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The difference between fixed-order (FO) and contour-improved (CI) formulations of QCD perturbation
theory limits the precision of the strong coupling determined from the hadronic decay of the τ lepton.
Recently, several attempts to understand the mathematical origin of the difference and to solve it by
subtracting the dominant infrared renormalon divergence have been made. Motivated by these studies, we
review in this paper an improved perturbative QCD expansion, defined some time ago, which also exploits
the renormalons by means of a suitable conformal mapping of the Borel plane. In particular, we revisit the
convergence of the new expansion by completing the proof presented in a previous paper and showing that
the domain of convergence is larger than stated before. We also check the validity of the convergence
conditions for the Adler function and the CI and FO expansions of the τ hadronic spectral function
moments, and compare the approach based on conformal mapping with recent solutions to the
FO and CI QCD perturbation theory discrepancy proposed in the literature.
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I. INTRODUCTION

The hadronic decay of the τ lepton is known to provide
an important method of extracting the strong coupling αs at
a relatively low scale, mτ ¼ 1.777 GeV. However, there
is a significant difference between results obtained using
the so-called fixed-order (FOPT) and contour-improved
(CIPT) QCD perturbation theory, such that analyses based
on CIPT generally arrive at larger values of αsðm2

τÞ than
those based on FOPT [1]. The inconsistency between these
two representations of the QCD corrections limits the
precision to which the strong coupling can be determined
from this process.
A large number of works investigated this problem

during the last decades [2–17]. An important point that
cannot be overlooked in these analyses is the fact, first
pointed out by Dyson [18], that the perturbative expansions
in quantum field theories are divergent series, which can be
at most asymptotic to the expanded functions. In QCD, the
expansions of the Green functions are not only divergent
but also Borel nonsummable [19], because some of the
singularities in the Borel plane, the so-called infrared
renormalons, prevent the unambiguous reconstruction of
the original function by means of the Laplace-Borel

integral [20]. As a consequence, nonperturbative terms
must be added to the perturbative series in order to obtain a
definite result.
In a series of recent papers [11–17], the difference

between FO and CI expansions of the spectral moments
in τ decay was shown to be due to a strong sensitivity to
the infrared renormalons, especially the gluon condensate
renormalon. Moreover, ways to resolve the discrepancy by
subtracting the infrared renormalon divergence related to
the gluon condensate have been proposed in [13,14,17].
The goal is to reduce the main source of theoretical
uncertainty and to improve the precision of αs determi-
nation from hadronic τ decays.
In this context, it is useful to recall that modified

perturbative expansions that also incorporate information
about renormalons, and moreover have a tamed large-order
behavior, can be obtained by the method of conformal
mapping. It is known that by using a suitable conformal
mapping one can accelerate the convergence of a power
series and achieve its analytic continuation outside the
original disk of convergence. In particle physics, the
method was applied for the first time in [21,22] for
the analytic continuation of hadronic scattering amplitudes.
In QCD, it turns out that the method cannot be applied to
the perturbative expansions of the Green functions in
powers of the strong coupling, because they are singular
at the expansion point. But the method can be used for the
expansion of the Borel transform in the Borel plane.
The use of a conformal mapping of the Borel plane was

suggested in [23] and applied in [24] as a technique to
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handle the ambiguities of the QCD perturbative series due
to the large momenta in the Feynman integrals, which are
harmless. The conformal mapping proposed in these works
takes into account only the ultraviolet renormalons. An
important step forward was achieved in [25], where the
optimal conformal mapping, which has the best conver-
gence rate, was found for the QCD Adler function. The
optimal mapping transforms the whole Borel plane, with
cuts along the real axis due to both ultraviolet and infrared
renormalons, into the unit disk in a new complex plane. In
this framework, the Borel transform of the Adler function,
or of the spectral moments, is expanded in powers of this
optimal variable, and the expanded function is recovered
from the Borel transform by Laplace-Borel integral regu-
larized with the principal value (PV) prescription.
The modified QCD perturbative expansions based on the

conformal mapping of the Borel plane have been applied
in [26–35] to physical problems, in particular to the CI and
FO expansions for the description of the τ-lepton decays.
The mathematical properties of the modified expansions
based on conformal mapping have been also investigated in
detail. Thus, in [26] it was shown that these expansions
converge when several conditions are fulfilled, in [27] the
properties of the expansion functions were investigated,
and in [31] the increase of the convergence rate by
conformal mappings was demonstrated.
In the present paper we revisit the proof of convergence

given in [26]. We complete and improve the arguments
presented in [26], showing that the convergence domain is
larger than previously stated. We also make some general-
izations of interest for phenomenological applications. The
work was motivated by the modified perturbative expansions
based on renormalon subtraction, proposed recently in
[13,14,17]. We thought it may be of interest to bring into
attention the modified expansions based on conformal
mapping of the Borel plane, which exploit the renormalons
in a different way. The aim is to better understand the CIPT
and FOPT expansions in this framework.
The outline of the paper is as follows: in the next sectionwe

briefly review the FO andCI expansions of theAdler function
and the moments of the τ hadronic spectral function. In
Sec. III, we definemodified perturbative expansions based on
the conformal mapping of the Borel plane. In Sec. IV we
complete and generalize the proof of convergence given in
[26], and in Sec. V we check the validity of the convergence
conditions for theCI and FOexpansions of theAdler function
and the moments. Finally, Sec. VI contains a summary of the
work and a brief comparison with recent related works.

II. ADLER FUNCTION AND SPECTRAL
MOMENTS

We consider the reduced Adler function [7]

D̂ðsÞ≡ 4π2DðsÞ − 1; ð2:1Þ

where DðsÞ ¼ −sdΠðsÞ=ds is the logarithmic derivative of
the invariant amplitude ΠðsÞ of the two-current correlation
tensor. From general principles of field theory, it is known
that D̂ðsÞ is an analytic function of real type; i.e., it satisfies
the Schwarz reflection property, D̂ðs�Þ ¼ D̂�ðsÞ, in the
complex s plane cut along the timelike axis for s ≥ 4m2

π.
In QCD perturbation theory, D̂ðsÞ is expanded as

D̂ðsÞ ¼
X
n≥1

½asðμ2Þ�n
Xn
k¼1

kcn;kðlnð−s=μ2ÞÞk−1; ð2:2Þ

in powers of the renormalized strong coupling asðμ2Þ≡
αsðμ2Þ=π, defined in a certain renormalization scheme at
the renormalization scale μ.
The coefficients cn;1 in (2.2) are obtained from the

calculation of Feynman diagrams, while cn;k with k > 1

are expressed in terms of cm;1 with m < n and the
perturbative coefficients βn of the β function, which
governs the variation of the QCD coupling with the scale
μ in each renormalization scheme:

−μ
das
dμ

≡ βðasÞ ¼
X
n≥1

βnanþ1
s : ð2:3Þ

For large spacelike values s < 0, one can choose in (2.2)
the scale μ2 ¼ −s, and obtain the renormalization-group
improved expansion

D̂ðsÞ ¼
X
n≥1

cn;1½asð−sÞ�n; ð2:4Þ

where asð−sÞ≡ αsð−sÞ=π is the running coupling. The
expansions (2.2) and (2.4) are often used also for complex
values of s, outside the timelike axis s > 0 where the QCD
perturbation theory fails to describe the strong interactions
of hadrons. In these applications, in particular in the
calculation of the spectral function moments, the perturba-
tive expansions (2.2) and (2.4) are traditionally called
FOPT and CIPT, respectively.
The Adler function has been calculated in the MS

scheme to order α4s (see [36] and references therein).
On the other hand, it is known that at high orders n, the
coefficients increase factorially, cn;1 ∼ n! [20]. Therefore,
the series (2.4) has zero radius of convergence and can be
interpreted only as an asymptotic expansion to D̂ðsÞ for
as → 0. This indicates the fact that the Adler function,
viewed as a function of the strong coupling as, is singular at
the origin as ¼ 0 of the coupling plane.
In some cases, the expanded functions can be recovered

from their divergent expansions through Borel summation.
The Borel transform of the Adler function is defined by the
power series

BD̂ðuÞ ¼
X∞
n¼0

bnun; ð2:5Þ
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where the coefficients bn are related to the perturbative
coefficients cn;1 by

bn ¼
cnþ1;1

βn0n!
: ð2:6Þ

Here we used the standard notation β0 ¼ β1=2, and in our
convention β0 ¼ 9=4.
The large-order increase of the coefficients of the

perturbation series is encoded in the singularities of the
Borel transform in the complex u plane. In the present case,
it is known that BD̂ðuÞ has singularities at integer values
of u for u ≥ 2 and u ≤ −1, denoted as infrared (IR) and
ultraviolet (UV) renormalons, respectively (we neglect the
instantons, which are situated at larger u > 0) [20]. In a
specific limit of perturbative QCD, known as large-β0
approximation [37–39], the singularities are poles, but
beyond this limit they are branch points. For our study it
is important that some information is available on the
nature of the leading singularities: namely, near the first
branch points u ¼ −1 and u ¼ 2, BD̂ðuÞ behaves like

BD̂ðuÞ ∼
r1

ð1þ uÞγ1 and BD̂ðuÞ ∼
r2

ð1 − u=2Þγ2 ; ð2:7Þ

respectively, where the residues r1 and r2 are not known,
but the exponents γ1 and γ2 have been estimated from
renormalization-group invariance [7].
From the definition (2.5), it follows that the function

D̂ðsÞ defined by (2.4) can be recovered formally from the
Borel transform BD̂ðuÞ by the Laplace-Borel integral

D̂ðsÞ ¼ 1

β0

Z∞

0

exp

�
−u

β0asð−sÞ
�
BD̂ðuÞdu: ð2:8Þ

Actually, due to the singularities of BD̂ðuÞ for u ≥ 2, the
integral (2.8) is not defined and requires a regularization.
As shown in [40], the PV prescription, where the integral
(2.8) is defined as the semisum of the integrals along two
lines, slightly above and below the real positive axis u ≥ 0,
is consistent with some of the analytic properties of the true
function D̂ðsÞ, in particular Schwarz reflection property
and the absence of cuts on the spacelike axis s < 0 outside
the Landau region. Therefore, we shall adopt this pre-
scription in what follows.
We shall consider also the spectral moments Miðs0Þ,

defined as weighted integrals of the spectral function
ImΠðsÞ along the finite range 0 < s < s0 of the timelike
axis. By exploiting the analytic properties of ΠðsÞ, they can
be expressed as integrals of the Adler function along a
contour in the complex s plane, chosen for convenience to
be the circle jsj ¼ s0:

Miðs0Þ ¼
1

2πi

I
jsj¼s0

ds
s
ωiðs=s0ÞD̂ðsÞ; ð2:9Þ

where the weights ωiðsÞ are analytic in the s plane. In
phenomenological applications to the hadronic τ decay, the
usual choice is s0 ¼ m2

τ , but lower values of s0 have been
also considered.
By inserting in (2.9) the series (2.2), one defines the

FO expansion

Mi;FOðs0Þ ¼
X
n≥1

½asðs0Þ�n
Xn
k¼1

kcn;kJk−1;i; ð2:10Þ

with

Jk;i ¼
1

2πi

I
jsj¼s0

ds
s
ωiðs=s0Þlnkð−s=s0Þ: ð2:11Þ

Alternatively, by inserting in (2.9) the series (2.4), one
defines the CI expansion

Mi;CIðs0Þ¼
X
n≥1

cn;1
1

2πi

I
jsj¼s0

ds
s
ωiðs=s0Þ½asð−sÞ�n; ð2:12Þ

where the running coupling asð−sÞ is computed by
integrating along the circle the solution of the
renormalization-group equation (2.3), known at present
to five loops [41].
Borel representations for the moments can be derived

also. By inserting the Laplace-Borel representation (2.8) of
the Adler function into the integral (2.9) and permutting the
integrals we obtain

Mi;CI¼
1

β0
PV

Z∞

0

duBD̂ðuÞ
1

2π

Z2π

0

dϕωiðeiϕÞe
−u

β0asð−sÞ; ð2:13Þ

where −s ¼ s0 expðiðϕ − πÞÞ.
On the other hand, starting from the FO expansion (2.10),

one can define the Borel transform

BMi;FOðuÞ ¼
X∞
n¼0

bn;iun; ð2:14Þ

where

bn;i ¼
1

βn0n!

Xn
k¼1

kcn;kJk−1;i: ð2:15Þ

Then Mi;FO is recovered from its Borel transform by the
Laplace-Borel integral

Mi;FO ¼ 1

β0
PV

Z∞

0

exp

�
−u

β0asðs0Þ
�
BMi;FOðuÞdu; ð2:16Þ

REVISITING THE CONVERGENCE OF THE PERTURBATIVE … PHYS. REV. D 108, 114031 (2023)

114031-3



where we adopted the PV prescription, anticipating the
presence of singularities in the Borel transform BMi;FOðuÞ on
the integration axis.
In the large-β0 limit, the Borel transform BMi;FOðuÞ

defined in (2.14) can be expressed in a simple way
in terms of the Borel transform BD̂ðuÞ of the Adler
function. The relation is found starting from the CI
representation (2.13) and noting that the integral upon ϕ
can be performed exactly in the one-loop approximation of
the coupling, when

1

β0asð−sÞ
¼ 1

β0asðs0Þ
þ ln

�
−s
s0

�
; ð2:17Þ

the last term being equal to iðϕ − πÞ. Then, the comparison
with (2.16) leads to

BMi;FOðuÞ ¼
�
1

2π

Z
2π

0

dϕωiðeiϕÞe−iuðϕ−πÞ
�
BD̂ðuÞ: ð2:18Þ

The integral can be calculated exactly for polynomial
weights ωi, when (2.18) can be written as [7,33]

BMi;FOðuÞ ¼
1

π

sin πu
PiðuÞ

BD̂ðuÞ; ð2:19Þ

where PiðuÞ is a polynomial. For instance, for ωiðs=s0Þ ¼
ðs=s0Þn one has PiðuÞ ¼ ðu − nÞ, and for the weight
ωτðs=s0Þ ¼ ð1 − s=s0Þ3ð1þ s=s0Þ, which appears in the
expression of τ hadronic width, PiðuÞ ¼ uðu − 1Þðu − 3Þ
ðu − 4Þ=12 (for more examples see [33]).
From (2.19) it follows that BMi;FOðuÞ inherits from

BD̂ðuÞ the singularities at integer values of u. However,
these singularities are partly compensated by the zeros of
sin πu, except for those corresponding to the zeros of the
polynomial PiðuÞ. In particular, if this polynomial does not
vanish at u ¼ −1 and u ¼ 2 (as is the case with the
kinematical weight ωτ), the nature of the leading renorma-
lons of BMi;FOðuÞ, obtained from (2.7), is given by the
exponents γ1 − 1 and γ2 − 1, respectively.
Beyond the large-β0 approximation, the exact nature of

the first singularities of BMi;FOðuÞ cannot be established
exactly. Therefore, a conjecture is necessary in applications
that exploit this nature.

III. CONFORMAL MAPPING
OF THE BOREL PLANE

The method of conformal mappings is known in math-
ematics as a technique for “series acceleration,” i.e., for
increasing the rate of convergence of power series. By
expanding a function in powers of the variable that maps its
analyticity domain onto a disk, the new series converges
in a larger region, beyond the convergence domain of the

original expansion, and has an increased asymptotic con-
vergence rate compared to the original series inside this
domain. The method can be applied actually only if the
expanded function is analytic in a region around the
expansion point. Therefore, it cannot be used in QCD
for the standard perturbative series in powers of the
coupling, since the expanded functions are singular at
the origin of the coupling plane. However, the conditions of
applicability are satisfied by the Borel transforms, like the
function BD̂ðuÞ defined in (2.5).
As indicated in Fig. 1, the series (2.5) converges in the

disk juj < 1, limited by the first UV renormalon at u ¼ −1.
On the other hand, the Laplace-Borel integral (2.8) includes
the range u > 1, where the series (2.5) is divergent. This is
the reason of the divergence of the original series (2.4),
obtained formally by inserting (2.5) in (2.8) and integrating
term by term.
As discussed above, the domain of convergence can be

enlarged by reexpanding the function BD̂ðuÞ in powers of
the variable that achieves the conformal mapping of the
original complex u plane onto the unit disk of a new
complex plane. This mapping, written for the first time
in [25], has the form

w̃ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p ; ð3:1Þ

and its inverse reads

ũðwÞ ¼ 8w
3 − 2wþ 3w2

¼ 8w
3ðw − ζÞðw − ζ�Þ ; ð3:2Þ

where ζ ¼ ð ffiffiffi
2

p þ iÞ=ð ffiffiffi
2

p
− iÞ and its complex conjugate

ζ� are the images of u ¼ ∞ on the unit circle in the w plane.
One can check that the function w̃ðuÞ maps the complex

u plane cut along the real axis for u ≥ 2 and u ≤ −1 onto
the interior of the circle jwj ¼ 1 in the complex plane
w≡ w̃ðuÞ, such that the origin u ¼ 0 of the u plane

FIG. 1. Borel plane of the Adler function. The circle indicates
the convergence domain of the series (2.5).
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corresponds to the origin w ¼ 0 of the w plane, and the
upper (lower) edges of the cuts are mapped onto the
upper (lower) semicircles in the w plane (see Fig. 2).
By the mapping (3.1), all the singularities of the Borel
transform, the UV and IR renormalons, are pushed to the
boundary of the unit disk in the w plane, at equal distance
from the origin.
Consider now the expansion of BD̂ðuÞ in powers of the

variable w:

BD̂ðuÞ ¼
X∞
n¼0

cnwn; w≡ w̃ðuÞ; ð3:3Þ

where the coefficients cn can be obtained from the
coefficients bk, k ≤ n, using Eqs. (2.5) and (3.1). By
expanding BD̂ðuÞ according to (3.3), one makes full use
of its holomorphy domain, because the known part of it
(the first Riemann sheet) is mapped onto the convergence
disk. Therefore, the series (3.3) converges in the whole u
complex plane up to the cuts, i.e., in a much larger domain
than the original series (2.5). Moreover, as shown in [31],
this expansion has the best asymptotic convergence rate
compared to other expansions, based on conformal map-
pings which map a part of the holomorphy domain onto
the unit disk.
The expansion (3.3) can be further improved by exploit-

ing the known behavior of the expanded function near the
first branch points, discussed below Eq. (2.7). This is done
by expanding in powers of w the product of BD̂ðuÞ with a
suitable factor SðuÞ, which compensates the singularities at
u ¼ −1 and u ¼ 2. Actually, the product has still singu-
larities (branch points) at u ¼ −1 and u ¼ 2, generated by
the terms of BD̂ðuÞ, which are holomorphic at these points,
but they are milder than the original ones (the singularities
are “softened”). Therefore, the modified expansion

BD̂ðuÞ ¼
1

SðuÞ
X∞
n¼0

c̃nwn ð3:4Þ

is expected to converge faster than the original expan-
sion (3.3).
As emphasized in [27,30,31], while the optimal con-

formal mapping (3.1) is unique, the factorization of the
singular factor 1=SðuÞ is not. We only require that SðuÞ is
analytic in the holomorphy domain of BD̂ðuÞ and vanishes
at u ¼ −1 and u ¼ 2. Simple expressions, like

SðuÞ ∼ ð1þ uÞγ1ð1 − u=2Þγ2 ð3:5Þ

or

SðuÞ ∼ ð1þ wÞ2γ1ð1 − wÞ2γ2 ; ð3:6Þ

have been investigated in [27,30,31].
In a similar way, we consider expansions in powers of w

of the Borel transform BMi;FO of the FO expansion of the
moments, defined in (2.14). In the large-β0 approximation,
using (2.19) and the expansion (3.4), we have

BMi;FOðuÞ ¼
sin πu

πPiðuÞSðuÞ
X∞
n¼0

c̃nwn; ð3:7Þ

where PiðuÞ is a polynomial, SðuÞ the softening factor, and
c̃n the coefficients of the expansion (3.4).
In the general case, beyond the one-loop approximation,

by expanding in powers of w the Borel transform defined
in (2.14), we write

BMi;FOðuÞ ¼
X∞
n¼0

ĉn;iwn; ð3:8Þ

where ĉn;i are obtained from the coefficients bn;i defined
in (2.15). One can include also a softening factor, as for the
Adler function in (3.4), with a suitable assumption about
the nature of the first singularities, as mentioned at the end
of Sec. II.
By inserting the expansions (3.3) or (3.4) of the Borel

transform in the Borel-Laplace integral (2.8), we obtain
new perturbative series for the Adler function in the
complex s plane. For convenience, we use below the
notation from [26], writing

D̂ðsÞ ¼ 1

β0
Iðβ0asð−sÞÞ: ð3:9Þ

Here I denotes the series

IðaÞ ¼
X∞
n¼0

cnInðaÞ; ð3:10Þ

FIG. 2. The w plane obtained by the conformal mapping (3.1).
The IR and UV renormalons are mapped on the boundary of the
unit disk.
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where the coefficients cn appear in (3.3) and the expansion
functions are

InðaÞ ¼ PV
Z

∞

0

wne−u=adu: ð3:11Þ

Alternatively,

IðaÞ ¼
X∞
n¼0

c̃nĨnðaÞ; ð3:12Þ

where the coefficients c̃n appear in (3.4) and the expansion
functions are

ĨnðaÞ ¼ PV
Z

∞

0

wn

SðuÞ e
−u=adu: ð3:13Þ

Returning to moments, the CI version is obtained by
inserting the above expansions of the Adler function in
the contour integral (2.9). For instance, using (3.9)–(3.11),
we write

Mi;CIðs0Þ ¼
X
n≥1

cn
1

2πi

I
jsj¼s0

ds
s
ωiðs=s0ÞInðβ0asð−sÞÞ;

ð3:14Þ

where we permuted the order of integration and summation
since, as we will show below, the series (3.10) is absolutely
convergent.
In the FO version, the moments are expressed as

Mi;FOðs0Þ ¼
1

β0
Iðβ0asðs0ÞÞ; ð3:15Þ

where, in the large-β0 approximation obtained from (3.7),
I denotes the series

IðaÞ ¼
X∞
n¼0

c̃nÎnðaÞ; ð3:16Þ

with coefficients c̃n defined in (3.4) and expansion functions

ÎnðaÞ ¼ PV
Z

∞

0

sin πu
πPiðuÞSðuÞ

wne−u=adu; ð3:17Þ

while in the general case

IðaÞ ¼
X∞
n¼0

ĉn;iInðaÞ; ð3:18Þ

where the coefficients ĉn;i appear in the expansion (3.8) and
the expansion functions In are defined in (3.11).
The analytic properties of the expansion functions

defined above have been discussed in detail in [27], where

it was shown that the functions InðaÞ [denoted there as
WnðaÞ] are analytic in the complex a plane and bounded
for Re a > 0, but exhibit a cut along the axis a < 0 and an
essential singularity ½∼ expð−1=aÞ� at the origin a ¼ 0.
As a consequence, when expanded in powers of a, InðaÞ
have divergent expansions, with coefficients exhibiting
factorial growth. On the other hand, as we will show in
the next section, the expansion (3.10) is convergent under
certain conditions.

IV. CONVERGENCE OF THE MODIFIED
EXPANSIONS

A. Method of steepest descent

We first briefly review the main steps of the method
of steepest descent applied in [26] for the estimation of
the quantities InðaÞ at large n. We recall that the Borel
transform BD̂ðuÞ is a function of real type, which satisfies
B�
D̂
ðuÞ ¼ BD̂ðu�Þ. Therefore, the coefficients bn of the

expansion (2.5), as well as the coefficients cn of the
expansion (3.3) are real. We consider the expansion (3.10)
for complex values of a of the general form a ¼ jajeiψ ,
where ψ ¼ arga is the phase of a.
By writing the PV prescription in an explicit way,

we first express (3.11) as

InðaÞ ¼
1

2

Z
Cþ

e−
u
aðw̃ðuÞÞnduþ 1

2

Z
C−

e−
u
aðw̃ðuÞÞndu; ð4:1Þ

for n ¼ 0; 1; 2;…, where Cþ (C−) are lines parallel to the
real positive axis, slightly above (below) it, and w̃ðuÞ is
defined in (3.1).
The contribution to (4.1) of the integral along the contour

Cþ can be written as

Iþn ðaÞ ¼
Z
Cþ

e−FnðuÞdu; ð4:2Þ

where

FnðuÞ ¼
u
a
− n ln w̃ðuÞ: ð4:3Þ

We evaluate the integral (4.2) for large n by applying the
method of steepest descent [42]. The saddle points are
given by the equation

w̃0ðuÞ
w̃ðuÞ ¼ 1

an
; ð4:4Þ

which has four solutions, having at large n the form

1þ i

21=4
ffiffiffiffiffiffi
an

p
;
1− i

21=4
ffiffiffiffiffiffi
an

p
;
−1þ i

21=4
ffiffiffiffiffiffi
an

p
;
−1− i

21=4
ffiffiffiffiffiffi
an

p
: ð4:5Þ
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Of interest for the evaluation of (4.2) is the point u0 closest
to the line Cþ

u0 ¼ 2−1=4ð1þ iÞ ffiffiffiffiffiffi
an

p ¼ ju0jeiα; ð4:6Þ

with

ju0j ¼ 21=4
ffiffiffiffiffiffiffiffi
jajn

p
; α ¼ π

4
þ ψ

2
: ð4:7Þ

In our application to the Adler function, a ¼ β0asð−sÞ, and
from (2.17) it follows that in the one-loop limit cos ψ > 0,
which means that

jψ j < π

2
: ð4:8Þ

Therefore, the point u0 defined in (4.6) and (4.7) is situated
in the first quadrant of the u plane.
In order to evaluate the integral (4.2), we first rotate the

contour Cþ in the trigonometric direction in the upper half-
plane, until it becomes a line C0þ passing through the origin
and the saddle point u0. The rotation is possible since the
function w̃ðuÞ has no singularities outside the real axis, and
the arc of the circle at infinity gives a vanishing contribu-
tion, as can be easily verified. Near the point u0, FnðuÞ can
be expanded as

FnðuÞ ¼ Fnðu0Þ þ
1

2
F00
nðu0Þðu − u0Þ2 þ � � � : ð4:9Þ

By using the expansion of w̃ðuÞ for large u in the upper half
plane [w̃ðuÞ≈ζð1− i

ffiffiffi
2

p
=uÞ, where ζ¼ð ffiffiffi

2
p þ iÞ=ð ffiffiffi

2
p

− iÞ],
we obtain after a straightforward calculation

e−Fnðu0Þ ≈ ζn
�
1 −

23=4i
ð1þ iÞ ffiffiffiffiffiffi

an
p

�n

e−2
−1=4ð1þiÞ

ffiffi
n
a

p

≈ ζn e−2
3=4ð1þiÞ

ffiffi
n
a

p
; ð4:10Þ

and

F00
nðu0Þ ≈

21=4ð1 − iÞffiffiffiffiffiffiffiffi
na3

p ¼ jF00
nðu0Þjeiβ; ð4:11Þ

where

jF00
nðu0Þj ¼

23=4ffiffiffiffiffiffiffiffiffiffi
njaj3

p ; β ¼ −
π

4
−
3ψ

2
: ð4:12Þ

Then (4.2) becomes

Iþn ðaÞ ≈ ζne−2
3=4ð1þiÞ

ffiffi
n
a

p Z
C0þ

e−
jF00nðu0Þj

2
eiβðu−u0Þ2du: ð4:13Þ

We further deform the integration line into the path of
steepest descent without going outside the two valleys near
the saddle point u0, by taking

u − u0 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=jF00

nðu0Þj
p

e−iβ=2ρ ð4:14Þ

with real ρ. The phase of ðu − u0Þ2 exactly compensates the
phase of F00

nðu0Þ, making the exponent of the integrand
in (4.13) real. The integrand can be written as e−ρ

2

and the
integral done explicitly gives

Iþn ðaÞ ≈ ζne−2
3=4ð1þiÞ

ffiffi
n
a

p e−iβ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijF00
nðu0Þj=2

p
ffiffiffi
π

p
2

; ð4:15Þ

i.e., up to a constant independent of n

Iþn ðaÞ ≈ n
1
4ζne−2

3=4ð1þiÞ
ffiffi
n
a

p
: ð4:16Þ

The evaluation of the integral along the contour C−
in (4.1) proceeds in a similar way. The saddle point of
interest is

u00 ¼ 2−1=4ð1 − iÞ ffiffiffiffiffiffi
an

p ¼ 21=4
ffiffiffiffiffiffiffiffi
jajn

p
e−ðiπ4−

ψ
2
Þ; ð4:17Þ

which is situated in the fourth quadrant of the complex u
plane for ψ in the range given in (4.8). Instead of (4.13),
we have now

I−n ðaÞ ≈ ðζ�Þne−23=4ð1−iÞ
ffiffi
n
a

p Z
C0−

e−
jF00nðu00Þj

2
eiβ

0 ðu−u0
0
Þ2du; ð4:18Þ

where β0 ¼ π=4 − 3ψ=2 and C0− is a contour rotated in
the lower half-plane up to the point u00, which we further
deform into the steepest descent path to obtain

I−n ðaÞ ≈ n
1
4ðζ�Þne−23=4ð1−iÞ

ffiffi
n
a

p
: ð4:19Þ

Adding the two terms written in (4.16) and (4.19), we
obtain the large-n behavior

InðaÞ ≈ n
1
4ζne−2

3=4ð1þiÞ
ffiffi
n
a

p
þ n

1
4ðζ�Þne−23=4ð1−iÞ

ffiffi
n
a

p
ð4:20Þ

of the functions defined in (4.1). In the next subsection we
shall use the above estimate for discussing the convergence
of the series (3.10).

B. Proof of convergence

Before starting the discussion of convergence, we shall
briefly comment on an additional technical assumption
made in [26]. Specifically, in that paper it was assumed that
the line rotated according to (4.14) must not cross the real
axis of the u plane, in order to avoid hitting the singularities
of the Borel transform. From this condition, the constraint
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jψ j < π=6 was derived, where ψ is the phase of a [see
Eqs. (36) and (39) of [26]]. This is a rather strong
constraint, but actually it turns out to be not necessary.
Indeed, the integral in (3.11) involves only the function
w̃ðuÞ, which has a branch point at u ¼ 2 and no other
singularities for u > 0. This means that, if the line of
steepest descent (4.14) reaches the axis u ¼ 0, it hits no
singularities, but enters smoothly into the second Riemann
sheet of the function w̃ðuÞ. Therefore, the constraint
jψ j < π=6 mentioned in [26] is not necessary.
We point out that extensive numerical calculations for

mathematical toy models reported in [30–34] indicated
convergence in large regions of the coupling plane, not
limited by the constraint jψ j < π=6. The argument given
above explains these results. Restrictions on the domain in
the coupling plane arise only from the criteria of con-
vergence discussed below.
By inserting the expression (4.20) in (3.10), IðaÞ is

written as a sum of two series, which in particular ensures
the fact that the result is real when a is real. For the study of
convergence, we shall treat separately each of the two
series. Assuming, as in [26], that a positive constant c exists
such that, at large n

jcnj ≈ ec
ffiffi
n

p
; ð4:21Þ

we obtain the estimate

jcnIþn ðaÞj ≈ Kn1=4e−ξ
ffiffi
n

p
; ð4:22Þ

where K is a constant independent of n and

ξ ¼ Re½23=4ð1þ iÞa−1=2� − c: ð4:23Þ
The convergence of the expansion (3.10) has been

studied in [26] by considering the ratio
���� cnIþn ðaÞ
cn−1I

þ
n−1ðaÞ

����; ð4:24Þ

and requiring that it must be less than 1 for large n.
However, it is easy to check that the limit of the ratio for
n → ∞ equals 1, and in this case the test is inconclusive,
the series may converge or diverge. Cauchy’s root
test is also inconclusive, since one can show that
limn→∞ jcnIþn ðaÞj1=n ¼ 1.
The absolute convergence of the series can be estab-

lished nevertheless using a direct comparison test. Namely,
let us consider the inequality

jcnIþn ðaÞj ≤
1

n2
; ð4:25Þ

which, using (4.22), is equivalent to

Kn9=4 ≤ eξ
ffiffi
n

p
: ð4:26Þ

This inequality is clearly true for large n if

ξ ¼ Re½23=4ð1þ iÞa−1=2� − c > 0: ð4:27Þ

Since the series
P

1=n2 is absolutely convergent, the
comparison test implies that the series

P
cnIþn ðaÞ is also

absolutely convergent, if the condition (4.27) is satisfied.
By treating in the same way the series

P
cnI−n ðaÞ,

we write finally the convergence condition in the
compact form1

Re½23=4ð1� iÞa−1=2� − c > 0: ð4:28Þ

As noted in [26], if the coefficients cn grow less than any
exponential, cn < exp½ϵ ffiffiffi

n
p � for an arbitrarily small ϵ, then

the condition of convergence is

Re½ð1� iÞa−1=2� > 0: ð4:29Þ

If, on the other hand, the coefficients grow faster than any
exp½c ffiffiffi

n
p �, the series (3.10) will be divergent. Note that such

a behavior of cn is not excluded for expansions like (3.3),
with radius of convergence equal to 1.

C. Generalizations

The arguments presented in the previous subsections can
be easily generalized to other cases not treated in [26]. We
consider first the alternative expansion (3.12), involving a
singularity-softening factor SðuÞ. Instead of (4.2), we must
evaluate now the large-n behavior of the quantity

Ĩþn ðaÞ ¼
Z
Cþ

e−FnðuÞ du
SðuÞ ; ð4:30Þ

where convenient choices forSðuÞ aregiven in (3.5) and (3.6).
From the steps described in Sec. IVA, it is clear that the

main contribution to the integral is brought by the vicinity
of the saddle point u0. Since SðuÞ is assumed to be a
smooth function, we can apply the mean value theorem and
factor out 1=Sðu0Þ in front of the integral. Then, instead
of (4.15), we have now

Ĩþn ðaÞ ≈
ζn

Sðu0Þ
e−2

3=4ð1þiÞ
ffiffi
n
a

p e−iβ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijF00
nðu0Þj=2

p
ffiffiffi
π

p
2

: ð4:31Þ

From (3.5) and (3.6) it follows that Sðu0Þ behaves either as
a power of u0 or a constant. Recalling that u0 ∼

ffiffiffi
n

p
at large

n, we can write, up to a constant independent of n

Ĩþn ðaÞ ≈ nδζne−2
3=4ð1þiÞ

ffiffi
n
a

p
; ð4:32Þ

1This corrects two typos in Eq. (45) of [26], where the factor
23=4 was missing and the sign in front of c was wrong.
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where δ is a real exponent. One can use then this estimate in
the direct comparison test by simply adapting the argu-
ments presented below (4.25). Assume, like in (4.21), that
at large n

jc̃nj ≈ ec
ffiffi
n

p
; ð4:33Þ

where the coefficients c̃n appear in (3.7) and (3.12). It
follows that the series (3.12) converges in the domains
described by (4.28) or (4.29).
In a similar way, one can establish the large-n behavior

of the quantities Îþn ðaÞ defined in (3.17), entering the FO
expansion of the moments in the large-β0 approximation.
It is convenient to consider separately the two terms of
sin πu ¼ ðeiπu − e−iπuÞ=2i, and combine them with the
parameter a by defining 1=ā ¼ 1=a� iπ. Then the steps
presented in Sec. IVA, performed with a replaced by ā,
lead to the estimate

Îþn ðaÞ ≈ nγζne−2
3=4ð1þiÞ ffiffi

n
p ffiffiffiffiffiffiffi

1
a�iπ

p
: ð4:34Þ

Here the exponent γ includes the contribution of the factor
Piðu0ÞSðu0Þ, which depends on the weight in the contour
integral (2.9) and the softening factors, as seen in (3.7).
Using further the direct comparison test as in Sec. IV B, we
can prove the convergence of the series (3.16), provided the
conditions

Re½23=4ð1� iÞð1=a� iπÞ1=2� − c > 0 ð4:35Þ

are satisfied, where a ¼ β0αsðs0Þ=π and the constant c is
related by (4.21) to the behavior of the coefficients cn, or
by (4.33) to the behavior of the coefficients c̃n.
Finally, it is easy to see that for the general FO expansion

(3.18), the condition of convergence will have the form
(4.28), where a ¼ β0αsðs0Þ=π and the constant c is found
from the growth of the coefficients ĉn;i by

jĉn;ij ≤ expðc ffiffiffi
n

p Þ: ð4:36Þ

V. CONVERGENCE TESTS FOR THE CI
AND FO EXPANSIONS

In this section we shall investigate the fulfillment of the
convergence conditions established above for the expan-
sions used in the study of τ hadronic decay. We consider
first the perturbative expansion of the Adler function in
the complex s plane. As seen from (3.9), in this case the
parameter a is related to the running coupling by
a ¼ β0αsð−sÞ=π. Therefore, the conditions (4.28) or (4.29)
can be viewed as defining regions of convergence of the
perturbative expansion of the Adler function in the complex
s plane. For the calculation of the spectral moments, it is of

interest to check the validity of the convergence conditions
along the circle jsj ¼ m2

τ .
As a first example, we take the Borel transform of a

simple pole form BD̂ðuÞ ¼ 1=ð2 − uÞ. In this case, the
coefficients cn of the expansion (3.3) in powers of the
conformal variable w have the simple form cn ¼ 2n=3,
which grows less than any exponential at large n.
Therefore, we must test the validity of the condition (4.29).
In the calculation, we used the one-loop coupling from
(2.17), set s0 ¼ m2

τ and the value αsðm2
τÞ ¼ 0.32, consistent

with recent determinations (cf. [1] and references therein).
In Fig. 3 we plot the expressions on the lhs of (4.29)
calculated with this input along the circle jsj ¼ m2

τ . Both
quantities are positive, as required by the convergence
condition, which shows that the expansion (3.10) of the
Adler function is convergent along the circle jsj ¼ m2

τ , for a
simple renormalon pole at u ¼ 2.
For a generic term of the form 1=ðp − uÞα, with integer

p ≥ 2 and real α, expected to be present in the Borel
transform BD̂ðuÞ, the coefficients cn of the expansion (3.3)
cannot be calculated analytically exact in general.
However, we checked numerically that they satisfy the
condition jcnj< expð ffiffiffi

n
p Þ at large n. For instance, for p ¼ 2

and α ¼ 1.5 the ratio jcnj= expð
ffiffiffi
n

p Þ is equal to 5 × 10−9 for
n ¼ 1000 and to 4 × 10−14 for n ¼ 2000. For larger values
of p, the growth of the coefficients cn slightly slows down.
For instance, for α ¼ 1.5 and n ¼ 2000, the ratios
jcnj= expð

ffiffiffi
n

p Þ are 4.5 × 10−19 for p ¼ 3, 8 × 10−20 for
p ¼ 4, and 1 × 10−20 for p ¼ 5.
We considered also negative values of α, relevant for the

expansion of the product BD̂ðuÞSðuÞ after softening the
lowest singularities as in (3.4). As expected, because
the residual singularity in the product is mild, the growth
of the coefficients c̃n is less dramatic than for positive α.
For instance, for p ¼ 2 and α ¼ −1.5, the ratio

0 1 2 3 4 5 6

�

1.5

2

2.5

3

FIG. 3. The quantities Re½ð1þ iÞa−1=2� (red) and Re½ð1 −
iÞa−1=2� (blue), for a ¼ β0αsð−sÞ=π and s ¼ m2

τeiϕ, as functions
of ϕ.
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jc̃nj= expð
ffiffiffi
n

p Þ is equal to 5 × 10−13 for n ¼ 1000 and to
2 × 10−18 for n ¼ 2000.
From the numerical studies, we conclude that the

conditions jcnj < expð ffiffiffi
n

p Þ and jc̃nj < expð ffiffiffi
n

p Þ are satis-
fied at large n for any finite sum of poles or branch points
in the Borel transform BD̂ðuÞ. The analysis presented in
Sec. IV, shows that in this case convergence is ensured by
the inequalities (4.28) with c ¼ 1. In Fig. 4 we plot the
expressions in the lhs of (4.28) for c ¼ 1, calculated with
the one-loop coupling along the circle jsj ¼ m2

τ . Both
quantities are positive, as required by the convergence
condition, which means that the expansions of the Adler
function given in (3.9)–(3.13) are convergent along the
circle, for the generic case of a Borel transform consisting
from a finite sum of infrared renormalons.
The above results imply that the CI expansions of the

spectral moments are also convergent. Indeed, by inserting
in (2.9) the relations (3.9)–(3.13) and using the fact that the
expansions (3.10) and (3.12) are absolutely convergent, we
can permute the order of summation and integration and
conclude that the CI expansion written in (3.14), and the
similar one involving c̃n and Ĩn, are convergent.
We note that the convergence of the CI expansions based

on conformal mapping of the Borel plane for the Adler
function in the complex s plane and the moments was
confirmed by numerical calculations on mathematical
models in previous papers (see for instance Figs. 2, 4,
and 8 from [30]).
As concerns FOPT, we shall consider first the large-β0

approximation, when the expansions of the moments are
defined by (3.15)–(3.17), with coefficients c̃n from the
expansion (3.4). As shown in Sec. IV C, the convergence
condition is represented by the inequalities (4.35), where
now a ¼ β0αsðm2

τÞ=π and c is the constant appearing
in (4.33). From the above analysis of the Adler function,

it follows that for Borel transforms with poles and branch
points we can take c ¼ 1. We checked that for this choice
of c and αsðm2

τÞ ¼ 0.32 the inequalities (4.35) are satisfied
(the left sides are equal either to 3.9 or to 1.5). The
conclusion of these tests is that the FO expansions of
the moments in the large-β0 approximation, given in
Eqs. (3.15)–(3.17), converge for Borel transforms consist-
ing from a finite sum of infrared renormalons.
We consider now the general FO expansion (3.18),

derived starting from (2.10). These expansions include
potentially large terms from the analytic continuation into
the complex s plane of the logarithms appearing in (2.2),
which may affect the convergence. This is confirmed
by numerical calculations of the Adler function in the
complex plane: see for instance Figs. 6 and 10 from [30],
which show that the convergence is poor near the timelike
axis. As a consequence, for the moments, a good con-
vergence is expected only if the weights ωi suppress
this region.
To check this expectation, we considered as examples

the kinematical weight ωτðs=s0Þ ¼ ð1 − s=s0Þ3ð1þ s=s0Þ
and the weight ωðs=s0Þ ¼ ð1 − s=s0Þ2, which both vanish
at s ¼ s0, and also the weight ωðs=s0Þ ¼ ð1 − 2s=s0Þ,
which does not suppress the region near s0. The coefficients
cn;1 have been generated by taking BD̂ðuÞ ¼ 1=ð2 − uÞ.
The numerical calculations show that the coefficients ĉn;i of
the expansion (3.8) exhibit now a more pronounced
increase, and satisfy the inequality (4.36) with c ¼ 3.
For instance, the ratio jĉ35;ij= expð3

ffiffiffiffiffi
35

p Þ is equal to 0.11
and 1.52 for the first two weights, and to 15.6 for the third.
Unfortunately, for higher n the accuracy of the calculations
is no longer satisfactory, but the above values are an
indication that for weights suppressing the region near
the timelike axis the convergence is better. Recalling that
in this case the condition of convergence is the inequality
(4.28) with a ¼ β0αsðm2

τÞ=π, we checked that it is satisfied
for c ¼ 3 (the lhs is equal to 0.5).
Numerical calculations on mathematical models, per-

formed in [30–32,34], confirm the tamed behavior of the
FO expansions for moments with weights that suppress
the region near the timelike axis. They confirm also that in
this framework the CI expansions converge better. The
reason is that the CI expansions implement simultaneously
the acceleration of the perturbative series and the
renormalization-group improved coupling, while the FO
expansions accelerate the perturbative series but do not sum
the potentially large terms from the analytic continuation of
logarithms into the complex plane. Thus, in the framework
based on the conformal mapping of the Borel plane, CIPT
has a more solid theoretical basis.

VI. SUMMARY AND CONCLUSIONS

In the present work we revisited the convergence of
the modified QCD perturbative expansions based on the

0 1 2 3 4 5 6

�
1

1.5

2

2.5

3

3.5

4

FIG. 4. The quantities Re½23=4ð1þ iÞa−1=2� − 1 (red) and
Re½23=4ð1 − iÞa−1=2� − 1 (blue), for a ¼ β0αsð−sÞ=π and
s ¼ m2

τeiϕ, as functions of ϕ.
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optimal conformal mapping of the Borel plane, proposed
in [25] and investigated further in [26,27,30–35]. Our
analysis brings some improvements to the proof of con-
vergence presented in [26]. Thus, we showed that a technical
assumption adopted in [26] is not necessary, which leads to a
considerably larger domain of convergence. We also com-
pleted the proof given in [26], using instead of the ratio
criterion, which gives inconclusive results at n → ∞, the
direct comparison test. Moreover, we generalized the proof
to expansions with singularity softening, and to the pertur-
bative expansions of the τ hadronic spectral moments.
Finally, we performed a detailed analysis of the convergence
conditions (4.28), (4.29), and (4.35), checking that they are
satisfied along the circle jsj ¼ m2

τ , for Borel transforms
consisting from a finite number of poles and branch points.
The results are important because they provide a mathemati-
cal basis to the numerical calculations performed in previous
papers [30–32,34,35], where the behavior of the CI and FO
expansions was investigated up to orders of about 20 using
models based on renormalons for generating the higher-
order perturbative coefficients.
The present work was motivated by the recent papers

[11–17], which investigated the mathematical origin of the
difference between the FO and CI expansions of the τ
hadronic spectral moments, relating it to the sensitivity to
the infrared renormalons.2 In particular, in [13,14,17], the
discrepancy was solved by subtracting the infrared renor-
malon divergence related to the gluon condensate, which
amounts to a simultaneous redefinition of the perturbative
series and of the condensate.
In this context, we thought to be useful to bring into

attention the method of conformal mapping of the Borel
plane, which amounts also to a redefinition of the pertur-
bative series by exploiting the renormalons. Therefore, we
can say that this approach is conceptually close to the
methods proposed in [13,14,17], although the practical
implementation is different. We note in particular that
the method of conformal mapping does not require the

normalization of the dominant infrared renormalon (the
Stokes constant) and has no free parameters.
In the framework based on conformal mapping, the CI

expansions and the FO expansions (for moments with
weights suppressing the region near the timelike axis) exhibit
a tamed asymptotic behavior, so the difference between
their predictions is expected to be small, especially at high
orders. This feature was confirmed by previous numerical
calculations on realistic models in [30–32,34,35]. A similar
behavior is obtained in [13,14,17] after the subtraction of
the gluon condensate renormalon (compare for instance
Fig. 3 from [34] with Fig. 4 from [13] and Fig. 2 from [17]).
So, the method of conformal mapping of the Borel plane,
as an alternative way of implementing information on
renormalons in the perturbation series, is consistent with
the methods proposed in [13,14,17] for solving the CIPT-
FOPT discrepancy.
We end with a few remarks about the nonperturbative

corrections in the operator product expansion (OPE). In
[11–17] it was argued that CIPT is incompatible with the
standard OPE. This is one of the reasons for which FOPT
was preferred already in [7,8]. The redefinition of the
perturbative series proposed in [13,14,17], which solves the
CIPT-FOPT discrepancy, comes with a simultaneous
redefinition of the OPE, in particular of the gluon con-
densate, such that both CI and FO expansions are consistent
with OPE.
In the approach based on conformal mapping, the original

perturbative expansions in powers of the coupling are
replaced by convergent series in terms of the expansion
functions defined in (3.11), (3.13), and (3.17) as Laplace-
Borel integrals with PV prescription. As we mentioned at the
end of Sec. III, these functions are singular at the origin of
the coupling plane, exhibiting a nonperturbative behavior.
Therefore, it is expected that the contribution of the additional
nonperturbative terms, entering through the OPE, will be
different from those in the standard OPE. Actually, the fact
that themethodof conformalmapping represents a realization
of a renormalon-free OPE scheme, and in particular a
renormalon-free gluon condensate scheme, was already
remarked in the literature (see footnote 8 of [13]). The
effective form of the OPE corrections to the perturbative
expansions based on conformal mapping deserves further
attention and will be studied in a future work.
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