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We present the QCD corrections of order α3s to the decay rate of b → ulν̄l, with l ¼ e, μ, originating
from diagrams with closed fermion loops and neglecting the mass of the up quark. Our calculation relies on
integration-by-parts reduction of Feynman integrals with one propagator raised to a symbolic power in
KIRA and the numerical evaluation of master integrals with AMFlow. This allows us to obtain results for the
fermionic contributions to the total semileptonic rate with an accuracy of more than 30 digits.
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I. INTRODUCTION

The inclusive B-meson decay B → Xulν̄l, with
l ¼ e, μ, has a pivotal role in the extraction of the
Cabbibo-Kobayashi-Maskawa matrix element jVubj and
in global fits of the unitarity triangle within the Standard
Model [1,2].
Because of experimental cuts applied to semileptonic

b → u decay to suppress the b → c contamination, the
theoretical description of the differential rate for inclusive
B → Xulν̄l is based on a nonlocal operator product
expansion (OPE) [3–5]. Perturbative coefficients in the
OPE are convoluted with nonperturbative shape func-
tions. Their exact form cannot be calculated from first
principles so different parametrizations exist [6–10] which
lead to jVubj determinations with uncertainties of about
4% [11].
In this paper we consider the total B → Xulν̄l decay rate

which is cleaner from the theoretical point of view because
it does not involve shape functions. The total rate is
described by the heavy quark expansion [12–14], a local
OPE in inverse powers of the bottom quark mass, which
has been successfully applied to semileptonic b → c decays
and the extraction of jVcbj [15,16].
The Belle II Collaboration [17] has recently presented

a preliminary measurement of the ratio ΓðB → Xulν̄lÞ=
ΓðB → Xclν̄lÞ fromwhich it is possible to extract jVub=Vcbj
given a prediction for the phase-space ratio [18–20]

C ¼
����Vub

Vcb

����
2 ΓðB → Xclν̄lÞ
ΓðB → Xulν̄lÞ

; ð1Þ

which is also employed to normalize the branching ratio
of radiative decays (B → Xsγ) and rare semileptonic
decays (B → Xslþl−). The ratio C is determined using
the heavy quark expansion together with measurements
of the B → Xclν̄l decay spectra. The current estimate
C ¼ 0.568� 0.007� 0.010 [21] has a 2.1% uncertainty
that will be comparablewith the future experimental error on
B → Xsγ, of about 2.6%, which is achievable with the full
Belle II dataset [22]. Also for the theoretical prediction of the
B → Xslþl− branching fraction, the ratio C is a significant
source of uncertainty [23–25].
In the free quark approximation the total rate of b →

ulν̄l has been calculated up toOðα2sÞ in Refs. [26–28]. The
third order correction has been estimated in Refs. [29,30]
(see also Ref. [31]) by performing an asymptotic expansion
for δ ¼ 1 −mc=mb → 0, i.e. in the limit mb ≃mc. The
series in δ exhibits a fast convergence and allows us to
obtain an accurate result for b → c decay at the physical
value of the charm mass. Moreover, the expansion shows a
good convergence even for δ → 1, corresponding to a
massless final-state quark. This allows us to make an
estimate of the charmless decay b → u, however, with a
10% uncertainty on the α3s correction due to the extrapo-
lation to massless quark. This prediction has been recently
confirmed by an independent calculation performed in the
leading-color approximation [32] with an uncertainty of
about 5% in the on-shell scheme, a factor of 2 improvement
compared to Ref. [29]. This translates into a systematic
0.5% uncertainty on the total semileptonic rate.
In the present paper, we take a first step towards the

improvement of the prediction for the total rate of
b → ulν̄l. We present the calculation of the fermionic
contributions at order α3s, i.e., the subset of five-loop
diagrams containing closed fermion loops. The evaluation
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of the remaining part, the bosonic corrections, is underway
and it will be presented in a future publication. In Sec. II we
describe the methods used for the calculation of five-loop
diagrams, in particular, how we perform the integration-by-
parts (IBP) reduction and the numerical evaluation of the
master integrals. We present our results in Sec. III together
with a comparison with previous calculations. We conclude
in Sec. IV.

II. METHODS

We calculate higher order QCD corrections to the decay
rate by employing the optical theorem and considering the
imaginary part of self-energy diagrams like those shown
in Fig. 1. At order α3s we compute diagrams up to five loops.
The Feynman diagrams contain a neutrino, a charged
lepton, and an up quark as internal particles, which are
all considered massless. Only the bottom quark is taken as
massive and we normalize its mass to unity for simplicity.
The Feynman integrals depend only on the dimensional
regularization parameter d ¼ 4 − 2ϵ. The weak decay medi-
ated by theW boson is treated with an effective four-fermion
interaction, shown with black dots in Fig. 1.
In this paper we concentrate on the subset of gauge-

invariant diagrams that contain at least one closed fermion
loop, where the internal quark can be massless, u, d, s, c, or
massive, the bottom quark [see for instance Figs. 1(a) and
1(b)]. We ignore the finite charm-mass effects.
For the computation of the bottom self-energy diagrams

we use QGRAF [33] to generate the amplitude. We use
the program TAPIR [34] for identification, manipulation,
and minimization of Feynman integral families. With
EXP [35,36] we generate a FORM [37–39] code to perform
the Dirac and color algebra. We perform our calculation
in Feynman gauge. We express the complete amplitude,

fermionic, and bosonic contributions, as a linear combi-
nation of Feynman integrals belonging to 1, 21, and 107
integral families at three, four, and five loops, respectively.
We utilize IBP identities [40,41] and deploy Laporta’s

algorithm [42] to express all integrals appearing in the
amplitude through a smaller set of integrals (for public tools
see Refs. [43–47]). The reduction of the five-loop integrals
constitutes the major bottleneck. The integral families at
five loops contain up to 12 propagators and 8 irreducible
numerators. Given that the amplitude needs an integral
reduction in the top sector with up to 5 scalar products, this
would generate a rich combinatorics when seeding the IBP
vectors for the construction of IBP equations, leading to a
huge RAM consumption of several TBs.
In order to perform the IBP reduction, we find it

beneficial to integrate out the lepton-neutrino loop, which
corresponds to a massless propagatorlike one-loop integral
of the form

Z
ddp

pμ1…pμN

ð−p2Þ½−ðp − qÞ2�

¼ iπ2−ϵ

ð−q2Þϵ
X½N=2�

i¼0

fðϵ; i; NÞ
�
q2

2

�
i

f½g�i½q�N−2igμ1…μN ; ð2Þ

where the function fðϵ; i; NÞ is a product of Euler’s gamma
functions (see, e.g., [48]) and the symbol f½g�i½q�N−2igμ1…μN

stands for the tensor composed of i metric tensors and
N − 2i vectors q, which is totally symmetric in its indices.
We rewrite the original five-loop topologies into four-loop
ones that have a reduced number of propagator power
indices, 14 instead of 20, where one propagator is now
raised to a symbolic power a0.
We work with the IBP reduction program KIRA [49,50]

together with the finite field reconstruction library FireFly

[51,52]. In particular, KIRA supports reductions with
symbolic powers. First, we perform a reduction of seed
integrals with at most two dots and one scalar product.
After identifying the nontrivial sectors in each family, we
study which sectors contain integrals with a physical cut
and therefore an imaginary part [see for instance Fig. 2(a)].
Sectors whose integrals are only real valued [see the
example in Fig. 2(b)] are neglected during the IBP
reduction. We observe that for some families with several
massive propagators, such sector selection allows us to
eliminate up to 70% of the nontrivial sectors.
After this step, we proceed with the IBP reduction of

the complete set of integrals appearing in the amplitude.
We replace the symbolic power a0 with ð4 − dÞ=2 ¼ ϵ in
the IBP equations in order to have only one reduction
variable instead of two. Moreover, we take the IBP vectors
and eliminate redundant shift operators; in particular, we
eliminate most of the operators which would shift the
symbolic power. When seeding the IBP identities, it is

FIG. 1. Five-loop diagrams contributing to the α3s correction to
b → ulν̄l. Sample of fermionic (a), (b) and bosonic (c), (d)
contributions. Lepton and neutrino are shown with dashed lines;
black and red solid lines represent the bottom and up quark. The
effective vertex is shown by a dot.
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sufficient to have only zero or negative shifts of the
symbolic power to reduce all necessary integrals.
The list of trivial sectors and symmetries derived for the

five-loop topologies are translated to the four-loop ones.
The four-loop master integrals are chosen such that no shift
of the symbolic propagator power is allowed. The trans-
lation of four-loop master integrals back to five-loop master
integrals is then trivial using Eq. (2) in the reverse direction.
For the fermionic contributions, the amplitude is reduced

to 1369 master integrals with KIRA, which have, in the
worst case, one scalar product belonging to 48 different
integral families. The complete amplitude is reduced to
8845 master integrals which have up to two scalar products
belonging to 107 integral families. Our setup is cross-
checked with FIRE for ten integral families, where we
perform the reduction over a prime field and a fixed value
of d with FIRE6 [45].
To calculate the master integrals, we leverage the method

of solving differential equations numerically (see, e.g.,
Refs. [53–57]). In this paper, we follow the strategy outlined
in [58] and the auxiliary mass flow method, [54,59] which
is implemented in the AMFlow package [60,61]. For similar
approaches see also Refs. [62–71]. We calculate the five-
loop master integrals numerically requiring 40 digits of
precision using subroutines provided in AMFlow. We do not
minimize the number of master integrals across different
integral families because it is not crucial for the reduction of
the overall runtime for the whole calculation.
The auxiliary mass flow method requires us to construct

systems of differential equations with respect to the
auxiliary mass η which is introduced into certain propa-
gators. We implement in the framework of AMFlow our own
interface to KIRA in order to perform the IBP reduction with
the mapping from five-loop to four-loop topologies as
described above. However, at this stage of the calculation

one needs to consider all nontrivial sectors, not only those
which generate an imaginary part. The IBP reductions
to master integrals are more involved compared to the
amplitude reduction since the additional scale η increases
the number of master integrals.

III. RESULTS AND DISCUSSION

After the evaluation of the master integrals, we insert
their results into the amplitude and perform the wave
function and bottom mass renormalization in the on-shell
scheme [72–75], while we use MS for the strong coupling
constant. The total rate for b → u decay can be written as

ΓðB→Xulν̄lÞ ¼ Γ0

�
1þCF

X
n≥1

�
αs
π

�
n
Xn

�
þO

�Λ2
QCD

m2
b

�
;

ð3Þ
where Γ0 ¼ G2

Fm
5
bjVubj2Aew=ð192π3Þ, CF ¼ 4=3, and

αs ≡ αð5Þs ðμsÞ is the coupling constant at the renormaliza-
tion scale μs. Aew ¼ 1.014 is the leading electroweak
correction, [76] and mb is the on-shell mass of the bottom
quark. The coefficient X3 at order α3s can be divided into 10
color structures:

X3 ¼ N2
LT

2
FXN2

L
þ N2

HT
2
FXN2

H
þ NHNLT2

FXNHNL

þ NLTFðCFXNLCF
þ CAXNLCA

Þ
þ NHTFðCFXNHCF

þ CAXNHCA
Þ

þ C2
FXC2

F
þ CFCAXCFCA

þ C2
AXC2

A
; ð4Þ

with CF ¼ ðN2
c − 1Þ=ð2NcÞ, CA ¼ Nc, and TF ¼ 1=2 for

an SUðNcÞ gauge group. Here NL ¼ 4 is the number of
massless quarks and NH ¼ 1 labels the b-quark loop. The
first seven color structures are the fermionic contributions
while the last three stem from diagrams where only gluons
are exchanged.
We estimate the precision of our result from the

numerical pole cancellations of the renormalized decay
rate. We have analytic expressions for the bare amplitude
up to order αs, while at Oðα2sÞ the amplitude is obtained
via numerical evaluation of the master integrals with 80
digits of precision. We observe that in X3 the ϵ−3, ϵ−2, and
ϵ−1 poles cancel with more than 37, 35, and 33 digits,
respectively. Extrapolating those numbers to the finite
terms, we expect that our results are correct up to 30 digits.
We present in Table I compact results for the first seven

color factors at the renormalization scale μs ¼ mb, reporting
in the second column the first five significant digits. In the
third column, we compare our results with Ref. [29] where
we use the asymptotic expansion up to δ12 for the central
value and estimate the uncertainty from the difference
between the δ11 and δ12 expansion, multiplied by a security
factor of five. We observe overall a good agreement within
the uncertainties, except for the color structure XNLCF

where

FIG. 2. Example of five-loop Feynman integrals. Black and
dashed lines represent massive and massless propagators, re-
spectively. Integral (a) has an imaginary part and we retain its
sector during IBP reduction. Integral (b) has no physical cut so
integrals belonging to the same sector can be discarded.
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the deviation is larger than the uncertainty based on the
asymptotic series convergence.
As a cross-check, we compare our finding with Ref. [32]

which presents analytic expressions for the leading-color
contributions to X3. After taking the large-Nc limit, our
results proportional to N2

L and NL agree with Eq. (13) of
Ref. [32] with more than 30 digits.
We also update the prediction for the third order

correction in the on-shell scheme:

ΓðB → Xulν̄lÞ ¼ Γ0

�
1 − 2.413

αs
π
− 21.3

�
αs
π

�
2

− 267.8ð2.7Þ
�
αs
π

�
3
�
; ð5Þ

where X3 ¼ −200.9� 2.0. The value at Oðα3sÞ is obtained
by summing our fermionic contributions and the analytic
expression for the bosonic contribution in the large-Nc limit
from Ref. [32]. Moreover, we add the subleading color
terms which result from the calculation in Ref. [29]. The
quoted uncertainty arises from the massless extrapolation

and it is estimated as in Table I. The uncertainty is reduced
by a factor of 4 compared to Ref. [32] and a factor of 10
with respect to Ref. [29].

IV. CONCLUSIONS

We presented the fermionic contributions to the decay
rate of b → ulν̄l at order α3s. Our calculation is based on
IBP reductions of Feynman integrals with a symbolic
propagator power and numerical evaluation of master
integrals via the auxiliary mass flow method. We estimate
that our results have an accuracy of at least 30 digits.
The calculation of the missing three color structures

coming from the bosonic contributions is ongoing. The
method described in this paper can also be applied to the
calculation of the finite charm-mass effects, although
requiring additional computer resources due to the new
scale mc=mb appearing in the Feynman integrals.
The decay rate ΓðB → Xulν̄lÞ is an important ingredient

in the normalization of radiative and rare semileptonic
decays of B meson and can be employed to reduce the
current theoretical uncertainty on the phase-space ratio C.

Note added. After the acceptance of our manuscript, the
authors of Ref. [77] made available their unpublished
results for the coefficients of NL and N2

L in Eq. (4), which
agree well with our results in the Table I.
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