieved exper-
imentally and, once the continuum limit is taken, can be
rigorously compared to phenomenological parametriza-
tions of the CS kernel from current global analyses.
Moreover, in future analyses, lattice QCD constraints could
be used to constrain the parametrizations in joint fits with
experimental data.
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APPENDIX A: CONSTRAINTS ON QUASI-TMD
WF FROM DISCRETE LORENTZ

TRANSFORMATIONS

The properties of quasi-TMD WFs under charge
conjugation C, a product of reflections RT ≡R1R2 in

the transverse directions, and time reversal T , follow
from the properties of the relevant staple-shaped operators
OΓ

ud̄
ðbT; bz; y;l; aÞ defined in Eq. (6). These operators

transform as

COΓ
ud̄
ðbT;bz;y;lÞC−1¼OMCΓTMC

−1

dū ð−bT;−bz;y;lÞ; ðA1Þ

RTOΓ
ud̄
ðbT;bz;y;lÞR−1

T ¼OMRΓMR
−1

ud̄
ð−bT;bz;RTðyÞ;lÞ;

ðA2Þ

T OΓ
ud̄
ðbT;bz;y;lÞT −1¼OMTΓMT

−1

ud̄
ðbT;bz;TðyÞ;lÞ; ðA3Þ

where RTðyÞ ¼ ð−y1;−y2; y3; y4Þ, TðyÞ ¼ ðy;−y4Þ, and
the Dirac representation matrices MC, MR, and MT are
defined by

MC ¼ γ2γ4; ðA4Þ

MR ¼ ðγ1γ5Þðγ2γ5Þ ¼ γ2γ1; ðA5Þ

MT ¼ γ4γ5: ðA6Þ

For further discussion of discrete transformations of staple-
shaped operators, see Ref. [106].
These operator transformation properties constrain the

unsubtracted bare quasi-TMD WFs ϕΓðbT; bz; Pz;lÞ.
Using Eq. (A1) in the isospin limit, charge conjugation
invariance of pion states, and u ↔ d exchange symmetry in
the isospin limit gives

ϕ̃ΓðbT; bz; Pz;lÞ
¼ h0jC−1COΓ

ud̄
ðbT; bz; 0;lÞC−1CjπðPzÞi;

¼ ϕ̃MCΓTM−1
C
ð−bT;−bz; Pz;lÞ: ðA7Þ

Next considering transverse reflections, pion states are
pseudoscalar and are therefore invariant under the product
of reflections RT . Equation (A2) can therefore be used
to obtain

ϕ̃ΓðbT; bz; Pz;lÞ
¼ h0jR−1

T RTOΓ
ud̄
ðbT; bz; 0;lÞR−1

T RT jπðPzÞi;
¼ ϕ̃MRΓM−1

R
ð−bT; bz; Pz;lÞ; ðA8Þ

which provides the Γ-dependent signs with which corre-
lation functions can be averaged over different staple
orientations. Combining these results gives

ϕ̃ΓðbT;bz;Pz;lÞ¼ ϕ̃MRMCΓTM−1
C M−1

R
ðbT;−bz;Pz;lÞ; ðA9Þ
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which establishes the symmetry properties of ϕΓðbT; bz;
Pz;lÞ under sign changes of bz. In particular, it follows
from Eq. (A9) that ϕγ4γ5ðbT;bz;Pz;lÞ and ϕγ3γ5ðbT; bz; Pz;
lÞ are both symmetric in bz.
Finally, Eq. (A3) and the T -odd transformations of pion

interpolating operators χ†Pð0Þ can be used to obtain

ϕ̃ΓðbT; bz; Pz;lÞ
¼ h0jT −1T OΓ

ud̄
ðbT; bz; 0;lÞT −1T jπðPzÞi;

¼ −ϕ̃MTΓM−1
T
ðbT; bz; Pz;lÞ; ðA10Þ

which provides the Γ-dependent signs with which corre-
lation functions can be averaged over forward and back-
ward propagation in time.
Discrete transformation properties for renormalization

factors can be derived analogously and ensure that renor-
malized quasi-TMD WFs share the same transformation
properties as the bare quasi-TMD WFs with the corre-
sponding Γ.

APPENDIX B: RI=xMOM
RENORMALIZATION SCHEME

As discussed in Sec. II, the renormalization condition of
Eq. (10) includes a Green’s function containing a Wilson
line and gives all the mixing effects of the staple-shaped
operator in the RI=xMOM scheme. This simplifies renorm-
alization compared to other RI-type schemes, which
involve Green’s functions of the operator itself and depend
on the geometry of the Wilson-line staple. Encoding all the
mixing effects in Eq. (10) is possible by interpreting the
Wilson lines in QCD as originating from propagators of
free auxiliary fields ζnðxÞ [79–81],

SζnðξÞ≡ hζnðxþ ξn̂Þζ̄nðxÞiζ;
¼ θðξÞhW−nðxþ ξ; ξÞi; ðB1Þ

where ζnðxÞ denote auxiliary fields of scalar particles
moving along straight spacelike directions nμ and carrying
color charge in the fundamental representation [79,80].
That is, the QCD action is augmented by ζnðxÞ in a way that
returns the original action when the field is integrated out
and Eq. (B1) holds.
The staple-shaped operator in Eq. (6), nonlocal in QCD

due to Wilson lines, may be recast in terms of local fields in
the extended theory:

OΓ
ud̄
ðbT; bz; yÞ

¼
�
Q̄d;−ẑ

�
yþ b

2

�
Γ
2
C−z;nT

�
yþ lzþ bT

2

�

× CnT;z

�
yþ lz −

bT
2

�
Qu;z

�
y −

b
2

��
ζ

; ðB2Þ

where Cn;n0 ðxÞ≡ ζ̄nðxÞζn0 ðxÞ denote cusp operators, and
Qq;nðxÞ≡ ζ̄nðxÞqðxÞ denote composite spin-1=2 fields.
The renormalization constant of the operator is thereby
factorized into ZCn;n0 , ZQq;n

, Zq, and Zζn , renormalizing
Cn̂;n̂0 , Qq;n̂, quark, and ζ fields, respectively, as well as a
factor of e−δmðlþbTÞ where δm denotes the mass of ξ fields
induced by loop effects [79,80,82].
In practice, the corresponding renormalization condi-

tions can be solved in QCD by integrating out the auxiliary
fields. For example, while the Green’s function in Eq. (9)
may be written as

Λq;�zðp;ξÞ
¼½Sζ∓z

ð−ξÞ�−1hζ∓zð−ξÞjQq;∓zð0ÞjqðpÞi½SqðpÞ�−1; ðB3Þ
it is still expressed in its original form when solving the
renormalization condition in Eq. (10) numerically, and
Eq. (B3) is only used to identify the corresponding
renormalization factor as

ZRI=xMOM
Λq;n;αα0

ðpR; ξRÞ≡
ZRI=xMOM
Qq;n;αα0

ðpR; ξRÞ
½ZqðpRÞ�1=2½ZRI=xMOM

ζn
ðξRÞ�1=2

; ðB4Þ

where α, α0 are spin indices. The remaining renormaliza-
tion conditions in RI=xMOM are approached similarly.
Altogether, using Eq. (B2), the renormalization factor of
the staple-shaped operator may then be computed via the
renormalization factors in the auxiliary-field description.
Moreover, when computing the CS kernel via Eq. (2),

renormalization factors with no spin structure cancel in the
ratio—it is therefore sufficient to find anycombinationof them
that fully encodes themixing effects.ZRI=xMOM

Λq;n
in Eq. (B4), as

determined by solving Eq. (10), is one such combination.
For collinear configurations of pμ

R and ξμR defined by
z≡ pR · ξR=ðjpRjjξRjÞ ¼ �1, ZRI=xMOM

Λ�z;αα0
ðpR; ξRÞ may be

converted to MS via the conversion coefficient computed
analytically in Landau gauge in continuum perturbation
theory [81],

½C�z�MS
RI=xMOMðμ; pμ

R; ξ
μ
RÞ ¼

1

12
TrΛMS

Q�z
ðμ; pμ

R; ξ
μ
RÞ;

¼ 1þ αsðpRÞCF

2π

��
−2 log 2þ 3

4
−
1

2

sin y
y

−
1

4
cos y −

�
2 cos

y
2
þ y
4
sin

y
2

�
Ci

�
y
2

�
þ 2CiðyÞ

�

∓ i

�
−

1

2y
þ 1

2

cos y
y

−
1

4
sin y −

�
2 sin

y
2
−
y
4
cos

y
2

�
Ci

�
y
2

�
þ 2SiðyÞ

��
þOðα2s ðpRÞÞ; ðB5Þ
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where y≡ pR · ξR, CF ¼ 4=3 and SiðyÞ≡ R∞y sinðtÞ
t dt

and CiðyÞ≡ −
R
∞
y

cosðtÞ
t dt are the sine and cosine

trigonometric integrals, respectively. The dependence on
μ vanishes in Landau gauge at NLO. The conversion
coefficient for ZRI=xMOM

ΓΓ0 ðpR; ξR; aÞ in Eq. (7) is given by

CMS
RI=xMOM ¼ ½C−z�MS�

RI=xMOM½Cþz�MS
RI=xMOM.

As mentioned in Sec. III B, the mixing effects induced
by ZRI=xMOM

ΓΓ0 ðpR; ξRÞ on pμ
R and ξμR receive additional

contributions not expected in lattice perturbation theory
at one-loop order for noncollinear configurations of pμ

R
and ξμR [126]. These mixing effects are illustrated Fig. 16.
When pR · ξR ¼ 0, additional mixing contributions appear
at 10% level. When pμ

R has components both collinear
with and perpendicular to ξμR, the number of mixing con-
tributions is larger, but the magnitude of each is reduced.
Since RI=xMOM is an off-shell momentum scheme,
contributions to mixing other than those induced by the
staple-shaped operator renormalization itself are possible
and may be relevant to explain the additional contribu-
tions [67,127,128]. Notably, the additional contributions
are significantly smaller than those observed in the
RI0=MOM scheme in previous works [24].

APPENDIX C: MATCHING CORRECTIONS

The quasi-TMD WF factorization formula from the
discussion of power corrections in Sec. II is given by
[41,71,75]

ϕ̃�ðx;bT;μ;PzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SrðbT;μÞ

p
¼H�ðx;Pz;μÞexp

	
1

4

�
ln
ð2xPzÞ2

ζ
þ ln

ð2x̄PzÞ2
ζ

�
γqðbT;μÞ



×ϕ�ðx;bT;μ;ζÞþp:c:; ðC1Þ

where matching holds independently of the suppressed
flavor indices, Dirac structure indices, and the renormal-
ization scheme label up to power corrections, denoted
p.c.4 The reduced soft factor SrðbT; μÞ [41] ensures that
the infrared physics is the same as that of the physical
TMD WF. The � label denotes the �ẑ displacement
of the transverse Wilson line relative to the quarks in the
staple-shaped operator used to define the quasi-TMD
WF. Only the þẑ displacement is shown in Fig. 1 and
used in the determination of the CS kernel, and the � label
is omitted throughout the main text; the label is made
explicit for completeness in the following discussion of the
matching correction. The matching kernel H�ðx; Pz; μÞ is
given by [129]

H�ðx; Pz; μÞ ¼ C�
ϕ ðμ; xPzÞC�

ϕ ðμ; x̄PzÞ; ðC2Þ

where the coefficientsC�
ϕ can be derived from the matching

of a heavy-to-light current in the heavy-quark effective
theory to soft-collinear effective theory [129].

1. Fixed-order matching corrections

A fixed-order matching correction in Eq. (11) requires
matching coefficients Cϕðμ; pzÞ computed in a perturbative
expansion

C�
ϕ ðμ; pzÞ ¼ 1þ

X
n¼1

ans ðμÞC�;ðnÞ
ϕ ðμ; pzÞ; ðC3Þ

where asðμÞ≡ αsðμÞ=4π and αsðμÞ is determined by run-
ning from αsðμ0 ¼ 2 GeVÞ as detailed in Appendix C 2. At
NNLO, the logarithmic ratio of these coefficients in the
matching correction is expanded as

δγNNLO−IIðμ; x; Pz
1; P

z
2Þ ¼ −

1

lnðPz
1=P

z
2Þ
�
asðμÞðC�;ð1Þ

ϕ ðμ; xPz
1Þ − C�;ð1Þ

ϕ ðμ; xPz
2ÞÞ −

a2sðμÞ
2

ð½C�;ð1Þ
ϕ ðμ; xPz

1Þ�2

− ½C�;ð1Þ
ϕ ðμ; xPz

2Þ�2 − 2ðC�;ð2Þ
ϕ ðμ; xPz

1Þ − C�;ð2Þ
ϕ ðμ; xPz

2ÞÞ þ ðx ↔ x̄Þ
�
: ðC4Þ

While taking a naive logarithmic ratio of NNLO matching coefficients,

δγNNLO-Iðμ; x; Pz
1; P

z
2Þ ¼

1

lnðPz
1=P

z
2Þ
ln
1þ asðμÞC�;ð1Þ

ϕ ðμ; xPz
1Þ þ a2sðμÞC�;ð2Þ

ϕ ðμ; xPz
1Þ

1þ asðμÞC�;ð1Þ
ϕ ðμ; xPz

2Þ þ a2sðμÞC�;ð2Þ
ϕ ðμ; xPz

2Þ
; ðC5Þ

4Note that the CS evolution part in the matching formula differs from that in Refs. [41,71,75] by a suppressed imaginary part in the
exponential, which depends on the soft factor subtraction. The imaginary part is suppressed here because it does not affect the extraction
of the CS kernel.
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(a)

(b)

(c)

FIG. 16. As in Fig. 5(a) in the main text, for a set of renormalization scales defined by z≡ pR · ξR=ðjpRjjξRjÞ and ξR=a∈ f2; 3g.
(a) pR ¼ 2.15 GeV, z ¼ 1 (collinear pμ

R and ξμR). (b) pR ¼ 2.15 GeV, z ¼ 0 (perpendicular pμ
R and ξμR). (c) pR ¼ 2.44 GeV

and 0 < jzj < 1.
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differs from the correction in Eq. (C4) only by higher-order
terms, in the kinematic regime of this study the discrepancy
is significant, as illustrated in Fig. 17. Consistent with the
scaling of power corrections, δγNNLO-I and δγNNLO−II

converge at larger momenta, but the rates of convergence
and the sign and magnitude of x-dependent corrections
differ between real and imaginary parts. The same con-
clusions apply to the NLO matching corrections, for which
terms of order a2sðμÞ are dropped in Eqs. (C4) and (C5). As
discussed further in Appendix C 2 and illustrated in Fig. 18,
corrections δγNLO−II and δγNNLO−II are in a better agreement
with results expected from the RG equations of C�

ϕ ðμ; pzÞ.
For this reason, the fixed-order results with a naive
logarithmic ratio are not used in the determination of the
CS kernel.
The difference between δγNLO−II and δγNNLO−II,

illustrated in Fig. 19, indicates expected convergence
in the real component of the matching correction at
moderate x. However, matching corrections converge
poorly in the imaginary component. This is in agree-
ment with NLO results in Ref. [32] and may be ex-
plained by a larger sensitivity of Imðδγqðμ; x; Pz

1; P
z
2ÞÞ to

power corrections at small bT , as discussed further in
Appendix C 3.

FIG. 17. Matching correction to the CS kernel for different
momentum pairs nz1=n

z
2 and μ ¼ 2 GeV. The solid and dashed

lines show results for NNLO-I and NNLO-II, respectively.

FIG. 18. Matching correction to the CS kernel at ðPz
1; P

z
2Þ ¼ ð1.999; 2.001Þ GeV and μ ¼ 2 GeV. Left panel: NLO and NLL. Right

panel: NNLO and NNLL. The fixed-order I and II, resummation I and II are represented by red, cyan, dashed blue, and dashed magenta
lines, respectively. The noncusp anomalous dimension is represented by the blue solid line.

FIG. 19. Matching corrections to the CS kernel at NLO (solid lines) and NNLO (dashed lines).
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The matching coefficients needed for the NNLO match-
ing correction are given explicitly below, with CF ¼ 4=3,
CA ¼ 3, nf ¼ 4, and ζðnÞ denoting the Riemann zeta

function. At NLO, Cð1Þ
ϕ ðμ; pzÞ has been calculated [71,75]

to be

C�;ð1Þ
ϕ ðμ; pzÞ ¼ CF

	
−
1

2
ðL�

z Þ2 þL�
z − 2 −

5π2

12



; ðC6Þ

where

L�
z ¼ ln

−ð2pzÞ2 � i0
μ2

¼ ln
ð2pzÞ2
μ2

� iπ: ðC7Þ

The NNLO coefficients C�;ð2Þ
ϕ ðμ; pzÞ for quasi-TMD WFs

can be extracted from the corresponding results for quasi-
TMD parton distribution functions (quasi-TMD PDFs), for
which a factorization analogous to that in Eq. (C1) holds
[65,66,68,72]. The matching kernel for quasi-TMD PDFs
has been calculated at NLO [63,65,66,77] and recently at
NNLO [77,78]. The real part of the coefficient C�

ϕ ðμ; pzÞ is
equal to the square root of the matching kernel for the
quasi-TMD PDF with the identification of ζz ¼ ð2pzÞ2.
Obtained in this way, C�;ð1Þ

ϕ ðμ; pzÞ is consistent with

Eq. (C6), and C�;ð2Þ
ϕ ðμ; pzÞ is given by

C�;ð2Þ
ϕ ðμ; pzÞ ¼ CF

2

�
CF

4
ðL�

z Þ4 −
�
CF −

11

9
CA þ 2

9
nf

�
ðL�

z Þ3

þ
	�

3þ 5π2

12

�
CF þ

�
π2

3
−
100

9

�
CA þ 16

9
nf



ðL�

z Þ2

−
	�

11π2

2
− 24ζð3Þ

�
CF þ

�
22ζð3Þ − 44π2

9
−
950

27

�
CA þ

�
152

27
þ 8π2

9

�
nf



L�

z

þ
�
−30ζð3Þ þ 65π2

3
−
167π4

144
− 16

�
CF þ

�
241ζð3Þ

9
þ 53π4

60
−
1759π2

108
−
3884

81

�
CA

þ
�
2ζð3Þ
9

þ 113π2

54
þ 656

81

�
nf

�
: ðC8Þ

2. Resummation of momentum logarithms

The resummation of the matching coefficients
discussed in Sec. II is enabled by their RG evolution
equations [68,72],

γ�μ ðμ; pzÞ≡ d lnC�
ϕ ðμ; pzÞ

d ln μ
;

¼ Γcusp½asðμÞ�L�
z þ γμ½asðμÞ�; ðC9Þ

γ�Cðμ;pzÞ≡d lnC�
ϕ ðμ;pzÞ

d lnpz
;

¼2

Z
μ

2pz

dμ0

μ0
ðΓcusp½αsðμ0Þ�þγ�C ½αsð2pzÞ�Þ; ðC10Þ

where γ�μ ðμ; pzÞ and γ�Cðμ; pzÞ are the virtuality and
momentum anomalous dimensions of C�

ϕ ðμ; pzÞ, respec-
tively, γμðasðμÞÞ and γ�Cðasð2pzÞÞ denote initial values in
the solutions to the RG equations, and

ΓcuspðαsðμÞÞ ¼
dγ�μ ðμ; pzÞ
d lnpz ¼ dγ�Cðμ; pzÞ

d ln μ
ðC11Þ

is the cusp anomalous dimension.

The anomalous dimension γ�Cðμ; pzÞ in Eq. (C10) may
be used to approximate the matching correction in Eq. (11)
in the limit of Pz

1 → Pz
2. As illustrated in Fig. 18, this

approximation is used to select a fixed-order expansion of
the matching correction in Eq. (C4) over that in Eq. (C5).
Finally, the relation

γ�Cðμ; pzÞ ¼ −γ�μ ðμ; pzÞ þ βðasÞ
∂ lnC�

ϕ ðμ; pzÞ
∂as

ðC12Þ

may be used to cross-check explicit perturbative results for
γ�Cðμ; pzÞ and γ�μ ðμ; pzÞ detailed further below.
In terms of the anomalous dimensions, the resummation

kernel Kϕðμ0ðμ; pzÞ; μÞ in Eq. (12) is given by

K�II
ϕ ð2pz; μÞ ¼ 2KΓð2pz; μÞ − Kγμð2pz; μÞ ∓ ηð2pz; μÞ

ðC13Þ

for ðpz
0; μ0Þ ¼ ðpz; 2pzÞ and

K�I
ϕ ð2pz; μÞ ¼ 2KΓð2pz; μÞ − Kγ�C

ð2pz; μÞ ðC14Þ

for ðpz
0; μ0Þ ¼ ðμ=2; μÞ, where
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Kγμðμ0; μÞ ¼
Z

αsðμÞ

αsðμ0Þ

dαs
βðαsÞ

γμðαsÞ; ðC15Þ

Kγ�C
ðμ0; μÞ ¼

Z
αsðμÞ

αsðμ0Þ

dαs
βðαsÞ

γ�CðαsÞ; ðC16Þ

KΓðμ0; μÞ ¼
Z

αsðμÞ

αsðμ0Þ

dαs
βðαsÞ

ΓcuspðαsÞ
Z

αs

αsðμ0Þ

dα0s
βðα0sÞ

; ðC17Þ

ηΓðμ0; μÞ ¼ iπ
Z

αsðμÞ

αsðμ0Þ

dαs
βðαsÞ

ΓcuspðαsÞ; ðC18Þ

and β½αsðμÞ�≡ dαsðμÞ
d ln μ is the QCD β function.

The resummed matching coefficients corresponding to
KI

ϕ and KII
ϕ are given according to Eq. (13) by

δγIIq ðμ; x; Pz
1; P

z
2Þ ¼ −

1

lnðPz
1=P

z
2Þ
�
ln
Cϕð2xPz

1; xP
z
1Þ

Cϕð2xPz
2; xP

z
2Þ

− ðKII
ϕð2xPz

1; μÞ − KII
ϕð2xPz

2; μÞÞ

þ ðx ↔ x̄Þ
�
; ðC19Þ

where the logarithmic ratio of initial-scale matching
coefficients is expanded in asðμÞ as in Eq. (C4) for the
fixed-order case, and

δγIqðμ;x;Pz
1;P

z
2Þ

¼ 1

lnðPz
1=P

z
2Þ
ðKI

ϕð2xPz
1;μÞ−KI

ϕð2xPz
2;μÞþðx↔ x̄ÞÞ:

ðC20Þ

Figure 20 compares matching corrections in the two
schemes at NNLL in the kinematic regime used in this
work to determine the CS kernel. The differences between
the resummations decrease at larger momenta, consistent
with the decreasing αs. Since the ratios calculated from the
lattice are renormalization group invariant and independent
of the MS scale μ, the natural choice of the initial scales
should be proportional to the hard parton momentum in the
quasi-TMD WFs, e.g., ðpz

0; μ0Þ ¼ ðpz; 2pzÞ. Therefore, in
this work the resummed matching corrections are deter-
mined in scheme II.
To obtain the resummed matching corrections, all

functions comprising Kϕ are computed perturbatively in
asðμÞ,

β½αsðμÞ� ¼ −2αsðμÞ
X∞
n¼0

anþ1
s ðμÞβn; ðC21Þ

Γcusp½asðμÞ� ¼
X∞
n¼0

anþ1
s ðμÞΓn; ðC22Þ

γμ½asðμÞ� ¼
X∞
n¼0

anþ1
s ðμÞγμn; ðC23Þ

γ�C ½asðμÞ� ¼
X∞
n¼0

anþ1
s ðμÞγC�n : ðC24Þ

A resummation of C�
ϕ ðμ; pzÞ from C�

ϕ ðμ0; pz
0Þ of a

given accuracy corresponds to a consistent set of loop
orders chosen for C�

ϕ ðμ0; pz
0Þ and the functions above, with

asðμÞ run from asðμ0 ¼ 2 GeVÞ as detailed further below.
Examples for NLL and NNLL resummations are provided
in Table III. Explicitly, the following perturbative results
are used for the NLL and NNLL resummations. The β
function is given by

FIG. 20. Real and imaginary parts of resummed matching

corrections to the CS kernel δγMS;NkLL
q ðμ; x; Pz

1; P
z
2Þ at NNLL in

the two resummation schemes: NNLL-I (solid) and NNLL-II
(dashed), as defined by a choice of initial scale in Eqs. (C19) and
(C20). The corrections are shown in different colors at different
momentum pairs nz1=n

z
2 and μ ¼ 2 GeV.

TABLE III. Loop orders of each term comprising the resummed
matching coefficient defined in Eq. (12) at a given accuracy. The
loop orders of the beta function β½αsðμÞ� and the coupling asðμÞ
are equal to the loop order of the term they are used in. All the
functions are defined in Appendix C 2.

Accuracy KΓ KγC Kγμ η Cϕ

NLL 2 1 1 1 0
NNLL 3 2 2 2 1
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β0 ¼
11

3
CA −

4

3
TFnf; ðC25Þ

β1 ¼
34

3
C2
A −

�
20

3
CA þ 4CF

�
TFnf; ðC26Þ

β2 ¼
2857

54
C3
A þ

�
2C2

F −
205

9
CFCA −

1415

27
C2
A

�
TFnf

þ
�
44

9
CF þ 158

27
CA

�
T2
Fn

2
f; ðC27Þ

where TF ¼ 1=2. The cusp anomalous dimension Γcusp,
computed to four-loop order [130–135], is given by

Γ0 ¼ 2CF; ðC28Þ

Γ1 ¼ 2CF

	�
67

9
−
π2

3

�
CA −

20

9
TFnf



; ðC29Þ

Γ2 ¼ 2CF

	
C2
A

�
245

6
−
134π2

27
þ 11π4

45
þ 22

3
ζð3Þ

�

þ CATFnf

�
−
418

27
þ 40π2

27
−
56

3
ζð3Þ

�

þ CFTFnf

�
−
55

3
þ 16ζð3Þ

�
−
16

27
T2
Fn

2
f



: ðC30Þ

The noncusp anomalous dimensions are given in terms of
γμn and γC�n ≡ γCn ∓ iπγC�n . Like the matching coefficients
discussed in Appendix C 1, they can be extracted from the
recently calculated NNLO matching kernel of the quasi-
TMD PDFs [77,78] and are given by

γμ0 ¼ −2CF; ðC31Þ

γμ1 ¼ CF

	
CF

�
−4þ 14

3
π2 − 24ζð3Þ

�

þ CA

�
−
554

27
−
11π2

6
þ 22ζð3Þ

�
þnf

�
80

27
þ π2

3

�

;

ðC32Þ
and

γC�0 ¼ 2CF ∓ iπΓ0; ðC33Þ

γC�1 ¼ CF

	
CF

�
4 −

14

3
π2 þ 24ζð3Þ

�

þ CA

�
950

27
þ 11π2

9
− 22ζð3Þ

�
þnf

�
−
152

27
−
2π2

9

�

∓ iπ½Γ1 þ β0ð2Re½γC0 � − Γ0Þ�; ðC34Þ

respectively, where the imaginary part is inferred from the
logarithm L�

z in Eq. (C7) of the fixed-order result.
The corresponding perturbative expressions of resum-

mation kernels for the NNLL resummation are [136]

KNNLL
γμ ðμ0; μÞ ¼ −

γμ0
2β0

	
ln rþ asðμ0Þ

�
γμ1
γμ0

−
β1
β0

�
ðr − 1Þ



;

ðC35Þ

KNNLL
γC ðμ0; μÞ ¼ −

γC0
2β0

	
ln rþ asðμ0Þ

�
γC1
γC0

−
β1
β0

�
ðr − 1Þ



;

ðC36Þ

KNNLL
Γ ðμ0; μÞ ¼ −

Γ0

4β20

�
1

asðμ0Þ
�
1 −

1

r
− ln r

�

þ
�
Γ1

Γ0

−
β1
β0

�
ð1 − rþ ln rÞ þ β1

2β0
ln2r

þ asðμ0Þ
	�

β21
β20

−
β2
β0

��
1 − r2

2
þ ln r

�

þ
�
β1Γ1

β0Γ0

−
β21
β20

�
ð1 − rþ r ln rÞ

−
�
Γ2

Γ0

−
β1Γ1

β0Γ0

� ð1 − rÞ2
2


�
; ðC37Þ

and

ηNNLLðμ0; μÞ ¼ −iπ
Γ0

2β0

	
ln rþ asðμ0Þ

�
Γ1

Γ0

−
β1
β0

�
ðr − 1Þ



;

ðC38Þ
where r≡ asðμÞ=asðμ0Þ and the running coupling at μ is
given at NNLO order by

1

asðμÞ
¼ X
asðμ0Þ

þβ1
β0
lnX

þasðμ0Þ
	
β2
β0

�
1−

1

X

�
þβ21
β20

�
lnX
X

þ 1

X
−1

�

; ðC39Þ

where X ≡ 1þ β0asðμÞ lnðμ20=μ2Þ, and αsðμ0 ¼ 2 GeVÞ ≈
0.293 is determined as prescribed in Ref. [9]. N3LO terms
require asðμÞ at NNLO, and NNLO terms at NLO. Finally,
for the NNLL resummation, the logarithmic ratio of initial-
scale coefficients in Eq. (C19) is expanded as in Eq. (C4)
to NLO.

3. Estimate of bT-dependent corrections

The validity of the factorization formula in Eq. (C1)
requires that xPzbT ≫ 1 and ð1 − xÞPzbT ≫ 1. Within the
kinematic range of Pz and bT used in this work, such
conditions are not sufficiently satisfied, especially at small
bT , and considerable power corrections are expected.
Nonetheless, a factorization should exist for some range

x∈ ½xmin; xmax� for all values of bT , as long as xPz; x̄Pz ≫
ΛQCD. If PzbT ≫ 1, a factorization into TMDs applies; if
PzbT ≪ 1, then it is reduced to a collinear factorization.
One may conjecture a factorization formula that interpo-
lates between collinear and TMD factorizations, written
schematically at finite Pz as
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ϕ̃�ðx; bT; μ; PzÞ ¼
Z

1

0

dyHMS�
ϕ ðx; y; x̄; ȳ; xPz; x̄Pz; bT; μÞ exp

	
1

4

�ð2xPzÞ2
ζ

þ ð2x̄PzÞ2
ζ

�
γζðbT; μÞ



ϕðy; bT; μ; ζÞ; ðC40Þ

where the matching kernel has a large PzbT expansion for PzbT ≳ 1,

HMS�
ϕ ðx; y; x̄; ȳ; xPz; x̄Pz; bT; μÞ ⟶

PzbT≫1
C�
ϕ ðμ; xPzÞC�

ϕ ðμ; x̄PzÞδðx − yÞ þ ½δC�
ϕ ðbT; xPzÞC�

ϕ ðbT; x̄PzÞ
þ ðx → x̄Þ�δðx − yÞ þ δHMS�

ϕ ðx; y; x̄; ȳ; xPz; x̄Pz; bTÞ; ðC41Þ

where δC�
ϕ ðbT; xPzÞ and δHMS�

ϕ ðx; y; x̄; ȳ; xPz; x̄Pz; bTÞ denote power- or exponentially suppressed terms such as
1=ðxPzbTÞ and 1=ðx̄PzbTÞ or expð−xPzbTÞ and expð−x̄PzbTÞ.
For the purposes of estimating the significance of the finite-bT correction, the contribution δHMS�

ϕ to the above matching
kernel is neglected and its study is left to future work. The matching kernel then reduces to

HMS�
ϕ ðx; y; x̄; ȳ; xPz; x̄Pz; bT; μÞ ⟶

Pz≫b−1T C�u
ϕ ðbT; μ; xPzÞC�u

ϕ ðbT; μ; x̄PzÞδðx − yÞ; ðC42Þ
where the ðpzbTÞ-unexpanded coefficient C�u

ϕ ðbT; μ; pzÞ ¼ C�
ϕ ðμ; pzÞ þ δC�

ϕ ðbT; pzÞ has a perturbative expansion
analogous to that of C�

ϕ ðμ; pzÞ in Eq. (C3) and has been calculated at NLO in Refs. [66,75].
Explicitly, the NLO contribution C�uð1Þ

ϕ ðbT; μ; pzÞ is given by

C�uð1Þ
ϕ ðbT; μ; pzÞ ¼ CF

�
1ffiffiffi
π

p
	

1

pzbT
G2;2

2;4

�ðpzbTÞ2
4






3
2
; 3
2

3
2
; 3
2
; 0; 1

2

�
−
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2

G2;3
3;5

�ðpzbTÞ2
4






1
2
; 1
2
; 1
2

1
2
; 1
2
;− 1

2
;− 1

2
; 0

�


−
�
−
1

2
ln2

b2Tμ
2

b20
þ ln

b2Tμ
2

b20

�
1 − ln

ζz
μ2

�
−
π2

12

�
�iπ

	
2Eið−pzbTÞ −

1 − e−p
zbT

pzbT
− ln

ζz
μ2

þ 1


�
; ðC43Þ

FIG. 21. NLO matching coefficient with (solid) and without
(dashed) expansion at large PzbT and x ¼ 0.5 and μ ¼ 2 GeV.

FIG. 22. uNLO matching correction to the CS kernel without
expansion at large PzbT at momentum pair ðnz1; nz2Þ ¼ ð6; 8Þ and
μ ¼ 2 GeV. The black line represents the NLO correction.
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FIG. 23. Examples of real and imaginary parts the MS-renormalized quasi-TMDWF ratiosWMS
Γ ðbT; μ; bz; Pz;lÞ defined in Eq. (25),

for Γ ¼ γ4γ5, Pz ¼ 2π
L nz ¼ 0.86 GeV and 0.12 fm ≤ bT ≤ 0.48 fm. Both l=a at Pz ¼ 0.86 GeV are chosen to be even to compare the

data at matching points in bzPz space.
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where b0 ¼ 2e−γE , EiðzÞ≡ −
R∞
−z dt

e−t
t is the exponential

integral function, and Gm;n
p;q ðzja1;…;ap

b1;…;bq
Þ is the Meijer G

function. The unexpanded coefficient C�u
ϕ ðbT; μ; xPzÞ

and the corresponding perturbative correction to the CS
kernel δγuNLOq ðbT; x; Pz

1; P
z
2; μÞ are shown as a function of

x in Figs. 21 and 22, respectively. The estimated cor-
rections are consistent with the different rates of con-
vergence observed in real and imaginary parts for fixed-
order and resummed corrections in Figs. 9 and 19,
respectively. In the real part, the corrections become
negligible for bT ≳ 0.4 fm, except for the pair of smallest
momenta used in this work. In the imaginary part, the
corrections are large for the entire kinematic range of
this study.

APPENDIX D: ADDITIONAL
EXAMPLES FOR SEC. III

This section collates examples of intermediate analysis
steps in the numerical calculation of the CS kernel,
supplementing Sec. III.
Supplementing Fig. 6, additional examples of the MS-

renormalized quasi-TMD WFs WMS
Γ ðbT; μ; x; Pz;lÞ are

illustrated in Figs. 23–38.
Supplementing Figs. 7 and 8, additional examples of the

Fourier-transformedMS-renormalized quasi-TMDWFratios
WMS

Γ ðbT; μ; x; PzÞ are provided in Figs. 39–43, respectively.
Supplementing Fig. 11, additional examples of real parts

of CS kernel estimators Re½γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ� are pro-

vided in Figs. 46 and 47 with LO matching, and in Figs. 44
and 45 with uNNLL matching.

FIG. 24. As in Fig. 23, for 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 25. As in Fig. 23, for Γ ¼ γ3γ5.
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FIG. 26. As in Fig. 23, for Γ ¼ γ3γ5 and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 27. As in Fig. 23, for Pz ¼ 1.29 GeV (WMS
γ4γ5 for bT ¼ 0.48 fm is illustrated in Fig. 6 in the main text).
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FIG. 28. As in Fig. 23, for Pz ¼ 1.29 GeV and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 29. As in Fig. 23, for Γ ¼ γ3γ5 and Pz ¼ 1.29 GeV.
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FIG. 30. As in Fig. 23, for Γ ¼ γ3γ5, Pz ¼ 1.29 GeV, and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 31. As in Fig. 23, for Pz ¼ 1.72 GeV.
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FIG. 32. As in Fig. 23, for Pz ¼ 1.72 GeV, and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 33. As in Fig. 23, for Γ ¼ γ3γ5 and Pz ¼ 1.72 GeV.
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FIG. 34. As in Fig. 23, for Γ ¼ γ3γ5, Pz ¼ 1.72 GeV, and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 35. As in Fig. 23, for Pz ¼ 2.15 GeV.
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FIG. 36. As in Fig. 23, for Pz ¼ 2.15 GeV and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 37. As in Fig. 23, for Γ ¼ γ3γ5 and Pz ¼ 2.15 GeV.
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FIG. 38. As in Fig. 23, for Γ ¼ γ3γ5, Pz ¼ 2.15 GeV, and 0.60 fm ≤ bT ≤ 0.84 fm.
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FIG. 39. As in Fig. 7, for different combinations of Γ, bT , and Pz ¼ 2π
L nz.
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FIG. 40. Examples of real and imaginary parts of the Fourier-transformed MS-renormalized quasi-TMDWF ratiosWMS
Γ ðbT; μ; x; PzÞ

defined in Eq. (26), for Γ ¼ γ4γ5 and 0.12 fm ≤ bT ≤ 0.36 fm, where nz labels the momentum Pz ¼ 2π
L nz (WMS

γ4γ5 for bT ¼ 0.48 fm is
illustrated in Fig. 8 in the main text).
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FIG. 41. As in Fig. 40, for 0.60 fm ≤ bT ≤ 0.84 fm.

AVKHADIEV, SHANAHAN, WAGMAN, and ZHAO PHYS. REV. D 108, 114505 (2023)

114505-42



FIG. 42. As in Fig. 40, for Γ ¼ γ3γ5 and 0.12 fm ≤ bT ≤ 0.48 fm.
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FIG. 43. As in Fig. 40, for Γ ¼ γ3γ5.
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FIG. 44. Examples of real parts of CS kernel estimators γ̂MS
Γ ðbT; x; Pz

1; P
z
2; μÞ, computed as described in Sec. III E with matching

corrections at LO, for Γ ¼ γ4γ5 and 0.12 fm ≤ bT ≤ 0.84 fm (Re½γ̂MS
γ4γ5 � for bT ¼ 0.48 fm is illustrated in Fig. 11 in the main text). The

black dashed lines enclose the region in x used to determine the CS kernel. The notation nz ¼ Pz
1=P

z
2 displays momenta in lattice units.
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FIG. 45. As in Fig. 44, for Γ ¼ γ3γ5.
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FIG. 46. As in Fig. 44, with uNNLL matching (Re½γ̂MS
γ4γ5 � for bT ¼ 0.48 fm is illustrated in Fig. 11 in the main text).
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FIG. 47. As in Fig. 44, with uNNLL matching, for Γ ¼ γ3γ5.
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