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In the framework of nonrelativistic QCD (NRQCD) factorization, we compute both the polarized and the
unpolarized decay widths for the processes ηbðχbJÞ → J=ψJ=ψ , accurate up to next-to-next-to-leading
order (NNLO) in αs. For the first time, we confirm that the NRQCD factorization does hold at NNLO for
the process involving triple quarkonia. We find that the radiative corrections are considerable. In particular,
for χb2, both the OðαsÞ and Oðα2sÞ corrections are sizable and negative, and both can significantly reduce
the leading-order prediction. At NNLO, the branching fractions are 8.2 × 10−7, 6.2 × 10−6, 7.2 × 10−7, and
2.7 × 10−6 for ηb, χb0, χb1, and χb2 decay, respectively. Our theoretical predictions are consistent with the
upper limits measured by the Belle Collaboration. Moreover, we investigate the dependence of the
theoretical predictions on the ratio of the charm quark mass and the bottom quark mass—i.e., r ¼ mc=mb.
By fixing mb and varying mc from 1.25 to 1.9 GeV, we find that the branching fraction can change by
factors of 2, 3, and 6 for ηb, χb0, and χb1, respectively. Although the branching fraction for χb2 decreases
with the increase of r at leading order and next-to-leading order, it is almost independent of r at NNLO.
In the phenomenological analysis, with the integrated luminosity L ¼ 100 fb−1, we expect about
ð5 − 10Þ × 103 ηbðχbJÞ → J=ψJ=ψ → llll events to be produced at the Large Hadron Collider;
thus, it might be helpful to search for these processes. On the other hand, there are fewer than
100 ηbðχbJÞ → J=ψJ=ψ signal events at the B Factory, so it seems that the experimental measurements
on these channels are quite challenging based on the current dataset. Nevertheless, with the designed
50 ab−1 integrated luminosity at Belle 2, the observation prospects of ηbðχbJÞ → J=ψJ=ψ may be
promising in the foreseeable future.

DOI: 10.1103/PhysRevD.108.114030

I. INTRODUCTION

The exclusive decay of a bottomonium into double
charmonia provides an excellent testing ground to explore
the interplay between perturbative and nonperturbative
aspects of the QCD. These processes can be studied in

the framework of nonrelativistic QCD (NRQCD) factori-
zation formalism [1], which offers a systematic way to
separate the short-distance effects and long-distance
effects. The experimentalists have made many attempts
to search for such processes. Based on enormous ϒð1SÞ
and ϒð2SÞ events, the Belle Collaboration has measured
the branching fraction for ϒð1SÞ → J=ψχc1 and has set the
upper limits for the branching fractions of ϒðnSÞ → J=ψηc
and ϒðnSÞ → J=ψχc0;2 [2]. Besides this, the search for
double charmonium decays of the P-wave spin-triplet
bottomonium states was performed in [3]. Although no
significant χbJ signal was observed, the upper limits for the
branching fractions of χbJ → J=ψJ=ψ were obtained [3].
To date, the processes of a bottomonium exclusive decay

into double charmonia have been extensively studied on the
theoretical side. For ϒ decay, the process of ϒ → J=ψηc
was first studied a long time ago by Jia [4] within the
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framework of NRQCD. The rate of ϒ → J=ψχcJ was first
computed in Ref. [5]. The relativistic corrections and
radiative corrections to these processes were separately
considered in Refs. [6,7]. For C-even bottomonium decay,
due to kinematic constraint, the amplitude of ηb→J=ψJ=ψ
disappears at the lowest order in heavy quark velocity and
αs. The relativistic corrections to the rate of ηb → J=ψJ=ψ
were first calculated in [8]. In the same year, the next-to-
leading-order (NLO) radiative corrections were carried
out [9]. The process was restudied based on the light-cone
(LC) approach [10]. In 2010, Sun et al. recomputed
the NLO corrections to the rate of ηb → J=ψJ=ψ in
NRQCD [11]. Moreover, they also calculated the higher
twist effects in the LC formalism. For χbJ → J=ψJ=ψ, the
decay rate was first computed by Braguta et al. in both
NRQCD and LC formalism [12]. Later, the relativistic
corrections in the charm quark velocity were carried out
in Refs. [13,14], and the NLO radiative corrections were
worked out in Ref. [15].
In recent years, technological advances have made it

possible to calculate the higher-order QCD corrections to
quarkonium production and decay—in particular, for the
processes involving multiple quarkonia. The two-loop
radiative corrections to the cross section of eþe− →
J=ψηc at the B Factory were computed in Refs. [16,17].
In the last year, the two-loop corrections to eþe− → J=ψχcJ
were obtained in Ref. [18]. With all the available radiative
corrections lumped together, the theoretical results on the
production cross sections of J=ψ þ ηcðχc0Þ agree with the
experimental measurements, notwithstanding large uncer-
tainties. Very recently, the very challenging two-loop
radiative corrections to eþe− → J=ψJ=ψ were carried
out [19]. With the measured J=ψ decay constant as input,
which amounts to resumming a specific class of radiative
and relativistic corrections to all orders, the perturbative
corrections exhibit a decent convergence behavior. The
two-loop corrections to the decay width of ϒ → ηcðχcJÞγ
were evaluated in 2021 [20]. In addition, the two-loop
corrections to ϒ → J=ψηcðχcJÞ were worked out last
year [7], where the QCD corrections notably mitigate
the renormalization-scale dependence of the decay widths,
and the theoretical predictions on the branching fraction of
ϒ → J=ψχc1 are well consistent with the Belle measure-
ment [2]. Inspired by the success of the NRQCD, we
calculate, in the current work, the Oðα2sÞ corrections to the
processes ηbðχbJÞ → J=ψJ=ψ , which can provide useful
guidance for experimental measurement.
This paper is organized as follows: In Sec. II, we present

the general formulas for the helicity amplitudes and
(un)polarized decay widths of ηbðχbJÞ → J=ψJ=ψ . In
Sec. III, we factorize the helicity amplitudes by employing
the NRQCD factorization. In Sec. IV, we describe the
technicalities encountered in the calculation and present
the results of the various short-distance coefficients up to
NNLO in αs. Section V is devoted to the phenomenological

analysis and discussion. A brief summary is given in
Sec. VI. In Appendix A, we present the explicit expressions
of the eight helicity projectors. In Appendix B, the decay
widths as well as the branching fractions at various level of
accuracy are tabulated for different ratios of the charm
quark mass and the bottom quark mass.

II. (UN)POLARIZED DECAY WIDTHS

It is convenient to apply the helicity amplitude formalism
[21,22] to analyze the exclusive decay H → J=ψJ=ψ,
where H can be ηb or χbJ. We assign the magnetic number
Sz of the decaying particle directly along the z axis, and θ
denotes the polar angle between the z axis and the direction
of the outgoing J=ψ . Let λ1 and λ2 represent the helicities of
the two outgoing J=ψ particles. The differential rate of H
decay into J=ψðλ1Þ þ J=ψðλ2Þ becomes

dΓ½HðSzÞ → J=ψðλ1ÞJ=ψðλ2Þ�
d cos θ

¼ jPj
16πm2

H
jdJSz;λ1−λ2ðθÞj2jAH

λ1;λ2
j2; ð1Þ

where mH represents the mass of H, and P denotes the
spatial components of the J=ψ momentum. The magnitude
of P is readily determined via

jPj ¼ λ1=2ðm2
H;m

2
J=ψ ; m

2
J=ψÞ

2mH
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H

4
−m2

J=ψ

r
; ð2Þ

where the Källen function is defined via λðx;y;zÞ¼
x2þy2þz2−2xy−2xz−2yz. Note that angular momen-
tum conservation constrains jλ1 − λ2j ≤ J; here, J is the
spin of H. The angular distribution is fully dictated by the
quantum numbers λ1 and λ2 through the Wigner function
dJSz;λ1−λ2ðθÞ, and AH

λ1;λ2
is the intended helicity amplitude

that encapsulates all nontrivial strong interaction dynamics,
which depends upon λ1 and λ2.
Integrating (1) over cos θ (one should cover only the

hemisphere of the solid angle, since two J=ψ particles are
indistinguishable bosons) and averaging over all possibleH
polarizations, one obtains

Γ½H → J=ψðλ1ÞJ=ψðλ2Þ�

¼ jPj
16πm2

H
jAH

λ1;λ2
j2
Z

1

0

1

2J þ 1

X
Sz

jdJSz;λ1−λ2ðθÞj2d cos θ

¼ jPj
16πð2J þ 1Þm2

H
jAH

λ1;λ2
j2: ð3Þ

The helicity amplitudes are not independent. Due to the
parity invariance [21], there are the following relations:

Aηb
λ1;λ2

¼ −Aηb
−λ1;−λ2 ; AχbJ

λ1;λ2
¼ ð−1ÞJAχbJ

−λ1;−λ2 : ð4Þ
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Moreover, we have

Aηb
λ1;λ2

¼ −Aηb
λ2;λ1

; AχbJ
λ1;λ2

¼ ð−1ÞJAχbJ
λ2;λ1

ð5Þ
for the two identical J=ψ’s in the final state [21]. Thus,
there is one independent helicity amplitude for ηb and χb1
decay; there are two for χb0, and four for χb2.
It is straightforward to obtain the unpolarized decay

rates for H → J=ψJ=ψ by summing over all the allowed
helicity channels:

Γðηb → J=ψJ=ψÞ ¼ jPj
16πm2

ηb

ð2jAηb
1;1j2Þ; ð6aÞ

Γðχb0 → J=ψJ=ψÞ ¼ jPj
16πm2

χb0

ð2jAχb0
1;1j2 þ jAχb0

0;0j2Þ; ð6bÞ

Γðχb1 → J=ψJ=ψÞ ¼ jPj
48πm2

χb1

ð4jAχb1
1;0j2Þ; ð6cÞ

Γðχb2 → J=ψJ=ψÞ ¼ jPj
80πm2

χb2

ð2jAχb2
1;−1j2 þ 2jAχb2

1;1j2

þ 4jAχb2
1;0j2 þ jAχb2

0;0j2Þ: ð6dÞ
Finally, it is enlightening to analyze the asymptotic

behavior of the helicity amplitudes. In the limit of
mb ≫ mc, AH

λ1;λ2
satisfies

AH
λ1;λ2

∝ r2þjλ1þλ2j; ð7Þ

where r ¼ mc
mb
. For each J=ψ production, it contributes one

power of r in (7) originating from the large momentum
transfer which is required for the charm-anticharm pair to
form the J=ψ with small relative momentum. The other
powers of r arise from the helicity selection rule in
perturbative QCD [23,24].

III. NRQCD FACTORIZATION FOR THE
HELICITY AMPLITUDE

By employing the NRQCD factorization [1], we can
express the helicity amplitude as

AH
λ1;λ2

¼
ffiffiffiffiffiffiffiffiffiffi
2mH

p
2mJ=ψfHλ1;λ2

ffiffiffiffiffiffiffiffiffiffiffihOiH
p
mn

b

hOiJ=ψ
m3

c
; ð8Þ

where n ¼ 2 for ηb and n ¼ 3 for χbJ, and fHλ1;λ2 denotes
the dimensionless short-distance coefficient (SDC). The
nonperturbative long-distance matrix element (LDME) is
defined via hOiH ≡ jh0jOHjHij2 with

Oηb ¼ χ†ψ ; ð9aÞ

Oχb0 ¼
1ffiffiffi
3

p χ†
�
−
i
2
D
↔
· σ

�
ψ ; ð9bÞ

Oχb1 ¼
1ffiffiffi
2

p χ†
�
−
i
2
D
↔
× σ

�
· ϵχb1ψ ; ð9cÞ

Oχb2 ¼ χ†
�
−
i
2
D
↔ði

σjÞ
�
ϵijχb2ψ ; ð9dÞ

OJ=ψ ¼ χ†σ · ϵJ=ψψ ; ð9eÞ

where ψ and χ† are the Pauli spinor fields annihilating a
heavy quark and antiquark, respectively, and ϵH and ϵJ=ψ
represent the polarization tensor/vector of H and J=ψ ,
respectively.
The prefactor

ffiffiffiffiffiffiffiffiffiffi
2mH

p
2mJ=ψ in (8) originates from the fact

that we adopt relativistic normalization for the quarkonium
in the helicity amplitude; however, we adopt nonrelativistic
normalization in the LDMEs. Since, in this work, we are
only concerned with the lowest order in velocity expansion,
we can set mH ¼ 2mb and mJ=ψ ¼ 2mc in (8).
It is worth noting that the helicity selection rule for

SDCs,

fHλ1;λ2 ∝ r1þjλ1þλ2j; ð10Þ

can be directly deduced from (7) by noticing
that hOiJ=ψ ∝ m3

c.
It is convenient to expand the helicity SDCs in powers of

the strong coupling constant

fHλ1;λ2 ¼ α2s

�
fH;ð0Þ
λ1;λ2

þ αs
π

�
β0
2
ln

μ2R
m2

b

fH;ð0Þ
λ1;λ2

þ fH;ð1Þ
λ1;λ2

�

þ α2s
π2

�
3β20
16

ln2
μ2R
m2

b

fH;ð0Þ
λ1;λ2

þ
�
β1
8
fH;ð0Þ
λ1;λ2

þ 3β0
4

fH;ð1Þ
λ1;λ2

�
ln

μ2R
m2

b

þ ð2γJ=ψ þ γHÞ ln
μ2Λ
m2

c
fH;ð0Þ
λ1;λ2

þ fH;ð2Þ
λ1;λ2

��
þOðα5sÞ;

ð11Þ

where β0 ¼ 11
3
CA − 4

3
TFnf and β1 ¼ 34

3
C2
A − ð20

3
CA þ

4CFÞTFnf are the one-loop and two-loop coefficients of
the QCD β function, respectively, and nf ¼ nL þ nH
signifies the number of active flavors, with the number
of light quarks being nL ¼ 3, and the number of heavy
quarks nH ¼ 1. μR and μΛ refer to the renormalization scale
and the NRQCD factorization scale, respectively. The ln μ2R
terms in (11) guarantee the renormalization group invari-
ance of the SDCs. The occurrence of ln μ2Λ is required by
the NRQCD factorization. According to the factorization,
the μΛ dependence in the SDCs should be thoroughly
eliminated by that in the LDMEs. γJ=ψ and γH represent
the anomalous dimensions associated with the NRQCD
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bilinear currents carrying the quantum numbers 3S1, 1S0,
or 3PJ, which have already been known from various
sources [25–30]:

γJ=ψ ¼ −π2
�
CACF

4
þ C2

F

6

�
; ð12aÞ

γηb ¼ −π2
�
CACF

4
þ C2

F

2

�
; ð12bÞ

γχb0 ¼ −π2
�
CACF

12
þ C2

F

3

�
; ð12cÞ

γχb1 ¼ −π2
�
CACF

12
þ 5C2

F

24

�
; ð12dÞ

γχb2 ¼ −π2
�
CACF

12
þ 13C2

F

120

�
: ð12eÞ

The SDCs can be determined by the perturbative match-
ing procedure—i.e., by replacing the physical J=ψ=H with
the fictitious quarkonia composed of the free cc̄=bb̄ pair
with the same quantum numbers as J=ψ=H, computing both
sides in (8) in perturbative QCD and NRQCD, then solving
for SDCs order by order in perturbation theory.

IV. SDCs UP TO NNLO

We employ the FeynArts package [31] to generate the
quark-level Feynman diagrams and Feynman amplitudes
for bb̄ → cc̄þ cc̄. Some representative Feynman diagrams
are illustrated in Fig. 1. We adopt the well-known covariant
color/spin/orbital projector technique with the aid of the
packages FeynCalc [32] and FormLink [33] to expedite the
matching calculation. To further extract the helicity ampli-
tudes, we find it convenient to apply various covariant
helicity projectors. The expressions of these helicity pro-
jectors are explicitly presented in Appendix A.

It is straightforward to compute the leading-order (LO)
SDCs

fχb0;ð0Þ1;1 ¼ 64
ffiffiffi
3

p
π2r3

81
; fχb0;ð0Þ0;0 ¼ −

32
ffiffiffi
3

p
π2rð1 − 2r2Þ
81

;

ð13aÞ

fχb2;ð0Þ1;1 ¼ −
64

ffiffiffi
6

p
π2r3

81
; fχb2;ð0Þ1;0 ¼ 32

ffiffiffi
2

p
π2r2

27
; ð13bÞ

fχb2;ð0Þ1;−1 ¼ −
32π2r
27

; fχb2;ð0Þ0;0 ¼ −
16

ffiffiffi
6

p
π2rð1þ 4r2Þ
81

;

ð13cÞ

which are consistent with those in Refs. [9,11,13].
Accidentally, we find that the SDCs for ηb and χb1
vanish at LO. This can be explained by the following
fact: At LO, the amplitude of the subprocess ηbðχb1Þ →
g�g� is proportional to a Levi-Civita tensor, and by
coincidence, the momenta of the two virtual gluons are
equal, which cause the Levi-Civita tensor to vanish.
In addition, it is straightforward to check that the value
fH;ð0Þ in (13) satisfy the helicity scaling rule (10) in the
limit of r → 0.
Once beyond the LO, we adopt the standard shortcut to

directly extract the SDCs—i.e., to expand the QCD
amplitudes in powers of quark relative momentum prior
to conducting loop integrals, which amounts to directly
extracting the contribution from the hard region in the
context of strategy of region [34]. We utilize the packages
Apart [35] and FIRE [36] to reduce the loop integrals into
linear combinations of a group of master integrals (MIs).
Finally, we end up with 20 one-loop MIs, which are
analytically computed with the aid of Package-X [37],
and 1439 two-loop MIs, which are numerically evaluated
with the method of auxiliary mass flow [38–41].
Moreover, we employ the newly released package

LO NLO

NNLO

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

FIG. 1. Some representative Feynman diagrams for the process H → J=ψJ=ψ up to two loops.
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CalcLoop [42], developed by Ma et al., to check some of
our computation.
Performing the field-strength and mass renormalization,

with two-loop expressions of Z2 and Zm taken from [43],
and renormalizing the strong coupling constant under
the MS scheme to two-loop order, we eliminate the UV
divergences in the two-loop SDCs. Nevertheless, the
renormalized two-loop corrections to the SDCs still contain
uncanceled single IR poles. This pattern is exactly what is
required by NRQCD factorization, as reflected in (11).
These IR poles can be factored into the NRQCD LDMEs
under the MS prescription, which then become scale-
dependent quantities. As mentioned previously, the ln μΛ
terms in (11) exactly cancel the μΛ dependence of the

LDMEs, so that the predicted decay width is independent
of μΛ. The validity of NRQCD factorization in this process
turns out to be highly nontrivial.

Since the analytic expressions of the fH;ð1Þ
λ1;λ2

are too
complicated, here we merely present their asymptotic
expansion in the limit of r → 0:

fH;ð1Þ
λ1;λ2

���
asy

¼ 64π2

81
r1þjλ1þλ2jCHλ1;λ2 ; ð14Þ

where we have deliberately pulled out the r-dependent
factor in front to make the helicity scaling rule manifest, so
that the CHλ1;λ2 values scale as r0 and read

Cηb1;1 ¼
19ln2r

8
þ
�
5

2
þ 19iπ

8
−
ln 2
4

�
ln rþ 5ln22

16
þ
�
1

2
þ iπ

8

�
ln 2þ 29π2

96
−
3

ffiffiffi
3

p
π

8
þ iπ þ 3

4
; ð15aÞ

Cχb01;1 ¼ −
59 ln2 r

8
ffiffiffi
3

p þ
ffiffiffi
3

p �
25 ln 2
12

−
22

3
−
59iπ
24

�
ln rþ 25

ffiffiffi
3

p

16
ln2 2 −

ffiffiffi
3

p �
11

2
þ 33iπ

8

�
ln 2þ

ffiffiffi
3

p �
983

144
þ 65iπ

24
−
19π2

32

�

þ π

3
−

ffiffiffi
3

p
nf
9

ð3iπ þ 5Þ; ð15bÞ

Cχb00;0¼
ð15−10ln2Þ ffiffiffi

3
p

6
lnr−

ffiffiffi
3

p �
1

2
þ13iπ

24

�
ln2þ

ffiffiffi
3

p �
17π2

96
−
511

144
−
25iπ
24

�
þ

ffiffiffi
3

p

4
ln22þ37π

48
þ

ffiffiffi
3

p
nf

18
ð3iπþ5Þ; ð15cÞ

Cχb11;0¼
ln2r

8
ffiffiffi
2

p þ
ffiffiffi
2

p �
5 ln2
8

−
7

64
þ iπ
16

�
lnr−

97ln22

8
ffiffiffi
2

p þ
ffiffiffi
2

p �
159

16
þ51iπ

4

�
ln2þ

ffiffiffi
2

p �
13π2

96
−
583

256
−
127iπ
16

−
21

ffiffiffi
3

p
π

32

�
; ð15dÞ

Cχb21;1 ¼
13 ln2 r

2
ffiffiffi
6

p −
ffiffiffi
6

p �
37 ln 2
12

−
29

6
−
13iπ
12

�
ln rþ 411

ffiffiffi
6

p

16
ln2 2 −

ffiffiffi
6

p �
1123

30
þ 52iπ

�
ln 2þ

ffiffiffi
6

p �
3851

720
þ 731iπ

20
þ 29π2

96

�

þ 1261π

120
ffiffiffi
2

p þ
ffiffiffi
6

p
nf
9

ð3iπ þ 5Þ; ð15eÞ

Cχb21;0 ¼ −
17 ln2 r

8
ffiffiffi
2

p þ
ffiffiffi
2

p �
21 ln 2

8
−
335

64
−
17iπ
16

�
ln rþ 417 ln2 2

8
ffiffiffi
2

p −
ffiffiffi
2

p �
8879

240
þ 857iπ

16

�
ln 2

þ
ffiffiffi
2

p �
76087

3840
þ 17779iπ

480
−
67π2

64

�
−
181

ffiffiffi
6

p
π

480
−

ffiffiffi
2

p
nf
6

ð3iπ þ 5Þ; ð15fÞ

Cχb21;−1 ¼ ð6 − 8 ln 2Þ ln rþ 10 ln2 2 −
�
453

20
þ 163iπ

8

�
ln 2þ 73π2

96
þ 5801iπ

480
−
1157

240
þ 1081

ffiffiffi
3

p
π

480
þ nf

6
ð3iπ þ 5Þ; ð15gÞ

Cχb20;0 ¼
ð3 − 2 ln 2Þ ffiffiffi

6
p

6
ln rþ 13

ffiffiffi
6

p

4
ln2 2 −

ffiffiffi
6

p �
259

60
þ 161iπ

24

�
ln 2 −

ffiffiffi
6

p �
1067

1440
−
2141iπ
480

þ π2

32

�

þ 197
ffiffiffi
2

p
π

120
þ

ffiffiffi
6

p
nf

36
ð3iπ þ 5Þ: ð15hÞ

It is worth noting that the above asymptotic expressions can hardly approximate the complete expressions for most fð1Þλ1;λ2
cases at physical values of mc and mb, due to mb being far from asymptotically larger than mc.
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Finally, we identify the desired nonlogarithmic piece in
the two-loop SDCs. It becomes much more challenging to
deduce the analytical expressions for the encountered two-
loopMIs. Instead, we resort to the high-precision numerical
computation. By taking the bottom quark and charm quark
pole masses to the typical values mb ¼ 4.70 GeV and
mc ¼ 1.50 GeV, respectively, we tabulate the results of

fH;ð2Þ
λ1;λ2

in Table I. For completeness, the numerical values of

fH;ð0Þ
λ1;λ2

and fH;ð1Þ
λ1;λ2

are also listed.

V. PHENOMENOLOGY AND DISCUSSION

Prior to making phenomenological predictions, we
specify our choice of the various input parameters. In
order to reduce the theoretical uncertainty, we use the
physical quarkonium masses in computing the phase space
in (6). But beyond that, we choose mH ¼ 2mb and mJ=ψ ¼
2mc so as to maintain gauge invariance. The physical
quarkonium masses are taken from the particle data group
(PDG) [44]: mηb ¼ 9.3987 GeV, mχb0 ¼ 9.85944 GeV,
mχb1 ¼ 9.89278 GeV, mχb2 ¼ 9.91221 GeV, and mJ=ψ ¼
3.0969GeV. We choose the benchmark values of the heavy
quark pole masses, mb ¼ 4.7 GeV and mc ¼ 1.5 GeV.
In addition, we will investigate the dependence of the
theoretical results on the mass ratio r.
We approximate the NRQCD LDMEs at μΛ ¼ 1 GeV by

the Schrödinger radial wave function at the origin and the
first derivative of the Schrödinger radial wave function at the
origin for the S-wave and P-wave quarkonia, respectively:

hOiJ=ψ ≈
Nc

2π
jRcc̄

1Sð0Þj2 ¼
Nc

2π
× 0.810 GeV3; ð16aÞ

hOiηb ≈
Nc

2π
jRbb̄

1Sð0Þj2 ¼
Nc

2π
× 6.477 GeV3; ð16bÞ

hOiχbJ ≈
3Nc

2π
jR0bb̄

1P ð0Þj2 ¼
3Nc

2π
× 1.417 GeV5; ð16cÞ

where the radial wave functions at the origin are evaluated
from the Buchmüller-Tye (BT) potential model [45]. Note
that we have made the approximation hOiχb0 ≈ hOiχb1 ≈
hOiχb2 by invoking the heavy quark spin symmetry.
We fix μΛ ¼ 1 GeV. The central value of μR is chosen,

μR ¼ mb, and we vary μR from 2mc to 2mb to estimate the
theoretical uncertainties. The QCD running coupling con-
stant is evaluated with the aid of the package RunDec [46]
at two loops.
To further predict the branching fractions of various

decay channels, we need to specify the total decay widths
of ηb and χbJ. The decay width of ηb can be directly taken
from the PDG [44]: Γηb ¼ 10þ5

−4 MeV. So far, the decay
widths of χbJ are absent from the PDG. Nevertheless, we
can determine the decay widths of χbJ through

ΓtotðχbJÞ ¼
Γ½χbJ → γϒ�
Br½χbJ → γϒ� ; ð17Þ

where the branching fractions of the E1 transition are
measured [44], and the decay widths of the E1 transition
have been given in Ref. [47]. We enumerate all the results
in Table II, where the uncertainty in Γtot originates from
Br½χbJ → γϒ�.
Now, we collect all the ingredients to perform phenom-

enological analysis. In Table III, we tabulate the theoretical
predictions on the (un)polarized decay widths and the
branching fractions at various levels of accuracy in αs. To
facilitate comparison, the upper limits of various channels
from the Belle measurements [3] are listed in the last
column. The uncertainty affiliated with the decay width
is caused by sliding the renormalization scale μR, and the
two uncertainties in the branching fraction are from the
renormalization scale and total decay width. We should
emphasize that there are other sources of uncertainties
for the theoretical predictions—e.g., the values of the
Schrödinger wave functions and the uncalculated relativ-
istic corrections, which may potentially bring about extra
uncertainties. In addition, we do not include the contribu-
tions from the Feynman diagrams where the double J=ψ’s
are produced through two virtual photon independent
fragmentations, which actually are much less than the
nonfragmentation contributions [8,9,13,48], and therefore
can be safely neglected. It is worth noting that the situation
is quite different from the process eþe− → J=ψJ=ψ , where
the dominant production mechanism is via two photon
independent fragmentations into J=ψ .

TABLE II. Total decay widths of χbJ .

H Γ½χbJ → γϒ�(keV) [47] Br½χbJ → γϒ� [44] Γtot(MeV)

χb0 22.2 (1.94� 0.27)% 1.144þ0.185
−0.140

χb1 27.8 (35.2� 2.0)% 0.079þ0.005
−0.004

χb2 31.6 (18.0� 1.0)% 0.176þ0.010
−0.009

TABLE I. Numerical values for various SDCs with mb ¼
4.7 GeV and mc ¼ 1.5 GeV.

mc ¼ 1.50 GeV; mb ¼ 4.70 GeV

H (λ1, λ2) fð0Þλ1;λ2
fð1Þλ1;λ2

fð2Þλ1;λ2

ηb (1,1) � � � 0.551 − 1.410i 21.624 − 10.293i

χb0 (1,1) 0.439 −0.266þ 2.726i −86.938þ 29.858i
(0,0) −1.716 −2.830 − 6.283i 184.697 − 75.742i

χb1 (1,0) � � � −0.281þ 1.188i 8.812þ 7.876i

χb2 (1,1) −0.621 3.801þ 0.233i 84.482 − 2.120i
(1,0) 1.685 −9.666 − 1.178i −221.561 − 1.457i
(1;−1) −3.733 21.499þ 2.214i 465.006þ 10.900i
(0,0) −2.145 11.326þ 2.567i 278.731þ 3.346i
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Examining Table III closely, we find that the polarized
decay widths roughly obey the hierarchy as indicated by
the helicity scaling rule in (7). It is interesting to note that
both the NLO and NNLO perturbative corrections to

Γ½χb2 → J=ψJ=ψ � are sizable and negative. Incorporating
the perturbative corrections significantly reduces the LO
prediction, which indicates that the perturbative conver-
gence is rather poor. Because of this, the theoretical

FIG. 2. Theoretical predictions for Br½ηbðχbJÞ → J=ψJ=ψ � as a function of μR at various levels of accuracy in αs.

TABLE III. Theoretical predictions on various (un)polarized decay widths (in units of eV) and branching fractions (×10−5). The
uncertainties affiliated with the decay widths are estimated by varying μR from 2mc to 2mb, with the central values evaluated at
μR ¼ mb. The two uncertainties in the branching fraction are from the renormalization scale μR and the total decay widths of ηb=χbJ,
respectively.

H Order Γ0;0 Γ1;0 Γ1;1 Γ1;−1 ΓUnpol Brth Brexp [3]

ηb LO � � � � � � � � � � � � � � � � � � � � �
NLO � � � � � � 1.080þ1.663

−0.714 � � � 2.160þ3.325
−1.428 0.022þ0.033þ0.014

−0.014−0.007
NNLO � � � � � � 4.084þ3.987

−2.232 � � � 8.168þ7.973
−4.463 0.082þ0.080þ0.054

−0.045−0.027

χb0 LO 8.542þ7.358
−4.393 � � � 0.559þ0.482

−0.288 � � � 9.660þ8.321
−4.968 0.844þ0.727þ0.117

−0.434−0.118 < 7.1

NLO 11.140þ1.233
−2.500 � � � 0.616þ0.084

−0.124 � � � 12.372þ1.400
−2.748 1.081þ0.122þ0.150

−0.240−0.151

NNLO 6.449þ1.710
−1.955 � � � 0.329þ0.371

−0.012 � � � 7.107þ1.741
−1.212 0.621þ0.152þ0.086

−0.106−0.086

χb1 LO � � � � � � � � � � � � � � � � � � < 2.7
NLO � � � 0.007þ0.011

−0.005 � � � � � � 0.027þ0.042
−0.018 0.035þ0.053þ0.002

−0.023−0.002

NNLO � � � 0.014þ0.009
−0.006 � � � � � � 0.057þ0.035

−0.026 0.072þ0.044þ0.004
−0.033−0.004

χb2 LO 2.663þ2.294
−1.370 1.643þ1.416

−0.845 0.223þ0.192
−0.115 8.067þ6.949

−4.149 25.818þ22.239
−13.279 14.669þ12.636þ0.884

−7.545−0.789 < 4.5

NLO 1.094þ0.281
−0.679 0.604þ0.199

−0.423 0.075þ0.030
−0.057 2.943þ0.987

−2.084 9.545þ3.111
−6.655 5.424þ1.768þ0.327

−3.781−0.292
NNLO 0.071þ0.476

−0.048 0.020þ0.267
−0.015 0.001þ0.032

−0.001 0.157þ1.351
−0.130 0.467þ4.311

−0.360 0.265þ2.450þ0.016
−0.205−0.014
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prediction bears large μR dependence for χb2. In addition,
the decay widths of ηb and χb1 are much smaller than those
of the other two channels, which is attributed to the
vanishing LO amplitudes for ηb and χb1. Finally, we find
that the theoretical predictions on the branching fractions
are consistent with the upper limits measured by the Belle
Collaboration [3].
In Fig. 2, we plot the branching fractions as a function of

the renormalization scale μR at various levels of perturba-
tive accuracy. The green band corresponds to the uncer-
tainty affiliated with the total decay widths of ηb and χbJ.
We observe that the perturbative corrections seem to
considerably reduce the LO μR dependence for χb0 and
slightly reduce the μR dependence for χb1, but they worsen
the μR dependence for ηb.
It is instructive to further investigate the dependence

of the theoretical predictions on the mass ratio r. By
fixing LDMEs, μR ¼ mb and mb ¼ 4.7 GeV, and varying
mc from 1.25 GeV to 1.9 GeV, we plot the branching
fractions as a function of r at various levels of accuracy in
αs in Fig. 3. We observe that the branching fractions
monotonically decrease as r increases for ηb and χb0;1 at
every perturbative accuracy. By analyzing the data in
Appendix B, we find that, by varying mc from 1.25 GeV
to 1.9 GeV, the branching fractions roughly change by a
factor of 2, 3, and 6 for ηb, χb0, and χb1, respectively.

Although the branching fraction for χb2 decreases with the
increase of r both at LO and at NLO, the branching fraction
at NNLO is almost independent of r.
Finally, we utilize the results in Table III to estimate

the observing prospects at the LHC and B Factory. The
production cross sections for χb0 and χb2 at the LHC atffiffiffi
s

p ¼ 14 TeV are evaluated: σðpp → χb0 þ XÞ ¼ 1.5 μb,
and σðpp → χb2 þ XÞ ¼ 2.0 μb [49]. The cross section for
ηb production is roughly estimated to be σðpp→ηbþXÞ¼
15 μb [8]. If we take the integrated luminosity
L ¼ 100 fb−1, it is expected that there will be about 106

exclusive double J=ψ events from ηb and χb0 decay, and
5 × 105 from χb2 decay at the LHC. Furthermore, taking
into account Br½J=ψ → ll� ¼ 12%, about (5 − 10Þ × 103

four-lepton events from double J=ψ can be produced.
Although there are potentially copious double J=ψ back-
ground events, it might be helpful to establish the
ηbðχbJÞ → J=ψJ=ψ signals. At the B Factory, ηb and χbJ
can be produced through ϒð2SÞ electromagnetic E1
transition. Using a sample of 158 × 106ϒð2SÞ events
collected by the Belle detector, we expect about 105 ηb
and 6 × 106 χb0, and 107 χb1;2 events can be accumulated.
Consequently, it is estimated that there are fewer than 100
double J=ψ events. So, the experimental measurements on
these channels are challenging based on the current dataset

FIG. 3. Branching fractions of ηbðχbJÞ → J=ψJ=ψ as a function of r.
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at the B Factory. Nevertheless, with the designed 50 ab−1

integrated luminosity at Belle 2, it seems that the obser-
vation prospects of ηbðχbJÞ → J=ψJ=ψ are promising in
the foreseeable future.

VI. SUMMARY

Based on the NRQCD factorization, we compute both
the polarized and the unpolarized decay widths for the
processes ηbðχbJÞ → J=ψJ=ψ up to NNLO in αs. By taking
the decay width of ηb from PDG and determining the total
decay widths of χbJ through their electromagnetic E1
transition into ϒ, we also predict the branching fractions
for ηbðχbJÞ → J=ψJ=ψ. We find that the perturbative
corrections are sizable for ηb and χb2 decay. In particular,
for χb2, both the OðαsÞ and Oðα2sÞ corrections can signifi-
cantly reduce the LO prediction. Moreover, we observe
that the decay widths for ηb and χb1 are much smaller than
those of the other two channels, which can be attributed
to the vanishing LO amplitudes for ηb and χb1. By
including all the radiative corrections, we find that the
branching fractions are 8.2 × 10−7, 6.2 × 10−6, 7.2 × 10−7,
and 2.7 × 10−6 for ηb, χb0, χb1, and χb2, respectively. Our
theoretical predictions are consistent with the upper limits
measured by the Belle Collaboration.
We also investigate the dependence of the theoretical

predictions on the mass ratio r. By fixing mb and the
LDMEs, and varying r from 0.26 to 0.4, we find that the
branching fraction can change by a factor of 2, 3, and 6
for ηb, χb0, and χb1, respectively. Although the branching
fraction for χb2 decreases with the increase of r at LO and
NLO, it is almost independent of r at NNLO.
Finally, we explore the observing prospects for

ηbðχbJÞ → J=ψJ=ψ at the LHC and B Factory. We expect
that there are about ð5 − 10Þ × 105 double J=ψ signal
events produced at the LHC, and fewer than 100 events at
the B Factory. Taking into account Br½J=ψ → ll� ¼ 12%,
several thousands of four-lepton events from double J=ψ
can be produced at the LHC. If a copious double J=ψ
background can be well separated, the experimental mea-
surements on ηbðχbJÞ → J=ψJ=ψ might be helpful at the
LHC. The measurement on ηbðχbJÞ → J=ψJ=ψ at the B
Factory is quite challenging based on the current dataset.
Nevertheless, with the designed 50 ab−1 integrated lumi-
nosity at Belle 2, the observation prospects for ηbðχbJÞ →
J=ψJ=ψ may be promising in the foreseeable future.
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APPENDIX A: CONSTRUCTION OF HELICITY
PROJECTORS

In this appendix, we present the helicity projectors PðHÞ
λ1;λ2

,
which have been used to compute the helicity amplitudes
for ηbðχbJÞ → J=ψJ=ψ in Sec. IV. We apply the similar
technique applied in [5,20].
For convenience, we introduce an auxiliary transverse

metric tensor and two auxiliary longitudinal vectors,

gμν⊥ ¼ gμν þ PμPν

jPj2 −
Q · P
m2

HjPj2
ðPμQν þQμPνÞ

þ m2
J=ψ

m2
HjPj2

ðQμQνÞ; ðA1aÞ

Lμ
H ¼ 1

jPj
�
Pμ −

Q · P
mH

Qμ

�
; ðA1bÞ

Lμ
J=ψ ¼ 1

jPj
�

P ·Q
mHmJ=ψ

Pμ −
mJ=ψ

mH
Qμ

�
; ðA1cÞ

where P and Q denote the momenta of J=ψ and H,
respectively. It is obvious that the transverse metric tensor
satisfies the properties

g⊥μνPμ ¼ g⊥μνQμ ¼ 0; ðA2aÞ

gμ⊥μ ¼ 2; ðA2bÞ

g⊥μαgαν⊥ ¼ g⊥μαgαν ¼ gν⊥μ: ðA2cÞ

The longitudinal vectors satisfy Lμ
HQμ ¼ Lμ

J=ψPμ ¼ 0.
We enumerate all eight helicity projectors:

PðηbÞμν
1;1 ¼ i

2mηb jPj
ϵμνρσQρPσ; ðA3aÞ

Pðχb0Þμν
1;1 ¼ −

1

2
gμν⊥ ; ðA3bÞ

Pðχb0Þμν
0;0 ¼ Lμ

J=ψL
ν
J=ψ ; ðA3cÞ

Pðχb1Þμνα
1;0 ¼ −1

2mχb1 jPj
ϵμνρσQρPσLα

J=ψ ; ðA3dÞ
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Pðχb2Þμναβ
1;−1 ¼ 1

4
ðgμν⊥ gαβ⊥ − gμα⊥ gνβ⊥ − gμβ⊥ gνα⊥ Þ; ðA3eÞ

Pðχb2Þμναβ
1;1 ¼ −1

2
ffiffiffi
6

p ðgμν⊥ þ 2Lμ
HL

ν
HÞgαβ⊥ ; ðA3fÞ

Pðχb2Þμναβ
1;0 ¼ −1

2
ffiffiffi
2

p ðgμα⊥ Lν
H þ gνα⊥ Lμ

HÞLβ
J=ψ ; ðA3gÞ

Pðχb2Þμναβ
0;0 ¼ 1ffiffiffi

6
p ðgμν⊥ þ 2Lμ

HL
ν
HÞLα

J=ψL
β
J=ψ : ðA3hÞ

If we express the decay amplitudes of ηbðχbJÞ →
J=ψðλ1ÞJ=ψðλ2Þ as

AðηbÞ ¼ AðηbÞ
μν ϵ�μJ=ψ ðλ1Þϵ�νJ=ψ ðλ2Þ; ðA4aÞ

Aðχb0Þ ¼ Aðχb0Þ
μν ϵ�μJ=ψðλ1Þϵ�νJ=ψðλ2Þ; ðA4bÞ

Aðχb1Þ ¼ Aðχb1Þ
μνα ϵμχb1ϵ

�ν
J=ψ ðλ1Þϵ�αJ=ψ ðλ2Þ; ðA4cÞ

Aðχb2Þ ¼ Aðχb2Þ
μναβϵ

μν
χb2ϵ

�α
J=ψ ðλ1Þϵ�βJ=ψ ðλ2Þ; ðA4dÞ

where ϵJ=ψ , ϵχb1 , and ϵχb2 represent the polarization vector/
tensor of J=ψ , χb1, and χb2, respectively, the helicity
amplitude can be computed through

AðηbÞ
1;1 ¼ PðηbÞμν

1;1 AðηbÞ
μν ; ðA5aÞ

Aðχb0Þ
1;1 ¼ Pðχb0Þμν

1;1 Aðχb0Þ
μν ; ðA5bÞ

Aðχb0Þ
0;0 ¼ Pðχb0Þμν

0;0 Aðχb0Þ
μν ; ðA5cÞ

Aðχb1Þ
1;0 ¼ Pðχb1Þμνα

1;0 Aðχb1Þ
μνα ; ðA5dÞ

Aðχb2Þ
1;−1 ¼ Pðχb2Þμναβ

1;−1 Aðχb2Þ
μναβ; ðA5eÞ

Aðχb2Þ
1;1 ¼ Pðχb2Þμναβ

1;1 Aðχb2Þ
μναβ; ðA5fÞ

Aðχb2Þ
1;0 ¼ Pðχb2Þμναβ

1;0 Aðχb2Þ
μναβ; ðA5gÞ

Aðχb2Þ
0;0 ¼ Pðχb2Þμναβ

0;0 Aðχb2Þ
μναβ: ðA5hÞ

APPENDIX B: DECAY WIDTHS AND
BRANCHING RATIOS FOR DIFFERENT r

By fixing LDMEs, μR ¼ mb and mb ¼ 4.7 GeV, and
varying mc from 1.25 GeV to 1.9 GeV, we tabulate the
decay widths and branching fractions in Table IV. The
branching fraction as a function of r has been illustrated
in Fig. 3.

TABLE IV. Theoretical predictions on various unpolarized decay widths (in units of eV) and branching fractions (×10−5).

r 0.267 0.286 0.308 0.333 0.364 0.400

H Order Γ Br Γ Br Γ Br Γ Br Γ Br Γ Br

ηb LO � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
NLO 2.407 0.024 2.341 0.023 2.231 0.022 2.059 0.021 1.796 0.018 1.401 0.014
NNLO 9.245 0.092 8.944 0.089 8.468 0.085 7.749 0.077 6.688 0.067 5.151 0.052

χb0 LO 14.978 1.309 12.664 1.107 10.563 0.923 8.690 0.760 7.065 0.618 5.722 0.500
NLO 21.144 1.848 17.267 1.509 13.826 1.209 10.831 0.947 8.299 0.725 6.250 0.546
NNLO 12.177 1.064 9.951 0.870 7.956 0.695 6.202 0.542 4.708 0.412 3.502 0.306

χb1 LO � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
NLO 0.044 0.055 0.037 0.047 0.031 0.039 0.024 0.030 0.016 0.021 0.009 0.012
NNLO 0.099 0.125 0.082 0.104 0.065 0.082 0.048 0.061 0.032 0.040 0.017 0.022

χb2 LO 33.173 18.848 30.015 17.054 27.096 15.396 24.423 13.877 22.002 12.501 19.848 11.277
NLO 13.545 7.696 11.845 6.730 10.253 5.825 8.764 4.979 7.370 4.187 6.058 3.442
NNLO 0.410 0.233 0.438 0.249 0.459 0.261 0.472 0.268 0.473 0.269 0.458 0.260
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