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We study the effects of off-shellness in the generalized parton distributions of the pion. On general
grounds, these distributions exhibit a richer structure than in the on-shell case due to absence of the crossing
symmetry. In particular, their moments involve additional terms odd in the skewness parameter, associated
with new form factors. We bring up relations between the off-shell charge and gravitational form factors, as
well as the pion form factor, and discuss their derivations based on the Ward-Takahashi identities. We
illustrate the features at the (leading-Nc) one-quark-loop level with the help of the spectral quark model of
the pion, constructed to embed the vector meson dominance. Simple analytic expressions for the form
factors and the distributions follow. Thus obtained off-shell generalized parton distributions are evolved
from the quark model scale to higher scales with the leading-order Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi equations. We evaluate the corresponding Compton amplitudes which enter the cross section for the
electroproduction of the pion off the proton (the Sullivan process). It is found in our model that the effects of
off-shellness in the generalized parton distribution are substantial, however, they can be largely canceled by
the corresponding off-shell corrections to the pion propagator. In particular, this is the case of the Compton
form factors entering the deeply virtual Compton scattering amplitude. As a result, we expect small off-
shellness effects in electroproduction reactions, such as the Sullivan process.
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I. INTRODUCTION

This paper extends our recent study [1] of off-shell effects
in generalized parton distributions (GPDs) of the pion.
Exploring the nonperturbative structure of the pion and

other pseudoscalar states has been of continued interest over
the recent years [2]. However, the unstable nature of the
pion makes it difficult to investigate it experimentally. In
particular, the study of the features of GPDs is not possible
in the conventional deeply virtual Compton scattering
(DVCS) experiments and one has to resort to indirect
methods such as the Sullivan process [3]. This reaction,
shown in Fig. 1, involves the electroproduction of the pion
off a proton,

γ� þ p → πþ þ n ð1Þ

(the leptonic component has been omitted). The process
involves the DVCS amplitude, albeit with one of the pions
off the mass shell, i.e.,

γ� þ πþ� → γ þ πþ; ð2Þ

which calls for a detailed exploration of the off-shellness
effects in modeling this process.
Actually, one of the important goals of the upcoming

Electron-Ion Collider (EIC) facility is to study the Sullivan
process [4–6], while the feasibility of extracting the pion
GPDs was studied in [7–9], where the beam-spin asym-
metry was also found to be influenced by the corresponding
gluon distributions. For further expositions into this prob-
lem see also [10–13] and references therein.
In the past, the parton distribution functions (PDFs),

which are limiting cases of the GPDs, have been studied for
the pion in various experiments, such as the pion-nucleus
scattering at the CERN NA3 [14], the Fermilab E615 [15],
or the electroproduction at HERA [16,17] (cf. a recent study
of PDFs in [18]).
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An alternate framework is to study the GPDs on the
lattice. To this end, the quasidistributions introduced by
Ji [19] provide a necessary tool [20–32], as well as the
related pseudodistributions [33–48].
Such lattice simulations have produced interesting

insights into the structure of the pion. The first evaluation
of the leading-twist GPD of the pion with zero skewness
were reported in [49,50]. The large-momentum effective
theory (LaMET)-based lattice study [49] and the numerical
estimations using a combination of lattice data and Bayesian
statistics [50] were used to extract the moments of the pion
parton distribution functions as well as the zero-skewness
GPDs. The lower moments of the pion structure functions
were found to be in good agreement with the experimental
data [51–54]. Newer formalisms of extracting the GPDs of
hadrons on the lattice have been proposed and are being
actively implemented [55–58]. Detailed reviews on the
status of the problem can be found e.g., in [59–63].
From the theoretical side, various models have been

applied to study the nonperturbative structure of the pion,
and in particular the partonic distributions. Chiral symmetry
is one of the prerequisites to construct reliable models for
the pion, which is a pseudo-Goldstone boson of the
spontaneously broken chiral symmetry. The PDFs of the
pseudoscalar mesons were estimated in the Nambu-Jona-
Lasinio (NJL) model (for a review, see [64]) in [65,66], in
the instanton liquid model in [67–70], and in the rainbow-
diagram Dyson-Schwinger approach [71–73]. The GPDs in
NJL were explored in [74,75]. The quasiparton distributions
were computed using the NJL model in [76–78] and in the
instanton liquid model in [79].

In the present paper, we build up on our previous work [1]
and elaborate important aspects. In Sec. II we present the
definitions of the GPDs and establish our notation. In
Sec. III we derive the Ward-Takahashi identities (WTIs)
for off-shell vector and gravitational form factors and
discuss the effects of off-shellness and the resulting lack
of the crossing symmetry on the polynomiality of the GPDs,
as well as the emergence of additional off-shell form factors.
In the second part we illustrate the general results in a simple
chiral quark model. In Sec. IV we describe the spectral
quark model (SQM) used to quantify the results and present
the obtained GPDs, which are evolved to experimental
scales with the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi–
Efremov-Radyushkin-Brodsky-Lepage (DGLAP-ERBL)
equations. The model vector and gravitational form factors
are discussed in Sec. V. The Compton form factors obtained
form our GPDs are presented in Sec. VI. In Sec. VII, we
provide a detailed discussion of off-shellness issues in
hadronic processes, including the important effect of can-
cellation from the off-shell pion propagator.

II. FORMALISM

The Sullivan electroproduction process is depicted in
Fig. 1. It involves the DVCS amplitude (panel a), interfering
with the Bethe-Heitler amplitude (panel b). In this reaction,
the virtual pion in the DVCS or the Bethe-Heitler ampli-
tudes is generally not on shell, hence it becomes necessary
to study in detail the effects of the pion off-shellness. The
DVCS amplitude can be factorized into a soft matrix
element, corresponding to GPD, and a hard kernel calcu-
lable perturbatively in QCD (cf. Fig. 2).

FIG. 1. Diagrams for the pion electroproduction off the proton (the Sullivan process). The DVCS on the pion enters diagram (a), which
interferes with the Bethe-Heitler process of diagram (b) (the corresponding diagram with the photon emission from the initial electron is
not shown).
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The kinematics in the assumed symmetric notation is
as follows:

Pμ ¼ 1

2
ðpμ

fþpμ
i Þ; qμ ¼pμ

f−pμ
i ; ξ¼−

qþ

2Pþ ; t¼ q2;

ð3Þ

where pi and pf are the (in general off-shell) momenta of
the initial and final pions, respectively. The skewness can
be written explicitly as

ξ ¼ pþ
i − pþ

f

pþ
i þ pþ

f
; ð4Þ

and satisfies −1 ≤ ξ ≤ 1.
In the partonic framework, ðx� ξÞPþ is the longitudinal

momentum carried by the initial (final) struck parton.
The light-cone indices are defined in the convention
a� ¼ ða0 � a3Þ= ffiffiffi

2
p

. To write the expression covariantly,
one can introduce the null vector n with the properties

P · n ¼ 1; q · n ¼ −2ξ; n2 ¼ 0: ð5Þ

The leading-twist chiraly even off-shell GPDs of the pion
are defined in full analogy to the on-shell case (cf. [80]),
namely

δabδαβH0ðx; ξ; t; p2
i ; p

2
fÞ þ iϵabcτcαβH

1ðx; ξ; t; p2
i ; p

2
fÞ ¼

1

2

Z
dz−

2π
eixP

þz−hπbðpfÞjψ̄α

�
−
z
2

�
γþψβ

�
z
2

�
jπaðpiÞijzþ¼0

z⊥¼0

;

δabHgðx; ξ; t; p2
i ; p

2
fÞ ¼

Z
dz−

2πPþ eixP
þz−hπbðpfÞjFþμ

�
−
z
2

�
Fμ

þ
�
z
2

�
jπaðpiÞijzþ¼0

z⊥¼0

; ð6Þ

where ψ and Fμν represent the quark and gluon fields. The
squares of the incoming and outgoing pion momenta, p2

i
and p2

f, are not necessarily equal to m2
π , and are treated as

parameters. In the assumed light cone gauge Aþ
a ¼ 0, the

Wilson link operators do not explicitly appear in the above
definitions. The subscripts 0, 1 denote the isospin of the
quark GPDs. Indices α and β represent the quark flavor, a
and b stand for the isospin of the pions, while c is the
isospin of the probing operator. The quark GPDs H0;1 are
related to the distributions of quarks and antiquarks as
follows:

Hq;q̄ðx; ξ; t; p2
i ; p

2
fÞ ¼

1

2
½H0ðx; ξ; t; p2

i ; p
2
fÞ

�H1ðx; ξ; t; p2
i ; p

2
fÞ�; ð7Þ

By general arguments of the Lorentz covariance, the
function Hqðx; ξ; t; p2

i ; p
2
fÞ has the support x∈ ½−jξj; 1�,

whereas Hq̄ðx; ξ; t; p2
i ; p

2
fÞ has the support x∈ ½−1; jξj�.

In general, the isovector (I ¼ 1) GPD is symmetric in x
while the isosinglet (I ¼ 0) and the gluon GPDs are

antisymmetric in x:

H1ðx; ξ; t; p2
i ; p

2
fÞ ¼ H1ð−x; ξ; t; p2

i ; p
2
fÞ; ð8Þ

H0ðx; ξ; t; p2
i ; p

2
fÞ ¼ −H0ðx; ξ; t; p2

i ; p
2
fÞ: ð9Þ

This feature of the GPDs does not change whether the pion
is on shell or not. On the other hand, when the pion is off
shell, the GPDs loose the symmetry under time reversal
(or crossing), which is equivalent to the simultaneous
replacement of x → −x, ξ → −ξ, or instead to the replace-
ment p2

f ↔ p2
i . As a result, the generalized form factors

As
j;i, defined as the nth moments in the x variable of the

GPDs Hs (s ¼ 0; 1; g),

Z
1

−1
dxxjHsðx;ξ; t; p2

i ; p
2
fÞ ¼

Xjþ1

i¼0

As
j;iðt;p2

i ; p
2
fÞξi

¼ As
j;0ðt;p2

i ;p
2
fÞ

þAs
j;1ðt;p2

i ; p
2
fÞξþ…; ð10Þ

FIG. 2. DVCS amplitude of the pion decomposed into GPD and
the hard perturbative kernel. The longitudinal momentum fraction
of the struck parton is changed from xþ ξ into x − ξ, where ξ is
the skewness parameter.
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are no longer even powers of ξ. Thus, though the poly-
nomiality feature is retained, the odd powers of the
skewness also enter the moments of the GPDs, bringing
a new set of form factors. Under the replacement p2

i ↔ p2
f,

we find that

As
j;iðt; p2

f; p
2
i Þ ¼ ð−1ÞiAs

j;iðt; p2
i ; p

2
fÞ: ð11Þ

III. ELECTROMAGNETIC AND GRAVITATIONAL
FORM FACTORS

The first two lowest rank [j ¼ 0 and 1 in Eq. (10)]
generalized (off shell) form factors correspond to the matrix
elements of the conserved electromagnetic and energy-
stress tensor currents. As such, they do not depend on the
factorization scale, and therefore are independent of the
QCD evolution, which makes them particularly important
objects. Explicitly, one introduces

N1ðξ; t; p2
i ; p

2
fÞ≡

Z
1

−1
dxH1

¼ 2ðFðt; p2
i ; p

2
fÞ − ξGðt; p2

i ; p
2
fÞÞ; ð12Þ

N0ðξ; t; p2
i ; p

2
fÞ≡

Z
1

−1
dx x½H0 þHg�

¼ θ2ðt; p2
i ; p

2
fÞ − 2ξθ3ðt; p2

i ; p
2
fÞ

− ξ2θ1ðt; p2
i ; p

2
fÞ: ð13Þ

According to the above-mentioned symmetry arguments,
the form factors multiplying even powers of ξ, namely F,
θ2, and θ1, are even under the replacement p2

i ↔ p2
f,

whereas G and θ3, corresponding to odd powers of ξ, are
odd under p2

i ↔ p2
f.

Our next task is to obtain general relations between
various form factors of the pion using WTIs. Some
important properties of the off-shell electromagnetic form
factors were explored long ago in [81,82] and below we
recall that methodology. In Appendix A we review the
derivations of the WTIs for the electromagnetic and
gravitational form factors. It is customary to pass from
the full (reducible or unamputated) vertices to the amputated
vertices Γ, which appear as the building blocs of hadronic
Feynman diagrams, together with the pion propagator Δ.
The leg amputation procedure for the electromagnetic and
gravitational cases yields

Γμðpi; pfÞ ¼ Δ−1ðpiÞGμðpi; pfÞΔ−1ðpfÞ; ð14Þ

Γμνðpi; pfÞ ¼ Δ−1ðpiÞGμνðpi; pfÞΔ−1ðpfÞ: ð15Þ

The WTI for the electromagnetic vertex of Eq. (A6)
assumes the form

qμΓμðpi; pfÞ ¼ Δ−1ðp2
fÞ − Δ−1ðp2

i Þ: ð16Þ

From the Lorentz covariance, the general form of the
(positively charged) pion photon vertex is given by

Γμ ¼ 2PμFðt; p2
i ; p

2
fÞ þ qμGðt; p2

i ; p
2
fÞ; ð17Þ

hence

qμΓμ ¼ ðp2
f − p2

i ÞFðt; p2
i ; p

2
fÞ þ tGðt; p2

i ; p
2
fÞ; ð18Þ

We note that when Eq. (17) is contracted with nμ, it yields
Eq. (12). By comparing Eqs. (16) and (18) one promptly
finds [81,82] the relations for the off-shell electromagnetic
form factors

Gðt;p2
i ;p

2
fÞ ¼

p2
f −p2

i

t
ðFð0;p2

i ;p
2
fÞ−Fðt;p2

i ;p
2
fÞÞ; ð19Þ

Fð0; m2
π; p2Þ ¼ Fð0; p2; m2

πÞ ¼
Δ−1ðp2Þ
ðp2 −m2

πÞ
; ð20Þ

Fð0; m2
π; m2

πÞ ¼ 1: ð21Þ

The last equation is the charge sum rule (for the considered
positively charged pion). It follows from Eq. (20) in the
limit p2 → m2

π and the fact that for the canonical pion field
in the vicinity of the pole Δðp2Þ ¼ 1=ðp2 −m2

πÞ þOð1Þ.
Moreover,

Gð0; p2
i ; p

2
fÞ ¼ ðp2

i − p2
fÞdFðt; p2

i ; p
2
fÞ=dtjt¼0: ð22Þ

Similar arguments carry over to the case of the stress-
energy tensor, as argued in [1]. The WTI for the amputated
gravitational vertex [Eq. (15)] follows from Eq. (A10) and
takes the form

qμΓμνðpf; piÞ ¼ pν
iΔ−1ðp2

fÞ − pν
fΔ−1ðp2

i Þ
¼ Pν½Δ−1ðp2

fÞ − Δ−1ðp2
i Þ�

−
1

2
qν½Δ−1ðp2

fÞ þ Δ−1ðp2
i Þ�: ð23Þ

The most general vertex allowed by the symmetries is

Γμν ¼ 1

2
½ðq2gμν − qμqνÞθ1 þ 4PμPνθ2

þ ðqμPν þ PμqνÞθ3 − gμνθ4�; ð24Þ

where, θi ≡ θiðt; p2
i ; p

2
fÞ are the gravitational form factors.

This form generalizes the on-shell definition of [83]. Upon
the contraction with qμ we get
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qμΓμν¼ðp2
f−p2

i ÞPνθ2þ
�
tPνþ1

2
ðp2

f−p2
i Þqν

�
θ3−

1

2
qνθ4:

ð25Þ

Since the four-vectors P and q are linearly independent,
comparing Eqs. (23) and (25) we find two independent
relations

ðp2
f − p2

i Þθ2 þ tθ3 ¼ Δ−1ðp2
fÞ − Δ−1ðp2

i Þ; ð26Þ

ðp2
f − p2

i Þθ3 − θ4 ¼ −½Δ−1ðp2
fÞ þ Δ−1ðp2

i Þ�: ð27Þ

The form factor θ1, multiplying a transverse tensor,
remains unconstrained by the WTI relations. Contraction of
Eq. (24) with nμnν yields the right-hand side of Eq. (13)
multiplied by a factor of 1

2
, which originates form the

definition (6). Note that θ4 does not enter Eq. (13) because
n2 ¼ 0, hence it is not accessible in studies of the GPDs.
From Eq. (26)

θ3ðt;p2
i ;p

2
fÞ¼

p2
f−p2

i

t
½θ2ð0;p2

i ;p
2
fÞ−θ2ðt;p2

i ;p
2
fÞ�; ð28Þ

with

θ2ð0; m2
π; p2Þ ¼ θ2ð0; p2; m2

πÞ ¼
Δ−1ðp2Þ
ðp2 −m2

πÞ
; ð29Þ

and the mass sum rule

θ2ð0; m2
π; m2

πÞ ¼ 1: ð30Þ

From Eq. (28) we immediately find that

θ3ð0; p2
i ; p

2
fÞ ¼ ðp2

i − p2
fÞdθ2ðt; p2

i ; p
2
fÞ=dtjt¼0: ð31Þ

The above relations for the off-shell gravitational form
factors mirror one-to-one those for the off-shell electro-
magnetic form factors.
Interestingly, we also get a relation between the off-shell

electromagnetic and gravitational form factors at t ¼ 0,
namely

θ2ð0; p2
i ; p

2
fÞ ¼ Fð0; p2

i ; p
2
fÞ ¼ Δ−1ðp2

fÞ − Δ−1ðp2
i Þ: ð32Þ

This important relation will be used in Sec. VII to argue that
the off-shell effects largely cancel at low ξ in the Compton
form factor entering the pion electroproduction processes.
Finally, using Eq. (27) we can express θ4 solely in terms

of θ2, namely

θ4ðt; p2
i ; p

2
fÞ ¼

ðp2
f − p2

i Þ2
t

½θ2ð0; p2
i ; p

2
fÞ − θ2ðt; p2

i ; p
2
fÞ�

þ ðp2
i −m2

πÞθ2ð0; p2
i ; m

2
πÞ

þ ðp2
f −m2

πÞθ2ð0; m2
π; p2

fÞ: ð33Þ

All the above relations hold in general in theories where
the pion satisfies the partially conserved axial current
(PCAC) relation, needed to derive the WTIs. More dis-
cussion on the assumptions and the derivations of WTIs are
presented in Appendix A.

IV. OFF-SHELL GENERALIZED PARTON
DISTRIBUTIONS OF THE PION

IN THE SPECTRAL QUARK MODEL

The results presented up to now for the GPDs and the
related form factors were completely general and followed
from the definitions and symmetries. In the subsequent parts
of this paper we extensively illustrate these features within a
chiral quark model, where the pion is a composite field
(satisfying PCAC). The purpose of an explicit realization is
twofold; first, intricate features are displayed within a
model, which albeit simple, leads to expressions for the
GPD which are quite involved and nontrivial. In particular,
they exhibit no factorization in x, t, ξ, and the off-shell
momenta. The other reason is to obtain a model estimate for
the size of the off-shellness effects as expected in electro-
production process. Since the applied model is realistic in
other predictions for the pion, one can expect it may provide
a useful guideline also for the physical phenomena studied
here, such as the Sullivan process.

A. Model

The model we use has the Lagrangian density with a
nonlinear pion field realization,

LðxÞ ¼ ψ̄ðxÞ½i=∂ − ωeiγ5τ
aϕaðxÞ=f�ψðxÞ; ð34Þ

where ψ is the quark field, ω is the quark mass, τa are
the Pauli isospin matrices, ϕa is the pion field, and f is the
pion decay constant. For the physical pion mass
f ¼ 93 MeV, while in the chiral limit f ¼ 86 MeV.
With the nonlinear realization one avoids introducing
the σ field of the linear model, which leads to somewhat
more complicated (but qualitatively equivalent) results.
The interactions in the model are local (pointlike), and the
pion is a pseudo-Goldstone boson according the Nambu-
Jona-Lasinio mechanism.

B. GPDs at the one-quark-loop level

The one-quark-loop Feynman diagrams appearing in our
calculations of the GPDs are shown in Fig. 3. They follow
directly from the definitions [Eq. (6)]. The fermion lines
correspond to constituent quarks, whose large mass,
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denoted atω, follows from the spontaneous chiral symmetry
breaking [64]. Diagram (c) results from expanding the
interaction term in Eq. (34) to second order in ϕa. With
the standard Feynman rules in the momentum representa-
tion, the diagrams of Fig. 3 yield the following contributions
to the off-shell pion GPDs:

Haðx; ξ; t; p2
i ; p

2
fÞ ¼

Ncw2

f2

Z
d4k
ð2πÞ4 δðk · n − xÞ

× Tr

�
γ · nS

�
k −

1

2
q

�
γ5Sðk − PÞγ5

× S

�
k −

1

2
q

��
; ð35Þ

Hbðx; ξ; t; p2
i ; p

2
fÞ ¼

Ncw2

f2

Z
d4k
ð2πÞ4 δðk · n − xÞ

× Tr

�
γ · nS

�
k −

1

2
q

�
γ5Sðkþ PÞγ5

× S

�
k −

1

2
q

��
; ð36Þ

Hcðx; ξ; t; p2
i ; p

2
fÞ ¼

Ncw
f2

Z
d4k
ð2πÞ4 δðk · n − xÞ

× Tr

�
γ · nS

�
k −

1

2
q

�
iS

�
k −

1

2
q

��
;

ð37Þ

where the quark propagator is

SðlÞ ¼ i
=l − ωþ iϵ

: ð38Þ

In the assumed chiral limit, the quark-meson coupling
constant is equal to ω=f. The isospin decomposition
yields

H1ðx;ξ; t; p2
i ; p

2
fÞ ¼Haðx;ξ; t; p2

i ;p
2
fÞ−Hbðx;ξ; t; p2

i ; p
2
fÞ;

H0ðx;ξ; t; p2
i ; p

2
fÞ ¼Haðx;ξ; t; p2

i ;p
2
fÞ þHbðx;ξ; t;p2

i ; p
2
fÞ

þHcðx;ξ; t; p2
i ;p

2
fÞ: ð39Þ

C. Spectral regularization

The Nambu–Jona-Lasinio model and its descendants are
low-energy models and thus, by physics arguments, a
cutoff (regularization) of the hard momenta needs to be
introduced. In fact, the diagrams of Fig. 3 are logarithmi-
cally divergent. When introducing a regularization, care is
needed not to spoil the symmetries of the theory, such as the
Lorentz and gauge invariances, or preservation of anoma-
lies [64]. There are several ways of doing this in a proper
way. Popular schemes are the Pauli-Villars or proper-time
regularizations.
In this paper we apply the spectral regularization [84],

which amounts to overlaying contributions from different
quark masses in the quark loop, similar in spirit to the Pauli-
Villars method. In the spectral quark model (SQM),
however, the quark masses are distributed in the complex
plane and the evaluation of the amplitudes involves the
following operation [74,84],

ASQM ¼
Z
C
dωρðωÞAbare; ð40Þ

where, Abare represents the unregularized amplitude, ρðωÞ
is the regularizing spectral function, and C is a suitable
contour of integration (cf. Fig. 1 in [84].
One of the main advantages of SQM is a possibility

of an exact implementation of the vector meson dominance
(VMD) in the (on-shell) pion electromagnetic form
factor,

FVðtÞ ¼
M2

V

M2
V − t

; ð41Þ

FIG. 3. One-loop Feynman diagrams for the model evaluation
of the GPDs.
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where MV ∼mρ ∼ 770 MeV is the vector meson mass. In
the assumed chiral limit, it is the only parameter of the
model. The form [Eq. (41)] is accomplished by choosing
the spectral function in the form [84],

ρðωÞ ¼ 1

2πi
1

ω

1

ð1 − 4ω2=M2
VÞ5=2

; ð42Þ

with the consistency relation M2
V ¼ 24π2f2=Nc which

works well phenomenologically. SQM has been success-
fully applied to evaluate such properties of the pion as its
electromagnetic, gravitational and higher-order form factor,
structure function, PDF, GPDs, transition form factor,
decay constant, and so on [74,84–88].

D. GPDs at the quark-model scale

The GPDs are evaluated using the above described
model at the one-quark-loop level. The calculation provides
the leading-Nc quark model result which holds at the quark
model scale, which then must be evolved to the higher
experimental of lattice scales [65,74], as described in
Sec. IV E. The formalism and technicalities are detailed
in Refs. [74,89].
One can write down a decomposition of the model one-

quark-loop amplitudes in the form Eq. (35)

H1;0ðx; ξ; t;p2Þ ¼ 1

2
½ð1− ξÞIðx;ξ;p2

i Þ þ ð1þ ξÞIðx;−ξ; p2
fÞ

þ ½m2
fðξþ xÞ þm2

i ðx− ξÞ þ tð1− xÞ�
× Jðx; ξ; t;p2

i ; p
2
fÞ� � ðx↔ −xÞ; ð43Þ

with the one-loop functions I (two-point) and J (three-
point) provided in Appendix D. Note that the x, ξ, t, p2

i , and
p2
f dependence in general does not factorize. While the

explicit form of the general formulas [Eq. (43)] is long, they
become very simple for the case where p2

i ¼ p2
f ¼ t ¼ 0,

with the stepwise functions [74],

H1ðx; ξ; 0; 0; 0Þ ¼ Θ½ðxþ 1Þð1 − xÞ�;
H0ðx; ξ; 0; 0; 0Þ ¼ Θ½ðx − ξÞð1 − xÞ� − ðx ↔ −xÞ: ð44Þ

Another very simple case occurs for the half-off-shell
PDF case

p2
i ¼ p2; p2

f ¼ 0; ð45Þ

with t ¼ 0 and ξ ¼ 0:

H1;0ðx;0;0;p2;0Þ ¼ Θðxð1− xÞÞ�
1− 4xð1−xÞp2

M2
V

�
3=2�ðx↔−xÞ: ð46Þ

Although in SQM one can compute analytically the fully
off-shell formulas for the pion GPDs, they are lengthy and
not illuminating. We thus focus on the half-off-shell results
(relevant inter alia for the Sullivan process) in the chiral
limit, where the expressions are simpler. The GPDs
obtained using SQM for t ¼ 0 and t ¼ −0.1 GeV2, and
for various representative values of the off-shellness p2 are
plotted in Fig. 4 (a similar range of numerical values has
been considered in [10]). One immediately notices that
the effect of the off-shellness is quite pronounced even
for moderate values of p2 ¼ −0.2 GeV2. Furthermore, the
DGLAP region jxj > jξj is affected more than the ERBL
region (jxj < jξj).
In SQM, the normalization of the GPDs following from

Eqs. (12) and (13) (see also Sec. V) is

Z
1

−1
dxH1 ≡ N1ðξ; t; p2Þ ¼ 2

M2
V

M2
V − t

M2
V − ξp2

p2 −M2
V

¼ M2
V

M2
V − t

�
1þ ð1 − ξÞp2

M2
V

þO
�
p4

M4
V

��
; ð47Þ

(a)

(b)

FIG. 4. Half-off-shell pion GPDs at ξ ¼ 0.5 for (a) t ¼ 0

and (b) t ¼ −0.1 GeV2, evaluated in the chiral limit in SQM
at the quark model scale for several values of the off-shell
parameter p2.
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Z
1

−1
dx x½H0 þHg�≡ N0ðξ; t; p2Þ

¼
M2ðξ − 1Þ

�
ðξ−1Þp2ðp2−tÞ

M2−p2 − Lð−2ξp2 þ ξtþ tÞ
�

ðp2 − tÞ2

¼ 1 − ξ2 þ ð1 − ξ2Þt
2M2

V
−
ð1 − ξÞξp2

M2
V

þO
�

t2

M4
V
;
p2

M4
V
;
pt
M4

V

�
: ð48Þ

This implies, as expected, that the normalizations N0;1
acquire corrections from the off-shellness, which at small
p2=M2

V behave as ð1 − ξÞp2=M2
V . The relevant scale here is

the vector meson mass (which is the only scale in our
model), whereas the magnitude is proportional to (1 − ξ).
In Fig. 4 we plot the pion GPDs at the quark model scale,

whose behavior reflects the above normalization condi-
tions. We observe that in the DGLAP regions in Fig. 4, the
value of the GPDs can reduce by almost 30–40% at jp2j ∼
M2

V compared to the on-shell value, with a strongest effect
for jxj near ξ.

E. QCD evolution

The GPDs are scale dependent objects which undergo
the DGLAP-ERBL QCD evolution equations [80,90]. We
note that off-shellness of the initial and final hadronic states
(pions) does not affect the QCD evolution kernel in the
assumed Bjorken limit, so the method proceeds in the usual
way. The GPDs obtained from SQM hold at the quark
model scale of μ2q ∼ 0.1 GeV2 and serve as the initial
conditions for the evolution.1 We evolve the GPDs to a
representative scale of μ2 ¼ 4 GeV2 using the procedure
detailed in [91]. The evolved GPDs are displayed in Fig. 5.
The above described characteristic effects resulting from
the off-shellness of the incoming pion remain. Further,
similar features are exhibited by the gluon distributions as
well. We note the known phenomenon that the evolution
smooths out the quark-model initial condition; it causes the
GPDs to vanish at the endpoints x ¼ 0, 1, as well as makes
them continuous at x ¼ �ξ.
For μ2 → ∞, the GPDs tend to the asymptotic forms with

the support in the ERBL region only. Explicitly,

H1ðx; ξ; t; p2
i ; p

2
fÞ ¼ N1ðt; ξ; p2; p2

fÞ
3

4jξj
�
1 −

x2

ξ2

�
;

H0ðx; ξ; t; p2
i ; p

2
fÞ ¼ N0ðt; ξ; p2; p2

fÞ
15

4ξ2
Nf

4CF þ Nf

x
ξ

×

�
1 −

x2

ξ2

�
;

xHgðx; ξ; t; p2
i ; p

2
fÞ ¼ N0ðt; ξ; p2; p2

fÞ
15

16jξj
4CF

4CF þ Nf

×

�
1 −

x2

ξ2

�
2

; ð49Þ

where Nf is the number of flavors, CF ¼ 4
3
, and the

moments [Eqs. (12) and (13)] appear in the normalization.
The qualitative features of the dependence on p2 of the

half-off-shell GPDs in the ERBL region are preserved in
the asymptotic limit, as can be seen from Fig. 6. The
symmetric and antisymmetric GPDs of the pion remain

(a)

(b)

FIG. 5. Half-offshell pion GPD for t ¼ 0 at ξ ¼ 0.5 and
ξ ¼ 0.15, evolved to Q2 ¼ 4 GeV2 with LO DGLAP-ERBL
equations.

1This initial quark-model scale produces very similar results
for the leading-order and the next-to-leading evolution of the on-
shell PDFs, as shown in [66].
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equal to each other for x > ξ when evolved to energies
above the quark model scale, where as the differences
continue to show in the ERBL region. In the asymptotic
limit, the GPDs go to zero in the DGLAP region. In the
ERBL region, the I ¼ 1 GPD is quadratic as seen from
Eq. (49). The dependence of the asymptotic GPDs on the
off-shellness resides in the normalization factors, which in
turn are the moments of the GPDs.

V. FORM FACTORS IN THE SPECTRAL
QUARK MODEL

We now turn our attention to the lowest moments of the
GPDs defined in Eqs. (12) and (13), evaluated in SQM in
the chiral limit for the half-off-shell case. We shall also
need the inverse pion propagator in SQM, which in the
chiral limit is equal to

Δ−1ðp2Þ ¼ p2M2
V

M2
V − p2

≡ p2

Zðp2Þ ; ð50Þ

where Zðp2Þ ¼ ðM2
V − p2Þ=M2

V is the pion field renorm-
alization, with Zð0Þ ¼ 1.

A. Vector form factors

The expressions for F and G have a particularly simple
structure, exhibiting (in the assumed chiral limit) a factor-
ized dependence on t and p2 [1],

Fðt; p2; 0Þ ¼ M4
V

ðM2
V − p2ÞðM2

V − tÞ ; ð51Þ

Gðt; p2; 0Þ ¼ p2M2
V

ðM2
V − p2ÞðM2

V − tÞ : ð52Þ

In the special case we have Fð0; p2; 0Þ ¼ Z−1ðp2Þ, in
agreement with the general relation Eq. (20). They are

plotted in Fig. 7 for three representative values of p2. The
central lines correspond to MV ¼ 775 MeV, while the
bands indicate the width of the ρ meson resonance,
Γρ ¼ 150 MeV.
As is well-known, in the on-shell case the vector-meson

dominance, built in by construction in SQM, reproduces
well the experimental data at moderately low values of
t [92,93]. It also reproduces the results of lattice simulations
[94,95]. Naturally, the form of Eqs. (51) and (52) complies to
the general relations following from WTI, Eqs. (19)–(22).
We stress that at low p2 the dependence on the off-shellness
is ∼p2=M2

V , which should be considered a significant effect.
We draw attention to the off-shell electromagnetic form

factors of the pion extracted in the framework of the chiral
perturbation theory (χPT) [82,96]. The one-loop χPT result
shows a linear dependence of G on p2, with the leading
coefficient equal to 2L9=F2 (at t ¼ 0). This matches
the leading term in the expansion of Eq. (52) in p2 when
the SQM value for L9 is used [97] L9 ¼ Nc

48π2
. Together

with the relation (C5) this indeed yields 2L9=f2 ¼ 1=M2
V .

FIG. 6. Asymptotic half-off-shell pion GPDs at t ¼ 0 and
ξ ¼ 0.5 for various values of the off-shell parameter p2.

(a)

(b)

FIG. 7. Half off-shell electromagnetic form factors of the
pion in SQM. The lines correspond to MV ¼ 776 MeV,
whereas the bands indicate the uncertainty due to the width
of the ρ meson, Γρ ¼ 150 MeV.
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B. Gravitational form factors

The explicit expressions for the four half-off-shell
gravitational form factors in SQM in the chiral limit are

θ1ðt; p2; 0Þ ¼
M2

V

�
p2ðt−p2Þ
M2

V−p
2 þ ðt − 2p2ÞL

�

ðt − p2Þ2 ;

θ2ðt; p2; 0Þ ¼
M2

V

�
p2ðp2−tÞ
M2

V−p
2 þ tL

�

ðt − p2Þ2 ;

θ3ðt; p2; 0Þ ¼ p2M2
V ½p2 − tþ ðM2

V − p2ÞL�
ðt − p2Þ2ðM2

V − p2Þ ;

θ4ðt; p2; 0Þ ¼ p2M2
V ½ðp2 − tÞð2p2 − tÞ þ p2ðM2

V − p2ÞL�
ðt − p2Þ2ðM2

V − p2Þ ;

ð53Þ

where L ¼ logM2
V−p

2

M2
V−t

. One can promptly verify that these

expressions satisfy the general conditions given in
Eqs. (28)–(33) following from the gravitational WTI.
Unlike the case of the half-off-shell electromagnetic

form factors, form factors of Eq. (53) do not exhibit
factorization in t and p2. Their expansion up to linear
terms in p2 and t is

θ1ðt; p2; 0Þ ¼ 1þ t
2M2

V
þ � � � ;

θ2ðt; p2; 0Þ ¼ 1þ t
2M2

V
þ p2

M2
V
þ � � � ;

θ3ðt; p2; 0Þ ¼ p2

2M2
V
þ � � � ;

θ4ðt; p2; 0Þ ¼ p2 þ � � � : ð54Þ

In the opposite (t → ∞) limit one has

θ1ðt; p2; 0Þ ∼ θ2ðt; p2; 0Þ

∼
M2

V

t

�
log

�
p2 −MV

2

t

�
þ p2

MV
2 − p2

�
;

θ3ðt; p2; 0Þ ¼ M2
Vp

2

tðp2 −M2
VÞ

;

θ4ðt; p2; 0Þ ¼ M2
Vp

2ðp2 − tÞ
tðp2 −M2

VÞ
: ð55Þ

The value of the on-shell gravitational form factor θ2 at
t ¼ 0 represents the mass sum rule for the pion and is equal
to 1 [83]. However, as follows from the general relation
(26), for the off-shell case θ2ð0; p2; 0Þ ¼ Z−1ðp2Þ. The
derivative of the on-shell θ2 at the origin provides the mass
radius rm of the pion. In the SQM, from Eq. (53), we get,

hr2mi ¼
1

6

dθ2ðt; p2; 0Þ
dt

				
t¼0

¼ 1

12M2
V
: ð56Þ

Note that the mean square mass radius of the pion is half of
its electromagnetic counterpart in the on-shell limit [88].
However, this ratio reduces as one of the pions becomes
off-shell. The ratio of the mean-square charge radii is thus
given by [88]

hr2Ei
hr2mi

¼ 2: ð57Þ

(a)

(b)

(c)

FIG. 8. Same as in Fig. 7, but for the half-off-shell gravitational
form factors θ1, θ2, and θ3.
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The half-off-shell form factors θ1, θ2, and θ3 from SQM
are plotted in Fig. 8. We note that the effect of off-shellness
on θ1 is small, ∼6% when t ¼ 0 and ∼3% when t ¼
−0.1 GeV2 for −p2 in the range 0–0.4 GeV2. In the case of
θ1, the logarithmic term cancels most of the off-shell
contributions coming from the rest of the expression,
whereas this is not the case in θ2. Thus, θ2 exhibits a
stronger dependence on p2. We note that θ3 decreases as
1=t asymptotically, whereas θ4 tends to a constant.
In Fig. 9 we show a comparison of θ2 obtained in SQM

with a recent lattice extraction [95], which are in good
agreement. This further buttresses the assumption of the
meson dominance implemented in SQM and its applicabil-
ity to the gravitational form factors.

VI. COMPTON FORM FACTORS

Another set of important quantities we wish to discuss
are the Compton form factors (CFFs) of the pion, which in
particular enter the cross section for the Sullivan process
(see, e.g., [80,98] and references therein). The DVCS
amplitude involves the Compton scattering on the partons
making up a hadron (cf. Fig. 2). CFFs are obtained via
convolution of the GPDs with a kernel that can be
calculated perturbatively in QCD. At the leading order,
the half-off-shell CFF of the pion (we take πþ for
definiteness) is equal to

Hπðξ; t; p2Þ ¼
X
p¼u;d̄

e2p

Z
1

−1
dxHpðx; ξ; t; p2; 0Þ

×

�
1

ξ − x − iϵ
−

1

xþ ξ − iϵ

�
; ð58Þ

where p indicates a parton and ep represents its electric
charge in units of e. Since the perturbative kernel is

antisymmetric in x, only the I ¼ 0 parts of the quark
GPDs from Eq. (7), which are also antisymmetric, enter
Eq. (58). Then

ReHπðξ; t; p2Þ ¼ 2
5

9
P
Z

1

0

dx
H0ðx; ξ; t; p2; 0Þ

ξ − x
;

ImHπðξ; t; p2Þ ¼ 5

9
πH0ðξ; ξ; t; p2; 0Þ; ð59Þ

where P indicates the principal value integral.

FIG. 9. Comparison of the quark part of the on-shell gravita-
tional factor factor θ2 with the lattice data of Ref. [95]. The model
value at the origin follows from the QCD evolution to μ2 ¼
2 GeV2 [88]. The model band represents the width of the ρ
meson, Γρ ¼ 150 MeV.

FIG. 10. Real and imaginary parts of the Compton form factor
of πþ in SQM, evolved with LO DGLAP-ERBL equations to
μ2 ¼ 4 GeV2 (a), and in the asymptotic limit (b).
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Since the GPDs were evolved with only the leading-
order (LO) evolution kernel, we present here the results of
only the LO CFFs.2 The real and imaginary parts of the LO
CFFs are plotted in Fig. 10 for t ¼ 0, and ξ ≤ 0.5. The real
part of the CFF displays a significant dependence on the
off-shellness of the pion, up to ∼65%. The deviation from
the on-shell limit marginally decreases as the skewness
increases. Further, the real part of the CFF is large and
positive for ξ≲ 0.25 and exhibits a smooth decreasing
behavior as skewness increases. For ξ≳ 0.25 the real part
of CFF becomes small and negative.
The imaginary part exhibits a somewhat smaller depend-

ence on the off-shellness (∼33%), which decreases with the
increase in ξ. The imaginary part is a monotonically
decreasing function of the skewness and is positive for
all the values of ξ plotted in Fig. 10.
In the asymptotic limit of μ2 → ∞, if follows from

Eq. (49) that the imaginary part of the CFF vanishes,

lim
μ→∞

ImHπðξ; t; p2
i ; p

2
fÞ ¼ 0; ð60Þ

while the ξ-dependence of the real part is given by

lim
μ→∞

ReHπðξ; t; p2
i ; p

2
fÞ ¼

25NFN0ðξ; t; p2
i ; p

2
fÞ

9ð4CF þ NFÞ
1

ξ2
; ð61Þ

which is singular at ξ → 0. Note that at low values of ξ, the
factor N0ðt; ξ; p2

i ; p
2
fÞ is dominated by the gravitational

form factor θ2ðt; p2
i ; p

2
fÞ.

VII. OFF-SHELLNESS OF THE PION
PROPAGATOR

A. General considerations

Whereas in model and phenomenological studies one
encounters the problem of off-shellness, the issue is quite
subtle. In the 1990s, within the context of a possible
experimental program to determine off-shell effects in
hadronic form factors, it was realized that the off-shell
effects cannot be measured as a physical observable even at
the lowest orders in the chiral perturbation theory for the
case of the pion (see, e.g., [101,102] and references
therein). They are model or scheme dependent, in particu-
lar, they depend on the chosen parametrization of the pion
field. If, ideally, one were able to evaluate the full cross
section ep → enπþ in a model (or simulate it on the
lattice), one could then compare it directly to the experi-
ment. There, the pion would not be approximated with a
pole term or a model propagator, but all the hadronic (quark
and gluon) processes would contribute to the process,

whereby the off-shell effects would never appear. This
utopia, however, is not only currently impossible, but also
not desired, as theoretically we wish to have components
(building blocks) of the amplitude, such as DVCS, which
upon factorization enter various physical processes. So one
is bound to an evaluation of the building blocks, where we
apply intermediate hadronic states, and the off-shellness
does need to be tackled with [103].
Up to now we have considered the off-shell effects in

GPDs, or the resulting FCCs and generalized form factors.
Now, we turn to the off-shellness of the pion propagator. In
general, the pion form factor can be written as a product of
the pole term and the pion wave function renormalization,

Δðp2Þ ¼ 1

p2 −m2
π
Zðp2Þ; ð62Þ

where Zðm2
πÞ ¼ 1. It is clear that when one considers off-

shell effects in a hadronic diagram, e.g., in the Sullivan or
electroproduction amplitudes of Fig. 11, one needs to
account for their presence in all the components of the
diagram. Since it is customary to use in such diagrams
the pion-pole term as the pion propagator, 1=ðp2 −m2

πÞ, the
remaining Zðp2Þ factor in Eq. (62) should be included in the
amplitude connected to the pion pole. This is explained
pictorially in Fig. 11. Therefore, with this arrangement in
mind, we should multiply the half-off-shell GPDs and the
corresponding form factors by Zðp2Þ.
The simplest example is for the pion electroproduction

from Fig. 11(b). The contraction with the leptonic tensor
removes the longitudinal part from vertex [Eq. (17)], so
for the evaluation of the electroproduction cross section
one is left with the part containing 2PμFðt; p2; 0Þ only.
From WTI [Eq. (20)] for the half-off-shell case we find
Zðp2Þ ¼ 1=Fðt; p2; 0Þ, therefore the vertex incorporating
the pion renormalization is

Vμ ¼ 2Pμ Fðt; p2; 0Þ
Fð0; p2; 0Þ : ð63Þ

In the situation when the t and p2 dependence is strictly
factorized, e.g., in SQM in the chiral limit [cf. Eq. (51)],
the offshell dependence in Vμ cancels out exactly and we
are left with Vμ ¼ 2PμFVðtÞ. In a general case the exact
factorization need not occur, for instance chiral correc-
tions break it weakly, hence we expect some remnant
off-shell effects in Vμ. However, as a starting point, we
expect the off-shell effects in the pion electroproduction to
be small.
Another comment here concerns the pion-nucleon form

factor GπNN entering diagrams of Fig. 11. In phenomeno-
logical approaches one uses simple parametrizations, for
instance

2The LO level may not be sufficient, as the next-to-leading
order effects with the gluonic contributions have been found to be
important or dominating in several calculations [99,100].
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GπNNðp2Þ ¼ GπNNðm2
πÞ
Λ2
π −m2

π

Λ2
π − p2

: ð64Þ

Ideally, the off-shellness effects in GπNN should be
computed in the same framework as for the other building
blocks of the process, but this would require a uniform and
efficient model for both the pion and the nucleon, which
we do not have at hand. Then, it is difficult to separate the
possible off-shell effects in Vμ and GπNN . Moreover,
contributions of other states (for instance, excited pions)
also contribute to the hadronic process and again, their
contribution is intertwined with the possible off-shell
effects.

B. Form factors amended with Zðp2Þ
In this subsection we present the half-off shell form

factors in SQM in the chiral limit, amended with the pion
wave function renormalization factor Zðp2Þ. From
Eqs. (50)–(52) we find immediately that

Zðp2ÞFðt; p2; 0Þ ¼ M2
V

M2
V − t

; ð65Þ

Zðp2ÞGðt; p2; 0Þ ¼ p2

M2
V − t

: ð66Þ

hence, as already argued in the general discussion above, all
dependence of the off-shellness p2 disappears from F,
while G is strictly proportional to p2. Correspondingly, for
the moment from Eq. (47) we find

Zðp2ÞN1ðt; ξ; p2; 0Þ ¼ M2
V − ξp2

M2
V − t

: ð67Þ

For the case of the half-off-shell gravitational form
factors, where no factorization of t and p2 occurs, we

do not find exact cancellation. The results for the form
factors Zðp2Þθi are presented in Fig. 12. We note that
Zðp2Þθ2 depends on p2 very weakly. The changes in
Zðp2Þθ1 and Zðp2Þθ3 from their on-shell t-dependence
are approximately proportional to p2.
The moment of Eq. (48) takes a simple exact form at

t ¼ 0, namely

Zðp2ÞN0ð0; ξ;p2;0Þ ¼ 1− ξ
θ3ð0; p2;0Þ
θ2ð0; p2;0Þ− ξ2

θ1ð0; p2;0Þ
θ2ð0; p2;0Þ ;

ð68Þ

where we have used the general relation from WTI,
Eqs. (28) and (29). Expansion for low ξ and p2 yields

Zðp2ÞN0ðt; ξ; p2; 0Þ ¼ 1 −
ξp2

M2
V
þ…: ð69Þ

C. GPDs amended with Zðp2Þ
In Fig. 13 we plot the half-off shell GPDs multiplied with

the pion-wave function renormalization Zðp2Þ from SQM
in the chiral limit at the quark model scale. We take t ¼ 0
and ξ ¼ 0.5. The corresponding evolved quantities are
presented in Fig. 14. We note that the normalization is
given by the factors Zðp2ÞN1;0 of Eqs. (67) and (69).
Comparing to the curves in Figs. 4 and 5, which were
normalized to N1;0, we note an inverted sequence of curves
for the corresponding values of p2. In particular, in the
present case the normalization decreases (for the assumed
positive ξ) with increasing −p2, while in Figs. 4 and 5 it
was increasing. We also note by comparing panels (a)
and (b) of Fig. 14 that the effect gets weaker as ξ decreases,
in agreement with Eq. (69).

(a) (b)

FIG. 11. The DVCS (a) and the pion electroproduction (b) amplitudes, with the off-shell effects in the pion propagator present in
Zðp2Þ. This factor may be absorbed in redefined DVCS or Γμ amplitudes, as indicated by the surrounding boxes. Then the pion pole
term 1=ðp2 −m2

πÞ and not the full pion propagator is used for the exchanged pion.
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D. Compton form factors amended with Zðp2Þ
The features of the Compton form factors multiplied

with Zðp2Þ reflect the behavior of Zðp2ÞH0 discussed in
the previous subsection. These quantities are plotted in
Fig. 15. In particular, we note that the imaginary parts of
Zðp2ÞHπðξ; t; p2Þ exhibit a very weak dependence on the
off-shellness p2, in contrast to Fig. 10.

In the asymptotic limit, the real part of the CFF is
proportional to the GFF θ2ðt; p2

i ; p
2
fÞ. At t ¼ 0, the off-

shellness of θ2 is canceled exactly by Zðp2Þ [Eqs. (29)
and (50)]. The residual off-shell effects arising from θ1 and
θ3 add up destructively. From Eq. (48), we see that

FIG. 13. Half-off-shell GPDs of the pion amended with Zðp2Þ
in SQM at the quark model scale for t ¼ 0.

(a)

(b)

(c)

FIG. 12. Gravitational form factors Zðp2Þθ1, Zðp2Þθ2, and
Zðp2Þθ3 in SQM in the chiral limit.

(a)

(b)

FIG. 14. Same as in Fig. 13, but evolved to μ2 ¼ 4 GeV2 with
LO DGLAP-ERBL equations. Panel (a) corresponds ξ ¼ 0.5 and
panel (b) to ξ ¼ 0.15.
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ReZðp2ÞHπð0; ξ; p2Þ ∝ 1− ξ2

ξ2
þ ðξ− 1Þ

ξ

p2

M2
V
þO

�
p4

M4
V

�
:

ð70Þ

With the real part of the CFF dominated by the 1=ξ2

behavior, the off-shellness appears only as a negligibly
small correction. The imaginary part of the CFF vanishes in
the asymptotic limit.

The results shown above suggest a strong cancellation of
the off-shell effects in CFFs between the GPDs and the
pion propagator. The cross section for the electroproduc-
tion of the pion results from an interference of the DVCS
and the Bethe-Heitler amplitudes, with the latter dominat-
ing [98]. Hence, any effect of the off-shellness on the
DVCS amplitude carries over linearly to the cross section.
Therefore, one should expect only small effects of off-
shellness in the electroproduction processes. Since in our
model the off-shellness of the electromagnetic form factor
is largely canceled by Zðp2Þ, the corrections to the cross
section can arise only from the virtual Compton scattering
(VCS) terms. Assuming that these corrections are domi-
nated by the real part of the CFF, we get

δσTot ¼ ΔR
2σVCS þ σINT

σTot
; ð71Þ

where the σ’s are the integrated cross sections and
ΔR ¼ δHπ=Hπ. Using the values listed in Table 1 of [98],
we find that δσTot ∼ 0.1ΔR. Thus, we expect the corrections
to the integrated cross section to be of the order of a few
percent. Since ΔR depends on the value of ξ, the correction
to the differential cross section varies with ξ.

VIII. CONCLUSION

In this paper we have discussed three groups of topics
related to the off-shellness effects in the generalized parton
distributions of the pion.
On the general and formal side, we have demonstrated

that in the absence of the crossing symmetry, the moments
of the GPDs pick up odd powers of the skewness parameter,
which results in the appearance of new form factors that
vanish when the pion becomes on shell, but otherwise are
present. Under the assumption of the PCAC relations, we
have shown that the Ward-Takahashi identities relate these
new off-shell form factors to the ones that are present for
an on-shell case, as well as to the pion propagator. The
electromagnetic and gravitational form factors pick up a
dependence on the off-shellness.
In the second part we have illustrated the formal features

of the off-shell GPDs and the resulting form factors using
the spectral quark model which implements chiral sym-
metry and incorporates the vector meson dominance
principle for the electromagnetic form factor. The model
GPDs exhibit a significant dependence on the momentum-
square of the off-shell pion. Specifically, the magnitude of
the GPDs reduce as the off-shellness increases in magni-
tude. The GPDs were then evolved from the quark model
scale to μ2 ¼ 4 GeV2 using the LO-DGLAP-ERBL evo-
lution equations, showing that the dependence on the
off-shellness holds. This significant dependence of GPDs
carries over to the electromagnetic, gravitational, and
Compton form factors.

(a)

(b)

(c)

FIG. 15. Compton form factors amended with the pion wave-
function renormalization, Zðp2ÞHπ , evolved to μ2 ¼ 4 GeV2 and
in the asymptotic limit.
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Finally, we discuss the effects of the off-shellness in the
pion propagator, in conjunction with the half-off-shell
GPDs encountered in electroproduction processes. With
the Ward-Takahashi identities and the derived model
formulas we have shown that the combined off-shell effect
in the electromagnetic form factor or the Compton form
factor at low skewness are tiny. Therefore the combined
effects of off-shellness in the pion electroproduction
processes is expected to be very small, at ≲5%. This
means that naive estimates, not taking into account off-
shellness, can be numerically correct, but for a nontrivial
reason stemming from general considerations involving the
Ward-Takahashi identities for the electromagnetic and
gravitational vertices.
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APPENDIX A: DERIVATION OF WTIs

In this appendix, we present and discuss the standard
derivations of the WTIs for off-shell pions. We follow the
notation and conventions of [82], in particular a positively
charged pion enters the vertex with momentum pi, and
leaves with momentum pf. Consider the full (unamputated)
vertex Gμμ2���μnðpi; pfÞ representing a matrix element of a
local operator Oμμ2���μn. By definition,

ð2πÞ4δð4Þðpf − pi − qÞGμμ2���μnðpi; pfÞ

¼
Z

d4xd4yd4zeiðpf ·x−pi·y−q·zÞh0jTðϕþðxÞϕ−ðyÞ

×Oμμ2���μnðzÞÞj0i: ðA1Þ

Upon contraction with qμ and partial integration one gets

ð2πÞ4δð4Þðpf − pi − qÞqμGμμ2���μnðpi; pfÞ

¼ −i
Z

d4xd4yd4zeiðpf ·x−pi·y−q·zÞ ∂

∂zμ
h0jTðϕþðxÞϕ−ðyÞ

×Oμμ2���μnðzÞj0i: ðA2Þ

For conserved currents, ∂=∂zμOμμ2���μn ¼ 0, one finds that

∂

∂zμ
h0jTðϕþðxÞϕ−ðyÞOμμ2���μnðzÞÞj0i

¼ δðx0 − z0Þh0jTð½O0μ2���μnðzÞ;ϕþðxÞ�ϕ−ðyÞÞj0i
þ δðy0 − z0Þh0jTðϕþðxÞ½O0μ2���μnðzÞ;ϕ−ðyÞ�Þj0i: ðA3Þ

TheWTI for the given vertex is obtained by imposing the
appropriate equal time commutation relations. For the
electromagnetic current one uses

δðz0 − u0Þ½J0ðzÞ;ϕ�ðuÞ� ¼ �δð4Þðz − uÞϕ�ðzÞ: ðA4Þ

Thus, Eq. (A2) becomes

ð2πÞ4δð4Þðpf − pi − qÞqμGμðpi; pfÞ

¼ i
Z

d4xd4yðeiðpf−pi−qÞ·yþipf ·ðx−yÞ − eiðpf−pi−qÞ·xþipi·ðx−yÞÞ

× h0jTðϕþðxÞϕ−ðyÞj0i; ðA5Þ

which yields the relation,

qμGμðpi; pfÞ ¼ Δðp2
fÞ − Δðp2

i Þ; ðA6Þ

where

Δðp2Þ ¼
Z

d4u e−ip·uh0jTðϕþð0Þϕ−ðuÞj0i ðA7Þ

is the pion propagator.
The derivation of WTI for the stress-energy tensor

proceeds along similar lines, but is more involved, since
the commutation relations contain the derivatives with
respect to time. The separation of the time derivatives in
the operator and the time ordering has been known to be
subtle. It requires the use of the T� products, where the time
differentiation is pulled out in front of the time ordering.
With the commutation relation for the energy-stress tensor
with one time component,

δðz0−u0Þ½Θμ0ðzÞ;ϕaðuÞ� ¼−iδð4Þðz−uÞ ∂

∂zμ
ϕaðzÞ; ðA8Þ

where a represents the isospin index, we get
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∂

∂zμ
h0jT�ðϕaðxÞϕbðyÞΘμνðzÞj0i

¼ −iδð4Þðx − zÞh0jT�
�

∂

∂xν
ϕaðxÞϕbðyÞ

�
j0i

− iδð4Þðy − zÞh0jT�
�
ϕaðxÞ ∂

∂yν
ϕbðyÞ

�
j0i: ðA9Þ

Repeating the steps leading to the electromagnetic WTI,
one gets the relation,

qμGμνðpi; pfÞ ¼ pν
iΔðp2

i Þ − pν
fΔðp2

fÞ: ðA10Þ

This relation was first derived by Brout and Englert [104]
from just the general gravitational covariance.
Some remarks and discussion are in place. The above

derivations were carried out with a tacit assumption that the
pion is an elementary field satisfying canonical commutation
relations, which allows for disregarding possible Schwinger
terms in the commutation relations (A4) and (A8). Note that
for the case of charge algebra, i.e., when we integrate (A4)
over d3z, we find

½I3;ϕ�ðuÞ�ET ¼ �ϕ�ðzÞ; ðA11Þ

where I3 is the third component of the isospin operator.
Similarly, from (A8) it follows that:

½Pμ;ϕaðuÞ�ET ¼ −i
∂

∂zμ
ϕaðzÞ; ðA12Þ

where Pμ is the four-momentum operator which is a
generator of translations.
In the current-algebraic derivations one may depart from

the assumption of the elementary nature of the pion, but one
tacitly assumes that the pion is the interpolating field
satisfying the strong PCAC relation of the form

ϕaðuÞ ¼ ∂
μAa

μðuÞ; ðA13Þ

where Aa
μ is the axial vector current. This assumption is at

the core of the derivations in [81,82,105] for the electro-
magnetic case, or in [106] for the stress-energy tensor case.
We note that in our model the pion is not elementary, as
it is a composite quark-antiquark object, but it does satisfy
PCAC of Eq. (A13). Thus, it naturally complies to the WTIs
of Eqs. (A6)–(A10). This is exemplified with the explicit
forms obtained in SQM, such as Eqs. (50)–(53), which
satisfy all the WTI-based relations given in Sec. III.

APPENDIX B: PASSARINO-VELTMAN
FUNCTIONS

With the Klein-Gordon denominators

Dl ¼ l2 − ω2 þ iϵ; ðB1Þ

the Passarino-Veltman functions needed for the evaluation
of the half-off-shell form factors are defined as

iπ2B0ðω2; v2Þ ¼
Z

d4k
1

DkDkþv
;

iπ2C0ðω2; t; p2Þ ¼
Z

d4k
1

DkDk−pDkþq
; ðB2Þ

where ω is the quark mass, and v ¼ q or p. We note that the
Passarino-Veltman functions are analytic in all their argu-
ments. Upon the Wick rotation, with the corresponding
Euclidean momenta denoted with capital letters, we have
the notation

π2B0ðω2;v2Þ¼
Z

d4K
1

½K2þω2�½ðKþVÞ2þω2�;

iπ2C0ðω2;t;p2Þ¼−
Z

d4K

×
1

½K2þω2�½ðK−PÞ2þω2�½ðKþQÞ2þω2�;

ðB3Þ

APPENDIX C: ONE-LOOP EXPRESSIONS
FOR HALF-OFF-SHELL FORM FACTORS

Here we provide the general one-quark-loop expressions
for the half-off-shell electromagnetic and gravitational form
factors of the pion. Formulas for general p2

i and p
2
f can also

be given, but they are lengthy. The half-off-shell electro-
magnetic form factors in the chiral limit are given by

Fðt;p2;0Þ ¼ Nc

4f2

Z
C
dωρðωÞω2

tB0ðω2; tÞ−p2B0ðω2;p2Þ
t−p2

;

ðC1Þ

Gðt;p2;0Þ ¼ Nc

4f2

Z
C
dωρðωÞω2

p2½B0ðω2; tÞ−B0ðω2; p2Þ�
t−p2

;

ðC2Þ

whereas the gravitational form factors are
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θ1ðt; p2; 0Þ ¼ Nc

4π2f2

Z
C
dωρðωÞω2

p4B0ðω2; p2Þ þ tðt − p2ÞB0ðω2; tÞ þ 2ω2ðt − p2Þðt − 2p2ÞC0ðω2; t; p2Þ
ðt − p2Þ2 ;

θ2ðt; p2; 0Þ ¼ Nc

4π2f2

Z
C
dωρðωÞω2

t2B0ðω2; tÞ þ p2ðp2 − 2tÞB0ðω2; p2Þ þ 2ω2tðt − p2ÞC0ðω2; t; p2Þ
ðt − p2Þ2 ;

θ3ðt; p2; 0Þ ¼ Nc

4π2f2

Z
C
dωρðωÞω2

p2

ðt − p2Þ2 ðtB0ðω2; p2Þ − tB0ðω2; tÞ þ 2ω2ðp2 − tÞC0ðω2; t; p2ÞÞ;

θ4ðt; p2; 0Þ ¼ Nc

4π2f2

Z
C
dωρðωÞω2

p2ðp4 − p2tþ t2ÞB0ðω2; p2Þ − p4tB0ðω2; tÞ þ 2p4ðp2 − tÞω2C0ðω2; t; p2Þ
ðp2 − tÞ2 ; ðC3Þ

where B0 and C0 are the Passarino-Veltman two-point
integrals from Appendix B.
The square of the pion-decay constant is [74]

f2 ¼ Nc

4π2

Z
C
dωρðωÞω2B0ðω2; 0Þ; ðC4Þ

with which one can verify the proper limits of F and θ2 at
t ¼ p2 ¼ 0. In SQM,

f2 ¼ NcM2
V

24π2
: ðC5Þ

We note that for the evaluation in SQM we need the
spectral moments

Nc

4π2f2

Z
C
dωρðωÞω2B0ðω2;u2Þ¼ M2

V

M2
V −u2

;

Nc

4π2f2

Z
C
dωρðωÞω4C0ðω2; t;p2Þ

¼ M4
V

2ðt−p2Þ
�

M2
V

M2
V −p2

þ log

�
p2−M2

V

t−M2
V

�
þ M2

V

t−M2
V

�
: ðC6Þ

The form factors reduce to the ones given by Eqs. (51)
and (52). It is straightforward to show that the form factors
follow the relation given in Eq. (19). When evaluated in
SQM, the above expressions reduce to Eq. (53).

APPENDIX D: ONE-LOOP FUNCTIONS
FOR THE GPDs

The formulas collected in this appendix follow straight-
forwardly from the derivation in Appendix B of [74]. Here
we use the symmetric convention.
The two-point functions needed for the evaluation of

GPDs are

I½x;∓ ξ; p2
i;f�≡ −i

4Ncω
2

f2

Z
d4k
ð2πÞ4

δðk · n − xÞ
Dk−PDk�q=2

¼ Θ½ð1 − xÞðx� ξÞ� Ncω
2

4π2f2ð1� ξÞ
×
Z

∞

0

du
1

uþ ω2 − ð1−xÞðx�ξÞ
ð1�ξÞ2 p2

i;f

; ðD1Þ

In SQM, the evaluation yields [74]

ISQM½x;∓ ξ;p2
i;f� ¼

Θ½ð1− xÞðx� ξÞ�
ð1� ξÞ

�
1− ð1−xÞðx�ξÞ

ð1�ξÞ2
4p2

i;f

M2
V

�
5=2 ; ðD2Þ

where relation (C5) has been used.
The needed three-point function can be written in

the form

Jðx; ξ; t; p2
i ; p

2
fÞ≡ i

4Ncω
2

f2

Z
d4k
ð2πÞ4

δðk · n − xÞ
Dk−PDkþq=2Dk−q=2

¼
Z

1

0

dy
Z

1

0

dzΘð1 − y − zÞδ½x − z

− ξð1 − 2y − zÞ�F ðy; z; t; p2Þ; ðD3Þ

where the double distribution is

F ðy;z;t;p2
i ;p

2
fÞ

¼ Ncω
2

4π2f2½ω2−yzp2
fþzp2

i ðyþz−1Þþ tyðyþz−1Þ� : ðD4Þ

In SQM

F SQMðy; z; t; p2Þ ¼ 6h
1 −

4½yzp2
f−zp

2
i ðyþz−1Þ−tyðyþz−1Þ�

M2
V

i
5=2 :

ðD5Þ
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