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We study the consequences of mode-collapse of normalizing flows in the context of lattice field theory.
Normalizing flows allow for independent sampling. For this reason, it is hoped that they can avoid the
tunneling problem of local-update Markov Chain Monte Carlo algorithms for multimodal distributions. In
this work, we first point out that the tunneling problem is also present for normalizing flows but is shifted
from the sampling to the algorithm’s training phase. Specifically, normalizing flows often suffer from
mode-collapse for which the training process assigns vanishingly low probability mass to relevant modes of
the physical distribution. This may result in a significant bias when the flow is used as a sampler in a
Markov-Chain or with importance sampling. We propose a metric to quantify the degree of mode-collapse
and derive a bound on the resulting bias. Furthermore, we propose various mitigation strategies in particular
in the context of estimating thermodynamic observables, such as the free energy.
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I. INTRODUCTION

Using normalizing flows for sampling in lattice field
theory has gained significant attention over the last few
years. Several works have been carried out in the domain
of scalar field theories [1–10], Uð1Þ [11,12] and SUðNÞ
[13–15] pure gauge theories, and fermionic gauge theories
[16,17]. This rapid development is attributed to the appeal-
ing conceptual properties of flow-based sampling. A well-
trained flow approximately acts as a trivializing map [18]
and therefore can significantly reduce the integrated auto-
correlation time of physical observables. The practical
obstruction to harnessing this conceptual advantage is that
the training process becomes increasingly challenging
as the dimensionality of the lattice increases, resulting in
poor volume scaling [19–22]. Furthermore, it is well known
that generative models struggle to learn long-range

correlations [23] which is crucial as a critical point is
approached. When the continuum limit of the theory is
taken, both challenges manifest simultaneously: the volume
needs to be increased as the critical point is approached. As
a result, it remains an open question whether useful
architectures can be found for addressing critical slowing
down in the continuum limit.
Another conceptually appealing property of normalizing

flows is that they allow for independent sampling, thus
making flow densities suitable for being combined with
Metropolis-Hastings accept-reject schemes. This approach
is often referred to as Neural-Markov Chain Monte Carlo
(MCMC) [1,24–26]. As a result, it may be hoped that they
can avoid the tunneling problem which arises when local
update MCMC algorithms are applied to theories that have
degenerate minima separated by high action barriers.
However, normalizing flows are typically trained by self-
sampling in the context of lattice field theory [1]. As we
will discuss, this bears the risk that the training will assign
vanishing low probability mass to some of the modes of the
theory [2–4], since the training objective will not strongly
penalize this. If mode-collapse happens, certain modes of
the theory will not be probed by the sampler. This problem,
therefore, leads to substantially biased estimators of physi-
cal observables as shown in Fig. 1.
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In our work we study mode-collapse and the more
general mode-mismatch phenomenon, both theoretically
and numerically. We first discuss in detail the mode-
seeking nature of the standard self-sampling-based training
procedure which corresponds to minimizing the reverse
Kullback-Leibler (KL) divergence [3]. We compare this to
an alternative training procedure which is based on min-
imizing the forward (as opposed to the reverse) KL
divergence and review why it is equivalent to maximum
likelihood training. This objective has the advantage that it
is substantially less vulnerable to mode-collapse but has the
disadvantage that it requires representative configurations
sampled from the theory. In many applications, this
prevents this objective from being of any use since if such
configurations are available, we can directly measure
physical observables on them and a flow is not necessary.
However, we point out that there is an important exception
to this: for thermodynamic observables, such as the free
energy, it is still useful to train a flow. This is because these
observables are typically obtained by integration through

the parameter space of the theory and thus require a
significant number of Markov chains along a discretized
trajectory in the parameter space. By training a flow on
samples generated at a single point in parameter space, we
can completely avoid the need for these additional Markov
chains. In this important scenario, it is thus sensible and, as
we argue, advisable to use forward KL training for the flow
to significantly reduce mode-collapse. Besides modifying
the training procedure, we also propose to mitigate mode-
collapse by combining two flow-based estimators for the
free energy. As a side remark, we note that concurrent
works have been proposing strategies, alternative to the
forward KL objective, trying to mitigate mode collapse.
These include more stable path gradient estimators [27,28],
learning deformed target distributions [29] and annealed
importance sampling [30].
We then study the bias induced by mode-collapse

theoretically. Specifically, we derive a bound on the bias
of the estimator for physical observables. This allows us to
propose a natural metric to quantify the degree of mode-
collapse of the sampler.
The effectiveness of our proposed methods is then

demonstrated on a two-dimensional ϕ4 scalar theory.
We stress that our study focuses on the estimation of the

free energy, an example of thermodynamic quantity involv-
ing the partition function [31], a crucial subset of physical
observables in lattice field theory [32]. Estimating these
observables with standard Markov-Chain-based methods
requires sampling configurations at many different values
in parameter space and integrating free energy differences
from a known reference value, see previous works for more
details [2,4]. This approach is computationally expensive
since it often requires a significant number of HMC chains
along the trajectory in parameter space, and crucially leads to
high uncertainty, as errors from each chain accumulate upon
integration. This problem becomes more severe when one
needs to cross a phase transition. There, integrated autocor-
relation times explode, thus resulting in larger errors for each
Markov chain. For this reason, training a normalizing flow
using a forward KL objective can often be advantageous:
training a normalizing flow requires samples from only a
single Markov chain at the target point in parameter space
and thus allows us to circumvent the need for any additional
chains along the trajectory through parameter space.
We emphasize that the intricacies of training a normal-

izing flow for multimodal distributions in the context of
lattice field theories have been already discussed in [3]. Our
work builds on this reference but is different in the sense
that we consider thermodynamic observables. As explained
above, these observables cannot be estimated on the
Markov-Chain samples at the target point without the need
for additional Markov chains for different coupling values.
As a result, training of normalizing flows using the forward
KL objective is particularly natural for the estimation of
thermodynamic observables.

FIG. 1. Estimation of free energy density in broken and
symmetric phases using a reverse-KL trained flow–estimation
of the free energy density using the approach proposed in [2] and
[4]. The second-order phase transition is represented with a color
gradient from red to green in the background. The free energy
density is estimated using samples drawn from the flow and the
target distribution respectively. The flow estimates (purple) are
compared to the HMC baseline (pink). The experiments consider
lattices Λ ¼ 64 × 8 at fixed coupling λ ¼ 0.022 for the ϕ4-theory
as in [2]. In the broken phase (green) of the theory, e.g., κ ≥ 0.3,
the target density has two modes with very little tunneling
probability between the two. Using a deep generative sampler,
i.e., a flow, trained with reverse-KL in the broken regime leads to
biased estimates. This problem lays the foundation of the study
presented in this work.
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II. TRAINING A GENERATIVE MODEL

Normalizing flows [33–35] are a particular class of
generative models giving access to an analytic form of
the likelihood. While this work focuses on flows for
concreteness, we stress that the theoretical arguments made
in the following sections hold for any generative model
allowing for exact likelihood estimation. For such models,
a variational density qθ, the sampler, parameterized by a set
of weights θ, is optimized to approximate the target density
of the lattice field theory

pðϕÞ ¼ 1

Z
expð−SðϕÞÞ; ð1Þ

where Z is the partition function and S is the action of the
theory.
During the training of a normalizing flow, an efficient

transformation to map a base density qz into a nontrivial
target is learned. In practice, the base distribution is chosen
such that it allows for efficient sampling. Common choices
for the base density are therefore normal or uniform
distributions.
The flow uses a diffeomorphism f between the base

space Z and the configuration space X hence

fθ∶ z∈Z ∼ qz → x ¼ fθðzÞ∈X ∼ qθ: ð2Þ

The diffeomorphism fθ is a composition of bijective
transformations fiθ referred to as coupling blocks. Each
of these blocks satisfies the following requirements:
(1) fiθ is a bijection,
(2) both fiθ and its inverse are in C∞.
(3) the determinant of the Jacobian is efficient to

evaluate.
The inverse of the transformation f−1θ ðxÞ ¼ z therefore
always exists by construction. Leveraging these properties,
an analytic expression for the likelihood of the flow-based
model reads

qθðxÞ ¼ qzðf−1θ ðxÞÞ
���� dfθdz

����−1 ¼ qzðzÞ
���� dfθdz

����−1: ð3Þ

Different coupling blocks satisfying the requirements
above have been proposed; these include nonlinear inde-
pendent component estimation (NICE) [36], real nonvo-
lume preserving (RealNVP) [37], and generative flow
(GLOW) [38]. We refer to [34,35] for an overview of
the existing coupling blocks and further technical details.

A. The forward- and reverse-KL divergences

During training, the normalizing flow is optimized by
density matching. It is common practice to minimize the so-
called KL divergences to this end although other types of
generalized divergences can be used [39–46]. As we will
discuss in this section, and in Sec. III, choosing an

appropriate divergence is crucial to ensure successful
training.
The so-called reverse-KL divergence reads

KLðqθjjpÞ ¼
Z

D½ϕ� qθðϕÞ ln
qθðϕÞ
pðϕÞ ð4Þ

where D½ϕ� represents the measure of a high-dimensional
integral. It is worth stressing that the KL divergence is not
symmetric hence

KLðqθjjpÞ ≠ KLðpjjqθÞ: ð5Þ

The right-hand side of Eq. (5) is usually referred to as the
forward-KL which can be written as an expectation value
with respect to the target density p

KLðpjjqθÞ ¼
Z

D½ϕ�pðϕÞ ln pðϕÞ
qθðϕÞ

: ð6Þ

These two choices for the divergence lead to different training
procedures, as we will discuss in sections Secs. II A 1 and
II A 2. We also note that the use of reverse and forward KL is
not mutually exclusive. In the context of quantum chemistry
[47], for instance, a combination of the two is typically
chosen.

1. Reverse-KL: Training by self-sampling

The reverse KL divergence is the standard choice for
training normalizing flows on the lattice. This is because
lattice field theory comes with an action S which is known
in closed form—in contrast to many other machine learning
applications.
The reverse KL divergence (4) can be approximated by a

Monte-Carlo estimate [2,24] as follows

KLðqθjjpÞ ¼ Eqθ

�
ln
qθðϕÞ
pðϕÞ

�

≈
1

N

XN
i¼1

ðSðϕiÞ þ ln qθðϕiÞÞ þ const: ð7Þ

Here, the field configurations are sampled from the flow,
i.e., ϕi ∼ qθ, and thus the training relies on self-sampling.
In particular, the partition function Z contributes by a shift
term that is constant with respect to the parameters of the
flow and thus can be ignored for optimization by gradient
descent.
Training using a reverse-KL is therefore very efficient

because it does not require samples from the target density
p due to self-sampling. Unfortunately, this comes at a cost
as this objective is known to be prone to mode-collapse.
The sketch on the left-hand side of Fig. 2 shows that a
reverse-KL-trained flow tends to focus its support on a
subset of the modes when the target density is multimodal.
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This undesirable behavior strongly affects the reverse KL
as the dropped modes are not probed in the self-sampling
process.
This mode-seeking nature of the reverse KL represents a

major drawback and limits the applicability of this frame-
work when the physical density to be learned has more than
one mode [3,4,29].

2. Forward-KL: Training by maximum likelihood

The forward KL divergences can be written as an
expectation value with respect to the target density p
and thus also be approximated by Monte-Carlo

KLðpjjqθÞ ¼ Ep

�
ln

pðϕÞ
qθðϕÞ

�

¼ −
1

N

XN
i¼1

log qθðϕiÞ þ const: ð8Þ

In contrast to the reverse KL divergence, the samples are
here to be drawn from the density p of the theory, i.e.,
ϕi ∼ p. As can be seen from the equation, the minimization
of the forward KL corresponds to maximizing the like-
lihood of the model. In the machine learning literature, the
forward training procedure is thus also known as maximum
likelihood training. Indeed, this has already been explored
in the context of lattice field theory [3].
This training procedure has the advantage that it is mode-

covering since all modes of the physical target density p
will necessarily be probed in training. It has however the
disadvantage that it requires samples from the target p. In
lattice applications, these are typically generated by a
Monte-Carlo algorithm, such as HMC. However, if these
configurations are available, one can directly measure
physical observables on them and there is therefore no
need to train a flow in the first place.

One may thus wonder if this training procedure is of any
use then. For thermodynamic observables however, such as
the free energy, one typically does not only require a single
Markov chain for the target density p but a whole series of
Markov chains along a discretized trajectory in the param-
eter space of the theory. As we will review in the next
section, a flow allows us to completely avoid the need for
these additional Markov chains. For the important class of
thermodynamic observables, forward KL training is thus
well justified and, as we will show, advisable.

III. RELIABLE ESTIMATORS IN PRESENCE
OF MODE-COLLAPSE

Combining deep generative models, e.g., normalizing
flows, with neural importance sampling (NIS) has been
shown to be a fruitful approach for estimating thermody-
namic observables in lattice field theory [2,4], statistical
mechanics [24], and chemistry [47–49]. This approach
enables direct estimation of the free energy as well as other
thermodynamic observables because flow-based sampling
allows for estimating those observables at arbitrary points
in the parameter space. Remarkably, this is in stark contrast
to standard Markov-Chain Monte-Carlo methods which
instead require nontrivial integration in the parameter space
[2]. More specifically, NIS allows the computation of a
direct Monte-Carlo estimate of the partition function which
is crucial for many thermodynamic observables [2] such as
entropy and free energy

F ¼ −T lnZ: ð9Þ

In the following, we revise two different estimators of the
free energy, namely the p-estimator and the q-estimator.
These allow estimation using samples drawn from the
target and the generative model respectively [4]. We stress
that these estimators are applicable for any generative
model that has a tractable likelihood, such as normalizing
flows [34], autoregressive neural networks [50], and
diffusion models [51].

A. Different estimators for the partition function

Given a generative model, irrespective of whether it has
been trained using reverse-KL or forward-KL, the resulting
sampler qθ is an approximation for the target density p.
Leveraging this, recent works proposed to estimate the
partition function of a physical system [2,24] directly at a
given point in parameter space. This approach samples lattice
configurations from the generative model qθ and estimates
the partition function Z with a so-called q-estimator with

Zq≡Eϕ∼qθ

�
e−SðϕÞ

qθðϕÞ
�
≈
1

N

XN
i¼1

e−SðϕiÞ

qθðϕiÞ
≡ Ẑq; ϕi∼qθ: ð10Þ

FIG. 2. Comparison between a reverse-KL (purple) and
forward-KL (orange) optimization approach—a sketch of nor-
malizing flows trained with both KL objectives as described in
Sec. II A. Training with a reverse KL shows a mode-seeking
behavior and is thus prone to mode-dropping. The forward-KL
has instead a mode-covering behavior which leads to larger
support over the sampling space.
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Alternatively, when samples from the target p are available,
i.e., using a thermalizedMarkov chain, one can estimate the
inverse partition function with the so-called p-estimator

Z−1
p ≡Eϕ∼p

�
qθðϕÞ
e−SðϕÞ

�
≈
1

N

XN
i¼1

qθðϕiÞ
e−SðϕiÞ≡ Ẑ−1

p ; ϕi∼p: ð11Þ

Combining these results with Eq. (9), one immediately
derives corresponding estimators for the free energy

F̂q ¼ −T logðẐqÞ ≈ Fq ¼ −T logðZqÞ; ð12Þ

F̂p ¼ T logðẐ−1
p Þ ≈ Fp ¼ T logðZ−1

p Þ: ð13Þ

Both the p-estimator and the q-estimator can be shown to be
asymptotically consistent under the assumption that the
supports of the flow qθ and the target density p match, i.e.,
suppðqθÞ ¼ suppðpÞ [24]. By construction, the learned
density, qθ, has full support over the entire domain of
the base distribution—at least from a purely theoretical
point of view. This implies suppðqθÞ ¼ suppðpÞ always
holds in theory. However, in practice it is not unlikely to
have regions of the domain where the density qθðϕÞ is
vanishingly small. Hence, for a finite number of samples, it
can effectively be zero. This leads to incorrect estimation of
expectation values of physical observables for any reason-
able number of samples N. Furthermore, ensuring that a
normalizing flow is invertible also in practice, i.e., to
numerical precision, can be very challenging [52].
To analyze the resulting implications for the estimation

process, it is useful to define the following generalized
notion of the support of the variational density
Definition 1. The effective support of the variational

density qθ relative to p is given by

gsuppp;ϵðqθÞ ¼ fϕ∈ suppðqθÞ; qθðϕÞ > ϵpðϕÞg; ð14Þ

for a given numerical threshold ϵ. The mode dropping set is
then given by

S ≔ suppðpÞngsuppp;ϵðqθÞ: ð15Þ

This definition is useful for the following reason: if the
flow is effectively mode dropping, i.e., the mode-dropping
set S is nonempty, the importance weighted estimator, with
a finite number of samples N, will miss a contribution from
the mass

R
S pðϕÞdϕ with approximately the probability

1 − ϵN
R
S pðϕÞdϕ. We note that defining the threshold for

the effective support relative to the target distribution is
pivotal. This is because the absolute definition qðϕÞ < ϵ
would have no meaning with regard to mode-dropping. As
an example, suppose we have an area of size Oð1=ϵÞ and
p ¼ q ≤ ϵ in that area. Then the corresponding area with
Oð1Þ probability mass would be considered “ϵ-mode-
dropped” even though q is an exact copy of p. We therefore

choose a definition for which mode-dropping only exists
when q approximately vanishes relative to p.
It is also useful to define the effective sampler distribution

q̃θðϕÞ¼
�
qθðϕÞ=ζ if ϕ∈ gsuppp;ϵðqθÞ;
0 otherwise;

ð16Þ

where ζ ¼ Rfsuppp;ϵ D½ϕ�qθðϕÞ ≤ 1 represents the multipli-

cative renormalization factor necessary to guarantee the
normalization of q̃θ, i.e., the probability mass out of the
effective support gsuppp;ϵðqθÞ is redistributed to the effective
support proportionally to the original density qθðϕÞ. With
this definition, we express the practical situation where the
importance weighted estimator for a physical observable O
typically misses the contribution from the mode-dropping
set S, as the assumption that the following approximation
holds:

Ô≡ 1

N

XN
i¼1

pðϕiÞ
qθðϕiÞ

OðϕiÞ≈Eϕ∼q̃θ

�
pðϕÞ
qθðϕÞ

OðϕÞ
�
≡ Ō; ð17Þ

where ϕi ∼ qθ, for the sample size large enough for
Monte Carlo sampling but not too large to assume that
ζN ≈ 1, i.e., the probability that all N samples drawn from
qθ lie within the effective support is close to one. Since qθ
has the full support, it holds that suppðq̃θÞ ¼ gsuppp;ϵðqθÞ.
Throughout the manuscript, we will indicate by a hat a
(finite sample) estimator, by a bar the expectation over the
effective distribution q̃—which corresponds to the average
over typical samples—and by an asterisk the expectation
over the original distribution q. Note that, under our
assumption of mode-dropping (17), i.e., suppðq̃θÞ ⊉
suppðqθÞ ¼ suppðpÞ, the typical values of the estimator
Ô ≈ Ō can be significantly different from the true expect-
ation value

O� ¼ Eϕ∼p½OðϕÞ�

¼ Eϕ∼qθ

�
pðϕÞ
qθðϕÞ

OðϕÞ
�

¼ lim
N→∞

1

N

XN
i¼1

pðϕiÞ
qθðϕiÞ

OðϕiÞ; where ϕi ∼ qθ: ð18Þ

A more detailed discussion of the effective relative
support is provided in Appendix A 2.
We also remark that gsuppqθ ;ϵðpÞ is also interesting to

consider, as suppðqθÞngsuppqθ ;ϵðpÞ ≠ ∅ implies effective
“fake” modes that are present in qθ but not in p.
The following theorem holds:
Theorem 2. Suppose the trained model is mode

dropping, i.e., the approximation (17) holds. Then the
q-estimator F̂q and the p-estimator F̂p for the free energy
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approximate F̄q and F̄p, respectively, being bounds on the
true free energy as

F̄q ≥ F ≥ F̄p:

Furthermore, if gsuppp;ϵðqθÞ ⊇ suppðpÞ it follows

F̄q ¼ F;

and similarly if gsuppqθ ;ϵðpÞ ⊇ suppðqθÞ

F̄p ¼ F:

We prove in Appendix A 3 that the estimators serve as
upper and lower bounds of the free energy.
In the presence of mode-collapse, the flow has smaller

effective support than the target, i.e.,

suppðpÞ ⊈ suppðq̃θÞ:

Crucially, this may also happen when the variational
density qθ is a very bad approximation of the true density
p, see bottom left of Fig. 5. While this is strictly not a
common manifestation of mode collapse, the following
discussion holds for such badly-trained models where the
overlap between the support of qθ and p is very small. In
this case, the q-estimator in Eq. (12) may thus lead to
(possibly strongly) biased results since it may not have full
effective support under the assumption that the approxi-
mation (17) holds. On the other hand, the q-estimator has
the advantage that it is typically more efficient to sample
directly from the flow while the p-estimator requires the
(possibly costly) generation of configurations by a Markov
Chain. Nevertheless, it is advisable to estimate the free
energy with both estimators if there is a risk of mode
mismatch and ensure that both lead to consistent results.
The phenomenon of mode-collapse is a widely known issue
in the field of density estimation [53–56]. In particular,
when deploying generative models for physical systems,
this becomes crucial as neglecting subsets of the modes of a
target density would inevitably lead to highly biased
estimation of physical quantities. Moreover, this may
sometimes not even be detected unless appropriate estima-
tors are used [4]. We want to stress that this problem is
not restricted to lattice field theories [3,4] but is also
found within other contexts, such as molecular systems
[30,47,57]. Having an estimator which quantifies the
amount of probability mass being missed by a variational
ansatz is therefore highly desirable for more reliable and
unbiased estimation of physical quantities.
When the trained model neglects some modes of the

target density, hence missing full effective support over the
target domain, estimates of physical observables may be
biased. A desirable property of our framework is to detect
such bias by providing reliable bounds on the error when

the model is mode-dropping. When qθ has full effective
support on the domain of p the expected value of the

importance weights wðϕÞ ¼ pðϕÞ
qθðϕÞ reads

w� ¼ Eqθ

�
pðϕÞ
qθðϕÞ

�
¼

Z
suppðqθÞ

qθðϕÞ
pðϕÞ
qθðϕÞ

D½ϕ�

¼
Z
suppðqθÞ

pðϕÞD½ϕ� ¼ 1: ð19Þ

This expectation value thus measures the degree to which
the support of the target density p is covered by the sampler
qθ. Statistically, in the limit of infinite measurements, w� is
always equal to one. However, if the sampler is mode-
dropping, hence the approximation (17) holds, then the
estimator w̄ will be in [0, 1] providing us with a natural
quantity to measure the sampler’s ability to probe the entire
support of the target density p.
We will now derive an estimator for this expectation

value. To this end, we rewrite the above expression as

w̄≡ 1

Z
Eϕ∼q̃θ

�
e−SðϕÞ

qθðϕÞ
�

ð20Þ

and we note that the expectation value is now taken with
respect to q̃θ. As shown in the last section, the partition
function Z can be approximated by the p-estimator (11)
when samples from the target density are available. Thus,
under the assumption that the approximation (17) holds, the
following Monte-Carlo estimate approximates Eq. (20), i.e.,

w̄ ≈
1

Ẑp

�
1

N

XN
i¼1

e−SðϕiÞ

qθðϕiÞ
�

¼
�
1

N

XN
j¼1

qθðϕjÞ
e−SðϕjÞ

��
1

N

XN
i¼1

e−SðϕiÞ

qθðϕiÞ
�
≡ ŵ; ð21Þ

whereϕi ∼ qθ andϕj ∼ p are sampled from the flow and the
target density p respectively.

B. Bounding the bias of physical observables

Following [2], given a physical observableO, our goal is
to compute the importance weighted estimator Ô, defined
in the left-hand side of (17), which approximates the
expectation value Ō over the effective sampler distribution
(16). This estimator is not necessarily unbiased to the true
value (18), if the model qθ is affected by mode-collapse,
i.e., suppðpÞ ⊈ suppðq̃θÞ for the approximation (17) to
hold. Similarly, the bias of the estimator evaluated over a
finite number of trials should approximate

jŌ −O�j ¼
����
Z

ð1 − 1suppðq̃θÞðϕÞÞOðϕÞpðϕÞD½ϕ�
����; ð22Þ
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i.e., the bias arises due to the insufficient effective support
of the sampler.

IV. THE MODE-DROPPING ESTIMATOR

In the following, we aim to derive a bound on this bias.
In the process, we will also obtain a natural measure for
the degree of mode-collapse. To this end, we foliate the
sampling space by disjunct sets

Δn ≔ fϕjeD∨þ1−n ≥ e−SðϕÞ > eD∨−ng ð23Þ

for n∈N and D∨ ∈R≥0. We refer to Fig. 3 for a visual
illustration of the foliation. For fixed n∈N, we can define
the following weights

αn ¼
Z
Δn

ð1 − 1suppðq̃θÞðϕÞÞpðϕÞD½ϕ�

¼ 1

Z

�Z
Δn

e−SðϕÞD½ϕ� −
Z
Δn∩suppðq̃θÞ

e−SðϕÞD½ϕ�
�
: ð24Þ

Leveraging these definitions, we derive a bound on the bias
in Appendix A 5 which is summarized in the following
theorem.

Theorem 3. Let the action S of the theory and the
observable O be polynomially bounded, i.e.,

C∨jjϕjjα∨ −D∨ ≤ SðϕÞ < C∧jjϕjjα∧ þD∧ ð25Þ

for some C∨;∧; D∨;∧; α∨;∧ ∈R≥0 and

jOðϕÞj ≤ cjjϕjjα þ d ð26Þ

for some c; α; d∈R≥0. The bias, i.e., the difference
between the expectation value Ō and the true value O�,
then satisfies

jŌ −O�j ≤
X
n∈N

sup
ϕ∈Δn

jOðϕÞj · αn: ð27Þ

The bias is therefore bounded by a weighted sum over
the αn. The weighting of each summand depends on the
observable O of interest. We note that the present dis-
cussion is only relevant for noncompact variables. Indeed,
continuous functions living on compact manifolds M are
integrable, and therefore no additional care is required to
handle indefinite forms of the type 0 ·∞. In particular,
it follows that for a compact variable O the bound is
straightforward

jŌ −O�j ≤ sup
ϕ∈M

jOðϕÞj · w̄: ð28Þ

We note that many physical observables are simple
powers of fields, i.e., OðϕÞ ¼ jjϕjjk for k∈N. It can be
shown that the foliation (23) along with the polynomial
bound of the action S implies that

jjϕjj < un; ð29Þ

where we have defined un ¼ ð n
C∨Þ

1
α∨ . We refer to

Appendix A 4 for more details. For such observables,
the bias can thus be bounded by

jŌ −O�j ≤
X
n∈N

uknαn: ð30Þ

The theorem also naturally relates to the quantity w̄
introduced in the last section which quantifies the degree
of mode-collapse. In order to provide a single number for
the degree of the mode-collapse of the sampler, it is natural
to choose a uniform, i.e., observable agnostic, weighing. It
then follows from the definition of the αn, see (24), that this
weighting measures the mismatch in support between the
sampler and the target density

X
n∈N

αn ¼
Z

ð1 − 1suppðq̃θÞðϕÞÞpðϕÞD½ϕ� ¼ 1 − w̄ ð31Þ

FIG. 3. Foliation—(a) visualization of the foliation according to
Eq. (23) showing Δ1, Δ2, and Δ3 explicitly. (b) Field configu-
rations are distributed into buckets. The labels nb and bw thereof
represent the bucket index and the width of each bucket,
respectively.
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and is thus directly related to the mode-dropping estimator
w̄ derived in the last section.

V. NUMERICAL EXPERIMENTS

We evaluate our proposed methods to detect and mitigate
mode-collapse using the two-dimensional scalar ϕ4-theory
with action

S½ϕ� ¼
X
x∈Λ

− 2κ
X2
μ̂¼1

ϕðxÞϕðxþ μ̂Þ þ ð1 − 2λÞϕðxÞ2

þ λϕðxÞ4; ð32Þ
where λ is the bare coupling while κ is the hopping
parameter. We refer to [2] for more details on this hopping
parameterization of the action. Throughout all our experi-
ments we keep the bare coupling fixed at λ ¼ 0.022 and
vary κ such that the theory crosses the phase transition due
to the spontaneous breaking of its Z2 symmetry, i.e.,
ϕ → −ϕ. As the hopping parameter κ increases, sponta-
neous magnetization is observed. This is illustrated in Fig. 4
for which the hopping parameter takes values through the
critical region around κc ≈ 0.275. The curves show the
density (top) and log density (bottom) of the normalized
magnetization with different colors referring to different
values of the hopping parameter κ. Spontaneous symmetry
breaking is observed as the distribution of the magnetization
changes from awider single-mode to a bimodal density with
a suppressed tunneling probability between the two modes.
This suppression is accentuated as the value of κ increases.

A. Free energy estimators

Our first numerical experiment analyzes the performance
of two normalizing flows trained with both objectives
described in Sec. II A. We refer to those flows as the

forward-KL flow and the reverse-KL flow if they were
trained with maximum likelihood or self-sampling respec-
tively. We train for a hopping parameter κ ¼ 0.5 such that
the theory is in its broken phase, see Fig. 5. For maximum
likelihood training, we use 50M samples generated by an
overrelaxed HMC. Following [2], we choose an architec-
ture for the (reverse-KL) normalizing flows such that those
models are manifestly invariant under Z2 symmetry (blue).
In order to highlight the effects of mode-collapse, we
also train reverse-KL flows without the Z2 inductive bias
(green) thus expecting these models to be prone to mode-
collapse.
The reference estimates for the true free energy were

obtained via HMC simulations. Similarly to the approach
followed in [2] such estimates are obtained by discretizing
the hopping parameter space so that free energy differences
can be estimated via HMC along the trajectory. Those
contributions are added, integrating such trajectory up to
the desired point at which the free energy needs to be
estimated. Further technical details on how deep generative
models were trained and HMC reference values obtained,
can be found in Appendix A 6.
As can be seen on the left-hand side of Fig. 5, the

forward-KL flow (orange) very closely reproduces the
reference distribution by HMC (pink). For the reverse-
KL trained flows, we see that for smaller systems (top row
in Fig. 5), leveraging the Z2 inductive bias leads to a good
approximation (blue) while the non-Z2 equivariant flow
(green) fails to capture both modes. For larger systems,
instead, both Z2 equivariant, and nonequivariant, flows are
not able to capture most of the support of the target density
p, thereby resulting in poor approximations.
On the right-hand side of Fig. 5, we estimate the free

energy density of the system using different flows. We use
the same color scheme as on the left-hand side and measure
the free energy using both the p-estimator (circle) Eq. (13)
and the q-estimator (square) Eq. (12) of the free energy.
Our numerical results indeed agree with the theoretical
prediction of theorem 2. Specifically, with the model
trained with maximum likelihood, both estimators lead
to compatible predictions with the HMC estimator. This is
consistent with the left-hand side of the plot which suggests
that no mode-collapse took place for this model.
For the reverse-KL flow, however, such an agreement

may not be expected as the left-hand side of Fig. 5 shows a
mismatch in the support. The right-hand side plots show
that the non-Z2 equivariant flow (green) in the Λ ¼ 16 × 8
(top row) case is dropping the left-hand mode while its
Z2-equivariant counterpart (blue) covers both modes.
Nonetheless, as the dimensionality increases the density
estimation task becomes increasingly more challenging
thus preventing the Z2-equivariant reverse-KL flows to
train effectively forΛ ¼ 64 × 8. As a result, we find that the
q-estimator overestimates the true value F for both lattice
sizes (top and bottom rows), while for the Λ ¼ 64 × 8

FIG. 4. Spontaneous symmetry breaking—spontaneous sym-
metry breaking for the ϕ4 as a function of the hopping parameter
using the action in Eq. (32). The top and bottom figures show a
histogram of the magnetization—self-normalized by its absolute
value—in both linear and log-scale respectively. The self-
normalization makes the modes centered around þ1 and −1.
From those histograms we thus observe that the probability
between the modes reduces as the hopping parameter κ increases.
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case the p-estimator substantially underestimates F,
i.e., F̂qθ ≥ F ≥ F̂p, as predicted by theorem 2. This latter
situation suggests that the reverse-KL flows (green and
blue) are limited in approximating of the target density
resulting in very different effective supports. While strictly
speaking this is not usually referred to as mode-collapse, it
can be understood through the same lenses.
These experiments thus illustrate that: (a) a mode-

covering objective such as the forward-KL is more resilient
when the target density is multimodal and shows sparse
effective support, and (b) when the effective support does
not match, both p- and q-estimators of the free energy from

Sec. III give upper and lower bound respectively.
Moreover, we note that training using a forward KL
objective does not worsen the performance compared to
using a reverse KL. Practically, if the variational distribu-
tion presents some “fake” modes, ϕ s.t. qθðϕÞ=pðϕÞ ≫ 1,
field configurations sampled in these regions will always be
exponentially suppressed in the reweighting phase. We
emphasize once again that a significant drawback of
training using the pure form of forward KL is the necessity
for training samples. Although this limitation applies in
general, it does not pose a problem for our specific task of
estimating thermodynamic observables.

FIG. 5. Histogram of magnetization (left) and free energy estimates (right) for flow-based models trained with forward- and reverse
KL at κ ¼ 0.5 for Λ ¼ 16 × 8 (top) and Λ ¼ 64 × 8 (bottom)—The left-hand side shows histograms of the magnetization for
configurations sampled from a forward-KL trained normalizing flow (orange), a Z2 equivariant reverse-KL flow (purple) a simple non-
Z2-equivariant reverse-KL flow (green) and an overrelaxed HMC (pink). The same choice of colors applies to the right hand side plots.
Models were used to sample configurations at κ ¼ 0.5, i.e., well in the broken phase. Dashed black lines are the expected values for the
absolute magnetization (and its negative value) using HMC. The right-hand side plot shows estimates of free energy densities using the
estimators introduced in Sec. III for both flow models. Their estimates are computed and then compared to the reference HMC baseline
(denoted by the solid black line while the pink surroundings show the standard deviation) and following the method discussed in [2] and
Appendix A 6. The q- and the p-estimators for the free energy are shown using different markers. Error bars—based on the standard
deviation—for the flow-based estimate of the free energy density are often not visible as they tend to be several orders of magnitudes
smaller than the plot scale. For the Λ ¼ 64 × 8 case the mismatch between the reverse-KL flows and the HMC histograms, shown in the
left-hand side plot, is reflected in highly biased estimates (dark blue markers).
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We repeated this analysis for a number of values of the
hopping parameter κ. The results are summarized in Fig. 6
for the larger lattice with Λ ¼ 64 × 8. We evaluate the gap
between the neural importance sampling (NIS) estimate F̂
and the HMC reference normalized by the total standard
error. Namely, if the normalized gap is within the range
½−1;þ1�, both estimators are compatible (see inset in the
top plot of Fig. 6). Dashed curves connect q-estimates (12),
while solid curves connect p-estimates (13), of the free
energy at different values of κ. The results obtained with
Z2-equivariant reverse-KL and forward-KL flows are
shown in blue and orange respectively. The inset shows
close agreement of both estimators and both flow models
for κ∈ f0.2; 0.3g. However, deep in the broken phase, e.g.,
κ ≥ 0.4, the two modes of the target distribution start to lay
further apart resulting in a failure of the mode-seeking
objective, i.e., the reverse-KL, to properly capture the target

density, see also bottom left plot of Fig. 5. As a result, the
probability mass transport induced by the normalizing flow
fails to reproduce the correct target distribution p, leading
to a larger gap between the p- and q-estimators. When
using the forward-KL trained flow instead, the support of
the sampler is closely matching the support of the target
hence making free energy compatible with the HMC
reference even at the higher values of the hopping param-
eter κ, when Eq. (17) holds. This effect is shown in the
inset where there is a good agreement between both
estimators of the free energy. This observation suggests
that the mode-covering nature of the forward-KL is crucial
to ensure that the flow leads to unbiased estimates of
physical observables.
In Fig. 6, it is also shown that our proposed mode-

dropping estimator (21) correlates well with the observed
gap in the free energy estimation. Lastly, we use our
estimator w̄ to evaluate the support-mismatch of forward
and reverse flow models trained at several κ values and
different lattice sizes as shown in Fig. 7. The top and bottom
plots refer to lattices of size Λ ¼ 16 × 8 and Λ ¼ 64 × 8
respectively. These results demonstrate that the quality of the

FIG. 6. Analysis of the free energy estimates for forward and
reverse KL flows for a 64 × 8 lattice and different hopping
parameters κ—colors denote flow models trained with different
objectives, namely the forward-KL (orange) and reverse-KL
(purple). Markers refer to the two different estimators of the
free energy introduced in Eqs. (12) and (13). Specifically, plus
and square are used respectively. Every point in the inset shows
that flow and HMC estimates are compatible, i.e., the gap is
within the statistical uncertainty. The lower plot relates the results
from above to the mode-dropping estimator Eq. (21). This
demonstrates that when the flow is a good approximator for
p, the estimator is close to one. When modes of the distribution
are missed, e.g., qθ is a bad approximator of p, the estimator of w̄
quickly decays to zero.

FIG. 7. Mode dropping evaluation as a function of the hopping
parameter κ for fixed λ and two different lattice sizes—mode
dropping estimator for different values of the hopping parameter
and different lattice sizes. For each setup, three normalizing flows
were trained with reverse- and forward-KL objectives as de-
scribed in Sec. II A. The former models are again trained with
(orange) and without (green) built-in Z2 equivariance. The upper
and lower plots show the mode-dropping estimator Eq. (21) for
lattices Λ ¼ 16 × 8 and Λ ¼ 64 × 8, respectively. Unsurpris-
ingly, we observe that mode-collapse gets more severe as the
lattice size increases. This is reflected in a stronger decay toward
zero of the estimator for larger volumes.
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sampler very quickly deteriorates in the broken phase due to
mode-collapse for the model trained by self-sampling. This
is not the case for models trained with the forward KL.
Indeed, as shown in Fig. 7, these models scale significantly
better in the volume of the system. Furthermore, the non-Z2

equivariant reverse-KL flow (green), is manifestly mode
dropping forΛ ¼ 16 × 8, see Fig. 5, with values of w̄ around
0.5 for values 0.4 ≤ κ ≤ 0.7. This agrees with the left-hand
side of Fig. 5where only half of the support is covered by the
learned variational density in the top row.

VI. OUTLOOK AND SUMMARY

Mode-collapse presents a significant limitation to flow-
based sampling on the lattice because it may lead to
inaccurate approximations of the target density, either
partially or completely. Intuitively, it can be understood
as being in a loose relation to the tunneling problem in local
MCMC algorithms. Specifically, the algorithmic chal-
lenges in sampling from multimodal distributions are
shifted from the sampling to the training phase for normal-
izing flows. In this work, we have studied this important
limitation of flow-based sampling in great detail. We argue
that in the important case of thermodynamic observables,
there are practical and theoretically grounded mitigation
strategies available. Specifically, the flow can be trained
using the forward KL divergence and the free energy can be
evaluated with two estimators that bound the true value.
Furthermore, we have analyzed mode-mismatch theoreti-
cally and derived a bound on its induced bias as well as a
quantitative measure for its severity. Normalizing flows are
currently only limited to toy models. Encouragingly, we
also observed as a side-product of our analysis, that the
forward KL objective leads to better scaling in the system
size. This observation may be worthwhile to be studied
further as part of future work.
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APPENDIX: SUPPLEMENTAL MATERIAL

1. Forward-KL training

Training a normalizing flow with forward-KL in the
context of lattice field theory requires pre-generated sam-
ples at a given point in parameter space. Before training a
flow model, one should instantiate a thermalized Markov
chain at a fixed value of the coupling parameters and
generate a sufficient number of Monte-Carlo configurations
which are then used to train the flow. A pseudo-code for
this approach is presented in algorithm 1. We note that
practically this approach may not always be feasible. For
example, the number of pre-generated configurations
needed for training a flow to an acceptable accuracy
increases as the size of the lattice grows. For instance,
training a flow for a 64 × 8 lattice in the context of the ϕ4

field theory, in the broken phase, requires already more
than fifty million samples. This problem, therefore, limits
the practical deployment of forward-KL training schemes
at larger scales. Moreover, another limitation of such an
approach is that generating samples with HMC may not
always be possible. Indeed, in the proximity of a phase
transition, long-range autocorrelation will prevent to sam-
ples a necessary large amount of uncorrelated samples in
time. One would therefore need to be very careful in
generating a suitable dataset of HMC configurations to
avoid incorporating any additional unwanted bias when
training the flow.

2. Relative effective support

Let Bðϕ; rÞ be the open ball centered at ϕ with radius r.
A point ϕ is called ϵ-dropped if and only if

lim sup
r→0

R
Bðϕ;rÞ qθðϕ0Þdϕ0R
Bðϕ;rÞ pðϕ0Þdϕ0 < ϵ: ðA1Þ

By the Lebesgue differentiation theorem, this implies that
qθðϕÞ ≤ ϵpðϕÞ holds for almost every ϵ-dropped ϕ, and if
p and qθ are continuous, it actually means qθðϕÞ ≤ ϵpðϕÞ.
We recall the definition of effective relative support
Eq. (14)

gsuppp;ϵðqθÞ ≔ fϕ∈ suppðqθÞ; ϕ not ϵ-droppedg: ðA2Þ

Setting S ≔ suppðpÞngsuppp;ϵðqθÞ and assuming S ≠ ∅
means that the importance weighted estimator with N
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samples lacks a contribution from the mass
R
S pðϕÞdϕwith

probability�
1 −

Z
S
qθðϕÞdϕ

�
N
>

�
1 − ϵ

Z
S
pðϕÞdϕ

�
N

≈ 1 − ϵN
Z
S
pðϕÞdϕ: ðA3Þ

3. Proof of Theorem 2

Theorem 2. Suppose the trained model is mode
dropping, i.e., the approximation (17) holds. Then the
q-estimator F̂q and the p-estimator F̂p for the free energy
approximate F̄q and F̄p, respectively, being bounds on the
true free energy as

F̄q ≥ F ≥ F̄p:

Furthermore, if gsuppp;ϵðqθÞ ⊇ suppðpÞ it follows

F̄q ¼ F;

and similarly if gsuppqθ ;ϵðpÞ ⊇ suppðqθÞ

F̄p ¼ F:

Proof. From the definition of the free energy F ¼
−T ln Z we first note that F̄q ≥ F is equivalent to
Z̄qθ ≤ Z. Using the fact that suppðe−SðϕÞÞ ¼ suppðpÞ, we
obtain [58]

Z̄qθ ≡Eq̃θ ½w̃ðϕÞ�

¼
Z
fsuppðqθÞD½ϕ�qθðϕÞ

e−SðϕÞ

qθðϕÞ

¼
Z
fsuppðqθÞD½ϕ�e−SðϕÞ

¼
Z
fsuppðqθÞ∩suppðpÞD½ϕ�e−SðϕÞ ≤

Z
suppðpÞ

D½ϕ�e−SðϕÞ ¼Z;

where the last inequality holds because e−SðϕÞ ≥ 0. Thus,
we conclude F̄q ≥ F with the corollary that gsuppðqθÞ ⊇
suppðpÞ implies equality F̄q ¼ F.

Algorithm 1. To train an NF with forward-KL in the context of lattice field theory we need to generate training
configurations from a thermalized HMC chain. This HMC pre-sampling process is made more efficient by running
Cmax independent chains in parallel so that the runtime to sample the entire datasetΦ is constant in the total number
of samples B. The total number of samples will therefore be B ¼ nCmax. The sampling is done between line 2 and
line 5 in the algorithm below. Once the dataset is sampled and stored on disk, one starts training up to Tmax iterations.
Per iteration, one draws batches ofm configurations fromΦ in line 7 and uses them to evaluate the expectation value
of the log-density of qθ and compute the gradient of the forward KL objective in line 8 and line 9 respectively. The
model weights are then updated and the learned bijection fθ along with the variational density qθ are returned by the
algorithm at the end of its training steps.

Input:
• prior density, e.g., qz ∼N ð0; IÞ
• parametric model with parameters θ
• parametric action Sðϕ; κ; λÞ with fixed coupling parameters λ and κ
• empty tensor for storing a batch of B configurations Φ∈RB×NS×NT

Results:
• learned bijective transformation fθ s.t. ϕi ¼ fθðziÞ
• exact likelihood function qθ

1: begin
/* Generate training samples from HMC */

2: for c in f1;…; Cmaxg do
3: ϕ ¼ sampleHMC (λ, κ); // sample configurations ϕ∈Rn×NS×NT

4: Φ ¼ concatenate (Φ, ϕ); // concatenate configurations
5: end

/* Flow training using the generated dataset Φ */
6: for t in 1;…; Tmax do

/* Iterate over dataset to collect batches of configurations */
7: draw samples ϕ ¼ fϕigmi¼1 from Φ where ϕi ∈RNS×NT ∀ i∈ f1;…; mg
8: use ϕ to evaluate 1

m

P
m
i¼1 ln qθðϕiÞ;

9: Δθ ¼ argmin
θ

Ep½ln qθðϕÞ�;
10: update fθ with θ ← θ þ ηΔθ;
11: end
12: end
13: return fθ, qθ
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Similarly,

Z̄−1
p ≡ Ep̃

�
qθðϕÞ
e−SðϕÞ

�

¼ 1

Z

Z
fsuppðpÞD½ϕ�e−SðϕÞ qθðϕÞ

e−SðϕÞ

¼ 1

Z

Z
fsuppðpÞD½ϕ�qθðϕÞ

¼ 1

Z

Z
fsuppðpÞ∩suppðqθÞD½ϕ�qθðϕÞ|fflffl{zfflffl}

≥0

≤
1

Z

Z
suppðqθÞ

D½ϕ�qθðϕÞ

¼ Z−1

shows F̄p ≤ F, in general, and F̄p ¼ F given gsuppðpÞ ⊇
suppðqθÞ.
Hence, by combining the inequalities we can conclude

F̄q ≥ F ≥ F̄p:
▪

4. Bound on the configuration

Let us assume SðϕÞ to be polynomial bounded

C∨jjϕjjα∨ −D∨ ≤ SðϕÞ < C∧jjϕjjα∧ þD∧ ðA4Þ

with non negative coefficients C∨;C∧;D∨;D∧;α∨;α∧∈R≥0.
The left-hand and right-hand sides represent the lower and
the upper bounds on the action S. One needs to find
appropriate coefficients C∨;∧; α∨;∧; D∨;∧ such that the
inequalities are satisfied. We now do a foliation of the
sampling space

Δn ≔ fϕjeðD∨þ1−nÞ ≥ e−SðϕÞ > eðD∨−nÞg ðA5Þ

which can be seen as a re-distribution of the lattice
configurations ϕ into infinitely many buckets labeled by
the index n. Combining Eqs. (A4) and (A5) one can rewrite
a condition on the norm of ϕ [59]. For a configuration
ϕ∈Δn

C∨jjϕjjα∨ −D∨ ≤ SðϕÞ < −D∨ þ n: ðA6Þ

This implies

C∨jjϕjjα∨ < n ⇒ jjϕjj <
�

n
C∨

� 1
α∨ ðA7Þ

for n > 0. On the other side, it follows that

C∧jjϕjjα∧ þD∧ ≥ SðϕÞ ≥ −D∨ − 1þ n; ðA8Þ

which implies that

C∧jjϕjjα∧ þD∧ ≥ −D∨ − 1þ n

⇒ jjϕjj ≥
�
−D∨ −D∧ − 1þ n

C∧

� 1
α∧ ðA9Þ

for C∧ > 0, n > 0. Combining Eqs. (A7) and (A9) we
obtain the following bounds on the norm of the lattice
configuration

�
−D∨ −D∧ − 1þ n

C∧

� 1
α∧

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ln

≤ jjϕjj <
�

n
C∨

� 1
α∨

|fflfflfflffl{zfflfflfflffl}
un

: ðA10Þ

In particular, this can be shown to imply a bound on the
volume of Δn, e.g., making the volume finite

volðΔnÞ ≤
Z
ln≤jjϕjj<un

dϕ ¼ π
N
2

ΓðN
2
þ 1Þ · ðu

N
n − lNn Þ; ðA11Þ

where we used the volume of the N-ball,

π
N
2

ΓðN
2
þ 1Þ · r

N:

5. Proof of Theorem 3

We now leverage the result from Appendix A 4 to derive
a bound on the bias for the general observable O whengsuppðqθÞ ⊂ suppðpÞ and therefore the importance sam-
pling estimator may not be unbiased when Eq. (17)
holds true.
Theorem. Let the action S of the theory and the

observable O be polynomially bounded, i.e.,

C∨jjϕjjα∨ −D∨ ≤ SðϕÞ < C∧jjϕjjα∧ þD∧ ðA12Þ

for C∨;∧; D∨;∧;α∨;∧ ∈R≥0 and

jOðϕÞj ≤ cjjϕjjα þ d ðA13Þ

for c; α; d∈R≥0. Then, the bias between the estimated
observable Ô and the true value O� is given by

jŌ −O�j ≤
X
n∈N

sup
ϕ∈Δn

jOðϕÞj · αn; ðA14Þ

where Ō ¼ Eϕ∼qθ ½ÔðϕÞ�.
Proof. Let us assume the generic observable O to be

polynomially bounded

jOðϕÞj ≤ cjjϕjjα þ d: ðA15Þ
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When gsuppðqθÞ⊆suppðpÞ, Eq. (A14) can be bounded as

jŌ −O�j ¼
����
Z
fsuppðqθÞD½ϕ�OðϕÞ pðϕÞ

qθðϕÞ
qθðϕÞ −

Z
D½ϕ�OðϕÞpðϕÞ

���� ðA16Þ

¼
����
Z

ð1 − 1 ˜suppðqθÞðϕÞÞOðϕÞpðϕÞD½ϕ�
���� ðA17Þ

≤
X
n∈N

����
Z
Δn

OðϕÞð1 − 1fsuppðqθÞðϕÞÞpðϕÞD½ϕ�
���� ðA18Þ

≤
X
n∈N

sup
ϕ∈Δn

jOðϕÞj ·
Z
Δn

ð1 − 1fsuppðqθÞðϕÞÞpðϕÞD½ϕ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ αn

; ðA19Þ

where αn is the coefficient defined for each bucket, i.e.,

αn¼
Z
Δn

ð1−1fsuppðqθÞðϕÞÞpðϕÞD½ϕ�

¼ 1

Z

Z
Δn

ð1−1fsuppðqθÞðϕÞÞe−SðϕÞD½ϕ�

¼ 1

Z

�Z
Δn

e−SðϕÞD½ϕ�−
Z
Δn∩fsuppðqθÞe−SðϕÞD½ϕ�

�
; ðA20Þ

such that the following relation holds

X
n∈N

αn ¼
Z

ð1 − 1fsuppðqθÞðϕÞÞpðϕÞD½ϕ� ¼ 1 − w̄: ðA21Þ

One, therefore, concludes that the bias is bounded by the
following series

jŌ −O�j ≤
X
n∈N

sup
ϕ∈Δn

jOðϕÞj · αn: ðA22Þ

In order to obtain convergence of this series, we observe
that polynomial boundedness of the observable implies

sup
ϕ∈Δn

jOðϕÞj ≤ cuαn þ d;

i.e., supϕ∈Δn
jOðϕÞj grows polynomially in n. Similarly,

from Eq. (A20), it follows

αn ≤
1

Z
volðΔnÞeD∨þ1−n; ðA23Þ

showing that αn decays exponentially in n. Thus,
supϕ∈Δn

jOðϕÞj · αn decays exponentially in n. This implies
convergence of the series in the right-hand side of Eq. (A22).
It is important to note that each αn is weighted by the

maximum of the observable on the corresponding volume

Δn which makes the bias inherently dependent on the
observable while the αn coefficients are universal and
represent the amount of mode dropping per bucket. ▪
As an explicit example, let us consider S∶R → R;

SðϕÞ ¼ ϕ2 and the observable ϕ3. This means that the
true value of the observable is

O� ¼ Eϕ∼p½OðϕÞ� ¼ 1

Z

Z
∞

−∞
D½ϕ�ϕ3e−ϕ

2 ¼ 0: ðA24Þ

If we assume a mode dropping model q, with q¼ 2p ·1R≥0
,

then

jŌ −O�j ¼ Ō ¼ 2ffiffiffi
π

p
Z

∞

0

D½ϕ�ϕ3e−ϕ
2 ¼ 1

2
:

For the definition of the Δn, we can choose D∨ ¼ 1 and
thus Δn ¼ ½− ffiffiffi

n
p

;−
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p � ∪ ½ ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
;

ffiffiffi
n

p � and obtain
αn ¼ 0.5ðerfð ffiffiffi

n
p Þ − erfð ffiffiffiffiffiffiffiffiffiffiffi

n − 1
p ÞÞ. We note that since

un ¼ supfjϕj;ϕ∈Δng ¼ ffiffiffi
n

p
and the observable is ϕ3 it

follows that

supfjOðϕÞj;ϕ∈Δng ≤ ð ffiffiffi
n

p Þ3:

Hence, the bias is within the bound given by the theorem

1

2
¼ jŌ −O�j ≤

X
n∈N

n3=2αn ≈ 0.73:

6. Details on the numerical experiments

In the following, we summarize the details and setup
used to perform the training of both forward- and reverse-
KL normalizing flows as well as to estimate the HMC
reference values. For our experiments, we focused on the
action SðϕÞ from Eq. (32) as a function of κ while keeping
the coupling λ ¼ 0.022 fixed throughout the analysis.
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a. HMC sampling

For estimating the HMC reference values of the free
energy density reported in Sec. V, we followed the same
approach as in [2]. The idea is to discretize the trajectory in
the κ-space (hopping parameter) into a sequence of finite
steps where free energy differences can be calculated by
running an HMC. The target free energy at an arbitrary
point κ� is then obtained by summing up all the free energy
differences from κ ¼ 0 to κ ¼ κ�. We note that the higher
the kappa values, the more steps one needs to make in order
to discretize the trajectory up to the target point in
parameter space. It follows that the uncertainty on the
estimates also grows when κ� increases as more terms are
combined to obtain the free energy at the desired κ�.
Specifically, in our experiments, we chose a regular step-
size between two subsequent κ values in the trajectory to be
Δκ ¼ 0.01. Such step-size is used to discretize the trajec-
tory starting from κ ¼ 0.0 all the way up to the target. For
instance, measuring the free energy density at κ� ¼ 0.3
would therefore require thirty steps, hence 30 independent
HMC chains. Each of these chains is initialized around the
vacuum expectation value (vev), has an overrelaxation
every 10 steps, and a total of 10k thermalization steps,
i.e., discarded configuration updates, followed by 500k
sampling steps. Those configurations, from the equilibrium
distribution, are used to estimate the free energy difference
at a single given point of the trajectory. The total number of
HMC samples needed to estimate the free energy at an
arbitrary point thus depends on κ�. For instance, referring to
the previous example, 30 chains with 500k steps each add
up to 15M HMC samples.

b. Reverse-KL flow

To train the reverse-KL normalizing flows we followed
the same strategy presented in [2] with the same setup of
hyperparameters. We used a batch size of 8k samples and a
learning rate update according to the ReduceLROnPlateau
scheduler of PyTorch with an initial learning rate of
5 × 10−4 and patience of 3k steps. The flows have the
same number of coupling blocks and the same type of
checkerboard partitioning discussed in [2]. Models were

trained for 700k steps in total and the last saved checkpoint
is used for sampling. Every reverse-KL model was trained
on two GPUs (in parallel), either P100 or A100 NVIDIA
devices. Depending on the lattice volume and the model
type the training took up to 50 hrs of wall time.

c. Forward-KL flow

Training a forward-KL flow requires a different pro-
cedure which was outlined in Appendix A 1. For every flow
model, we used 50M pre-sampled HMC configurations as
input data. These were sampled in batches of 100 inde-
pendent HMC chains each of which had 10k equilibration
(discarded) and 500k sampling (stored) steps. The stored
configurations from each chain in the batch were concat-
enated to generate the full training set.
At the stage of training, the 50M configurations are

loaded in batches of 8k samples per iteration (training step).
When the entire dataset is processed once, the full set of
configurations is reshuffled and reused (as it is standard
practice in deep learning) until the desired number of
training iterations is reached. Again, forward-KL models
were trained for 700k steps on two GPUs (in parallel),
either P100 or A100 NVIDIA devices. Depending on the
lattice volume and the model type the training took up to
55 hrs of wall time.

d. Flow sampling

For sampling configurations from both forward- and
reverse-KL normalizing flows we proceed as follows. In
order to have a fair comparisonwithHMConewould need to
sample as many configurations as those needed to integrate
the trajectory in the hoppingparameter space, as discussed in
Appendix 6 a.However, for our flow estimates,we took only
1M configurations and used the estimators for mean and
variance introduced in [2,24] and proposed in Sec. III A.
Though 1M is in general a lower bound on the total amount
of configurations used to compute HMC estimates, we
empirically observed this was sufficient to obtain estimates
with errors several orders of magnitude smaller than HMC.
Therefore, we took this as a sufficient number of samples for
comparing the two sampling approaches.
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