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Collins-Soper kernel from lattice QCD at the physical pion mass
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This work presents a determination of the quark Collins-Soper kernel, which relates transverse-
momentum-dependent parton distributions at different rapidity scales, using lattice QCD. This is the first
lattice QCD calculation of the kernel at quark masses corresponding to a close-to-physical value of the pion
mass, with next-to-next-to-leading logarithmic matching to transverse-momentum-dependent parton
distributions from the corresponding lattice-calculable distributions, and includes a complete analysis
of systematic uncertainties arising from operator mixing. The kernel is extracted at transverse momentum
scales 240 MeV < g7 < 1.6 GeV with a precision sufficient to begin to discriminate between different
phenomenological models in the nonperturbative region.
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I. INTRODUCTION

Since the 1970s it has been understood that the intrinsic
motion of partons inside hadrons in the direction transverse
to the hadron’s momentum plays an important role in
experimentally observed processes, beginning historically
with Drell-Yan scattering (DY) [1-3]. The effect of this
motion on the DY cross section has been rigorously
derived in QCD in the form of a factorization theorem
[4-6] and thereby described in terms of transverse-
momentum-dependent parton distribution functions
(TMDs). TMDs are universal, appearing in the factoriza-
tion of cross sections for processes including also semi-
inclusive deep inelastic scattering (SIDIS) and dihadron
production in ete~ collisions. Constraints on TMDs,
particularly for the nucleon, have thus been the target
of experimental programs since the 2000s (see Refs. [7,8]
for a review) and remain key targets of current and future
experiments at facilities including the Thomas Jefferson
National Accelerator Facility [9,10], the Large Hadron
Collider [11,12], and the Electron-Ion Collider [13-19].
Simultaneously, significant efforts are being made from
the theoretical perspective to constrain TMDs, including
through lattice QCD calculations [20-37].

TMDs have a functional dependence on two scales: a
virtuality scale y and a rapidity scale ¢, which is related to
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the hadron momentum in a scattering process. While the
renormalization group (RG) evolution of TMDs with y is
perturbative for perturbative scales u and ¢, the evolution
with ¢ is inherently nonperturbative in certain regions of
parameter space, even for perturbative . The ¢ evolution of
TMDs is encoded in the Collins-Soper (CS) kernel [4-6],
which can be defined as the rapidity anomalous dimension
entering the relevant RG evolution equations (up to a
conventional factor):

d
yp(bTHu) :2dl—nzjln¢p(bT’/’t’xvc)’ (1)

where ¢,(br,x,u.{) is a TMD, chosen here as a TMD
wave function (TMD WF) encoding the transverse motion
of a parton p € {q, g} in a meson state [38-41]. The TMD
WF is defined in a factorization formula valid in the limit of
ultrarelativistic hadron momentum P and depends on the
fraction x of the parton’s momentum collinear with P, as
well as the parton’s momentum transverse to P as given
by its Fourier conjugate by, the transverse displacement.
The CS kernel depends on y, by and parton type p, but is
independent of x and the hadronic state.

Experimental DY and SIDIS data has been used to
constrain phenomenological parametrizations of the quark
CS kernel [42-56]. A number of parametrizations are in
some tension in the region by 2 0.2 fm (at p = 2 GeV),
which may be partially understood to arise from different
approaches to modelling nonperturbative effects. In the
more recent analyses [55,56], the tensions have been
reduced as larger sets of experimental data sensitive to
the CS kernel in the nonperturbative regime [53,57] were
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included. Further improvements are expected with future
data from the LHC [12] and the Electron-Ion Collider
[17,18]. A direct way of constraining the kernel from cross
section ratios has also been proposed and demonstrated on
synthetic data [58] and could be applied to experimental
data in the future. A more precise determination of the
nonperturbative CS kernel is important in particular for
measurements of electroweak observables such as the W*-
boson mass [59] and especially for studies of nucleon and
nuclear structure via deep inelastic scattering [17].

Complementing phenomenological approaches, lattice
QCD offers a pathway towards first-principles constraints
of the CS kernel in the nonperturbative regime. One
approach to such calculations is provided by large-momen-
tum effective theory (LaMET) [60-62], in which physical
TMDs, defined by matrix elements of lightlike-separated
operators, and quasidistributions, defined by the matrix
elements of the corresponding spacelike-separated opera-
tors which are computable in lattice QCD, are perturba-
tively matched at large hadron momentum [P|>> Aqcp
[41,63-74]. For example, a TMD WF ¢, (by.pu.x,{) is
matched to a quasi-TMD WF ¢, (b7, . x, {) with matching
coefficients computed perturbatively in LaMET [71,75] up
to a nonperturbative soft factor independent of x and ¢ and
power corrections that vanish in the limit of infinite boost.
To date, several lattice QCD calculations have been carried
out using quasi-TMD WFs and other quasidistributions to
extract the quark CS kernel [24-29,32,34,37] and the soft
function [26,27,37], as well as the full kinematic depend-
ence of TMDs [33,35].

Using quasi-TMD WFs and LaMET, this work presents
the first lattice QCD calculation of the quark CS kernel at
valence quark masses corresponding to a close-to-physical

|

_ 1 co db*
yS (by.pu) =
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value of the pion mass, m, = 148.8(1) MeV, thereby
addressing the systematic uncertainty arising from the
sensitivity of the kernel to the QCD vacuum structure
[76] and reducing those arising from perturbative
LaMET matching and proportional to m2/(x|P|)> and
m2/((1 —x)|P|)%. Other b;-dependent systematic uncer-
tainties associated with matching are better quantified
relative to previous calculations. The matching is per-
formed at next-to-next-to-leading order (NNLO) and next-
to-next-to-leading logarithmic (NNLL) accuracies for the
first time in a calculation of the CS kernel, using recent
results of Refs. [77,78]. Moreover, previously dominant
[28] systematic uncertainties from the Fourier transfor-
mation of quasi-TMDs are reduced in this work, and
the associated model dependence is eliminated. Finally,
renormalization-induced mixing effects for the nonlocal
operators associated with quasi-TMDs are fully quantified
for the first time in the RI/XxMOM renormalization
scheme [79-81]. Taken together, this work achieves
sufficient control and precision to begin to discriminate
in the nonperturbative region between phenomenological
parametrizations [44,51,52,55,56] of the quark CS kernel
and provides a better understanding of perturbative con-
vergence in LaMET matching and the associated power
corrections.

II. THE COLLINS-SOPER KERNEL FROM
QUASI-TMD WAVE FUNCTIONS

The quark CS kernel can be computed in lattice QCD
from ratios of matrix elements of nonlocal staple-shaped
Wilson line operators in hadron states at different finite
boost momenta Pj, P [41,63,65]:

VNbp.b?,P5.E) )
L WS (x. P} P3)+pe. (2)

I
fl—g;loln(Pf/PZ) foo b,

Here the dependence on the lattice spacing, a, is suppressed.
5}/2’15 (1, x, P7, P5) denotes the perturbative matching cor-
rection defined at the end of this section, and p.c. denotes the
associated power corrections that are power series in
1/(br(xP%))?, Agep/ (xP?)%, mj,/(xP%)?, where my, is the
meson mass and P € { P}, P5}, and analogous forms with x
replaced by 1 — x. W(FO)(bT, b*, P#, ¢) denote ratios of bare
quark quasi-TMD WFs (defined further below), such that

(:bl"(bT’ b* , Pe f)

W (b, b, P7, ) =
Byoys(b7,0,0,2)

(3)

As only quark quasi-TMD WFs are studied in this work,
parton labels on WFs and WF ratios are omitted. Subscripts

Z
1
(=P PEINL(PS) S ZS ()W < by, b%,P3,¢)

+ oy

') denote Dirac structures; in the limit of infinite boosts
P35, P} - o0, quasi-TMD WFs with T € {y3ys, 7475} ap-

proach y,ys. Renormalization factors Z¥{§, (n) are 16 x 16
matrices, detailed further below, and the normalization

factors N-(P¢) correspond to

—imy,

P I'=vysrs

NF(PZ) = ’
%7 I'=7y475

(4)

where E),(P‘Z) and m,, are the meson energy and mass,
respectively.

Bare quark quasi-TMD WFs in position space are given
by Euclidean equal-time correlation functions
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FIG. 1. Diagrammatic representation of the nonlocal operator
(95 Zz(bT’ b*,y,¢) defined in Eq. (6). The operator comprises a
staple-shaped Wilson line of length # + by connecting a quark-
antiquark pair ud separated by b = (by,b%,0) (blue). The
origin is defined at the midpoint between the quark and the
antiquark (red).

Dr(br. b7, P2, £) = (0/0F, by b%,0.£) h(P9)).(5)
where |0) and |h(P?)) denote the QCD vacuum and a
pseudoscalar meson state, respectively. The meson is taken
to contain the isovector ud valence quark-antiquark pair,
and the operator (’)E{Q(br, b*,y,¢) is depicted in Fig. 1 and
defined as

- b\ T b ¢—b*
4(”5)5“’%(”57 > )

£, b
XW_ﬁT<y+2Z+2T;bT>

£, br £+b° b
xW_z<y+§Z—7, 5 )u(y—2>,

- b\ T b b b
=d<y+§>5W3<y+§,y—§,f)u(y—§>, (6)

where b = (b, b*,0), u(y) and d(y) denote up- and down-
quark fields, respectively, W;(x; &) denotes a Wilson line
of length & starting at x directed along 7, 71y denotes a unit
four-vector along by, and ¢ denotes the total collinear
length of the staple-shaped Wilson line. The transformation
properties of these operators and quasi-TMD WFs under
sign changes of by and bH* as well as other discrete
symmetries are presented in Appendix A. Forming ratios
in Eq. (3) cancels divergences logarithmic in a, as well as

power divergences linear in #/a and by/a, in the quasi-
TMD WFs [79,80,82]. Furthermore, forming the ratios
eliminates ¢ dependence up to discretization artifacts and
power corrections of order 1/(P*¢) and by /¢. This leads to
finite £ — oo limits of infinite collinear staple length for the
ratios W(FO)(bT, b*, P, 7).

The 16 x 16 renormalization matrices
in Eq. (2) may be computed as

ZMS (i) appearing

ZRI/xMOM
Z?Ars’(/‘) CRI/xMOM(ﬂ PRr-¢R) FF/, (pr.&r). (7)
where

RI/xMOM
ZRPMM (pp. &) =

I Tr[[Z RI/XMOM] (Pr.&R)T

RISMOM (o &)L (8)

u+

X Z

Here Tr denotes a spinor trace and I runs over the 16 Dirac
matrices. Conversion from the RI/xMOM renormalization
scheme [79-81] at the scale defined by p% and & to the MS
scheme at the scale u is achieved with the conversion

coefficient Cht /XMOM(,M, Pr,Er) computed in continuum

perturbation theory [81]. Ziyj}WOM

4 x 4 matrices in spinor space renormalizing the corre-
sponding Green’s functions A, 4, (p.¢&) defined as

, where g € {u,d}, are

Aq,iz(p7§) = <0‘W2Fz(:t€a5)|o>
x (0|W4(0:£)q(0)a(p)[0)(0[S;" (p)[0), (9)

where S,(p) denotes the momentum-space quark propa-

RI/xMOM (

gator. Z, Pr»Er) is computed from the renormal-

ization condltlon

ZiZIZMOM(PRv Er) Ay (PR, ER) = A", (10)

in a fixed gauge, where A"™® is the tree-level Green’s
function corresponding to A, ;. (pr, &r). Further details are
provided in Appendix B.

Since C¥S Jxmowm has no Dirac structure, it cannot change
RI/ MOM (. &r) and their

dependence on the auxiliary renormahzatlon scales py and
&r- Moreover, if determined for any given py and &,

the mixing patterns encoded by Z,

C%TﬁxMOM simply cancels in the ratio of Eq. (2). However,

in practice, if a calculation of Z?’}S,( ) is realized as an

average over multiple auxiliary scales, conversion [in both
the numerator and the denominator in Eq. (2) before
averaging] may affect the value and systematic uncertain-
ties in the lattice QCD determination of the CS kernel.

The matching correction 8y} (u, x, P}, P5) appearing in
Eq. (2) is perturbative and given by
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8ry O (u. x, P}, P5)
k

Cg Lo(ﬂ,fo)
k

Y0 <F%)

_1n<P§1/P;> (1“ e >) (11)

where NFLO denotes a fixed-order accuracy, ¥ = 1 — x, the
renormalization scheme dependence is omitted for brevity,
and CgALO(/t,pZ), with p* € {xP%, xP5,xP},xP5} denote
the TMD WF matching coefficients. The corresponding
matching formula between physical and quasi-TMD WF
receives power corrections as discussed around Eq. (2).

The CgkLo(u, p?) are computed perturbatively in the
strong coupling a,(u), with C;° = 1. The NLO contri-
bution has been computed in Refs. [71,75]; the NNLO
contribution may be inferred from the matching formula
for quasi-TMD PDFs [77,78]. For further discussion, see
Appendix C 1.

Fixed-order coefficients Cgkm (1, p*) may be resummed
from initial scales (ug, pg) = (2p°, p*) as [68,72]

CY M, p?) = CYTO2p%, o) exp (=K H(2p% ),
(12)

where NXLL denotes a
ngLL (1, ) is a resummation kernel. Since the u depend-

logarithmic accuracy and

ence cancels in the ratio of quasi-TMD WFs (excluding
the effects of conversion to the MS scheme which may arise
in practice as discussed above), the CS kernel in Eq. (2)
is dependent on p only through perturbative corrections,
and the above choice of uy = 2p* further isolates the pu
dependence to the resummation kernel. Resummations are
independent of initial scale at infinite order but differ by
higher-order terms at finite order. For any choice of p,
variations around p, provide a measure of the associated
perturbative uncertainties. The resummed matching cor-
rection to the CS kernel is given by Egs. (11) and (12) as

87y M (u.x. P P5)
e
o (an,f LO(2p3. p)
In(Pi/P3) \" )0 (2p3, p3)

- KYU i)+ (e 1)), (13)

— (K} (2pi.p)

where the logarithmic ratio is expanded perturbatively
in a,(2p7) and a,(2p5). For further discussion, see
Appendix C 2.

To partially account for the br-dependent power correc-
tions, a practical choice is to replace 57} 1° (i, x, P§, P5) in
Eq. (2) with a byr-unexpanded correction:

PHYS. REV. D 108, 114505 (2023)
SN0 by, x, P, P3)
CN'LO (b, xPY)

1
= - In + (x < X
In(P3/P3) ( CN'LO (b, i, xP5) ( )>

= 5N 1O (u, x, P, P3) + ..., (14)

where the ellipsis denotes terms that are power- and
exponentially suppressed in by(xP7), by(xP5), and the

analogous terms with x replaced by . C;NkLO(bT,,u, %)
are the br-unexpanded TMD WF coefficients such that
CN'LO(py p, p7) is equal to CYLO(u, p?) in the limit
by > 1/p*. They are computed perturbatively, with
C}© = CJ°. The NLO contribution may be inferred from
the corresponding TMD PDF coefficients [66,75].

C;NkLO(bT,y,pz) may be resummed as in Eq. (12),
using the same kernel ngLL(,u, Ho). Both C;,NkLO(bT,y, )
and the corresponding resummed unexpanded correction
5y‘;NkLL(bT,/4,x, P5, P5) are conjectured in this work to
reduce the br-dependent power corrections relative to the
resummed matching correction in Eq. (13) at the same
accuracy, as is investigated numerically in the following
section and in Appendix C 3; further study and a more
systematic treatment of power corrections is left to
future work.

III. NUMERICAL INVESTIGATION

The quark CS kernel is computed numerically using an
ensemble of lattice gauge-field configurations produced by
the MILC collaboration [83] with2 + 1 4 1 dynamical quark
flavors and four-volume V = L? x T = (48a)* x 64a with
a =0.12 fm. The one-loop Symanzik improved gauge
action [84-87] and the highly improved staggered quark
action with sea quark masses tuned to produce a close-to-
physical pion mass [88-90] are used for gauge field gen-
eration. Gauge field configurations are subjected to Wilson
flow with flow-time t = 1.0 [91] to enhance the signal-to-
noise ratio in numerical results, and are gauge fixed to Landau
gauge. Calculations are performed in a mixed-action setup
with the tree-level O(a)-improved Wilson clover fermion
action [92-94] used for propagator computation, with
hopping parameter x = 0.125 47 and clover term coefficient
Cew = 1.0, resulting in a pion mass of m, = 149(1) MeV.

The following subsections detail the steps of the calcu-
lation of the quark CS kernel, including calculations of the
bare quasi-TMD WF ratios and renormalization matrices,
the Fourier transform to by space, and finally the extraction
of the CS kernel from ratios of quasi-TMD WF ratios with
perturbative matching corrections.

A. Bare quasi-TMD WF ratios

The CS kernel is computed according to Eq. (2), using
quasi-TMD WF ratios with a pion |h(P?)) = |z(P?))
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chosen as the hadronic state. The ratios Wf-o) (br,b*, P%,¢)
in Eq. (3) are extracted from fits to pion two-point
correlation functions. In particular, Euclidean correlation
functions both with and without staple-shaped operators are
constructed as

zpttP—aﬁz Y e (Mrp(0)).  (15)

and
CL(t.br. b7 P.2) —a6Ze’Py (O (br. b7y, £)xp(0)),
(16)

where P = P*Z, t = y,, and pion states are created with
momentum-smeared interpolating fields

2(0) = gy , (s, (2). (17)
where the quasilocal quark fields are constructed using a
Gaussian momentum smearing kernel Fg with K = +P/2
realized iteratively with ngy.,, = 50 smearing steps and a

smearing kernel width defined by & = 0.2 [95]. These
correlation functions have spectral representations

g Z |Z:Sm
2pt

Ene(P)t 4 o=EnlP)(T=1)] .

.oy

(18)

and
Ch (1. by, b, P, )
o~ Zna(P)
= br,b*, P,
a ZZEnﬂ(P)¢"F( T )
X {e‘ Eur(P)t + e~ mr(P)(T_I)] + ..., (19)

where E, , denotes the energy of the nth eigenstate of the
LQCD transfer matrix with quantum number of the pion,
denoted |z,), and in particular E,(P) = E,(P). Staple-
shaped operator matrix elements are defined as

Gur(br. b%, P*,€) = (0|0 (b7, b%,0,6)|m,(P)),  (20)
where (}r(bT, b*, P ¢) = (}OF(bT,bZ,PZ, ). The overlap
factors of the pion interpolating field between |z,,) and the
vacuum state are defined as

(Olrp(0) |y (P)). (21)

In Egs. (18) and (19), T denotes the temporal extent of the
lattice, and the ellipses denote additional contributions

Z3:(P) =

TABLEI. Momenta P* = L “ n*, number of configurations N g,,
and operator extents ¢/a, used in the computation of two-point
correlation functions in Eq. (19). For a given extent £/a,
geometries with all of the 16 Dirac structures, asymmetries
—¢/a < b* < ¢/a and transverse displacements 0 < by/a <7
along fiy € {£%, £9} are computed.

nt P? (GeV) ‘/a Nt
0 0 {11,14,17,20, 26,32} 79
4 0.86 {26,32} 469
6 1.29 {17,20} 472
8 1.72 {14, 17} 523
10 2.15 {11, 14} 481

where the vacuum state is replaced by finite-temperature
excited states. These contributions are suppressed by
factors of order e=2"+(7/2) or smaller in comparison with
the terms shown and are therefore neglected below.

The ground-state overlap Z5(P) = Z3_(P) is guaranteed
to be real-valued and positive up to discretization artifacts.'

This ensures that Z5(P) = /| Z5(P)|? can be extracted from
fits to Eq. (18) and therefore that both the magnitude and
phase of the complex-valued TMD WF cfﬁp(bT, b*, P ¢)
can be extracted from joint fits to Egs. (18) and (19). The +
sign appearing in Eq. (19) depends on I' as detailed in
Appendix A and in particular is negative for y,ys and
positive for y3ys.

The operator geometries and number of configurations
Nty (P?) used to compute the two-point correlation func-
tions for each choice of pion momentum P* = L Zp* are
summarized in Table I. Correlation functions are computed
with propagators calculated from sources on a 2* grid
bisecting the lattice along each dimension for all of the 16
Dirac structures.” The operator geometries used, illustrated
in Fig. 1, are such that for each by/a€{0,...7} along

'A combination of the nonsinglet axial Ward identity in the
isospin limit and the partially conserved axial current relation
guarantee that

2m,(0|P(0)|m) = (019,**(0)|z) = m2f .

where m, is the renormalized light quark mass, P(x) is a local

pseudoscalar interpolating field for an isovector pion, J* (x) is
the corresponding axial vector current, and f, is the pion’s decay
constant [96]. The above applies to renormalized fields—for the
bare pseudoscalar interpolating field, the pion overlap factor is
therefore real and positive up to discretization artifacts from
possible mixing with higher-dimension operators. This continues
to hold for boosted pion states and if the quark fields in P(x) are
smeared with a self-adjoint smearing kernel.

For n* = 10 measurements were performed on slightly fewer
configurations [corresponding to at least 80% of the Ng,(P?)
shown in Table I] for some Dirac structures that are found to
make negligible contributions to the renormalized quantities
studied here.
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iy €{+xx,+9}, all possible staple asymmetries b,
are constructed with the fixed values of £/a specified,
ie., —f/a<b*<{¢/a, which are by construction
restricted to be either even or odd integers for any
fixed #/a. This choice is convenient as power
divergences are proportional to the total length of the
Wilson line [79,80,82] in the operator, so all operator
geometries computed for a given £ and by have equal
power divergences across all 5%, simplifying renormali-
zation. This is in contrast to the staple geometries
chosen in the work of Refs. [24,25,28] where various
geometries with a given by were constructed with fixed
values of %(f + b%), leading to b*-dependent renormal-
ization factors.

Correlation functions computed on each gauge-field
configuration are averaged over sources, forward and
backwards propagation in time, and operator structures

with iy € {£%,£9} for Cj,. The bare quasi-TMD WF

ratios Wf-o)(br,bz,Pz,f) in Eq. (3) are then determined
using a multistep fitting procedure:
(1) Determination of E,(P) and Z3(P) from a simulta-

neous fit to €3, and the statistically most precise

r
C2pt -
(2) Determination of ¢ from fits to the r dependence

of combinations of Cgpt using the results for

for a given P.

E.(P) and Z5(P), accounting for correlations
between quasi-TMD WF ratios with different
staple geometries using bootstrap resampling.
(3) Construction of Wl(,o) (by, b, P?, ¢) from ratios of ¢r-
as in Eq. (3) for each bootstrap sample.
Each of these steps is detailed in the following
subsections.

1. Determination of E,(P) and Z3(P)

As the exponential 7 dependencies of both (7,

and C, are governed by E,.(P), these correlation
functions may be fit simultaneously to extract E,,(P)
and Z5,(P). In practice, only the statistically most
precise Cgpt for a given P is used, corresponding to the
two-point function constructed with the operator geom-
etry with the minimum value of #/a computed, by /a = 1,
b* =0 (even £/a), or an average of b°/a = +1 (odd
¢/a), and T' =y,ys. For each P, the two correlation
functions €7, and Cgpt are jointly fit to the spectral
representations of Egs. (18) and (19) for a variety
of fit ranges using correlated y?> minimization with the
fitting procedures detailed in Refs. [25,97] and summa-
rized here.

Results using ¢ < t,,,,, are used for fitting, where 7, is
chosen to be the largest ¢ for which a given correlation
function has signal-to-noise ratio >1/3. Fits are performed
with all possible fit windows [#,in, fax] Such that 7,;, > 2
and #,. — fmin = 3, Where 7, is chosen independently for

(3, and Cgpt.3 For each fit range, the covariance matrix is
estimated using bootstrap resampling [98] with optimal
linear shrinkage [99,100]. First, fits using one-state trunca-
tions of Eqgs. (18) and (19) are performed. For P* > 0,
VarPro methods [101,102] are used in which the best-fit
Z3 (P*z), which enters y? linearly, is determined using
linear methods during each step of nonlinear optimization
for E,,(P*Z). For P* = 0, where there is negligible signal-
to-noise degradation, VarPro methods lead to less efficient
x* minimization and are not employed. Fits to two-state
truncations of Eqs. (18) and (19) are then performed
analogously.

The Akaike Information Criterion (AIC) [103] is used to
select whether one- or two-state fits are preferred for each fit
range. To penalize overfitting, two-state fits are only accepted
if they improve the AIC by at least two times the number of
degrees of freedom and if excited-state contributions do not
severely dominate over ground-state contributions—in par-
ticular Z5 (P*2) > 0.2Z3 (P*2) and ¢qr(by, b, P,£) >
0.2¢ (b7, b*, P, ¢) is required. In cases where two-state
fits are preferred, three-state fits are also performed but are
not found to be preferred by the AIC in any case. Further
selection cuts are then applied as described in Ref. [97]: fits
are discarded for which two nonlinear optimizers disagree on
the ground state by more than 1073, the bootstrap median and
mean disagree by more than 26, or correlated and uncorre-
lated fits disagree by more than 5.

Weighted averages of all results from fits passing these cuts
are then used to determine the final results for Z3(P?2) and
E,(P*Z). The same weights are used as in Refs. [25,97,104],
which for each fit parameter (Z5, and E,,,;) correspond to the
p value of each fit divided by the variance of the fitted
parameter. For each momentum, at least six fit ranges are
found to lead to fits passing the cuts described above and are
therefore included in these weighted averages. The
same weights are also used to perform averages of the
bootstrap samples of Z3(P*2) and E,,(P*Z) generated using
acommon set of bootstrap ensembles for each fit range, which
are used below to enable correlated determinations of
" (by. b, P?, ¢) for different T, by, b%, and 7.

Figure 2 shows a comparison of the fit results for
E,(P*Z) with effective energy functions constructed from
each correlation function as

. 1
aE" <z +5a.P= PZi)
/T
Cz;/n (1,P)

c;;{{ (t+a,P)

T>r>0

aE,(P)+ ... (22)

The final results are insensitive to changes in the smallest
allowed ., — ?;nin and other numerical tolerances included in the
fitting procedure, as verified by performing analyses with a range
of alternative choices.
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FIG. 2. Effective energies defined in Eq. (22) and constructed
using C’ZTpt (squares, offset slightly on the horizontal axis) and the
most statistically precise Cgpt (triangles) for each choice of P:.
The gray bands show the weighted average of E,(P*Z) from fits
with all possible #,,;, using the number of excited states preferred
by the AIC, as described in the main text. The colored bands
show the corresponding highest-weight fit included in the
average.

where the ellipsis denotes exponentially suppressed
corrections from excited states and the finite temporal
extent of the lattice geometry. The momentum depend-
ence of the choice of N, (P*) and Z(P?) leads to a
complicated dependence of the statistical uncertainties of
the determination of E,(P°Z) on P°. The momentum
dependence of the extracted values of E, (P°Z) and
Z5(P*2) is shown in Fig. 3. The continuum dispersion
relation E,(P°Z) = \/E,(0)* + |P*Z|* is also shown for
comparison. The relative differences between E,(P°Z)
and the continuum dispersion relation in order of increas-
ing P¢ are 0.03(2), 0.06(1), 0.10(1), and 0.13(1) for the
four nonzero aP® values studied. The increase in these
differences with aP* is observed to be approximately
linear, which is consistent with the expected form of
lattice artifacts since the clover term has not been non-
pertubatively tuned to remove Of(a) chiral symmetry
breaking effects. Further calculations at other values of
the lattice spacing are required to study these lattice
artifacts in more detail.
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2 e
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FIG. 3. Fitted momentum-smeared overlap factors Z3(P%z)
normalized by Z5(0) (top panel) and energies E,(P?2) (bottom
panel, red data points) as functions of P*. The gray dashed line
represents the energy determined from the continuum dispersion
relation.

2. Determination of bare quasi-TMD WFs (iﬁm

The results for E,,.(P) and Z3.(P), detailed in the
previous section, are subsequently used to determine

Gur(br, b, P2, £) from fits of CL (1, by, b% P2, £) to
Eq. (19) with all operator geometries. Combinations of

Cgpt, E,(P) and Z3(P) are formed at the bootstrap level:

RY(t, by, b, P2, £) = CL (1. by, b*, P°2, £)

2pt
2E,(P°%)
x Zﬁ(})zi) [e—E,[(P)t + e—E,[(P)(T—t)]
b (br b PO+ .. (23)

which are fit to the appropriate spectral representations
obtained by multiplying Eq. (19) by R (¢, by, b%, P*,£)/
Cgpt(t, br, b*, P2, 7).

The same procedure described in Sec. III A 1 is used to
choose t,,,,, for these fits; however, for some staple-shaped
operator geometries Cgpt is consistent with zero within the
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FIG. 4. Examples of fits of real and imaginary parts of the bare
quasi-TMD WEFs ¢y (by, b*, P?,£) defined in Eq. (5) to combi-
nations RY (¢, by, b%, P*,£) defined in Eq. (23). The gray bands
show the weighted average of ¢ (b, b, P, £) from fits with all
possible 7.;,, as described in the main text. The colored bands
show the corresponding single highest-weight fit included in the
average. The imaginary part in the top panel is multiplied by —1
for visual clarity.

statistical precision of this work. Therefore, ., > 9 is
imposed in cases where the signal-to-noise criterion
described above would lead to a smaller #,,,. The same
procedure described above is then used to sample over
possible values of ¢,;,, construct the bootstrap covariance
matrix with optimal linear shrinkage for each choice of fit
range, and determine weighted averages of the fit parameter
¢r(by, b?, P2, ¢) for each operator geometry. Examples of
the resulting fits are shown in Fig. 4.

3. Construction of bare quasi-TMD WF ratios W'

Bare quasi-TMD WEF ratios are obtained at the boostrap
level from bare quasi-TMD WFs via Eq. (3) for each I, P?,
¢, b*, and by combination considered. For the symmetric
staple geometries used here, b*/a is necessarily odd (even)
for odd (even) £/a. For the geometries where ¢/a and
therefore b*/a are odd, b* = 0 matrix elements are replaced
by averaging over those with b*/a = £1. The replacement
leads to differences in the normalization of even and odd
?/a matrix elements at nonzero lattice spacing; however,
these differences vanish in the continuum limit and can be

analyzed in conjunction with other lattice artifacts when the

continuum limit is performed. W(FO)(bT, b*, P, ¢) are
shown as a function of P*b* at different by for each I'
and Z, with examples for particular choices of P* and b7, in
Fig. 6(a). Additional examples are provided in Appendix D.

The statistical precision of the quasi-TMD WEF ratios
diminishes with increasing b7, with the smallest signal-to-
noise ratio observed for the largest computed by/a = 7 for
quasi-TMD WF ratios with the largest collinear length,
£/a=32 at n* =4 (P*=0.86 GeV). Signal-to-noise
ratio also decreases with increasing P*; however, the use
of smaller # at larger P with roughly constant P*£ leads to
relatively mild signal-to-noise scaling with P? in the quasi-
TMD WF results.

Both real and imaginary parts of Wl(-0> (by, b*, P*,¢) are
symmetric in P*b* within uncertainties, which is consistent
with expectations given the symmetric definition of the
staple-shaped operator’s origin (shown in Fig. 1) placed at
the midpoint between the quarks. For further discussion,
see Appendix A.

B. Renormalized quasi-TMD WF ratios
MS Rlzglilvl
from CglﬁxMOM (4. pr. &r) and ZAi/ZX (Pr. &) viaEq.(7)
for Wilson lines along +Z and the set of renormalization
scales defined by Wilson line lengths &g /a € {2,3,4} and
off-shell quark momenta pk = _%” (0,0,n%,0), with
n® € {8,10,12}. The coefficients C%%MOM (1, pr. &r) are
computed perturbatively, with a,(u) determined as pre-
scribed in Ref. [105], setting 4 = 2 GeV, and neglecting the

running from the scale set by u? = p3. The factors

Zﬁz xMOM( Pr-Er) are calculated numerically from the

RI/xMOM renormalization condition in Eq. (10) using
32 gauge-field configurations. Quark propagators are com-
puted using wall sources with fixed four-momentum pp.
Means and standard errors are estimated with bootstrap
resampling with 200 bootstrap ensembles.
Renormalization affects the determination of the CS
kernel only via mixing induced between staple-shaped
operators. The mixing is characterized by off-diagonal
elements of Z?#XMOM normalized relative to their diagonal

components:

The renormalization factors (u) are determined

Abs [ZRI/XMOM (Pr-ER)]

Myt (pr.&r) = = i e
1o 2orAbs[Zy M (pr.&w))
The central values of ZE;{XMOM(PR, &r) are calculated at

Er/a =3 and pgr = 2.15 GeV, and systematic uncertainty

for each pair I', I" is estimated as half the difference between

X . RI/xMOM
the maximum and the minimum of Z./ (pr, &) over

all values of pr and & studied. Systematic and statistical
uncertainties are added in quadrature. Figure 5(a) illustrates
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(b)

An example of renormalization-induced mixing effects as defined by the mixing matrix M~Y XMOM (e &r) in Eq. (24).

rr

(a) The mixing matrix at the renormalization scale used in the analysis of the CS kernel. White disks denote off-diagonal elements with
contributions expected at one-loop order in lattice perturbation theory [106]. Examples for other renormalization scales are provided in
Fig. 16 of Appendix B. (b) Dominant off-diagonal I',I" elements of the mixing matrix for I' € {y375, 7475} as a function of pg. Data
corresponding to &g /a = {2, 3,4} are denoted by squares, circles and triangles, respectively. Statistical and systematic uncertainties,
denoted by error bars and color bands, respectively, are computed as described in text.

ARI/AMOM
T
ZIIEIE{XMOM( PrsEr), and Fig. 5(b) illustrates the auxiliary-

scale dependence of dominant off-diagonal contributions to

MRIPMOM (e Ex) for T'€ {7375, 7475}, which are given

by I € {y37s.var5.75}-

At the level of renormalization constants as
defined by Eq. (24), mixing effects for collinear con-
figurations of py and & are consistent with constraints
on staple-shaped operator mixing from C, P, and 7
transformations [36,106], and the dominant contribu-
tions are as expected from lattice perturbation theory at
one-loop order [107]. While noncollinear momentum
configurations are not used in the determination of the
kernel, an investigation of mixing effects using such a
definition of the associated renormalization scales, sum-
marized in Appendix B, reveals contributions to mixing
in addition to those expected in lattice perturbation
theory at one-loop order. The additional contributions
may be understood as artifacts of an off-shell renormal-
ization scheme.

The ratios of the MS-renormalized quasi-TMD WFs,

WE(Z)T, u,b*, P*,¢), are computed according to

(pr,€&r) computed from the central values of

WIS (br, . b%, P, ¢)

Z ZMS

W by, b7, P2, 2),

(25)

using W (by, b*, %, #) and Z¥5 () for all of the 16 T
structures; the uncertainties are combined in quadrature.

The effects of mixing on quasi-TMD WF ratios are
illustrated in Figs. 6(a) and 6(b).

C. Fourier-transformed quasi-TMD WF ratios

The Fourier transform of the MS-renormalized position-
space quasi-TMD WEF ratios is realized as a discrete fourier
transform (DFT), i.e.,

Wm(bT,ﬂ, X, PZ)

P) Y el

|b*|<b}.

UPE WS (b b, ), (26)

max

where b denotes the truncation point in position space
and WMS(br, u, b*, P?) denotes a position-space quasi-
TMD WF ratio whose real and imaginary parts have been
averaged at each P° over £b° and all values of Z(P?)
relevant for a given b* with weights proportional to the
inverse variance of each contribution. As can be seen in
Appendix D, the values that are averaged are in all cases
consistent within ~ls. As demonstrated in Fig. 7, with
additional examples provided in Fig. 39 of Appendix D, the
values of quasi-TMD WF ratios are robust to decreasing
b™ /g from the largest computed values, remaining
constant within uncertainties for P*b7** 2 12 for all by
and momenta studied.
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FIG. 6. Example comparison of quasi-TMD WF ratios before and after accounting for renormalization-induced mixing effects.
(a) Examples of real and imaginary parts of the bare quasi-TMD WEF ratios W(r())(br, b*, P%,¢), computed as described in Sec. IIT A.

(b) Examples of real and imaginary parts of the renormalized quasi-TMD WF ratios WE(bT, u,b*, P, ¢6), u = 2.0 GeV, computed as
described in Sec. III B. Further examples are shown Figs. 23-38 of Appendix D.

Selected x-space quasi-TMD WF ratios obtained via DFT
are shown in Fig. 8 (with further examples provided in
Appendix D). Consistent with their symmetry properties in
b*P? space, WFAS(bT,x, P%,¢) are generally complex dis-
tributions, with a vanishing imaginary part as by — 0 or
P? — 0, where WMS(by, x, P, £) is expected to be real.
Finally, since the LaMET matching coefficients to NLO are

:\R br = 0.48 fm ‘:EvI T T
g 8 T poilit M%J
~ | nf=6 ¢ 1 |
- ;
S 6 T
I ¢
8
< o4r ¢
£
S | B
|§§2 Re O Im |
= ®
Ot . . . . . J
4 6 8 10 12 14 16

pP? b;nax

independent of Dirac structure, W%“S(br, b*, P, ¢) for
'€ {ys7s.7475} are expected to agree up to power correc-
tions. The magnitude of both real and imaginary parts of the
quasi-TMD WFs are reduced outside of the physical region
x€[0,1] as P increases, which is consistent with expect-
ations from the factorization formula [41,65,66,68,71,72,75].
Since the factorization scales are proportional to the hard

7E | o | . 5
T | bp=048fm E } I
2 38 0} A q 1
& 6F 1o ; § b IR
XD. :), 4
o
0 ¢
8
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FIG. 7. Examples of MS-renormalized quasi-TMD WF ratios in x space, defined in Eq. (26), evaluated at x = 0.5 and u = 2.0 GeV,
as a function of the truncation of the position-space data at b3, for different momenta and Dirac structures. Further examples are shown

in Fig. 39 of Appendix D.
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FIG. 9. Examples of real and imaginary parts of resummed matching corrections to the CS kernel, defined in Eq. (13), at NLL (solid)
and NNLL (dashed) for each momentum pair n7 /n5. Analogous comparison of fixed-order corrections at NLO and NNLO is illustrated
in Fig. 19 of Appendix C 1.

parton momenta xP? and (1 — x)P*, the power correctionsare ~ of the uNLO coefficients is expanded in a,(2p7) and

always enhanced near the end pointregionsx — Oandx — 1, a,(2p3) analogously to that of the br-independent coef-
and lead to nonvanishing tails when P? is finite. ficients in Eq. (C4).

In addition to bp-unexpanded NNLL (uNNLL), cor-

D. Perturbative matching rections at several other accuracies are computed to

study perturbative convergence: fixed-order NLO and
NNLO corrections computed according to Eq. (11),
br-unexpanded NLO (uNLO) corrections computed
analogously, and NLL and NNLL resummations com-
puted according to Eq. (13). In all comparisons beyond
- LO, for example that of NNLL and NLL illustrated in
1 nc;fs*“NLO(bT, 2p%,pi) Fig. 9, the Re[8yMS (u, x, P§, P5)] exhibit qualitative agree-
In(P/P5) CM_S,uNLO( br,2p%, p) ment between different accuracies for x € [0.3,0.7] at each

¢ e pair (P, P%), with better agreement at larger momenta.

The final determination of the CS kernel in this work
employs the br-unexpanded resummed perturbative cor-
rection at NNLL accuracy, denoted uNNLL,

67> " (br. . x. P P5)

_ ( KZI_S,NNLL(IM’Z pi)— KT,NNLL(M’ZPS)) n (x<—>5c)>, thin. compared analogously, the Im[(.Syg’Is(u,).c, P, P3)]

exhibit worse agreement and are larger in magnitude than
the real parts. This indicates different rates of perturbative
convergence in real and imaginary parts of matching
corrections. The same qualitative picture is observed
for fixed-order corrections in Fig. 19 of Appendix C 1.
e Sensitivity to bp-dependent power corrections is also
kernel K;’IS'NNLL(/J,#O) for uy = 2p~. The logarithmic ratio ~ different between real and imaginary parts, as may be

(27)

which is derived from Eq. (14) by resumming the

br-unexpanded coefficients CT‘“NLO(bT, Ho, p°) with the
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FIG. 10. Examples of real and imaginary parts of by-dependent uNLO matching corrections to the CS kernel (dashed), defined in
Appendix C 3, compared with those of the bp-independent corrections at NLO (solid). Further examples of by-unexpanded matching

are illustrated in Figs. 21 and 22 of Appendix C 3.

seen by comparing corrections expanded and unexpanded
in by, such as the comparison of NLO and uNLO
illustrated in Fig. 10 and further examples provided in
Appendix C 3. These comparisons reveal a by-dependent
sensitivity to power corrections which, for momenta used
in this work, is significant for b;/a < 3 in the real part and
across the entire range in by/a in the imaginary part.

E. The Collins-Soper kernel

Using Eq. (2) and replacing integral Fourier transforms
of quasi-TMD WF ratios with the DFTs defined in Eq. (26),
the MS-renormalized quark CS kernel is determined via the
estimator

A (br .. P, PS)
_ 1 n WM_S(bT,u,x,Pi)
In(P{/P5) " | WYS by p,x, P)

+5}/1;/[_S(bT’)u7x7PZ7P§)7

(28)

for each chosen perturbative accuracy in the correction

5}/?. The estimator coincides with the kernel up to
power corrections and discretization artifacts, whereby
the dependence on x, P{, P35, I', and the implicit depend-

ence on a is introduced. Examples of Re[pM] with LO and
uNNLL matching are illustrated in Fig. 8, with additional
examples illustrated in Figs. 44-47 of Appendix D.
The contribution of aP?-dependent discretization artifacts

to f/%’ls can be expected to be comparable to that of
xP*-dependent power corrections in the intermediate x
region. Since both effects are P* dependent, they can not be
disentangled and it is left to future work to quantify their
separate contributions to systematic uncertainty in the
CS kernel determination. Here, the overall systematic
uncertainty arising from these effects is estimated from

the variation of ?Iliﬁ over the choices of x, P!, P2, and T for
each choice of matching.

Precisely, the CS kernel is determined from an average

of Re[iMS(br.x. P§. P5.u)] over T'€{ysys.vsrs}, com-
puted pairs {P;,P5}, and a range of x. In particular,

)
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n* =4/10

2z
2

(bT7 ,uvx7pzv

~MS,LO
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FIG. 11. Examples of real parts of CS kernel estimators
PMS(by, x, P3, P5, i), computed with matching corrections at
LO (top panel) and uNNLL (bottom panel) accuracies as
described in Sec. Il E, using by = 0.48 fm and I = y,y5. The
black dashed lines enclose the region in x used to determine the
CS kernel. The notation n* = P{/P; displays momenta in lattice
units. Further examples are shown in Fig. 44—-47 of Appendix D.
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FIG. 12. CS kernel in by space evaluated separately for each
momentum pair with LO (top panel) and uNNLL (bottom panel)
matching.

x€[0.3,0.7] is taken to be the largest range of intermedi-
ate x for which perturbative matching corrections
including resummation avoid significant effects from
singularities near x =0 and x = 1. Weighted averages
of Re[fMS(by, x, P, P, u)] are computed at the bootstrap
level with weights taken to be proportional to the inverse

variance of Re[pMS(by, x, PX, P5,u)]. The estimator
Re[f/g’fﬁ] is computed for a uniform grid of points in x

with spacing Ax = 0.05; a wide range of different choices
of Ax lead to indistinguishable results as long as corre-

lations between Re[fMS(by, x, P%, P5, u)] with different x
are accounted for. Comparisons of these averaged estima-
tors with different choices of I', perturbative matching
accuracy, and momentum pairs, are shown in Figs. 12

and 13. The fitting procedure for Im[7M5] is identical.
Whereas the CS kernel is a real quantity, averages of
Im[;?szﬁ] at different perturbative accuracies indicate a
nonzero imaginary part as illustrated in Fig. 14. By
comparing to the LO estimate, where the matching cor-
rection vanishes, it is clear that matching is a dominant
source of the imaginary part. As discussed in Sec. III D, the
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FIG. 13. CS kernel in by space for different choices

of Dirac structure I with uNNLL matching (top panel) and
for all computed accuracies of the matching correction

SMS (b, . x, P%, P5) (bottom panel).

imaginary part from the matching is attributed to bp-
dependent power corrections enhanced at small by and
mitigated by uNLO and uNNLL corrections. Consistent

with this explanation, for small b7, Im[ffﬁ] at uNLO and
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[a\l 0.5 b4 4 @ % i
I = s e i % %
j: 0.0 g#s mu II
$ 1
‘E S -05 ]
I © LO O NLO ¢ wuNLO V NLL
HE -1.0f NNLO O NNLL O uNNLL ]
0.0 02 04 0.6 0.8
bT [fm]
FIG. 14. Imaginary part of the CS kernel estimator shown

for various accuracies of the perturbative matching correction
5;/1,}45(177,;4,16, P35, P).
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0.48
—0.64(15)

0.60
~0.80(15)

0.72
—0.94(41)

0.84
—1.24(68)

TABLE II.  Quark Collins-Soper kernel y)'(by,u = 2 GeV) as a function of by.
by [fm] 0.12 0.24 0.36
}/l{}ﬁ.uNNLL 0.12(12) —-0.20(9) —0.43(11)

ulNNLL are reduced relative to all other orders of matching;
as by increases and power corrections are suppressed, they
approach NLO and NNLL results, respectively. However,
uNLO and uNNLL accuracies still do not lead to values of

Im[?g’f_ﬁ] that are consistent with zero within the accessible

range of by P*. This suggests that power corrections beyond
those that have been accounted for by the unexpanded
matching are relevant at the level of precision of this
calculation.

Since matching corrections with smallest expected
power corrections are given by uNNLL, this accuracy is
used for the final estimate of the CS kernel. Furthermore,
considering both the larger qualitative difference between

Im[?lfﬁ] for different accuracies and momenta, as well as

the parametrically larger estimates of by-dependent power
corrections compared to Re[f/g’fﬁ], the central value of the

CS kernel is determined from fits to Re[;?ﬁ'UNNLL] while

Im[?g’f_g] is not treated as a direct source of systematic

uncertainty. Finally, scale variation in resummed correc-
tions around uo = 2p*, with p* € {xP?, (1 — x)P*}, is not
used to estimate the associated perturbative uncertainties.
This choice is motivated by the range of p® used to
determine the CS kernel, and in particular because results
at scales p/2 are sensitive to nonperturbative effects. The
significance of higher-order perturbative effects may
instead be judged by comparing the final uNNLL CS
kernel determination to those obtained with other accu-
racies, as shown in Fig. 13.

T

— SV19 — BLNY

— ART23

z
1t ]
O Paviald —— MAP22 —— N°LL
~ N
[ L@
3 OF
£ [
= [
I -1f
3 I
Z. s
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= L
2.7
F\ F
0.0 0.2 0.4 0.6 0.8
bT [fm]
FIG. 15. CS kernel with uNNLL matching in by space (green

squares) compared to phenomenological parametrizations of
experimental data in Refs. [44,51,52,55,56] labeled BLNY,
SV19, Pavial9, MAP22, and ART23, respectively, as well as
perturbative results from Refs. [108—110] labeled N3LL.

The final CS kernel results of this work are summarized
in Table II. These results are shown as a function of b7 and
compared with phenomenological determinations of the CS
kernel in Fig. 15.

IV. OUTLOOK

This work presents a numerical determination of the
quark Collins-Soper kernel yMS(br,u =2 GeV) in
the nonperturbative range of by corresponding to trans-
verse momentum scales 240 MeV < gr < 1.6 GeV,
through a lattice QCD calculation at a fixed lattice
spacing and volume, quark masses corresponding
to an approximately physical value of the pion mass
m, = 148.8(1) MeV, and uNNLL perturbative matching
power corrections in LaMET. Additionally, this work
presents improved estimates of systematic uncertainties
associated with perturbative matching from LaMET,
the associated power corrections, and mixing effects
in staple-shaped operators using the RI/xMOM renorm-
alization scheme.

While a complete quantification of systematic uncer-
tainties would require performing lattice QCD calcula-
tions at multiple lattice spacings and at larger boosts or
higher-order perturbative matching, the precision and con-
trol over systematic uncertainties achieved in this work
is sufficient to preliminarily compare the CS kernel
determination with phenomenological parametrizations
of the kernel fit to experimental data. In Fig. 15 the final
determination is compared with the following para-
metrizations: Scimemi and Vladimirov (SV19) [51],
Bachetta et al. (Pavial9) [52], the MAP Collaboration
(MAPTMD22) [55], Moos et al. (ART23) [56], as well as
an older parametrization based on the work of Brock,
Landry, Nadolsky, and Yuan (BLNY) [44] and employed
in recent code packages for resummation calculations
relevant to precision electroweak measurements [111,112].
Within quantified uncertainties, the data agrees with all
models in the range 0.12 fm < by < 0.24 fm, with all but
BLNY for 0.24 fm < by <0.6 fm, and with SV19,
MAPTMD?22, and ART23 for by 2 0.6 fm. Finally, for
by > 0.6 fm, the results are consistent with a constant,
as suggested for the large-b; behavior in Ref. [108].
Discretization artifacts and power corrections, both
enhanced at small b;, will be studied in more detail in
future work. More refined comparisons would also take into
account the differences in the number of quark flavors and
their masses between the lattice QCD determination and the
global analyses, which lead to perturbative corrections
described in Ref. [113].
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The first-principles QCD calculations achieved in this
work provide new constraints on the quark CS kernel, with
better control of the associated systematic uncertainties.
The results are complementary to those achieved exper-
imentally and, once the continuum limit is taken, can be
rigorously compared to phenomenological parametriza-
tions of the CS kernel from current global analyses.
Moreover, in future analyses, lattice QCD constraints could
be used to constrain the parametrizations in joint fits with
experimental data.
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APPENDIX A: CONSTRAINTS ON QUASI-TMD
WF FROM DISCRETE LORENTZ
TRANSFORMATIONS

The properties of quasi-TMD WFs under charge
conjugation C, a product of reflections Ry = R|R, in

the transverse directions, and time reversal 7, follow
from the properties of the relevant staple-shaped operators
Oga(bT,bZ,y,f,a) defined in Eq. (6). These operators
transform as

Col;a(b'r’bz,y’f)c_l — O%{;FTMC—I (—bT, _bZ’y’ f)’ (Al)

Ry (by,b,y.O) Ryt = O ™M (b2 Ry (1)),
(A2)

TOL(br.b*,y. )T = O™ by b7, T(3).6). (A3)

where Ry(y) = (=3, =% y*.y*), T(y) = (y.—»*), and
the Dirac representation matrices M, My, and My are
defined by

Mc = vyy74, (A4)
Mg = (r175)(r2rs) = rar1, (AS)
Mr =y47s. (A6)

For further discussion of discrete transformations of staple-
shaped operators, see Ref. [106].

These operator transformation properties constrain the
unsubtracted bare quasi-TMD WFs @' (by, b?, P%, 7).
Using Eq. (A1) in the isospin limit, charge conjugation
invariance of pion states, and u <> d exchange symmetry in
the isospin limit gives

dr(br, b*, P2, 0)
— (0C71COV . (br, b%,0,£)C7'C|x(P?)),

—= &MCFTM(—:I(—bT, —bZ,PZ, f) (A7)

Next considering transverse reflections, pion states are
pseudoscalar and are therefore invariant under the product
of reflections R;. Equation (A2) can therefore be used
to obtain

&F(bT’ be PZ7 f)
= <O|R?1Rrol;g(b% b*,0,¢)R7' Re|n(P)),

= &MRFM,;'(—bTa b*, P*, %), (A8)

which provides the I'-dependent signs with which corre-
lation functions can be averaged over different staple
orientations. Combining these results gives

&r(b% b, P*, f) = &MRMCFTMEIMEI (bT’ —b*, P*, f)’ (A9)
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which establishes the symmetry properties of ¢r(br, b7,
P%,¢) under sign changes of b°. In particular, it follows
from Eq. (A9) that ¢,,,, (b7,b*,P*.¢) and ¢, (b7, b*, P%,
¢) are both symmetric in b*.

Finally, Eq. (A3) and the 7 -odd transformations of pion
interpolating operators )(;(0) can be used to obtain

$r (b, b7, P*. )
= (01T T O (by, b*,0,6)T T |x(P?)),
= —CZMTFM.;I (br.b*, P, 7),

which provides the I'-dependent signs with which corre-
lation functions can be averaged over forward and back-
ward propagation in time.

Discrete transformation properties for renormalization
factors can be derived analogously and ensure that renor-
malized quasi-TMD WFs share the same transformation
properties as the bare quasi-TMD WFs with the corre-
sponding T

(A10)

APPENDIX B: RI/xMOM
RENORMALIZATION SCHEME

As discussed in Sec. II, the renormalization condition of
Eq. (10) includes a Green’s function containing a Wilson
line and gives all the mixing effects of the staple-shaped
operator in the RI/xXMOM scheme. This simplifies renorm-
alization compared to other RI-type schemes, which
involve Green’s functions of the operator itself and depend
on the geometry of the Wilson-line staple. Encoding all the
mixing effects in Eq. (10) is possible by interpreting the
Wilson lines in QCD as originating from propagators of
free auxiliary fields ¢, (x) [79-81],

Sgn(é:) = <§n(x + éﬁ)an(x»g,
= 0(E)W_(x + &),

where {,(x) denote auxiliary fields of scalar particles
moving along straight spacelike directions n* and carrying
color charge in the fundamental representation [79,80].
That is, the QCD action is augmented by ¢,,(x) in a way that
returns the original action when the field is integrated out
and Eq. (B1) holds.

The staple-shaped operator in Eq. (6), nonlocal in QCD
due to Wilson lines, may be recast in terms of local fields in
the extended theory:

(B1)

e 1
[C:tz]ll\{/llixMOM (1. PR &R) = 12 TrAI\Q/[iSZ (4. PR ER)-

3
14 ®PRICr <<—2log2+—

siny — (

2w

Ol,;;i(bﬂ b*,y)

_ T by
= <Qd,—2 (y + 5) Ec—z.nr (y +7z+ 7)
by b
X Cnr,z <y + £z — 7) Qu,z (y - §> >§,

where C,, s (x) =,(x)¢,(x) denote cusp operators, and
Q,n(x) =Z,(x)g(x) denote composite spin-1/2 fields.
The renormalization constant of the operator is thereby
factorized into ZC“,, ZQM, Z,, and ZC,,’ renormalizing

(B2)

PR
Ci > Qgi» quark, and ¢ fields, respectively, as well as a
factor of e~¥"(“+b1) where ém denotes the mass of & fields
induced by loop effects [79,80,82].

In practice, the corresponding renormalization condi-
tions can be solved in QCD by integrating out the auxiliary
fields. For example, while the Green’s function in Eq. (9)
may be written as

Aqd:z<p7§)
=S¢ (= (C5:(=9)1Qy #:(0)g(P))[S,(P)I !, (B3)

it is still expressed in its original form when solving the
renormalization condition in Eq. (10) numerically, and
Eq. (B3) is only used to identify the corresponding
renormalization factor as

2y (pr- &) (
RI/xMOM ’
1Z, ()] 2 (ZE MO ()] 2

where a, o are spin indices. The remaining renormaliza-
tion conditions in RI/xMOM are approached similarly.
Altogether, using Eq. (B2), the renormalization factor of
the staple-shaped operator may then be computed via the
renormalization factors in the auxiliary-field description.
Moreover, when computing the CS kernel via Eq. (2),
renormalization factors with no spin structure cancel in the
ratio—it is therefore sufficient to find ar}gl combination of them
that fully encodes the mixing effects. Z /\Z/ nXMOM in Eq. (B4), as
determined by solving Eq. (10), is one such combination.
For collinear configurations of py and & defined by

I=Pr- fR/(|PR||§R|) = =1, Zirfxf)M(pR,fR) may be

converted to MS via the conversion coefficient computed
analytically in Landau gauge in continuum perturbation
theory [81],

RI/xMOM
Ay pradd

(PR, fR) = B4)

1 si 1
w—fcosy — (ZCosy+ySiny> Ci <y> + 2Ci()’)>
y

2 4 2/ \2

2 sing - i—;cos%) Ci @) + 2Si(y))) +O(@(pr)).  (B5)
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where y=pg-&, Cp=4/3 and Si(y)= [®%0 g,

y t
and Ci(y)=- f}f”&t(t)dt are the sine and cosine

trigonometric integrals, respectively. The dependence on

u vanishes in Landau gauge at NLO. The conversion
RI/xMOM

coefficient for Z (pr, &R, a) in Eq. (7) is given by
CII\{/[SXMOM - [C—z]g{S;MOM [C+Z]II\Q/11§XMOM‘

As mentioned in Sec. III B, the mixing effects induced
by le};/,XMOM(pR,fR) on pk and & receive additional
contributions not expected in lattice perturbation theory
at one-loop order for noncollinear configurations of pk
and & [126]. These mixing effects are illustrated Fig. 16.
When py - &g = 0, additional mixing contributions appear
at 10% level. When p%4 has components both collinear
with and perpendicular to &, the number of mixing con-
tributions is larger, but the magnitude of each is reduced.
Since RI/xMOM is an off-shell momentum scheme,
contributions to mixing other than those induced by the
staple-shaped operator renormalization itself are possible
and may be relevant to explain the additional contribu-
tions [67,127,128]. Notably, the additional contributions
are significantly smaller than those observed in the
RI'/MOM scheme in previous works [24].

APPENDIX C: MATCHING CORRECTIONS

The quasi-TMD WF factorization formula from the
discussion of power corrections in Sec. II is given by
[41,71,75]

qzi(x’bTv/hPZ)

where matching holds independently of the suppressed
flavor indices, Dirac structure indices, and the renormal-
ization scheme label up to power corrections, denoted
p.c.* The reduced soft factor S,(by,u) [41] ensures that
the infrared physics is the same as that of the physical
TMD WF. The =+ label denotes the +Z displacement
of the transverse Wilson line relative to the quarks in the
staple-shaped operator used to define the quasi-TMD
WE. Only the +Z displacement is shown in Fig. 1 and
used in the determination of the CS kernel, and the + label
is omitted throughout the main text; the label is made
explicit for completeness in the following discussion of the
matching correction. The matching kernel H*(x, P*, u) is
given by [129]

H*(x, % p) = Cj (u. xP*)C (u.XP7),  (C2)
where the coefficients ij can be derived from the matching

of a heavy-to-light current in the heavy-quark effective
theory to soft-collinear effective theory [129].

1. Fixed-order matching corrections

A fixed-order matching correction in Eq. (11) requires
matching coefficients C,(u, p*) computed in a perturbative
expansion

n +.,(n z
Ciu.p) =1+ al(wC," (. p?).  (C3)
n=1

Sr(anu)
1/, (2xP?)? (2xP%)? where a;(u) = a,(u)/4n and ay(u) is determined by run-
= H*(x.P%.pt)exp [1 (m ;T Yq(br-#)|  ning from o, (sy = 2 GeV) as detailed in Appendix C 2. At
N NNLO, the logarithmic ratio of these coefficients in the
X (x.br,p.§) +p.c., (C1) matching correction is expanded as
|
_ 1 +(1 +(1 a;(w) ;1
PO N 5 P ) = = e L€ o) = 5 o) = 6 P
—[cj‘”<ﬂ,xP§ﬂ2-—2<c$‘”<u,xpi>—-cj‘”<u,xP;»-+<x~«>x>}. (C4)
While taking a naive logarithmic ratio of NNLO matching coefficients,
1 14 a, ()Y (0, xP3) + a2(u) €5 (u, x P
6NN, x, P, P3) = Gy ) ey () (cs)

In
In(Pi/P5) 1 4 a,(u)C; Y (u,xP3) + a2 (u)C,

(u, xP3)

“Note that the CS evolution part in the matching formula differs from that in Refs. [41,71,75] by a suppressed imaginary part in the
exponential, which depends on the soft factor subtraction. The imaginary part is suppressed here because it does not affect the extraction

of the CS kernel.
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FIG. 16. As in Fig. 5(a) in the main text, for a set of renormalization scales defined by z = pg - &r/(|pr||ér|) and &r/a €{2,3}.
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FIG. 18. Matching correction to the CS kernel at (P, P3) =

differs from the correction in Eq. (C4) only by higher-order
terms, in the kinematic regime of this study the discrepancy
is significant, as illustrated in Fig. 17. Consistent with the
scaling of power corrections, Sy NNLO-T and §yNNLO-IT
converge at larger momenta, but the rates of convergence
and the sign and magnitude of x-dependent corrections
differ between real and imaginary parts. The same con-
clusions apply to the NLO matching corrections, for which
terms of order a2 (u) are dropped in Egs. (C4) and (C5). As
discussed further in Appendix C 2 and illustrated in Fig. 18,
corrections 6yNFO~I and §yNNLO-I are in a better agreement
with results expected from the RG equations of C;f (i, p*).
For this reason, the fixed-order results with a naive
logarithmic ratio are not used in the determination of the
CS kernel.

The difference between &y and oy
illustrated in Fig. 19, indicates expected convergence
in the real component of the matching correction at
moderate x. However, matching corrections converge
poorly in the imaginary component. This is in agree-
ment with NLO results in Ref. [32] and may be ex-
plained by a larger sensitivity of Im(&y,(u, x, P{, P3)) to
power corrections at small by, as discussed further in
Appendix C 3.
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The matching coefficients needed for the NNLO match-
ing correction are given explicitly below, with Cr = 4/3,
C4 =3, np=4, and {(n) denoting the Riemann zeta
function. At NLO, Cf;)(/z, p*) has been calculated [71,75]
to be

1 572
;" p) = Cp| -3 (LEP +LE-2-22| (CO)
where
—(2p9)% £ 00 2p%)?
Li=1 (”)2 2o (pz) +ir.  (C7)
p p
|
+.(2 Cr[C 11
C¢()(N’Pz)_7F{TF(Lf)4_(CF—KCA-F—

Cat—

572 72 100
* [(“E)C” (TT)

(% - 24@(3)) Cr+ (224? (3)

The NNLO coefficients C;’Q) (u, p?) for quasi-TMD WFs
can be extracted from the corresponding results for quasi-
TMD parton distribution functions (quasi-TMD PDFs), for
which a factorization analogous to that in Eq. (C1) holds
[65,66,68,72]. The matching kernel for quasi-TMD PDFs
has been calculated at NLO [63,65,66,77] and recently at
NNLO [77,78]. The real part of the coefficient Cy; (1, p°) is
equal to the square root of the matching kernel for the

quasi-TMD PDF with the identification of ¢, = (2p%)>.

Obtained in this way, Cj(l)

Eq. (C6), and C,;"® (4, p?) is given by

(u, p*) is consistent with

”f> (L)

16
9 nf:| (in>2

447> 950 152 82
0o (12,59), I,

9 " 27 79
6572 1677 241¢(3) 537 175972 3884
_ oOr -1 _ _
+< 30C0) + 5~ 6>CF+< o 60 108 _ 8l ) A
2¢(3) 11322 656

2. Resummation of momentum logarithms

The resummation of the matching coefficients
discussed in Sec. II is enabled by their RG evolution
equations [68,72],

_dinCyp)

},3:(//‘7p2)_ dll‘l/,t

= FCIlSp[as(/‘)]in + Yu lag(u)], (C9)
dInC* (u, p*
7%(%191)5#
=2 lﬂz%<rcusp[as(u/)]+y§[as(2pz)]>, (C10)

where 75 (u, p?) and y&(u, p) are the virtuality and
momentum anomalous dimensions of Cj(,u, p*), respec-
tively, 7, (a,(u)) and y£(ay(2p*)) denote initial values in
the solutions to the RG equations, and

dyi (. p*) — dyE(w, p?)
ousp (@5 (1)) = —% = ~din
cuSp(aS ('u)) dln pZ dlIn 123

(C11)

is the cusp anomalous dimension.

The anomalous dimension ijE (u, p*) in Eq. (C10) may
be used to approximate the matching correction in Eq. (11)
in the limit of Pj — P5. As illustrated in Fig. 18, this
approximation is used to select a fixed-order expansion of
the matching correction in Eq. (C4) over that in Eq. (C5).
Finally, the relation

dIn Cy (u. p°)

C12
2a. (C12)

ve(u, p*) = =i (u, p*) + play)

may be used to cross-check explicit perturbative results for
v¢(u, p?) and y;; (u, p*) detailed further below.

In terms of the anomalous dimensions, the resummation
kernel K, (uo(u, p*). ) in Eq. (12) is given by

K" (2p*, p) = 2Kr(2p*, p) = K, (2p%, ) F n(2p°, )
(C13)
for (pG, po) = (p*,2p*) and
K;'(2p*.p) = 2Kr(2p*, ) = K, (2p*, ) (C14)

for (pg. o) = (u/2. p), where
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Ko = [ Fnw). 19
Kt = [ 5 reta). c10
Kelw = [ (e [ (e
i) =i 17 S g, (C18)

and fla,(u)] = % f{f’; ) is the QCD § function.
The resummed matching coefficients corresponding to
K}, and K are given according to Eq. (13) by

Cy(2xP{, xP})
C,(2xP5, xP3)
- Ky(2xP3. )

1
871 (u, x, P3, P3) = —
A1) = =g (i
— (K (2xP5. )

+(xo x)), (C19)

where the logarithmic ratio of initial-scale matching
coefficients is expanded in a,(u) as in Eq. (C4) for the
fixed-order case, and

Syt (. x, P§,P3)
1

:W(K;(Zxﬁ,y) - Kfp(ZxPé,,u) +

(x<X)).
(C20)

Figure 20 compares matching corrections in the two
schemes at NNLL in the kinematic regime used in this
work to determine the CS kernel. The differences between
the resummations decrease at larger momenta, consistent
with the decreasing a;. Since the ratios calculated from the
lattice are renormalization group invariant and independent
of the MS scale y, the natural choice of the initial scales
should be proportional to the hard parton momentum in the
quasi-TMD WFs, e.g., (p§, po) = (p*,2p*). Therefore, in
this work the resummed matching corrections are deter-
mined in scheme II.

To obtain the resummed matching corrections, all
functions comprising K, are computed perturbatively in

ag(p),

= —2a,(

Blas ()] (C21)

n+1
E ai™ (1)B
n+1
cusp E Ay

(C22)

= | : =20 GeV 4

— n*=4/6
— n=4/8
— n*=4/10
n* =6/8
— n*=6/10

— 27 =8/10

M 1— w=4/6
— n*=4/8

1— n*=4/10

NNLL

n*=6/8

q
~

— n* =6/10

Im[d7,

1— n2=8/10

FIG. 20. Real and imaginary parts of resummed matching

corrections to the CS kernel 6yMS NLL (. x, P}, P5) at NNLL in
the two resummation schemes: NNLL-I (solid) and NNLL-IT
(dashed), as defined by a choice of initial scale in Egs. (C19) and
(C20). The corrections are shown in different colors at different
momentum pairs ni/nj and g =2 GeV.

D=3 @ (wyh (23)
n=0
rlay(w)] = Za"“ (24)

A resummation of Cj(u, p*) from Cj(uo, pj) of a
given accuracy corresponds to a consistent set of loop
orders chosen for qu (o, p§) and the functions above, with

a(p) run from a;(puy = 2 GeV) as detailed further below.
Examples for NLL and NNLL resummations are provided
in Table III. Explicitly, the following perturbative results
are used for the NLL and NNLL resummations. The S
function is given by

TABLEIII. Loop orders of each term comprising the resummed
matching coefficient defined in Eq. (12) at a given accuracy. The
loop orders of the beta function fa,(u)] and the coupling a,(¢)
are equal to the loop order of the term they are used in. All the
functions are defined in Appendix C 2.

Accuracy Kr K,. K, n Cy
NLL 2 1 1 1 0
NNLL 3 2 2 2 1
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11 4
Po = 3 Ca— 3 Tpny, (C25)
34 20
b = ?cz ( 3 Cy+ 4CF> Tpny, (C26)
2857 205 1415
/}2 = 5—4C§Z <2C%~ —TCFCA 27 C2>Tpnf
44 158

where Tp = 1/2. The cusp anomalous dimension I,
computed to four-loop order [130-135], is given by

Ty = 2Cs. (C28)
I, =2C; [(697 ’;2> C, - 29—0 Tan} ., (C29)
T, =2C; [c2 <225 13247”2 %’: + 2C(3)>
(5 50,
+ CrTrny <— ? + 165(3)) - g T%n}] . (C30)

The noncusp anomalous dimensions are given in terms of

vn and y$* = y$ F iny$*. Like the matching coefficients

discussed in Appendix C 1, they can be extracted from the
recently calculated NNLO matching kernel of the quasi-
TMD PDFs [77,78] and are given by

7o = —2Cp, (C31)

554  11x* 80 72
(C32)

and

t =20, F inly, (C33)

= =Cp {CF <4 - %nz + 24@(3))

950 112 152 272
a0 )y (15222

F in[l'y + Bo(2Re[r§] — o). (C34)
respectively, where the imaginary part is inferred from the
logarithm L= in Eq. (C7) of the fixed-order result.

The corresponding perturbative expressions of resum-
mation kernels for the NNLL resummation are [136]

KoM (o p) = =

Yo -lnr+a(ﬂ0)<ﬁ—&>(lf—l)],

26 | o Po
(C35)
cr C
R o) == 20 i o) (31 ) - )
(C36)
1
o =g (1)

I b /4]
+ <F0—ﬂ0>(1 —r+lnr)+%1n r

ol (-2) (5 om)

pil pi
+<m—ﬂ—%>(l—r+rlnr)
(L Al (l—r)T} C37
<Fo ﬁoro> 2 ’ (€37)
and
Iy r
"N (g, p) = —l”ﬁ[ln”‘f'as(ﬂo)(r—;—%)( —1)}

where r = a(u)/as(po) and the running coupling at y is
given at NNLO order by
1 X B

e asm) P

+a (o) [@2 (1 ——) +ﬁ—z (lnx+l— 1)} . (C39)

where X = 1+ foa,(u) In(u3/u?), and a,(ug = 2 GeV) ~
0.293 is determined as prescribed in Ref. [9]. N*LO terms
require a () at NNLO, and NNLO terms at NLO. Finally,
for the NNLL resummation, the logarithmic ratio of initial-
scale coefficients in Eq. (C19) is expanded as in Eq. (C4)
to NLO.

3. Estimate of by-dependent corrections

The validity of the factorization formula in Eq. (C1)
requires that xP*by > 1 and (1 — x)P*by > 1. Within the
kinematic range of P° and b; used in this work, such
conditions are not sufficiently satisfied, especially at small
by, and considerable power corrections are expected.

Nonetheless, a factorization should exist for some range
X € [Xmin» Xmax) for all values of by, as long as xP%, XxP* >
Aqcp- If P*by > 1, a factorization into TMDs applies; if
P*by < 1, then it is reduced to a collinear factorization.
One may conjecture a factorization formula that interpo-
lates between collinear and TMD factorizations, written
schematically at finite P* as
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2P (25P3)
. ¢

where the matching kernel has a large P*b; expansion for P*by = 1,

~ I o 1
¢i(x7br,u,PZ)=A dyHYS* (x,y; X, 5, XxP*, XP%, br, ) exp [Z (< >7¢(br,u)]¢(y,br,ﬂ,6), (C40)

== . _ Pibr>1 _
HYS*(x,y; %, 33 xP%, XP%, by, ) — Cy (4, xP*)Cy (1, XP*)8(x — y) + [6C55 (b, xP*)Cy (by, XP*)

+(x = X))8(x—y) + 5H$Si(x,y;)"c,j);xPZ,)"cPZ, br), (C41)

where 5C$(bT,xPZ) and 5H1(;TSi(x,y;5c,j);xPZ,)'cPZ,bT) denote power- or exponentially suppressed terms such as
1/(xP%by) and 1/(xP*by) or exp(—xP*by) and exp(—xPby).
For the purposes of estimating the significance of the finite-b; correction, the contribution 6H ZISi to the above matching
kernel is neglected and its study is left to future work. The matching kernel then reduces to
MS+ N Z P2 PZ>>b;l +u 2\ (tu > P2
Hj (x,y; X, 9, xP*,XP*, by, ) —> C¢ (by,u, xP )C¢ (b, u, XP*)8(x —y), (C42)
where the (p®bp)-unexpanded coefficient C;”(bT,,u, pe) = Cg(y, PY) +5C(j/§(bT, p*) has a perturbative expansion
analogous to that of C P (u, p?) in Eq. (C3) and has been calculated at NLO in Refs. [66,75].
Explicitly, the NLO contribution C u(l )(br,u, p?) is given by
111
202 )}
1 1
32072730
1

3
2

’

3

2
33

5707

NSJ}

171 (p*br)* _pby (pbr)?
c=0) g, o pd) =C {_[ G2’2( G23
¢ ( T ) F \/71_ ZbT 2.4 4 3 % 2 3,5 4

it b Y et ¢
— (=2 nsz j:m'[ZEl b —7—1n—z+1H, c43
< 2 3 ( e ) (=pbr) pibr 12 (C43)

=
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FIG. 22. uNLO matching correction to the CS kernel without
FIG. 21. NLO matching coefficient with (solid) and without  expansion at large P*b; at momentum pair (nj, nj) = (6, 8) and
(dashed) expansion at large P*by and x = 0.5 and u = 2 GeV. 1 =2 GeV. The black line represents the NLO correction.
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FIG. 23. Examples of real and imaginary parts the MS-renormalized quasi-TMD WF ratios W@(br, u, b*, P*, ) defined in Eq. (25),

forT" = Y4755 P*
data at matching

points in b*P* space.
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where by = 2¢77, Ei(z) = — [® dr<" is the exponential
integral function, and Gy (z[, ") is the Meijer G
function. The unexpanded -coefficient Cf/f“(bT,y,xPZ)
and the corresponding perturbative correction to the CS
kernel 8y5N-C(by, x, P§, P, i) are shown as a function of
x in Figs. 21 and 22, respectively. The estimated cor-
rections are consistent with the different rates of con-
vergence observed in real and imaginary parts for fixed-
order and resummed corrections in Figs. 9 and 19,
respectively. In the real part, the corrections become
negligible for by = 0.4 fm, except for the pair of smallest
momenta used in this work. In the imaginary part, the
corrections are large for the entire kinematic range of
this study.
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APPENDIX D: ADDITIONAL
EXAMPLES FOR SEC. III

This section collates examples of intermediate analysis
steps in the numerical calculation of the CS kernel,
supplementing Sec. III.

Supplementing Fig. 6, additional examples of the MS-
renormalized quasi-TMD WFs WMS (b, u, x, P*,¢) are
illustrated in Figs. 23-38.

Supplementing Figs. 7 and 8, additional examples of the
Fourier-transformed MS-renormalized quasi-TMD WF ratios
WMS(by, i, x, P?) are provided in Figs. 39-43, respectively.

Supplementing Fig. 11, additional examples of real parts
of CS kernel estimators Re[MS (b7, x, P35, P5, u)] are pro-
vided in Figs. 46 and 47 with LO matching, and in Figs. 44
and 45 with uNNLL matching.
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FIG. 24. As in Fig. 23, for 0.60 fm < by < 0.84 fm.
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As in Fig. 23, for I' = y3ys.
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FIG. 26. As in Fig. 23, for I' = y3y5 and 0.60 fm < by < 0.84 fm.
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FIG. 30. As in Fig. 23, for ' = y375, P* = 1.29 GeV, and 0.60 fm < b, < 0.84 fm.
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FIG. 31. As in Fig. 23, for P* = 1.72 GeV.
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FIG. 32. As in Fig. 23, for P* = 1.72 GeV, and 0.60 fm < by < 0.84 fm.
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FIG. 33. As in Fig. 23, for I' = y3y5 and P* = 1.72 GeV.
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FIG. 34. As in Fig. 23, for I' = y3y75, P* = 1.72 GeV, and 0.60 fm < by < 0.84 fm.
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FIG. 37. As in Fig. 23, for I" = y3y5 and P* = 2.15 GeV.
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