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Staple-shaped Wilson line operators are necessary for the study of transverse momentum-dependent
parton distribution functions (TMDPDFs) in lattice QCD and beyond. In this work, we study the
renormalization of such operators in the general case of an asymmetric staple. We analyze the mixing
pattern of these operators using their symmetry properties, where we find that the possible mixing is
restricted within groups of four operators. We then present numerical results using the regularization
independent momentum subtraction (RI/MOM) scheme to study the importance of mixing using one
operator in particular, the γ0 operator. Based on these results, we consider the short distance ratio (SDR)
scheme, which is desirable in the absence of mixing. Finally, we investigate a variant of the RI/MOM
scheme, where the renormalization factors are computed at short distances.

DOI: 10.1103/PhysRevD.108.114503

I. INTRODUCTION

Collinear parton distribution functions (PDFs) probe the
hadron structure from the perspective of the spin and
longitudinal momentum distributions of the quarks and
gluons that make up the hadron. The vast amount of work
to determine these distributions over the last five decades,
both theoretically and experimentally, has enormously
expanded our view of the hadron structure, the proton in
particular [1]. And yet, these developments are mostly
limited to probing the one-dimensional structure of the

proton. In order to have a wider understanding of the proton
structure, we also need to understand how the momentum
and the spin are distributed in the transverse plane. For
that, we need to measure and compute the generalized
parton distributions and the transverse-momentum-
dependent PDFs (TMDPDFs), the latter being the main
focus of this present work. Although there has been an
effort to obtain TMDPDFs from phenomenological fits to
experimental data [2–7], their accuracy is still far from
being at the same level as the collinear PDFs. This status
will change in the coming years with new data coming from
Jefferson Lab [8] and from the future Electron-Ion-Collider
to be built at Brookhaven National Lab [9]. It is, thus, of
great importance to extract TMDPDFs from first principles
calculations, namely, lattice QCD.
In the last 10 years, there has been an enormous advance

in computing the collinear PDFs using lattice QCD [10–18].
By comparison, the computation of TMDPDFs is still in its
infancy [19–22], although progress has been made in the
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computation of key elements required to build the
TMDPDFS, like the soft functions [23,24] and the Collins-
Soper kernel [25–27]. Such computations have been
restricted to ratios of TMDPDFs [28–31], and only recently,
a first full lattice QCD calculation of the TMDPDFs
themselves has been presented [32]. One fundamental
difficulty in these calculations is to have control over the
renormalization procedure, which is more involved than in
the case of collinear PDFs. In particular, the staple-shaped
gauge link that enters in the evaluation of TMDPDFs has
three types of divergences: (i) linear divergence coming
from the Wilson line, which connects the quark fields and
which depends on the length of the staple-shaped link;
(ii) logarithmic divergences coming form the endpoints of
the staple link, similarly to the case of straight gauge links;
and (iii) logarithmic divergences coming from the presence
of cusps in the staple. In addition, in the limit of infinite-
length staple, L, (which is the case of interest), pinch-pole
singularities arise as positive powers of L, coming from the
gluon exchange between the transverse segments of the
staple. Moreover, as in the case of straight gauge links,
staple-shaped operators of different Dirac structures can and
will mix on the lattice among certain groups (when chiral
symmetry is broken), as dictated by discrete symmetries.
However, in this case, the mixing pattern of the operators
employed in lattice regularization can be significantly more
involved than in the case of the straight Wilson line.
A first study within lattice perturbation theory to one-

loop for the case of the symmetric staple [33] showed
mixing between specific pairs of Dirac structures. This
mixing cannot be avoided when one is interested in
matching bare lattice Green’s functions to the MS scheme
(directly or indirectly through an intermediate scheme). The
mixing depended solely on the direction of the staple link
entering the endpoints of the staple, regardless of the shape
of the staple. This implies that the same mixing pattern
occurs also for asymmetric staple shapes. In Ref. [34], the
mixing pattern of these staple-shaped operators1 has been
studied using symmetry considerations. It was found that
more mixing is present than observed in Ref. [33]. This
demonstrates that one-loop perturbation theory cannot
fully reveal the mixing of the staple-shaped operators,
unlike the case of straight Wilson-line operators [35], and a
higher-loop computation is needed to confirm the addi-
tional mixing patterns found by symmetry arguments.
The authors of Refs. [23,27,36] consider a maximal RI-
type prescription, in which all 16 independent nonlocal
Wilson-line quark bilinear operators are chosen to mix to
eliminate all possible mixing effects. While Ref. [27]
identified nonzero contributions in several off-diagonal
elements of the renormalization matrix, Refs. [23,36] found
negligible contributions, at least at small transverse

separations, by setting specific momentum components to
be zero. However, we emphasize that not all contributions
are necessary for addressing the “unavoidable” mixing
among the asymmetric staple-shaped operators on the lattice.
Most off-diagonal elements in the 16 × 16 renormalization
matrix are nonzero due to the nonminimal choice of
renormalization conditions and not due to the unavoidable
mixing. In this sense, it is preferable to construct a minimal
intermediate scheme, keeping only the mixing sets that are
needed for matching the bare lattice Green’s functions to
the corresponding MS-renormalized Green’s functions (as
obtained in dimensional regularization). In our study, we
consider such a minimal scheme by using symmetry argu-
ments to restrict the operators allowed to mix.
Improving renormalization schemes on the lattice elim-

inates finite lattice spacing errors, which can come from
different Dirac structures in Green’s functions under con-
sideration. A way of removing artifacts from all Dirac
structures is to consider a wider mixing pattern, where
higher dimensional operators multiplied by the appropriate
power of the lattice spacing can also mix with the operators
under study. This mixing is only present for finite values
of the lattice spacing, while it vanishes when taking the
continuum limit. The higher-dimensional operators will be
higher twist since (by Lorentz invariance) they must have
the same spin (with the operators under study), but their
dimension will be higher. The unwanted effects of finite
lattice spacing errors and higher-twist contributions are not
considered in the present study; they will be addressed in a
future publication.
On the other hand, it has been shown [37] that the linear

divergence in the lattice spacing a is not fully eliminated
when the regularization independent momentum subtrac-
tion (RI/MOM) scheme is used to renormalize a straight
Wilson line of length z. Reference [36] has shown that this
residual linear divergence remains in the case of the staple-
shaped operator. In this scenario, an alternative approach
that one can adopt is the so-called ratio scheme as proposed
for the quasi-PDF case [11,38,39]. In this approach, one
subtracts the ultraviolet (UV) divergences by taking the
ratio with a suitable object at a fixed short distance, where
perturbation theory applies. Different choices of suitable
objects to be used in the ratio have been proposed in
Ref. [40]. The authors of Refs. [32,36] use ratios of the
matrix elements of the operator under study. As the
divergences of the staple-shaped operator are independent
of the longitudinal momentum of the state, one can use
the matrix elements computed at different values of the
momentum in order to cancel the divergences. Usually,
matrix elements at zero momentum are chosen for the
denominator, and such scheme has been named [32] short
distance ratio (SDR) scheme.
As for the remaining divergences associated with the

asymmetric staple-shaped link, one can cancel them by
taking an appropriate ratio with the vacuum expectation

1For conciseness, we will refer to staple-shaped Wilson-line
quark bilinear operators as staple-shaped operators.
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value of a rectangular Wilson loop [41]. However, we
would like to stress that the SDR scheme is valid when
operator mixing is absent or negligible. We check that in
the case under study the mixing is indeed negligible and
thus, one can employ the ratio scheme. Another option, as
proposed in Ref. [34], is to employ RI/MOM in the spirit of
the SDR scheme by fixing the dimensions of the staple at a
short perturbative range (we will call this scheme RI-short).
The paper is organized as follows. Section II discusses

how TMDs can be accessed on a Euclidean lattice using the
quasi-distribution approach. In Sec. III, we study operator
mixing using symmetry arguments. Section IV presents our
lattice setup. The size of the mixing is examined in Sec. V.
In Secs. VA, V B, and V C we employ RI/MOM, SDR and
RI-short schemes, respectively, by following the proce-
dures described in Refs. [32,34,36]. In Sec. VI, we present
the renormalized beam functions in the three renormaliza-
tion schemes discussed here, and then show the corre-
sponding results in the MS scheme. The conclusions are
presented in Sec. VII.

II. QUASI-TMDPDFs

A first-principle computation of TMDPDFs in the
context of LaMET is more involved than collinear PDFs.
The main obstacle is to correctly subtract the so-called
rapidity divergences, which are associated with the soft
gluon radiation of the infinitely long Wilson lines present
in the staple-shaped operator. This subtraction is made
through the use of a soft function [42,43]. Different
ways how to perform this subtraction in the context of
LaMET can be found in Ref. [44]. In general, the TMD soft
function involves two opposite lightlike directions, and
this makes a lattice calculation significantly challenging. In
Refs. [21,41], the authors define a rapidity-independent
reduced soft function Sr and show that it can be extracted
from a form factor and the quasi-TMD wave function of a
light meson. Using Sr, the rapidity scheme-independent
TMDPDF fTMDðx; b; μ; ζÞ can be written as [15,41]

fTMDðx;b;μ;ζÞ ¼H
�
ζz
μ2

�
e− ln

�
ζz
ζ

�
Kðb;μÞf̃ðx;b;μ;ζzÞS

1
2
rðb;μÞ

þO
�Λ2

QCD

ζz
;
M2

ðPzÞ2 ;
1

b2ζz

�
ð1Þ

where f̃ðx; b; μ; ζzÞ is the so-called quasi-TMDPDF for a
nucleon with mass M, x is the longitudinal momentum
fraction, and b is a separation transverse to direction of the
momentum Pz carried by the nucleon. The scale μ defines
the renormalization scale and ζz ¼ ð2xPzÞ2 is the Collins-
Soper scale of the quasi-TMDPDF, with ζ being the scale for
the light-cone correlation. The factor H

�ζz
μ2

�
is the pertur-

bative matching kernel that connects the TMDPDFs to the
quasi-TMDPDFs, and Kðb; μÞ is the Collins-Soper kernel.

The renormalization scheme in Eq. (1) is left unspecified;
usually, it is computed in the MS scheme. The quasi-
TMDPDF on the lattice is defined as [20,44]

f̃ðx; b; μ; ζzÞ ¼
Z

dz
2π

e−izζz
Pz

EP
BΓðz; b; μ; PzÞ; ð2Þ

with BΓðz; b; μ; PzÞ the renormalized beam function. It is
obtained from the bare beam function,B0;Γðz;b;L;Pz; 1=aÞ,
defined as the matrix element of the nonlocal staple-shaped
quark bilinear operator, OΓðz; b; LÞ, of length L:

B0;Γðz; b; L; Pz; 1=aÞ ¼ hNðPzÞjOΓðz; b; LÞjNðPzÞi
¼ hNðPzÞjψ̄ðbŷþ zẑÞΓ

Wðz; b; L; 1=aÞτ3ψð0ÞjNðPzÞi;
ð3Þ

where NðPzÞ is a nucleon state with momentum boost of
ð0; 0; PzÞ, a is the lattice spacing, Wðz; b; L; 1=aÞ is the
staple-shaped Wilson line, and ψðzÞ is the standard up and
down quark doublet. In practice, we compute the flavor
nonsinglet combination u − d, and hence the operator also
includes a Pauli τ3 matrix in flavor space. For the unpolar-
ized TMDPDF, Γ can be either γ0 or γ3 or, in general, a
combination of the two. In this work, we show results for
Γ ¼ γ0, since we observe a better signal for this operator
compared to Γ ¼ γ3. γ0 was also used for the quasi-PDF
case, in which case mixing is absent, while γ3 mixed with 1.
In the case of the staple, however, no such advantage exists,
as will be shown in Sec. III. In general, Wðz; b; L; 1=aÞ is
given by:

Wðz; b;LÞ ¼Wzð0⃗;−LÞW⊥ð−Lẑ;bÞWzð−Lẑþ bŷ;Lþ zÞ
ð4Þ

where we dropped the dependence on 1=a to keep the
notation compact. The arguments of the Wilson lines on the
right-hand side (rhs) of the equation above are defined in
the following way: the indexes z and⊥ inWz andW⊥ refers
to the direction ẑ of the boost and a direction perpendicular
to it, respectively. The transverse direction could be in the
x̂ or ŷ direction. The first argument of both Wz and W⊥
refers to the initial point of the Wilson line, while the second
argument is the displacement of the Wilson line in the
direction of the indexes (z or ⊥). Mathematically, the
expression for a Wilson line starting at the point x⃗, with a
displacement L in the ẑ direction, is given by:

Wzðx⃗;LÞ ¼ P exp

�
−ig

Z
L

0

dλẑ · Aðx⃗þ ẑλÞ
�
; ð5Þ

with P the path order operator and A the gluon field. The
shape of the asymmetric staple is shown in Fig. 1.
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III. OPERATOR MIXING THROUGH SYMMETRY

In order to use symmetry arguments to determine which
operators mix, we first organize the staple-shaped operator
using all possible ways to connect the fermion fields. We
show in Fig. 2 all the distinct possibilities of connecting a
quark and an antiquark field located at a spatial separation
of ð0; b; zÞ, using an asymmetric staple-shaped Wilson line.
Since we build the staples only in the yz-plane, in the
following discussion and in Fig. 2, we denote the coor-
dinate space ðt; x; y; zÞ as only ðy; zÞ. Without loss of
generality, we can fix the quark field (q) at (0, 0). Then,
the only possibilities for the position of the antiquark field
(q̄) are ðb; zÞ, ðb;−zÞ, ð−b; zÞ, and ð−b;−zÞ. Here, b and z
are strictly non-negative. We define the staple-shaped
Wilson line connecting q at (0, 0) and q̄ at ðb; zÞ as
OþþðΓÞ. The two plus signs denote the direction of
separation of q̄ from q. The first sign is for the transverse
(ŷ) and the second sign for the longitudinal (ẑ) axes. The Γ
denotes the insertion gamma matrix as defined in Eq. (3). In
a similar fashion, the staple-shaped operator in the cases of
q̄ being located at ðb;−zÞ, ð−b; zÞ and ð−b;−zÞ can be
defined as Oþ−ðΓÞ, O−þðΓÞ and O−−ðΓÞ respectively. A
visual representation of these operators is shown in Fig. 2 in
black. Due to the asymmetric nature of the staple-shaped

Wilson line, there are four more operators that are obtained
from the charge conjugation of the above defined four.
These are also shown in Fig. 2, but in red, with the charge-
conjugated version of O��ðΓÞ denoted by O��

c ðΓÞ and
quark/antiquark fields having exchanged positions. For
the symmetric case (z ¼ 0), the charge-conjugated oper-
ators are redundant, since Oþþ

c ≡O−þ, Oþ−
c ≡O−−,

O−þ
c ≡Oþþ, and O−−

c ≡Oþ−.
We analyze the symmetry properties using generalized

parity (P1;2
Fα) and time reversal (T 1;2

Fα) transformations with
discrete flavor rotation, as well as charge conjugation (C), for
the fermion fields in the twisted mass basis, χðxα;xÞ, and
with the gauge link, Uðxα;x; αÞ, in some direction α. The
symmetry transformations are defined in the Appendix.
The operators O��ðΓÞ, O��

c ðΓÞ do not have definite
properties with respect to the symmetries of the lattice
action. Instead, one needs to consider their linear combi-
nations, defined by

ðijklÞc ¼ i ·Oþþ þ j ·O−− þ k ·Oþ− þ l ·O−þ

þ c · ði ·Oþþ
c þ j ·O−−

c þ k ·Oþ−
c þ l ·O−þ

c Þ; ð6Þ

with i; j; k; l ¼ �1 denoting the signs of Oþþ, O−−, Oþ−,
O−þ, and c ¼ �1 representing the relative sign of the
charge-conjugated versions of O��.
The only combinations that have definite symmetry

properties are:

ðþ þ þþÞc ≡ ð− − −−Þc;
ðþ −þ−Þc ≡ ð−þ −þÞc;
ðþ þ −−Þc ≡ ð− −þþÞc;
ðþ − −þÞc ≡ ð−þþ−Þc;

i.e., the combinations with all signs i, j, k, l reversed are
equivalent from the point of view of symmetry trans-
formations, with irrelevant global phase.
As an example, we look at the symmetry properties of γ0

and γ0γ3 given in Tables I and II, respectively, restricting
ourselves here to the flavor nonsinglet case, u − d (τ3
matrix in flavor space). The combinations of operators that
mix are those which have all signs equal in the nine rows of
Tables I and II. For example, the symmetry properties of
ðþ þ þþÞc for Γ ¼ γ0 (second column of Table I) are
identical to the ones of the combination ðþ − −þÞc for
Γ ¼ γ0γ3 (last column of Table II). Thus, we conclude that
the following mixings occur:

ðþ þ þþÞc with ðþ − −þÞc;
ðþ −þ−Þc with ðþ þ −−Þc;
ðþ þ −−Þc with ðþ −þ−Þc;
ðþ − −þÞc with ðþ þ þþÞc;

FIG. 1. The shape of the asymmetric staple defined in the
operator of the quasibeam function.

FIG. 2. All distinct possibilities for an asymmetric staple-
shaped Wilson line connecting a quark and an antiquark field
spatially separated by �bŷ and �zẑ (b, z ≥ 0).
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where the first combination in a pair pertains to Γ ¼ γ0 and
the second one to Γ ¼ γ0γ3. Additional mixings appear
with Γ ¼ γ0γ2 and Γ ¼ γ5γ1, thus forming a quadruple of
operators that mix, fγ0; γ0γ2; γ0γ3; γ5γ1g. These are the only
relevant mixings for the present work, which concerns
Γ ¼ γ0 for unpolarized TMDs.
For the general case, the symmetry properties for all Γ’s

are summarized in Table IV in the Appendix. They imply
that the possible mixing is between Γ and fΓγ2;Γγ3;Γγ2γ3g
in the asymmetric staples case. In turn, symmetric staples
restrict the mixing by eliminating always one member of
the mixing quadruple, i.e. Γ ¼ γ0;1;5 mix with Γγ2 and Γγ3,
while Γ ¼ γ2;3 form a triple fγ2; γ3; γ2γ3g of operators
that mix.

We point out that different mixing patterns have been
considered in recent studies of other groups, including
mixing among all 16 operators of different Dirac struc-
tures [27], or at least mixing in pairs (Γ;Γγ3) [34]. In our
work, we choose to consider the minimal set of staple-
shaped operators (of the same dimension) that are allowed
to mix by the above-mentioned C, P, and T symmetries. We
have not considered mixing with higher-dimensional oper-
ators allowed by Lorentz symmetry (see, e.g., Ref. [45] for
the straight Wilson-line case), since it is power suppressed
and not relevant when one takes the continuum limit a → 0.
Also, in contrast to Ref. [34], in our analysis, the staple
line has been chosen to be in a 2-dimensional (D), and not
3D, plane in Euclidean space formed by the transverse (ŷ)
and longitudinal (ẑ) directions. In this respect, we end up
with a basis of 8 (instead of 16) operators, which are
eigenstates of C, P and T transformations. We also note that
calculations in one-loop lattice perturbation theory [33]
show a smaller mixing pattern compared to the symmetries;
however, this cannot guarantee a reduced mixing in
higher loops.

IV. LATTICE SETUP

For the lattice simulation, we use an Nf ¼ 2þ 1þ 1

clover-improved twisted mass fermion ensemble of size
243 × 48, produced by the Extended Twisted Mass
Collaboration (ETMC) [46]. Our study is done using
Nconf configurations with Nsrc source positions for each
configuration. To increase statistics, the boost is taken in all
three directions, and both positive and negative. For each
such direction of boost, the staple is then constructed in
both the remaining transverse directions. This gives us 12
measurements (6 boost directions × 2 transverse directions)
for each source position. The details of the lattice simu-
lation are summarized in Table III.
The bare matrix element for the quasi-beam function is

calculated through a ratio of a 3-point to a 2-point function,

BΓ
0ðz; b;L;PzÞ

¼ hC3pt
Γ ðz; b;L;Pz; ts; τÞi
hC2ptðPz; tsÞi

¼ P
P

x e
−iP·xh0jNðx; tsÞOΓðz; b;L; τÞN̄ð0;0Þj0i
P
P

x e
−iP·xh0jNðx; tsÞN̄ð0; 0Þj0i ; ð7Þ

TABLE I. Symmetry properties of operators with Γ ¼ γ0. The
� sign for PF=T F transformations denotes that a given combi-
nation of staple-shaped operators is symmetric/antisymmetric
with respect to the symmetry transformation given in the first
column. The last row indicates symmetry properties with respect
to charge conjugation, which depend on the sign c, i.e. ð· · ··Þþ
combinations are symmetric and ð· · ··Þ− antisymmetric with
respect to C in this case.

ðþ þ þþÞc ðþ −þ−Þc ðþ þ −−Þc ðþ − −þÞc
ð− − −−Þc ð−þ −þÞc ð− −þþÞc ð−þþ−Þc

P1;2
F0

− þ − þ
P1;2

F1
þ − þ −

P1;2
F2

þ þ − −
P1;2

F3
þ − − þ

T 1;2
F0

þ þ þ þ
T 1;2

F1
− − − −

T 1;2
F2

− þ þ −
T 1;2

F3
− − þ þ

C c c c c

TABLE II. Symmetry properties of operators with Γ ¼ γ0γ3.
See the caption of Fig. 1 for explanation.

ðþ þ þþÞc ðþ −þ−Þc ðþ þ −−Þc ðþ − −þÞc
ð− − −−Þc ð−þ −þÞc ð− −þþÞc ð−þþ−Þc

P1;2
F0

þ − þ −
P1;2

F1
− þ − þ

P1;2
F2

− − þ þ
P1;2

F3
þ − − þ

T 1;2
F0

þ þ þ þ
T 1;2

F1
− − − −

T 1;2
F2

− þ þ −
T 1;2

F3
þ þ − −

C c c c c

TABLE III. We give the parameters of the lattice ensemble and
measurements used in the calculation. a is the lattice spacing,
μl is the bare twisted light quark mass, mπ the pion mass, Nconf
the number of configurations, Nsrc the number of source positions
and Nmeas the total number of measurements.

Lattice size a [fm] aμl mπ [MeV] Nconf Nsrc Nmeas

243 × 48 0.093 0.00530 350 100 8 9600
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where τ is the insertion time of the operator OΓ and ts
defines the source-sink time separation. P is the parity
projector. In this work, we show results for a single
source-sink separation of ts ¼ 10a and a longitudinal
momentum of Pz ¼ 6π=24a ∼ 1.7 GeV.
The 3-point function is constructed for the isovector

combination u − d, by inserting a τ3 in flavor space. This
choice ensures the elimination of the disconnected contri-
butions and only connected diagrams need to be calculated.
Momentum smearing [47] is applied to improve the signal
for large boosts. It is observed that applying stout smearing
to the gauge links used in construction of the staple also
reduces the statistical errors. Here, we have applied 5 steps of
stout smearing to the staple-shaped Wilson line.
In Fig. 3 we show the bare matrix elements as a function

of z at a fixed b=a ¼ 1 for different values of L. These and
the following results for the quasibeam function have been
symmetrized using the relation

B0;Γðz; b; L; PzÞ ¼ B†
0;Γð−z;−b;−L;PzÞ: ð8Þ

To ensure that this property holds in our lattice simulation,
we have used the staple-shaped operator Oþþ on the left
hand side of the above equation and O−−

c on the right-hand
side. Our results show a clear decay of the magnitude of the
beam function as L increases, as expected [15]. In Fig. 4 we
show the dependence of the bare beam function on b. This
is expected to decay as exp ð−LVðbÞÞ [15]. Assuming a
linear function for the potential VðbÞ, we also show a fit of
exp ðc0 þ c1bÞ to the lattice data at two different values of
z=a and a fixed L=a ¼ 10.

V. NONPERTURBATIVE RENORMALIZATION

As in the case of the straight Wilson line, there are
logarithmic and linear divergences associated with the
length z of the staple-shaped link. However, here there
are two extra divergences: one, which is associated with
the cusps of the staple, and one associated with the gluon
exchange between the gauge links of length L → ∞, the so-
called pinch-pole singularities. On the other hand, the finite
transverse separation b mitigates possible discretization
effects associated with small z separation, mainly in the
nonperturbative region (large b), which is the main interest
of a lattice calculation. In the following, we will analyze
three different ways to carry out the renormalization,
namely the RI/MOM scheme, the short distance ratio
scheme, and a modified version of the RI/MOM scheme,
where the renormalization constants are computed at short
distances.

A. RI/MOM

The RI/MOM scheme [48] was first adapted for nonlocal
operators employed in the quasidistribution approach in
Refs. [35,49]. The RI/MOM renormalization constants ZRI

O
are defined by the condition

FIG. 3. Real and imaginary parts of the bare matrix elements for a transverse separation of b=a ¼ 1.

FIG. 4. Exponential decay of the bare matrix element with
increasing b at L ¼ 10a and z=a ¼ 2 (red points) and z=a ¼ 4
(blue points). The red and blue bands are the fits to the results at
z=a ¼ 2 and z=a ¼ 4, respectively.
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ZRI
ΓΓ0 ðz;b;L;μ0;1=aÞ
ZRI
q ðμ0;1=aÞ

1

12
Tr

�
ΛΓ
0ðz;b;L;p; 1=aÞΓ0

eip
zzþip⊥b

�����
p¼μ0

¼ 1;

ð9Þ

where ΛΓ
0 is defined in terms of the amputated Green’s

function

ΛΓ
0ðz; b; L; p; 1=aÞ ¼ S−1q GΓðz; b; L; p; 1=aÞS−1q ; ð10Þ

with Sq the off-shell quark propagator. The Green’s
function is calculated as

GΓðz;b;p;L;1=aÞ¼hqðpÞjOΓðz;b;p;L;1=aÞjqðpÞi: ð11Þ

Because GΓ, and thus ΛΓ
0 , have the same divergences as

B0;Γ, all the divergences, in principle, cancel in the re-
normalization procedure. ZRI

q is the quark wave function
renormalization defined as

ZRI
q ðμ0;1=aÞ¼

1

12
Tr
	�
Sqðp;1=aÞ

�−1SBornq ðpÞ
��p2¼μ2
0

; ð12Þ

and the corresponding renormalized beam function is then

BRI
Γ ðz;b;μ0;PzÞ¼

X
Γ0

ZRI
ΓΓ0 ðz;b;μ0;1=aÞB0;Γ0 ðz;b;Pz;1=aÞ:

ð13Þ

Notice that the relation between the bare and renormalized
beam functions involves, in principle, a 16 × 16 matrix,
if one considers all possible mixing among the full set of
Dirac structures. The case of interest in this work is Γ ¼ γ0,
computed using the lattice ensemble of Table III. As
pointed out in Sec. III, γ0 mixes with γ0γ2, γ0γ3, and γ5γ1.
The renormalization factors for the diagonal and off-
diagonal cases are shown in Figs. 5 and 6, respectively.
We set the renormalization scale 4-vector μ0 equal to
2π

�
6þ0.5
Nt

; 3
Ns
; 3
Ns
; 3
Ns

�
, where Ns ¼ 24a, Nt ¼ 2Ns, and

antiperiodic boundary conditions have been employed
in the time direction. We have chosen an isotropic
momentum in the spatial directions and “democratic”
momentum, which obeys the criterion

P
ρ sin

4ðapρ=2Þ=
ðPρ sin

2ðapρ=2ÞÞ2jp¼μ0
< 0.3, in order to reduce Lorentz-

noninvariant contributions in the vertex functions. Also, the
selected momentum lies in a perturbative region, where
perturbation theory is reliable and, at the same time, lattice
artifacts are under control. A more detailed study using
different values of μ0 will be presented in a future extension
of our study. Using this setup, we observe that the con-
tributions from the off-diagonal mixing terms are ≲4% of
the diagonal contribution for all z when b ¼ 1a; 2a.
It is interesting to examine how the relative size of

the off-diagonal to the diagonal renormalization factors

changes as b increases, as the primary focus of lattice
computation of TMDPDFs is the nonperturbative region in
the transverse separation b. We show in Fig. 7 the
renormalization factors as a function of b for the diagonal
and off-diagonal contributions. We see a contribution of
≲7–8% up to b ¼ 6a for the off-diagonal terms. Although
their size shows a possible tendency of growth with
increasing b, this growth seems to be only moderate. We
notice that the authors of Ref. [27] considered the entire set
of Dirac structures for the operator mixing, and observe
similar results to ours, if we take from Ref. [27] only the
results from the operators that are allowed to mix with γ0,
according to our symmetry arguments. For example, their
result for the contribution from γ5γ1 is much larger than that
of γ0γ2 and γ0γ3, and there is a steady increase going to
larger b values. For the values of b we use in this work, the
magnitude of mixing for these operators found in Ref. [27]

FIG. 5. RI/MOM renormalization factor as a function of the
Wilson line length z for b=a ¼ 1, 2 and at fixed L=a ¼ 10. Both
real and imaginary parts increase rapidly as z grows.

FIG. 6. Contribution of the off-diagonal mixing terms com-
pared to the diagonal one, in the RI/MOM renormalization matrix
at fixed L=a ¼ 10.
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is also comparable to our findings. However, considering
the dominant diagonal renormalization factors, it seems
that there are remaining divergences related to large values
of z and b, as also observed in Ref. [36]. Combined with the
fact that the bare matrix element decays exponentially
with b [15], it is significantly hard to renormalize for large
transverse separations using this scheme. However, in the
small b region where we can extract information using
RI/MOM, it can be confirmed that the mixing is negligible.
As an example, we show in Fig. 8 the renormalized beam
function for the b ¼ 1a case, with þ’s denoting the
RI/MOM procedure using the full mixing matrix and with
the ×’s denoting the case of only taking into account
the diagonal contribution. Considering that including the
mixing has a negligible effect, one can safely ignore
operator mixing for these values of b.

B. The short distance ratio scheme

According to Figs. 6 and 7, mixing with different
operators can be neglected at least up to b=a≲ 6, and

we can assume that the renormalization of the staple-
shaped link is multiplicative. This justifies the approach
taken in Refs. [32,36].
We first note that the vacuum expectation value of a

rectangular Wilson loop ZE with sides 2Lþ z and b,

ZEðb;2Lþ z;1=aÞ¼ 1

3
Trh0jWðb;2Lþ zÞW⊥ðxþb;bÞj0i;

ð14Þ

is, by construction, a product of the staple-shaped gauge
link, as defined in Eq. (4), and its reflection. Therefore,ffiffiffiffiffiffi
ZE

p
has the same divergences as that of the staple-shaped

gauge link. Thus, it should cancel the pinch-pole singu-
larity associated with the length L of the staple, as well as
the divergences associated with the cusps. Furthermore, as
the sides of ZE are also dependent on the longitudinal
displacement z, the exponential divergence associated
with z present in the staple-shaped link must also be
canceled if an appropriated ratio is taken, namely the

FIG. 7. The diagonal and off-diagonal contributions to the RI/MOM renormalization factors as a function of b at fixed L=a ¼ 10 and
z=a ¼ 2.

FIG. 8. Real and imaginary parts of the RI/MOM renormalized matrix elements for a transverse separation of b=a ¼ 1.
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one proposed in Refs. [21,36]:

BΓðz; b; Pz; 1=aÞ ¼ lim
L→∞

B0;Γðz; b; L; Pz; 1=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEðb; 2Lþ z; 1=aÞp ð15Þ

To illustrate this point, we show in Fig. 9 the beam function
as a function of L, for a fixed z ¼ 2a and two values
of b, before and after dividing by

ffiffiffiffiffiffi
ZE

p
. The cancellation

of the divergences related to the length of the Wilson line is
explicitly shown. This ratio, thus, takes care of the diver-
gence associated with the length L and width b of the
staple-shaped operator.
After dividing the beam function by the square root of

ZE, the only remaining divergences are the UV divergences
associated with the quark field and its endpoints connecting
to the gauge links. As such, they can be canceled by taking
ratios, as they have a multiplicative nature [26,50]. Hence,
one can define

BSDR
Γ ðz; z0; b;b0;PzÞ ¼ ZSDRðz0; b0; 1=aÞBΓðz;b;Pz; 1=aÞ;

ð16Þ

where,

ZSDRðz0;b0;1=aÞ¼
1

BΓðz¼ z0;b¼ b0;Pz¼ 0;1=aÞ : ð17Þ

Because the remaining divergences are independent of the
length of the Wilson line, one is free to choose z0 and b0. In
order to connect these quantities to the MS scheme via a
perturbative scheme conversion, z0 and b0 should be small
enough for perturbation theory to be valid. However, the
use of small values for both z0 and b0 can introduce sizable
discretization errors in the renormalization factors, which
can affect the validity of the SDR scheme. To address this
issue, different approaches can be employed in order to
reduce finite lattice-spacing errors from the nonperturbative
data for all values of the staple lengths b=a and z=a. Ideally,

the elimination of discretization errors requires calculations
of physical matrix elements at different finite values of the
lattice spacing a and an extrapolation a → 0. When data for
multiple values of a are not available, a number of different
approaches can be employed in order to reduce discretiza-
tion errors at each lattice spacing. A standard method is to
apply an improved discretization, in both the action and the
operators under study, using the Symanzik-improvement
program [51,52]. Another way to reduce this kind of
systematic error from a lattice calculation is to subtract
one-loop artifacts employing lattice perturbation theory to
all orders in a, from the nonperturbative vertex functions
calculated in lattice simulations. Our group has success-
fully applied this method to the renormalization of local
quark bilinear operators [53–55], and more recently to the
renormalization of nonlocal straight Wilson-line operators
for quasi-PDFs [56]. These studies have provided a useful
feedback on the effectiveness of artifacts in the renormal-
ization factors for different ranges of the scales entering
the renormalization procedure. Since this is our first non-
perturbative study considering nonlocal staple-shaped
operators we do not consider finite-a errors, but we intend
to apply the method of subtracting one-loop artifacts in a
future extension of our study.
The renormalized matrix elements are converted to the

MS scheme using perturbation theory. We have computed
the vertex, sail, and tadpole one-loop diagrams for external
quark states with a general momentum pz. For pz → 0, we
obtain

ZMS;SDRðz0; b0; μ0Þ ¼ 1þ αsCF

2π

�
1

2
þ 3

2
ln

�
b20 þ z20
4e−2γE

μ20

�

− 2
z0
b0

arctan
z0
b0

�
; ð18Þ

which agrees with Eq. (6) of Ref. [36]. Note that this factor

equals BMS
Γ ðz ¼ z0; b ¼ b0; Pz ¼ 0; μ0Þ. Details of this cal-

culation for a general external momentum will be presented

FIG. 9. The effect of taking the ratio of the bare matrix elements with
ffiffiffiffiffiffi
ZE

p
at a fixed z=a ¼ 2.
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in Ref. [57]. The renormalized beam function in the MS
scheme is then given by

BMS
Γ ðz; b;PzÞ ¼ ZMSðz0; b0;μ0ÞBSDR

Γ ðz; z0; b;b0;PzÞ: ð19Þ

Results for BMSðz; b; PzÞ are presented in Sec. VI, where
we also discuss the cancellation of the z0, b0 dependence
in Eq. (19).

C. Short distance RI/MOM

As discussed in Sec. VA, the usual RI scheme may be
problematic at large z and b as the magnitude of the ZRI

factors grows exponentially. Also, as shown in Refs. [36,37],
the usual RI scheme may still contain a residual linear
divergence, which may not be properly canceled. On the
other hand, as discussed in Sec. V B, the

ffiffiffiffiffiffi
ZE

p
factor cancels

all divergences in z and b present in the staple. Hence, we
can define a vertex function that is free of such divergences,

ΛΓðz; b; p; 1=aÞ ¼ ΛΓ
0ðz; b; p; 1=aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEðb; 2Lþ z; 1=aÞp : ð20Þ

Because the divergences related to the lengths of the Wilson
line have been removed, we can compute the renormaliza-
tion factors as in Sec. V B at some fixed z0, b0 [34]

ZRI−short
ΓΓ0 ðz0; b0; μ0; 1=aÞ

ZRI
q ðμ0; 1=aÞ

1

12

× Tr
�
ΛΓðz; b; p; 1=aÞΓ0

eip
zzþibp⊥

�����
p¼μ0;z¼z0;b¼b0

¼ 1: ð21Þ

The ZRI−short factor defined at fixed z0 and b0 is used to
renormalize the bare Bγ0 defined at arbitrary values of z and
b. We have labeled this procedure as RI-short. In principle,
the vertex function in the standard RI/MOM could also be
modified by taking its ratio with

ffiffiffiffiffiffi
ZE

p
. This would reduce

the growth of the Z-factors with increasing b. However,
when combining ZRI with the bare Bγ0 , the

ffiffiffiffiffiffi
ZE

p
factors

cancel each other, and therefore
ffiffiffiffiffiffi
ZE

p
has no effect on the

renormalized matrix elements. On the other hand, the
ffiffiffiffiffiffi
ZE

p
factor appearing in the vertex function of the RI-short
scheme is defined at fixed values of z and b, contrary to
the

ffiffiffiffiffiffi
ZE

p
factor appearing in the bare Bγ0 . Hence the

cancellation of the ZE factors do not happen in the RI-short
scheme.
As in Sec. V B, we choose the pair z0, b0 to be in the

perturbative region in order to make the perturbative
conversion to the MS scheme reliable. Moreover, the study
of possible lattice artifacts associated with the use of small
values of z0=a and b0=a will be considered in future
extensions of our study by using one-loop lattice perturba-
tion theory.

The corresponding renormalized beam function in this
scheme is then given by

BRI−short
Γ ðz;z0;b;b0;μ0;PzÞ
¼
X
Γ0

	
ZRI−short
O ðz0;b0;μ0;1=aÞ



ΓΓ0BΓ0 ðz;b;Pz;1=aÞ: ð22Þ

For illustration, we show in Fig. 10 the renormalization
factors ZRI−short

O ðz0; b0; μ0; 1=aÞ for z0 ¼ 0; 1a, b0 ¼ 1a
and μ0 ¼ 2π

a

�
6þ0.5
48

; 3
24
; 3
24
; 3
24

�
. We also show the off-diagonal

renormalization factors, which, in principle, mix with γ0. As
expected, they are also independent of L and can be omitted
in the full calculation as their contribution is negligible as
compared to the diagonal contribution. Finally, we convert
BRI−short
Γ to the MS scheme using one-loop perturbation

theory,

BMS
Γ ðz; b; μ0; PzÞ ¼

X
Γ0

	
ZMS;RI−short
O ðz0; b0; μ0Þ



ΓΓ0

× BRI−short
Γ0 ðz; z0; b; b0; μ0; PzÞ: ð23Þ

The conversion matrix ZMS;RI−short
O is calculated in dimen-

sional regularization for arbitrary values of the momentum
scale μ0. Explicit expressions for all Γ;Γ0 are given in
Ref. [57]. Similar perturbative studies can be found in
Refs. [26,33]. A comparison between the conversion factor
in RI-short and the SDR scheme is shown in Fig. 11 for the
case Γ ¼ Γ0 ¼ γ0. We observe that the real parts are
compatible between the two schemes, while the RI-short
scheme shows a nonzero imaginary part, in contrast to the
SDR scheme. This is a consequence of using a nonzero
momentum scale μ0 in the RI-short scheme, while SDR is
defined at zero momentum. Note that specific choices of μ0
in RI-short can lead to a vanishing imaginary part in the
renormalization factors. In particular, by setting to zero the

FIG. 10. The ZRI−short renormalization factor within the per-
turbative range b0=a ¼ 1 as a function of the length L of the
staple.
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two momentum components parallel to the staple segments,
the one-loop expression for the renormalization factors
results into a vanishing imaginary part. However, such
choice of momentum gives rise to unwanted Lorentz
noninvariant contributions in the nonperturbative calcula-
tions. Thus, in our study we follow the common practice of
employing democratic momentum with reduced Lorentz
noninvariant contributions at the cost of introducing imagi-
nary part in the renormalization factors.

VI. RESULTS

In this section, we present the renormalized beam
functions in the 3 renormalization schemes discussed in
Sec. V, as well as the corresponding results in the MS
scheme.
In Fig. 12, we show the real and imaginary parts of

Bγ0ðz; b; μ0; PzÞ as a function of z for two values of the
transverse separation, b=a ¼ 1, 2. For the real parts, the
schemes agree within errors for jz=aj ⪅ 6. For jz=aj⪆6,
BSDR
γ0 and BRI−short

γ0 are consistent, while BRI
γ0 becomes

increasingly more negative with increasingly larger errors.
This discrepant behavior between the RI-MOM and the RI-
short and SDR schemes indicates the existence of a residual
linear divergence at large jzj in the standard RI/MOM,
as observed in [36]. For the imaginary parts, we observe
a similar behavior. Namely, the SDR and the RI-short
schemes are almost identical for any jz=aj for the two
values of b=a considered. For the usual RI/MOM,

we observe deviations not only for jz=aj⪆ 6 but also for
most of the jz=aj region with an increase in errors with
increasing jz=aj.
The conversion to the MS scheme is done using one-loop

perturbation theory for all three schemes considered. For
the two cases where the renormalization factors are fixed at
a short perturbative scale, we use z0=a ¼ b0=a ¼ 1 when
computing BRI−short

Γ0 ðz; z0; b; b0; μ0; PzÞ and BSDR
Γ ðz; z0; b;

b0; PzÞ. Since the final results in the MS scheme should be
independent of the values we choose for the z0, b0 pair, we
examine the stability of our results on the choice of the
values for this pair. To this end, we show in Fig. 13 the
product of the renormalization factors for each scheme with
the corresponding conversion factors to the MS scheme,

ZMS;SDR
γ0 ZSDR

γ0 and ZMS;RI
γ0 ZRI−short

γ0 . These products should be
independent on the choice of values of z0, b0 as long as
the one-loop perturbative calculation is a reliable approxi-
mation. We notice that these products are equal to the
renormalization factors in the MS scheme in the absence
of mixing. For the ratio scheme, there is a 10%–20%
correction when going from b0=a ¼ 1 to b0=a ¼ 2 for the
three values of z0 considered here, with the correction
increasing for larger values of z0. This indicates a limitation
on the use of one-loop perturbation theory to perform the
conversion to the MS scheme already at a transverse
separation as low as b=a ¼ 2. As a consequence, Oðα2sÞ
corrections cannot be disregarded. For the z0 dependence,

FIG. 11. Conversion factor to the MS scheme (top: real part, bottom: imaginary part) for the RI-short and SDR schemes at b=a ¼ 1
(left) and b=a ¼ 2 (right).
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the choice of z0=a ¼ 0 and z0=a ¼ 1 is nearly equivalent
within one sigma error. For z=a ¼ 2, the discrepancy
grows, especially for b=a ¼ 2. For the RI-short scheme,
the situation is not significantly changed. From this dis-
cussion, we conclude that our choice for the pair z0, b0 is
a likely safe region to fix the short perturbative scale.
We show in Fig. 14 the renormalized MS matrix elements

computed in the ratio and the RI-short schemes at
Pz ≃ 1.7 GeV. The imaginary part of the matrix elements
are in full agreement, the same happening in the real part,
for large z values. In the small z region of the real part there
is a tendency to discrepancy, as already observed in the
intermediate schemes shown in Fig. 12, although they agree
within one sigma error.

FIG. 12. Renormalized matrix elements for z0=a ¼ b0=a ¼ 1 for the SDR and the RI-short schemes, and Pz ≃ 1.7 GeV.

FIG. 13. Dependence of the product between the MS conversion factors and the SDR and RI-short renormalization factors on the
choice of the short perturbative scale.
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VII. CONCLUSION

In this work, we have addressed the nonperturbative
renormalization of the asymmetric staple-shaped quark
bilinear operators. We used symmetry arguments to restrict
the possible mixing between the operators, and we found
that mixing is allowed within sets of four operators. We
then employed the RI/MOM scheme to estimate the
importance of mixing coming from the nondiagonal terms,
and we found that they can be neglected up to transverse
separations of at least 6a. This result justifies the use of
multiplicative renormalization for the asymmetric staple-
shaped operator. Based on this conclusion, we computed
the renormalization factors in the SDR scheme, and in the
RI-short scheme, where the renormalization factors are
computed at short distances. We found that both schemes
are nearly equivalent over all the jzj region considered.
Finally, we converted both schemes to the MS scheme and
presented the corresponding results for the renormalized
beam function. Given our previous computation of the
Collins-Soper kernel and of the soft function [24], the next
natural step will be to compute the TMDPDFs themselves
over a wide range of b, and we plan to present results for
them in the near future.
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APPENDIX: SYMMETRY PROPERTIES AND
MIXING SETS OF OPERATORS

As mentioned in Sec. III, we analyze the symmetry
properties of the operators using generalized parity and
time reversal transformations with discrete flavor rotation,
as well as charge conjugation, for the fermion fields in
the twisted mass basis, χðxα;xÞ. The fermion fields in the
physical basis, ψ are obtained through the rotation

ψ ¼ expðiωγ5τ3=2Þχ; ψ̄ ¼ χ̄ expðiωγ5τ3=2Þ: ðA1Þ

The standard parity transformation P is defined as

P∶

8>>>><
>>>>:

Uðx0;x⃗;0Þ→Uðx0;−x⃗;0Þ;
Uðx0;x⃗;k∈f1;2;3gÞ→U−1ðx0;−x⃗−ak̂;k∈f1;2;3gÞ;
χðx0;x⃗Þ→ γ0χðx0;−x⃗Þ;
χ̄ðx0;x⃗Þ→ χ̄ðx0;−x⃗Þγ0;

ðA2Þ

withUðxα;x; αÞ the gauge link defined in some direction α.
In the twisted basis, this is only a symmetry under a discrete
flavor rotation F 1;2 [58],

F 1;2∶
�
χðxÞ → iτ1;2χðxÞ
χ̄ðxÞ → −iτ1;2χ̄ðxÞ: ðA3Þ

The generalized parity in the α-direction combined with
discrete flavor rotation [58] is then given by

P1;2
Fα∶

8>>>><
>>>>:

Uðxα;x; αÞ → Uðxα;−x; αÞ;
Uðxα;x; β ≠ αÞ → U−1ðxα;−x − aβ̂; βÞ;
χðxα;xÞ → iγατ1;2χðxα;−xÞ;
χ̄ðxα;xÞ → −iχ̄ðxα;−xÞτ1;2γα;

ðA4Þ

where the “standard” parity is the one with α ¼ 0, and the
3-vector x is what remains from the 4-vector x after
removing xα. τ1;2 are the Pauli spin matrices in flavor
space. Similarly, the generalized time reversal combined
with discrete flavor rotation is given by

T 1;2
Fα∶

8>>>><
>>>>:

Uðxα;x; αÞ → U−1ð−xα − a;x; αÞ;
Uðxα;x; β ≠ αÞ → Uð−xα;x; βÞ;
χðxα;xÞ → iγαγ5τ1;2χð−xα;xÞ;
χ̄ðxα;xÞ → −iχ̄ð−xα;xÞτ1;2γ5γα:

ðA5Þ

Finally, the charge conjugation transformation is given by

C∶

8><
>:

UðxÞ → ðU†ðxÞÞT;
χðxÞ → C−1χ̄ðxÞT;
χ̄ðxÞ → −χðxÞTC:

ðA6Þ

The mixing properties of the staple-shaped operators is
determined from symmetry arguments. Specifically, we
observe the transformations of the objects ðijklÞc defined
by Eq. (6). This gives rise to 4 relevant combinations with
definite symmetry properties: ðþ þ þþÞc; ðþ −þ−Þc;
ðþ þ −−Þc, and ðþ − −þÞc. In Table IV, we summarize
the symmetries of the 16 Dirac structures, where the four
signs under any transformation denote the symmetry
properties of the four relevant combinations, see the caption
for more details.
Based on the symmetry properties, we provide all the

mixing sets of asymmetric (z ≠ 0) staple-shaped operators
with different Dirac structures Γ, as dictated by the
generalized C, P, T symmetries of Eqs. (A4)–(A6), in
explicit form:

(i) f1; γ2; γ3; γ2γ3g,
(ii) fγ5; γ5γ2; γ5γ3; γ0γ1g,
(iii) fγ0; γ0γ2; γ0γ3; γ5γ1g,
(iv) fγ1; γ1γ2; γ1γ3; γ5γ0g.
In the case of symmetric staple-shaped operators (z ¼ 0),

the mixing sets are reduced to:
(i) fγ2; γ3; γ2γ3g,
(ii) fγ5; γ5γ2; γ5γ3g,
(iii) fγ0; γ0γ2; γ0γ3g,
(iv) fγ1; γ1γ2; γ1γ3g,

while the remaining operators, involving the Dirac struc-
tures 1; γ0γ1; γ5γ1; γ5γ0 are multiplicatively renormalizable.
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