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The nucleon isovector electromagnetic form factors are calculated up to next-to-next-to-leading order by
combining relativistic chiral perturbation theory (ChPT) of pion, nucleon, and Δð1232Þ with dispersion
theory. We specifically address the light-quark mass dependence of the form factors, achieving a good
description of recent lattice QCD results over a range ofQ2 ≲ 0.6 GeV2 andMπ ≲ 350 MeV. For the Dirac
form factor, the combination of ChPTand dispersion theory outperforms the pure dispersive and pure ChPT
descriptions. For the Pauli form factor, the combined calculation leads to results comparable to the purely
dispersive ones. The anomalous magnetic moment and the Dirac and Pauli radii are extracted.
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I. INTRODUCTION

Elastic scattering of nucleons by pointlike, leptonic
probes is among the simplest observable processes sensitive
to the nucleon’s internal structure [1]. Therefore, electro-
magnetic nucleon form factors (FFs) play a pivotal role in
elucidating the intricate structure of nucleons and the
underlying fundamental strong interaction governing their
behavior. There are many open questions concerning the
nucleon electromagnetic FFs. To name a few; Does the
electric FF of the proton have a zero crossing in the spacelike
region [1,2]? Why does the neutron have a negative trans-
verse charge density not only at the periphery but also at the
center [3,4]? In recent years the most significant question
was probably the one related to the proton radius puzzle [5];
muonic hydrogen data contradicted the determination from
ordinary (electronic) hydrogen and electron scattering. The
extraction of the radius from ep scattering led to different
results depending on how to extrapolate to the photon point
i.e., to zero photon virtuality q2 ¼ −Q2, where the radius is
determined [6–8]. Although several recent experimental
results alignwith themuonic hydrogenmeasurement [5] and
with determinations based on dispersion relations (see Fig. 5

of Ref. [9] and references therein), the experimental scenario
remains uncertain as apparent from Fig. 1 of Ref. [10].
From the theoretical point of view, the ab initio calcu-

lation of the nucleon FFs can be achieved using the lattice
QCD (LQCD) method. Although results are now available
even at physical quark masses [11], high-precision deter-
minations are still hampered by large uncertainties when
extrapolating the LQCD results to the photon point.
Actually, at present, LQCD cannot rule out the original
electronic hydrogen data even though the muonic hydrogen
results are favored [11]. Alongside the extrapolation to the
photon point, the extraction of the nucleon electromagnetic
radii involves the interpolation or extrapolation of the light-
quark mass dependence of the FFs to the physical values.
Effective field theory allows to undertake the challenge

of predicting both theQ2 and the quark-mass dependencies
of the FFs in a model-independent way. Furthermore, the
study of the light-quark mass dependence is interesting in
its own right because it provides theoretical insight that
might not be (easily) accessible from experimental data.
Such a study will not only serve to understand the nucleon
structure itself but also to test basic properties of QCD such
as the interplay between explicit quark masses and the
dynamical scale of QCD, chiral symmetries and the
spontaneous symmetry breaking, and long-range forces
mediated by the emerging Goldstone bosons vs standard
short-range forces caused by confinement.
Chiral perturbation theory (ChPT) [12,13] is the effective

theory of strong interactions among massless pseudoscalar
mesons, which emerge as the Goldstone bosons of the
spontaneous chiral symmetry breaking. The structure of the
interactions is fixed by symmetry (and symmetry breaking)
considerations. The leading-order Lagrangian has only a
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small number of parameters. Systematic improvement by
means of perturbation theory is possible as long as the
typical four-momenta remain well below the symmetry-
breaking scale (p ≪ Λχ), and at the price of introducing
further low-energy constants (LECs). Baryons bring about
the complication of a new scale, the baryon mass, which
does not vanish in the chiral limit, where Goldstone bosons
become massless. As a consequence, the power counting is
disrupted [14]. Different procedures to systematically
restore power counting, making perturbation theory fea-
sible, have been developed (see for instance Ref. [15]). In
the present study we adopt the extended on mass shell
(EOMS) renormalization scheme [16], preserving covari-
ance and the analytic properties of loop amplitudes. By
coupling the ChPT Lagrangian to external electroweak
sources it is possible to study nucleon electromagnetic and
axial form factors at low Q2 [17–24]. The explicit chiral
symmetry breaking by light quark masses, from which
pseudoscalar mesons acquire their masses, is naturally
incorporated to the framework. This renders ChPT an ideal
tool for the combined study of the Mπ and Q2 behavior of
nucleon FFs at Mπ;

ffiffiffiffiffiffi
Q2

p
≪ Λχ ∼ 1 GeV [11,20,25].1

By construction, ChPT is limited to the energy range
where hadronic resonances are not excited.
This limitation can become too restrictive if there

are degrees of freedom which couple strongly to
pions and nucleons and/or have relatively low masses.
Phenomenologically, it is known that π − N systems couple
strongly to the Δð1232Þ states. In addition, these states are
relatively light; δ ¼ mΔ −mN ∼ 300 MeV. It is therefore
advisable to include the Δ as a dynamical degree of
freedom [26–30] to improve the convergence and extend
the range of applicability of ChPT. In general, the study of
nucleon properties; polarizabilities, couplings, form fac-
tors, in ChPT benefits from the dynamical treatment of the
Δ resonance, as can be appreciated from this, by no means
exhaustive, list of references [23,24,31,32]. In different
scenarios, different counting rules for δ are assumed. As
will be discussed below, we follow the small-scale expan-
sion [27], according to which OðδÞ ∼OðpÞ.
Virtual photons couple to pion pairs in a p-wave state. On

the other hand, it is well known that two pions in a p-wave
state are strongly correlated by the ρ meson. Though the
coupling is also strong, this case is different from the Δ one,
where the momentum scales with another small parameter.
The momentum of a pion resulting from the decay of an on
shell Δ (i.e., with an invariant mass equal to the resonance
Breit-Wigner mass) to πN scales with the baryon mass
difference δ, which is a small parameter of the theory. In
other words, such pion momenta can be regarded as small.
The hard scale, the baryon mass, cannot make the pion
momentum large, because this hard scale remains with the

nucleon, i.e., with the state that carries the conserved baryon
number. In contrast, the decay of the ρ meson into two
pions provides a momentum to one or both of the pions,
which should be considered large unless the ρ-meson mass,
mρ, is regarded as a soft scale. In view of the fact that
mπ ≪ mρ ∼ Λχ , the conservative approach is to regard the
mass of the ρ meson as a hard scale of the process. It is then
difficult to include the ρ meson as a dynamical degree of
freedom in a low-energy effective field theory although this
idea has been attempted, for instance in Refs. [33–35]. In
addition, there are plenty of phenomenological models to
include the ρ meson, often based on the concept of vector-
meson dominance [36–39]. We refrain from the use of
phenomenological models since we do not want to give up
the key features of an effective field theory, being model
independent, systematically improvable, and having con-
trolled uncertainties. Therefore, the task is to develop a
systematic, model independent scheme that allows to resum
terms ∼p2=m2

ρ, where p denotes some typical pion momen-
tum (or photon virtuality). In that way, it might be possible to
extend the range of applicability of ChPT concerning the
expansions in momenta and/or in the pion mass.
The ρ meson is observed as an elastic resonance in pion-

pion scattering. (Actually the same remark applies to the Δ
as an elastic resonance in pion-nucleon scattering.) Its
coupling to all other channels (virtual photon, but also
three- and four-pion states [40]) is very weak. From the
point of view of S-matrix theory with its focus on
asymptotic states, this suggests that the ρ meson can be
included via the two-pion p-wave phase shift provided one
understands how the asymptotic states (here the nucleons)
and the external sources (virtual photons in the present
case) couple to pion pairs. This is the essence of a
dispersive treatment for the two-pion channel, which can
then be applied to the determination of electromagnetic
FFs; see e.g., [8,41–44]. In the present work, we are not
only interested in the Q2 dependence of the FFs, but in
addition in their quark-mass (pion-mass) dependence.
Therefore, we need to know the pion-mass dependence
of any input that enters our calculations. This concerns the
coupling of the pions to the nucleons and to the virtual
photon (pion vector FF), but also the pion p-wave phase
shift. To determine the pion-mass dependence of the latter,
we use the inverse amplitude method (IAM) [45], which
can be justified from dispersion theory [46].
To account for both the Q2 and Mπ dependence over a

significantly broad range, we propose in the present paper
to combine (relativistic) ChPT (including Δ) with the
dispersive treatment of the two-pion (ρ-meson) channel.
In practice this implies a modification of those ChPT
diagrams where the photon couples to pion pairs. We also
show that such a dispersively modified ChPT approach is
consistent with a systematic ChPT power-counting scheme.
The previous line of reasoning has started from ChPT

and added a dispersion theoretical argument. Of course, we
1In the isospin limit mu ¼ md ≡ m̂, M2

π ¼ 2B0m̂þOðp4Þ so
we indistinctly refer to the m̂ or Mπ dependence.
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can also start from S-matrix theory and show where we
introduce ChPT as an approximation. For completeness
we present also this line of arguments. If one writes the
S-matrix as S ¼ 1þ iT, then the unitarity of S leads to the
optical theorem [47] here applied (schematically) to a
nucleon FF,

ImTγ�→NN̄ ∼
X
i

Tγ�→iðT†Þi→NN̄; ð1Þ

with the states i covering all allowed hadronic intermediate
states: 2π; 3π; 4π;…, KK̄; KK̄π;…, NN̄; NN̄π;…. Note
that the sum is restricted to asymptotic states: hadronic
resonances do not appear as single-particle states but are
accounted by the scattering amplitudes of asymptotic

states. For isovector FFs at low energies
ffiffiffiffiffiffi
Q2

p
≤ 1 GeV,

the 2π intermediate state is the most important one. The
basic idea of this work is therefore to treat the two-pion
state via dispersion theory, relying on standard ChPT for
the rest. The optical theorem (1) relates the imaginary part
of a loop diagram to the product of amplitudes. In technical
terms these are the Cutkosky cutting rules. For ChPT
diagrams this implies to relate one-loop FF diagrams to
products of tree-level FF and scattering diagrams. For
baryon-antibaryon intermediate states we keep just the
ChPT expression, but for pion-nucleon scattering we apply
modifications to the tree-level diagrams of pion-nucleon
scattering and the pion vector FF. These modifications
include the pion rescattering in a unitary way. One can view
this as a resummation procedure of multiloop diagrams.
The paper is organized as follows. In Sec. II A we will

describe the dispersive formalism while in Sec. II B the
ChPT calculation will be presented. Based on the combined
formalism, we calculate the Dirac and Pauli FFs. The
comparison of our results with LQCD data will be
presented in Secs. III and IV for Dirac and Pauli FF,
respectively. A summary and outlook are provided in
Sec. V. Appendixes are added for technical aspects.

II. FORMALISM

In general, there are four electromagnetic FFs; Dirac and
Pauli FFs for both protons and neutrons. Wewrite Fðq2Þ for
a generic FF, and provide labels only where it is necessary
to be specific. In such cases we use a ¼ 1 (2) for the Dirac
(Pauli) FF, p (n) for the proton (neutron), and v (s) for the
isovector (isoscalar) combination of proton and neutron
FFs, defined as

Fðs;vÞ
a ðq2Þ ¼ Fp

aðq2Þ � Fn
aðq2Þ: ð2Þ

In the q2 < 0 region the FFs are analytic functions of q2;
therefore, one can define mean squared radii as

Fðs;vÞ
a ðq2Þ ¼ Fðs;vÞ

a ð0Þ
�
1þ 1

6
hrðs;vÞ2a iq2 þOðq4Þ

�
; ð3Þ

where F1ð0Þ and F2ð0Þ stand for the electric charge and the
anomalous magnetic moment κ, respectively.

A. Dispersive machinery

1. General expressions

According to perturbative QCD [48], all FFs decrease at
large q2. One can then write down an unsubtracted
dispersion relation [49],

Fðq2Þ ¼
Z∞

s0

ds
π

ImFðsÞ
s − q2 − iϵ

: ð4Þ

The integral expresses the fact that the FF is an analytic
function in the q2 complex plane except for a cut along the
real axis, which starts at the lowest threshold s0 and extends
to þ∞. Since the cut extends to the right in the standard
way of displaying the complex plane (positive real part to
the right), it is called “right-hand cut”.
In principle, the nucleon electromagnetic FFs satisfy

unsubtracted dispersion relations, Eq. (4). The required
input is the imaginary part provided by the optical
theorem (1). But we do not have a formula for the
imaginary part that is accurate at arbitrary energies

ffiffiffi
s

p
.

ChPT works only at low enough energies. The scattering
amplitudes on the right-hand side of (1) are simpler the
smaller the number of relevant channels. Therefore, in
practice also dispersion theory is typically restricted to low
energies (or to an energy regime where perturbation theory
in coupling constants suppresses many-particle states).
It is common practice [41,42,44,50,51] to use over-

subtracted dispersion relations where the sensitivity to the
low-energy regime is strengthened and the sensitivity to
the high-energy part is demoted. A singly-subtracted
dispersion relation for the FFs is given by

Fðq2Þ ¼ Fð0Þ þ q2
Z∞

s0

ds
π

ImFðsÞ
sðs − q2 − iϵÞ : ð5Þ

The additional s in the denominator suppresses the high-
energy part of the integrand at the price of introducing a
subtraction constant Fð0Þ. Recall that for the Dirac (Pauli)
FF, this quantity is nothing but the electric charge (anoma-
lous magnetic moment).
We aim at comparing our calculation to LQCD results,

where not only the momentum transfer Q2 but also the
quark mass is varied. In fact, the nontrivial but predictable
dependence on the quark mass is a key feature of ChPT [14]
that we intend to maintain. Thus, in cases when the
subtraction constant Fð0Þ is quark-mass dependent, we
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prefer the use of an unsubtracted dispersion relation (4).
Otherwise we would limit the predictive power of our
expressions concerning the quark-mass dependence.
However, when the subtraction constant does not depend
on the quark mass, it will be of advantage to use the
subtracted dispersion relation (5).

2. The isovector channel and the ρ meson

In this paper, we include the ρmeson dispersively. As the
ρ appears in the isovector channel, we offer no improve-
ment over ChPT in the isoscalar channel. Therefore, we
focus on the isovector FFs and from now on the superscript
(v) will be implicit. For jq2j ≤ m2

ρ, Eq. (4) can be
approximated by

Fðq2Þ ≈
ZΛ2

4M2
π

ds
π

ImF2πðsÞ
s − q2 − iϵ

þ FChPTwithout 2π cutðq2Þ: ð6Þ

The first term provides the dispersive treatment for the
contribution to the FF with a two-pion cut. A subset of
such contributions in which the NNππ vertex is given at
leading order in baryon ChPT (with explicit Δ) is repre-
sented in Fig. 1. The second term in Eq. (6) accounts for
all contributions without a pion cut, which we treat in
perturbation theory.
In (6) the dispersive integral is performed only up toffiffiffi
s

p ¼ Λ. Besides the fact that our input for ImF2πðsÞ
(presented next) is less accurate at high s, the introduction
of such a cut-off is rooted in effective field theories (and
quantum field theories in general). It is a way to shift
uncontrolled high-energy contributions into the counter-
terms [low-energy constants (LECs)]. Were we only inter-
ested in a reproduction of pure ChPT, we would cut off the
dispersive integral already below the ρ-meson mass. In
ChPT this corresponds to putting the renormalization scale
to Λχ ∼mρ [13]. Here we aim at including the physics of
the ρ-meson region but do not deal with the two-baryon cut
in a dispersive way. Therefore, Λ should be chosen higher
than the ρ-meson mass but lower than two times the

nucleon mass. In this work, we set our cutoff to Λ ¼
1.8 GeV and come back to a possible cutoff dependence
below. All in all, Eq. (6) is the central equation for our
calculation of the Dirac and Pauli FFs at low Q2 and Mπ .
The contribution to the FFs from the diagrams with a

2-pion cut can be calculated in dispersion theory by making
use of unitarity and analyticity. Because in the isovector (ρ)
channel, pion pairs are in a p-wave (l ¼ 1) state, the
imaginary part of the FFs can be cast as

ImF2πðsÞ ¼ F�
vðsÞ

p3
cm

12π
ffiffiffi
s

p TðsÞ: ð7Þ

The quantities TðsÞ are the reduced NN̄ → 2πp-wave
amplitudes [44,50], while F�

v is the conjugate of the vector
FF of the pion. Finally, pcm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

π

p
=2 is the momen-

tum of a pion in the frame where the two-pion system with
invariant mass

ffiffiffi
s

p
is at rest; pcm appears to the power of

2lþ 1. Obviously, the left-hand side of Eq. (7) is real.
Therefore, the phases of T and F�

v must cancel each other.
This unitarity constraint known as Watson’s theorem [52]
prohibits the use of a purely perturbative calculation of the
scattering amplitude T. Instead, we utilize aMuskhelishvili-
Omnès equation [53,54] (see also [44,51,55,56] for deriva-
tion and further discussions). Like for the FFs themselves,
we provide subtracted and unsubtracted versions for the
calculation of the scattering amplitudes at low energies,

TðsÞ ¼ KðsÞ þΩðsÞPunsubtr

þΩðsÞ
ZΛ2

4M2
π

ds0

π

sin δðs0ÞKðs0Þ
jΩðs0Þjðs0 − s − iϵÞ ð8Þ

and

TðsÞ ¼ KðsÞ þ ΩðsÞPsubtr

þ ΩðsÞs
ZΛ2

4M2
π

ds0

π

sin δðs0ÞKðs0Þ
jΩðs0Þjðs0 − s − iϵÞs0 : ð9Þ

FIG. 1. Dispersively modified diagrams with a 2π cut. Solid, dashed, and wiggly lines denote nucleons, pions and virtual photons.
Double solid lines stand for nucleon orΔ propagators. The “ππ” circle represents the pion-pion scattering S-matrix, while the “Fv” circle
denotes the pion vector FF.
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As shown below, the constantPunsubtr can be related to LECs
of ChPT and, therefore, does not have a quark-mass
dependence. On the other hand, a subtracted version
strengthens the contribution of the low-energy part of the
integrand. Thus, also here the use of a subtracted version is
advantageous provided the corresponding constant Psubtr

does not depend on the quarkmass. In the followingwe omit
superscript “(un)subtr” for P whenever it is clear from the
context. In Eqs. (8) and (9) we have separated off the
contributions with a pure left-hand cut (K) from the rest.2 At
tree level the scattering amplitude would just beKðsÞ plus a
polynomial in s. The latter is approximated by a constant P.
The unitarization (or, diagrammatically, pion-pion

rescattering) responsible for the compliance of Watson’s
theorem is provided by the Omnès function in terms of the
pion-pion p-wave phase shift δ,

ΩðsÞ ≔ exp

8<
:s

Z∞

4M2
π

ds0

π

δðs0Þ
s0ðs0 − s − iϵÞ

9=
;: ð10Þ

At the physical pion mass, the phase shifts have been
obtained and parametrized in Ref. [57]. We use the IAM to
obtain the light-quark mass dependence of the p-wave
phase shift. Details can be found in Appendix A.
For the pion vector FF Fv we have

Fvðs;MπÞ ¼ ½1þ αVðMπÞs�Ωðs;MπÞ: ð11Þ

With the introduction of the phenomenological parameter
αV we follow [40,42,44]. In the present work, however, we
have to address in addition the pion-mass dependence of
αV . This is also covered in Appendix A.

B. The ChPT calculation

We have calculated the Dirac and Pauli FFs in ChPTwith
explicit Δ up to Oðp3Þ. Additionally, Oðp4Þ contributions
without Δ are included for F2 because we find that Oðp3Þ
ChPT yields unsatisfying results. On the other hand, it is
not our ambition to go beyond state-of-the-art and provide
a full-fledged Oðp4Þ calculation that includes the Δ.
Therefore, we make sure that we reproduce the Oðp4Þ
Δ-less (Δ) result of Ref. [18].3 In Ref. [21] the FF is
calculated up to Oðp3Þ with explicit Δ and vector mesons.
We reproduce the corresponding results without vector
mesons. The baryon-mass difference δ≡mΔ −mN is
counted as OðpÞ (small-scale expansion [27]). This count-
ing determines theOðp3Þ Δ loops to be included. As stated

in the introduction, the calculation is relativistic and
employs the EOMS renormalization scheme [16]. This
means that the power-counting breaking (PCB) terms are
absorbed in the LECs. In order to identify the PCB terms,
one expands in q2 and Mπ so that the terms that violate the
counting are isolated. For the identification of the PCB
terms, the δ difference is not considered as an expansion
parameter.
For the Δ terms, we take L2 from Ref. [13] and Lð1−4Þ

πN
from Ref. [58] (we denote the chiral-limit parameters as
follows: m̊, m̊Δ, ̊gA, and F). The inclusion of the Δ is
important because certain degree of cancellation with the
nucleon has been observed [44]. For the Δ loops, we

employ Lð1Þ
πΔ, L

ð1Þ
πNΔ from Ref. [21], but denoting the πNΔ

coupling as hA instead of g. We follow the prescriptions
of Ref. [21], setting A ¼ −1. The chiral limit masses
m̊ ¼ 0.855 GeV, m̊Δ ¼ 1.166 GeV are taken from
Ref. [32], and the chiral-limit value F ¼ 0.0856 GeV from
[59]. We set ̊gA ¼ gphysA ¼ 1.2754, since it is almost Mπ

independent [32], and hA ≈ 3̊gA=ð2
ffiffiffi
2

p Þ ¼ 1.35. The rela-
tion between hA and ̊gA follows from QCD in the limit of
large number of colors [60].4

For illustrative purposes we report here the most relevant
terms of the quantities defined in Eq. (3) (in agreement
with [21]),

hr21iChPT ¼ −12d6 þ
1

16π2F2

�
−2 log

�
Mπ

μ

�
− 1

− ̊g2A

�
10 log

�
Mπ

μ

�
− 12 log

�
m̊
μ

�
þ 41

2

�

þ h2A

�
379

54
−
80

27
log

�
m̊
μ

�
þ 80

9
log

�
Mπ

μ

�

−
80δ logðXÞ
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 −M2

π

p
�
þ…

�
; ð12Þ

with X ¼ ðδ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 −M2

π

p
Þ=Mπ; the ellipsis stands for

higher orders in Mπ and δ. The full expressions are given
in our Supplementary Material [61].
As already discussed, we include some Oðp4Þ diagrams

in our F2 calculation. Here we explicitly display the full
tree-level but just the leading-loop terms:

κChPT ¼ c6 − 16e106m̊M2
π þ

1

4π2F2

�
−g̊2Am̊Mπ

þ 8

9
h2Am̊

�
δ log

�
Mπ

2δ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 −M2

π

q
logðXÞ

�
þ…

�
;

ð13Þ
2Form factors are functions of the virtuality q2 alone and

possess right-hand cuts in the q2-plane on account of the optical
theorem. Two-particle scattering amplitudes depend on the
Mandelstam variables. After partial-wave projection, right-hand
cuts in the variables t or u lead to left-hand cuts in the s-plane.

3Note that our c6 LEC is 4m̊ times the one used in Ref. [18].

4Note that in some publications hA is defined differently, e.g.,
with twice the value used here [44,60].
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ðκhr22iÞChPT ¼ 12ðd6 þ 2m̊e74Þ þ
1

8π2F2

�
π ̊g2Am̊
Mπ

−
8h2Am̊

9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 −M2

π

p logðXÞ þ…

�
: ð14Þ

III. THE DIRAC FORM FACTOR

The Dirac FF (for proton, isovector, and isoscalar) at the
photon point q2 ¼ 0 is given by the proton charge,

F1ðq2 ¼ 0Þ ¼ 1: ð15Þ

This quantity is protected by gauge invariance and is
therefore not renormalized. Hence, it does not receive
any quark-mass dependence. Thus, we can write

F1ðq2Þ ¼ 1þ q2

12π

ZΛ2

4M2
π

ds
π

T1ðsÞp3
cmðsÞF�

vðsÞ
s3=2ðs − q2 − iϵÞ

þ Ftwo-baryon cut
1 ðq2Þ − Ftwo-baryon cut

1 ð0Þ
þ 2q2d6; ð16Þ

where the two-pion cut is accounted by a once-subtracted
dispersion relation; T1ðsÞ is given by

T1ðsÞ ¼ K1ðsÞ þ ΩðsÞP1

þ ΩðsÞs
ZΛ2

4M2
π

ds0

π

sin δðs0ÞK1ðs0Þ
jΩðs0Þjðs0 − s − iϵÞs0 : ð17Þ

Diagrams 2(d), 2(e), 2(i), 2(j) of Fig. 2 contribute only to the
charge. Diagrams 2(b), 2(c), 2(f), and parts of Fig. 2(a) are
covered by the dispersive integral. Diagrams 2(g) and 2(h)
constitute Ftwo-baryon cut

1 . These interrelations are further
discussed in Appendix B.
We aim at an accuracy in the chiral counting of at least

Oðp3Þ, i.e., next-to-next-to-leading order (NNLO). The
Dirac FF starts at leading order (LO), but at this order one
obtains only the charge but no Q2 or Mπ dependence. At
next-to-leading order (NLO) there is no new contribution
[14] while at NNLO all of them are proportional to q2.
Hence, the dispersive integral in (16) requires only an LO
input because the q2 factor yields an overall NNLO.
Therefore, we keep in (17) only the LO ChPT contribution
to P1 given by

P1 ¼ PN
1 þ PΔ

1 þ PWT
1

¼ −
̊g2A
F2

þ 2h2Aðm̊Δ þ m̊Þ2
9F2m̊2

Δ
þ 1

F2
; ð18Þ

where PN
1 , P

Δ
1 , and PWT

1 come from the nucleon exchange,
the Δ exchange and from the Weinberg-Tomozawa term
[62,63], respectively. Correspondingly, K1 is obtained from

FIG. 2. ChPT diagrams for the nucleon EM form factors. Line styles are defined as in Fig. 1. Diagram 2(a) represents tree level vertices
up toOðp4Þ. Diagrams 2(b)–2(j) account forOðp3Þ in a ChPT version withΔ and alsoOðp4Þ in aΔ-less (Δ) theory. The open and filled
circles denote Oðp2Þ and OðpÞ vertices, respectively.
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the parts of the nucleon-exchange and Δ-exchange dia-
grams where a propagator appears (after partial fraction
decomposition) as explicitly covered in Refs. [44,50].
Further details are provided in Appendix C.
Corrections to the LO result (18) are ∼s or ∼M2

π, and
therefore two powers too high. This can be most easily
deduced from the results in Ref. [14] using a Ward identity
that connects diagrams where one photon line is replaced
by two pion lines. We use a subtracted dispersion relation in
Eq. (17). The integral in this equation is nominally of
higher order but we keep it to ensure Watson’s theorem.
We have checked that the once-subtracted dispersion
relation (16) for the Dirac FF reproduces the nonanalyticity
of the ChPT 2π cut at Oðp3Þ.

A. Comparison to LQCD results with fixed parameters

We have explored how different theories describe the
LQCD results for the isovector Dirac FF F1. In the present
subsection we discuss results where all parameters are
previously determined from experimental data. In particu-
lar, no LEC is fitted here to the LQCD results. We discuss
several scenarios with and without dispersive theory
improvements. We test the following approaches:
(1) A purely dispersive calculation where we neglect the

contributions with a two-baryon cut and set d6 ¼ 0
in (16). This approach is denoted by “disp”.

(2) A plain Oðp3Þ ChPT calculation without dispersive
modifications [in this case the radius hr21i is given by
Eq. (12)]. We explore two alternatives:
(i) Computing the amplitudes within EOMS

keeping the higher order contributions to the
loops, i.e., without a further expansion in
small parameters. These results are labeled as
“full ChPT”.

(ii) Truncating the 2Δ diagram in Fig. 2(g) to stay
at Oðp3Þ. This situation is just called “ChPT”.

(3) Dispersion theory supplemented with ChPT two-
baryon loops andOðp3Þ contact term proportional to
d6; this is the full version of Eq. (16). We consider
again two alternatives:
(i) “dispþ full ChPT” contains the full 2Δ loop.
(ii) “dispþ ChPT” includes the 2Δ diagram trun-

cated up to Oðp3Þ.
The purely dispersive calculation, “disp”, yields a

prediction for F1 without further input, whereas all the

other choices depend on the LEC d6. However, this
parameter can be fixed from the experimental value of
hr21i (see Table I). We compare to the LQCD results of
Ref. [11]. They are preferred over other recent LQCD
determinations of the nucleon FFs such as those of
Ref. [64] because of the smaller dependence on lattice
artifacts of the former. Addressing these additional depend-
encies would complicate the analysis and is beyond the
scope of the present study.
In Fig. 3 we display F1ðQ2Þ at the low Mπ values of

different ensembles from Ref. [11]. In a complementary
plot, [Fig. 4(a)], theMπ dependence of hr21i is shown. These
plots show that the purely dispersive scheme (“disp”) is
close to the LQCD data in both the Q2 andMπ dimensions.
The nonperturbative treatment is responsible for the gen-
eration of a realistic Q2 curvature. The Mπ dependence of
the radius is also well-described up to Mπ ∼ 400 MeV. In
addition, the logðM2

πÞ divergence of hr21i at Mπ → 0

predicted by ChPT is also obtained from the dispersive
integral.
Turning to ChPT, one can see in Fig. 3 that none of the

two versions (“ChPT” and “full ChPT”) reproduces the Q2

behavior of F1 beyond Q2 ≳ 0.3 GeV2. The resulting
curvature is insufficient. We note in passing that the
experimental FF also has a significant Q2 curvature, as
apparent from the dashed orange curve in Fig. 6(a), which
corresponds to the Kelly empirical parametrization [66].
Figure 4(a) also shows that the Mπ dependence of the
radius is described better by the calculation with the
truncated Δ contribution.
In comparison to the ChPT versions, the scheme

“dispþ ChPT” improves the Q2 behavior of the Dirac
FF, though the curvature is still underestimated. In contrast,
the scheme “dispþ full ChPT” (dispersive result supple-
mented with untruncated ChPT) produces an excessive
curvature in Q2. In both versions, the combination of the
dispersive approach and ChPT does not cause a change in
the Mπ dependence of hr21iðMπÞ. Indeed, the curves for
“ChPT” and “dispþ ChPT” overlap in Fig. 4 and so do the
“full ChPT” and “dispþ full ChPT” ones.
These comparisons show that the higher order terms

present in the loop with two Δ propagators lead to a worse
description of LQCD results at higher Q2 and Mπ .
Therefore, we have decided to keep from the loop with
two Δ propagators only the part that is strictly Oðp3Þ.

TABLE I. LEC d6 values obtained from the experimental Dirac radius quoted by the PDG [65] within the various
approaches (see text). In addition, the dependence on the renormalization point is illustrated by showing the
numbers for two typical scales. For our plots we have taken μ ¼ mρ.

ChPT (truncated) Full ChPT dispþ ChPT (truncated) dispþ full ChPT

dexp6 ðμ ¼ mρÞ (GeV−2) −0.385 −0.353 0.216 0.248
dexp6 ðμ ¼ mNÞ (GeV−2) −0.733 −0.701 −0.045 −0.013
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FIG. 3. The Q2 dependence of the Dirac form factor F1ðQ2;MπÞ for various pion masses, in correspondence with the LQCD
ensembles of Ref. [11]. The two sets of points are the LQCD results obtained with two different strategies: summation (green) and two-
state method (blue); see Ref. [11] for details. The five curves stand for the approaches described in the text. When present, the d6 LEC
has been extracted from the experimental value for the Dirac radius [65] (see Table I).

ALVARADO, AN, ALVAREZ-RUSO, and LEUPOLD PHYS. REV. D 108, 114021 (2023)

114021-8



To further support our choice, we note that the relativisticΔ
propagators contain unphysical spin-1=2 contributions. In
principle, those must be absorbed by LECs [67]. But for the
two-Δ contributions beyond Oðp3Þ, we have not written
down the corresponding LECs. Eventually, a justification
for our election can only come from a full-fledged
calculation at Oðp4Þ, which is beyond the scope of the
present work.

B. Fit to LQCD

In the previous section, by obtaining d6 from the
experimental value for hr21i we have tacitly assumed
compatibility between the LQCD results and experiment.

It is worthwhile to relax this constraint and attempt to
fit F1 with our theory, treating d6 as a free parameter. On
the basis of the results obtained so far we regard the
dispersive calculation combined with truncated ChPT
(“dispþ ChPT”) as the most promising scheme for this
exercise. We also fit (truncated) “ChPT” to have a pertur-
bative result as a reference.
In our χ2 fits we restrict ourselves to the LQCD data sets

obtained with one of the methods, the summation one, in
order to avoid introducing unknown and potentially strong
correlations. We however neglect possible correlations
among different data points, keeping in mind that this
approximation might cause some distortion in the inter-
pretation of our fit. After studying the variation of χ2 with
the accepted range of Q2 and Mπ , we find it reasonable to
admit points withQ2 < 0.6 GeV2. We include all available
ensembles, so that we reachMπ ≃ 350 MeV. The evolution
of χ2=d:o:f: with the variation of the largest accepted Mπ ,
while keeping the maximum Q2 fixed to 0.6 GeV2, is
displayed in Fig. 5.
The results of the fits using “dispþ ChPT” and “ChPT”

are presented in Fig. 6 for F1ðQ2;MπÞ. The parameter-free
purely dispersive prediction, “disp”, is also shown as a
further reference. The band widths correspond to a 1σ error
in d6. Note, that as an overall uncertainty in the FF
determination, this error band is underestimated, because
it does not account for theoretical uncertainties arising, in
particular, from the truncation of the perturbative expan-
sion. However, a precise determination of the error is
beyond the scope of this work, and we focus on the analysis
of the description of the lattice data. Table II summarizes
the results of the three schemes for d6, χ2, and hr21iphys.

ChPT fit

disp fit

0.15 0.20 0.25 0.30 0.35
0.0

0.5

1.0

1.5

M cut (GeV)

2
/d
of

FIG. 5. The value for χ2=d:o:f: as a function of the largest pion
mass Mcut

π included in the fit. The two schemes are “ChPT” (red)
and “dispþ ChPT” (blue). For both we use Q2

cut ¼ 0.6 GeV2 as
the largest included value.

XX

disp

ChPT(d6exp)

full ChPT(d6exp)

disp+ChPT(d6exp)

disp+full ChPT(d6exp)

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8
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>
(fm

2
)

(a)

XX

disp

ChPT(d6fit )
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0.2
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0.6

0.8
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>
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(b)

FIG. 4. The Dirac radius hr21i as a function of the pion massMπ . LQCD points in green (summation method) and in blue (two-particle
method) were obtained in Ref. [11] using the z-expansion to parametrize the Q2 dependence of F1. The black point is the hr21i value at
the physicalMπ obtained in Ref. [11] using heavy baryon ChPT to extrapolate LQCD results for F1 in Mπ and Q2. The red cross (with
negligibly small error bars) corresponds to the experimental value quoted by PDG [65]. Left panel: results obtained with the five
strategies introduced in Sec. III A, fixing d6 at the physical Mπ with the experimental value quoted in Ref. [65] for hr21i. Right panel:
results obtained by fitting d6 to the LQCD values of Ref. [11] for F1ðQ2;MπÞ with “ChPT” and “dispþ ChPT” approaches, as
discussed in the text. The bands account only for the statistical error. The “disp” (black) curve is the same in both panels.
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FIG. 6. The Q2 dependence of the Dirac form factor F1ðQ2;MπÞ for various pion masses, in correspondence with the LQCD
ensembles of Ref. [11]. Line and point styles match the ones in Fig. 3 but, in contrast, the “ChPT” and “dispþ ChPT” curves have been
obtained by fitting the d6 LEC to the LQCD points. The vertical dashed line indicates the maximum Q2 adopted in the fits. The dashed
orange curve in panel (a) is the Kelly empirical parametrization of the F1 FF [66].
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By comparing Figs. 3 and 6 we observe a drastic
improvement when d6 is fitted to the LQCD results rather
than to the experimental value of the radius. One can see in
Fig. 6 that both “dispþ ChPT” and “ChPT” are in good
agreement with the LQCD data, particularly, but not only,
in the Q2 < 0.6 GeV2 region where fits were performed.
Nevertheless, focusing on the plain “ChPT” calculation,
one has to say that the presented fit does not make the most
of the theory because it is extended too high in Q2.5

To judge the performance of ChPT alone, we direct the
reader to the previous ChPT result with dexp6 ðmρÞ ¼
−0.385 GeV−2 fixed to experiment; see Table I. We
actually recommend for pure ChPT to use this LEC value
rather than the one fitted to the Q2 dependence of the
(lattice) Dirac FF. In fact, to compensate the lack of Q2

curvature in ChPT, the fit yields a too small radius.
Turning now to the dispersively modified approach, one

should first stress that the pure dispersive calculation is
already quite good a result, as stated above. The main
benefit of supplementing it with ChPT contributions is the
possibility to increase the radius. The added ChPT term
mostly amounts to a shift to the radius, hr21idisp → hr21idisp −
12d6 þ hr21i2-baryon loops as can be seen in Fig. 4(b), (see
below for a dedicated discussion). The FF’s curvature
remains essentially the same. In other words, the blue
(“dispþ ChPT”) and black (“disp”) curves are approxi-
mately obtained from each other by rotations around the
photon point. It is worth noticing that theQ2 dependence of
the LQCD results is well-described with “disp + ChPT” up
to Q2 values even larger than Q2

cut ¼ 0.6 GeV2. This
scheme outperforms “ChPT” and “disp”, yielding a smaller
χ2 as shown in Table II. In addition, at the physical Mπ the
“dispþ ChPT” curve is close to the empirical Kelly para-
metrization, as seen in Fig. 6(a).
The Mπ dependence of hr21i for the fitted d6 values is

presented in Fig. 4(b). Both approaches lead to the same
shape but the “dispþ ChPT” curve is closer to the results of
the extrapolations of the LQCD points to Q2 ¼ 0 per-
formed in Ref. [11] using the z expansion. At the physical
point, hr21idispþChPT

phys ¼ 0.4838� 0.0047 fm2 also agrees
better to the Particle Data Group (PDG) value and to the

heavy baryon (HB) ChPT extrapolation to the physical
point of Ref. [11] (hr21iHB ¼ 0.554� 0.035 fm2) but falls
short by ∼20%. This mismatch could be attributed to the
lack of a more realistic theoretical uncertainty in our
calculation. Our results for hr21i and the other reference
values are collected Table II.
Ultimately, we would like to comment on the d6 LEC. Its

value depends on the μ-running of the chiral loops. It also
appears in the dispþ ChPT calculation although in this
case its running comes only from the 2Δ loop. In general,
d6 is of the same order of magnitude in “ChPT” and
in “dispþ ChPT”. Moreover, it stays small, jd6ðμÞj <
2 GeV−2 for μ∈ ½0.5; 2� GeV, in both approaches. The
running of d6 is explicitly provided in Appendix D.

IV. THE PAULI FORM FACTOR

A. Selection of diagrams

We use an unsubtracted dispersion relation for the
Pauli FF

F2ðq2Þ ¼
1

12π

ZΛ2

4M2
π

ds
π

T2ðsÞp3
cmðsÞF�

vðsÞ
s1=2ðs − q2 − iϵÞ

þ FChPTwithout 2π cut
2 ðq2Þ ð19Þ

and an unsubtracted dispersion relation for T2

T2ðsÞ ¼ K2ðsÞ þ ΩðsÞP2

þΩðsÞ
ZΛ2

4M2
π

ds0

π

sin δðs0ÞK2ðs0Þ
jΩðs0Þjðs0 − s − iϵÞ : ð20Þ

As discussed below, we need the nominal LO and NLO
contributions to the polynomial P2,

P2 ¼ PN
2 þ PΔ

2 þ PNLO
2 þOðp2Þ

¼ 0þ 4h2Am̊ð3m̊þ 4m̊ΔÞ
9F2m̊2

Δ
þ 4c4m̊

F2
þOðp2Þ; ð21Þ

where c4 is a LEC of the NLO πN Lagrangian [58].
In ChPT, the dominant contribution to F2 appears at

NLO; it is a LEC (c6) which contributes to the anomalous
magnetic moment in the chiral limit [14] [see Eq. (13)].
Corrections at NNLO are of the form ∼Mπ and ∼Q2=Mπ .

TABLE II. Results from the F1ðQ2;MπÞ fit to LQCD.

Disp (prediction) ChPT dispþ ChPT HB from [11] (PDG [65])

d6ðμ ¼ mρÞ (GeV−2) � � � 0.074� 0.010 0.416� 0.010
d6ðμ ¼ mNÞ (GeV−2) � � � −0.422� 0.010 0.155� 0.010
χ2=d:o:f: 108.9=47 ¼ 2.32 73.9=ð47 − 1Þ ¼ 1.61 24.6=ð47 − 1Þ ¼ 0.53
hr21iphys (fm2) 0.4541 0.3626� 0.0047 0.4838� 0.0047 0.554� 0.035 0.577� 0.0018

5Indeed, Q2 ∈ ½0.4; 0.6� GeV2 is beyond the reach of Oðp3Þ
ChPT but we use the same cut as for the dispersively modified
scheme to make the comparison easier.
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The pion mass squared scales linearly with the quark mass
on account of the Gell-Mann-Oakes-Renner relation. Thus
these NNLO corrections are nonanalytic in the quark mass.
Such terms cannot be generated by counterterms or sub-
traction constants. By using a subtracted dispersion relation
instead of Eq. (19), one would miss part of the NNLO
terms. The same logic applies to Eq. (20); by using a
subtracted dispersion relation one would miss part of the
(nonanalytic) corrections, which are needed to achieve
the required NNLO accuracy in Eq. (19). We recall that the
power counting related to the dispersive integrals is dis-
cussed in Appendix B.
On the other hand, what might be worrying is the larger

cutoff sensitivity of an unsubtracted dispersion relation,
Eq. (19), as compared to a subtracted one. However, if s is
large, then all quantities can be expanded in powers of
M2

π=s. This part of the integration range does not generate
any nonanalytic behavior in the quark mass. Therefore such
cutoff dependent contributions can be compensated by
counterterms. As mentioned, the Pauli FF gets a constant
contribution from c6, Eq. (13). Additional LECs accom-
panied by powers of q2 orM2

π would contribute beyond the
desired NNLO accuracy.
A similar line of reasoning applies to Eq. (20) with

its unsubtracted dispersion relation. There, the quantity K2

is obtained from the tree-level nucleon-exchange and
Δ-exchange diagrams of pion-nucleon scattering. One-loop
diagrams with left-hand cuts lead to two-loop diagrams for
the FF. This is beyond our accuracy goal. P2 receives
contributions from LO pion-nucleon scattering amplitudes.
These are the nucleon- and Δ-exchange diagrams, because
they contain parts without propagators (after a partial-
fraction decomposition). It turns out that, first, these con-
tributions to P2 are actually NLO; second, the nucleon
contribution vanishes, and, third, the contribution from the

Δ-exchange depends on the details of how the Δ − N − π
interaction term is constructed [44,50]. Fortunately, there is a
contact-interaction term with a LEC that appears at NLO for
pion-nucleon scattering and contributes with a constant to
P2. This four-point interaction term, proportional to c4 in
Eq. (21), absorbs the ambiguities from the three-point
Δ − N − π interaction [44,50,67]. Therefore, we can use
P2 (or c4) as a fit parameter of our scheme. Besides, the
dominant part of the cutoff dependence of the unsubtracted
dispersion relation in Eq. (20) can be compensated by a
change in P2.
In principle, we need LO, NLO, and NNLO terms for T2

but we have already argued why a tree-level approximation
for K2 is sufficient. What is not covered by K2 are

TABLE III. ChPT input for F2 from the respective Feynman diagrams of Fig. 2 that we take into account (✓) or drop (✗). We include
allOðp3Þ and all Delta-lessOðp4Þ diagrams. Therefore we exclude all Δ diagrams that de facto start atOðp4Þ. Δ denotes diagrams with
Δ propagators in the loop; Δ denotes Delta-less diagrams; “wfr” denotes wave-function renormalization.

Diagrams ChPT dispþ ChPT Reason to include/exclude from the ðdispþÞChPT scheme

2(a) ✓ ✓ LECs
Nucleon 2(g) ✓ ✓ 2-nucleon cut diagram
2(d) � � � � � � It is zero [only contributes to F1ð0Þ]
Nucleon 2(i) and 2(j) � � � � � � It is zero [only contributes to F1ð0Þ]
Nucleon 2(f) ✓ ✗ Generated dispersively
2(b) � � � � � � It is zero [only contributes to F1ð0Þ]
Nucleon 2(h) ✓ ✓ Oðp4Þ 2-nucleon cut diagram
2(e) (c6) ✓ ✓ ΔOðp4Þ without cut
2(c) (c4) ✓ ✗ ΔOðp4Þ generated dispersively
Δ 2(i) and 2(j) ✗ ✗ De facto ΔOðp4Þ
Δ 2(g) ✗ ✗ De facto ΔOðp4Þ
Δ 2(f) ✓ ✗ Generated dispersively
wfr ΔOðp3Þ × c6 ✓ ✓ De facto ΔOðp4Þ without cut
wfr ΔOðp3Þ × c6 ✗ ✗ De facto Oðp4Þ with Δ
wfr ΔOðp4Þ × c6 ✗ ✗ De facto ΔOðp5Þ

Re(T2)
Im(T2)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
–2000

0

2000

4000

6000

s (GeV)

T 2
(G
eV

–2
)

FIG. 7. Reduced amplitude T2 in the unphysical region. The
bands show real (gray) and imaginary (green) parts of T2 as
obtained from a Roy-Steiner analysis of pion-nucleon scattering
[42,68]. The curves represent our T2, binding the region covered
by the assumed prior knowledge of c4. The real (imaginary) part
is represented by solid (dashed) lines.
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polynomials (in s and M2
π) and loop contributions without

two-pion cuts. Formally at NNLO, the latter are obtained
from diagrams 2(d), 2(g), 2(i), and 2(j) in Fig. 2 by
replacing the photon line by two pion lines. Again, one
can use the Ward identity in Eq. (A.10) of Ref. [14] and the
explicit results of Sec. II B to show that such diagrams do
not actually contribute to T2 at NNLO.
For the polynomial P2 in (21), the nominal LO con-

tribution is in practice NLO. LEC c4 from the pion-nucleon
NLO contact interaction contributes also with a constant.
NNLO terms are only one order higher in the expansion
parameter. Such terms cannot be analytic in s or M2

π.
Therefore they cannot contribute to a polynomial and we
can restrict P2 to a (fit) constant. Fitting P2 or c4 is
equivalent but it might be more illuminating to use a LEC
that appears in the effective Lagrangian instead of a
subtraction constant of a dispersive integral.6 A concep-
tually meaningful purely dispersive approach (“disp”) starts
from Eq. (19), but contains only c6 instead of the full
FChPTwithout 2π cut
2 .
On the pure ChPT side, we will find that the Oðp3Þ

calculation is not enough to describe the data. We display
theOðp3Þ ChPT result in Fig. 8. It predicts a too steep slope
for κðMπÞ and a Q2 dependence for F2 which is incom-
patible with the LQCD results. For this reason, we include
the =Δ contributions of Oðp4Þ. Following the same criterion
as for F1, we truncate theΔ contribution at pureOðp3Þ. For
this reason, the only Δ contribution to F2 comes from
diagram 2(f) of Fig. 2. The leading contributions are given
by Eqs. (13) and (14).
As in the Dirac case, we combine the dispersive and

ChPT contributions of the Pauli FF. Like for F1, we add to
the dispersive FF the ChPT contributions from diagrams
without 2π cuts. This means that we add Δ diagrams 2(a),
2(g), 2(h), and 2(e) and the Oðp3Þ Δ wave function
renormalization (see Table III). For F2, our truncation
criterion implies that no Δ contributions are added from the
ChPT side to the dispþ ChPT calculation. Diagram 2(f) of
Fig. 2 is accounted by the dispersive integral. We proceed
to describe how well the different parametrizations describe
the LQCD data from Ref. [11].

B. Fit results for F2, anomalous magnetic moment,
and Pauli radius

In this case, our three schemes are
(i) the purely dispersive approach (but including c6),

denoted “dispþ c6”. It contains LECs c4 and c6 as
free parameters.

(ii) pure “ChPT” where we actually go up to Oðp4Þ. As
shown in Eqs. (13) and (14), there are five LECs
beyond LO (d6, c6, e74, e106, and c4), but we take d6
from the corresponding “ChPT” fit to the Dirac FF.

(iii) the combination “dispþ ChPT”, which contains the
same number of fit parameters as Oðp4Þ ChPT.

All fits are performed in the same ðQ2;MπÞ region adopted
for F1, namely Q2 < 0.6 GeV2 and all the available Mπ

ensembles, i.e., Mπ ≤ 0.350 GeV.
There is a conceptual difference between LECs d6, c6,

e74, e106, on the one hand, and c4 on the other. The latter is
inherited from pion-nucleon scattering, while the others are
directly tied to the electromagnetic FFs (tree-level contri-
butions to magnetic moment and radii). Therefore, (and in
view of the relative large number of fit parameters) we
constrain the fits with a Gaussian prior reflecting available
knowledge about c4 from pion-nucleon scattering,

χ2 ¼ χ20 þ
ðc4 − cprior4 Þ2

Δcprior4

; ð22Þ

where χ20 denotes the standard χ
2. For dispersive approaches,

in order to determine this prior, we analyze the values of c4
for which our reduced scattering amplitude T2 agrees well
with the results obtained by solving Roy-Steiner equations
for pion-nucleon scattering [68]. This comparison is
displayed in Fig. 7. We therefore set cprior4 ¼ cRoy4 ¼
−0.402 GeV−1 and Δcprior4 ¼ ΔcRoy4 ¼ 0.075 GeV−1. We
also set a prior to c4 in plain ChPT. In this casewe use the πN
scattering analysis of Ref. [23] and take cprior4 ¼ cπN4 ¼
1.200 GeV−1, Δcprior4 ¼ ΔcπN4 ¼ 0.045 GeV−1.7

Let us summarize the performance of the three fits:
(i) “dispþ c6”: From Fig. 8 and from the χ2 value in

Table IV it is apparent that dispersion theory repro-
duces well the Q2 andMπ dependence of the LQCD

TABLE IV. Results from our fit to the F2ðQ2;MπÞ LQCD data of Ref. [11]. The HB column contains the heavy-baryon extrapolation
from Ref. [11]. The experimental values [65] are also provided.

dispþ c6 ChPT dispþ ChPT HB (PDG)

χ2=d:o:f: 49.95
47−2 ¼ 1.110 44.18

47−4 ¼ 1.027 56.08
47−4 ¼ 1.304

χ20=d:o:f: 1.09 1.027 1.283
κphys 3.632� 0.037 3.423� 0.059 3.605� 0.067 3.71� 0.17 3.706
hr22iphys (fm2) 0.792� 0.011 0.61885� 0.0069 0.788� 0.015 0.690� 0.042 0.7754� 0.0080

6There is no clear motivation to include other LECs in this
scheme without 2-baryon loops, so we do not add them.

7We use the value from [23] for cπN4 even if it corresponds to a
different off shell parameter z. Furthermore, we neglect the μ
evolution.
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FIG. 8. The Q2 dependence of the Pauli form factor F2ðQ2;MπÞ for various pion masses, in correspondence with the LQCD
ensembles of Ref. [11]. LQCD points obtained with the summation method are shown. Red, black, and blue bands are the results for the
“ChPT”, “dispþ c6”, and “dispþ ChPT” approaches, respectively. Band widths denote 1σ statistical errors. The dashed red curve
represents the Oðp3Þ ChPT result The vertical dashed line indicates the maximum Q2 adopted in the fits. The dashed orange curve in
panel (a) is the Kelly empirical parametrization of F2 [66].
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data. There is a large correlation between c4 and c6
because both of them appear in κðMπ ¼ 0Þ. Actually,
the LQCD data constrain κ in the chiral limit more
strongly than other quantities such as hr22i. Such
a mismatch among errors drives the correlation
towards −1. A fit with free c4 obtains c4 ¼
−0.600� 0.031 GeV−1, which is close but below
the Roy-Steiner value (cRoy4 ¼−0.402�0.075GeV−1).

(ii) “ChPT”: The description of the data is good, even
with better χ2 than the dispersive approaches. LEC
c4 goes to the prior value without causing tensions in
the fit.

(iii) “dispþ ChPT”: As one can see in Fig. 8, the best fit
curve is almost identical to the “dispþ c6” one.
The slight increment in χ2 compared to the other

scenarios (see Table IV) has no deeper meaning,
because the differences are negligible. More inter-
esting is the behavior near Q2 ¼ 0, where there are
no lattice points. The larger curvature of the
“dispþ c6” and “dispþ ChPT” theories make the
corresponding curves steeper atQ2 ¼ 0 compared to
“ChPT”. This leads to the prediction of a larger
radius as one can read off from Table IV. At the
physical pion mass, the dispersive descriptions
happen to be closer to the empirical Kelly para-
metrization than the ChPT curve, describing bet-
ter both the trend of the empirical curve and the
LQCD points beyond the Q2 cut [see Fig. 8(a)]. We
regard the combined “dispþ ChPT” scheme as the
best approach because it is more solid from the

TABLE V. Resulting values for the fitted LECs for μ ¼ mρ and μ ¼ mN (purely dispersive scheme is μ
independent).

dispþ c6 ChPT (μ ¼ mρ) dispþ ChPT (μ ¼ mρ)

c4 (GeV−1) (with prior) −0.600� 0.031 1.194� 0.045 −0.479� 0.072
c6 −0.27� 0.12 4.606� 0.057 −0.88� 0.26
d6 (GeV−2) (fixed) � � � −0.385 0.416
e74 (GeV−3) � � � 0.178� 0.042 −0.293� 0.075
e106 (GeV−3) � � � 0.170� 0.050 −0.361� 0.054
χ2=d:o:f: 1.110 1.027 1.304

ChPT (μ ¼ mN) disp + ChPT (μ ¼ mN)

c4 (GeV−1) (with prior) 1.194� 0.045 −0.477� 0.072
c6 4.606� 0.057 −0.88� 0.26
d6 (GeV−2) (fixed) −0.733 0.155
e74 (GeV−3) 0.252� 0.042 −0.140� 0.075
e106 (GeV−3) 0.151� 0.052 −0.4046� 0.060
χ2=d:o:f: 1.027 1.291
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FIG. 9. Pion-mass dependence of the Pauli FF and its derivative both taken at the photon point; κ ¼ F2ð0Þ (left panel) and κhr22i ¼
6F0

2ð0Þ (right panel) for the three schemes. Red, black, and blue bands are the results for the “ChPT”, “disp + c6”, and “dispþ ChPT”
approaches, respectively. Band widths denote 1σ statistical errors. LQCD points in green (summation method) and in blue (two-particle
method) were obtained in Ref. [11] using the z-expansion to parametrize theQ2 dependence of F2. The black points are the values at the
physical Mπ obtained in Ref. [11] using heavy baryon ChPT to extrapolate LQCD results for F2 in Mπ and Q2. The red crosses
correspond to the experimental values quoted by PDG [65].
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theoretical point of view if one aims at describing the
FF up to rather large Q2 ≈ 0.6 GeV2.

Results for theLECs are presented inTableV.As expected,
values differ between “ChPT” and “dispþ ChPT”. LEC
values are tied to theway how loops are renormalized. This is
different in ChPT (with dimensional plus EOMS renormal-
ization) compared to the dispersive approach where the
influence of intermediate energies is demoted by the
Omnès function at the scale of the ρ-meson mass while
the influence of larger energies is cut off by Λ. On the other
hand, we note that the results do not depend strongly on μ.
In fact, the overall ChPT-loop contribution to the radius in the
“dispþ ChPT” scheme is negligible. Finally, we observe
that the best fit value for c4 in the “dispþ ChPT” case
becomes consistent with the Roy-Steiner one; c4¼−0.479�
0.072GeV−1, compared to cRoy4 ¼ −0.402� 0.075 GeV−1.
The Mπ dependence of κ and κhr22i according to the fits

for the three approaches is given in Fig. 9. The “dispþ c6”
and “dispþ ChPT” schemes yield a κðMphys

π Þ close to the
experimental point. Our results are also in agreement with
the HB extrapolation performed in Ref. [11]. The “ChPT”
curve remains slightly below the other ones. For hr22i the
dispersive results at the physical Mπ are compatible with
the experimental data point. The ChPT calculation is again
slightly below, whereas the HB extrapolation lies in
between.

V. CONCLUSIONS

We have analyzed the nucleon electromagnetic FFs,
fundamental quantities which provide information on the
nucleon structure and the underlying QCD dynamics. We
calculated the isovector electromagnetic FFs combining
dispersion theory and relativistic ChPT, the latter in the
version with explicitΔ baryons. In particular, we accounted
for theMπ dependence of the different contributions. ChPT
predicts the form and size of the nonanalytic terms in Mπ

and these very same structures are also contained in the
dispersive approach.
In a second step, we have analyzed how well we describe

the LQCD data from Ref. [11], exploring three different
schemes, namely (a) a purely dispersive approach that
accounts only for the two-pion inelasticity as the lightest
intermediate channel; (b) pure ChPT, and (c) our combined
approach. For the Dirac FF, we observe that even the purely
dispersive calculation is able to predict the FF reasonably
well. This nonperturbative calculation provides sufficient
curvature to theFF, accounting for theρ-mesondynamics.We
have then studied how well Oðp3Þ ChPT and the combined
method describe the LQCD data, fitting the d6 LEC. We find
that the combined dispersive and ChPT scheme outperforms
the ChPT fit and the purely dispersive prediction. The
calculation describes well the data for Q2 < 0.6 GeV2 and
all the Mπ sampled by LQCD (Mπ ≤ 350 MeV). We have

extracted the value hr21idispþChPT
phys ¼ 0.4838� 0.0047 fm2 for

the Dirac radius, slightly below the experimental one.
Next, we have studied the Pauli FF. Being a higher-order

quantity, this required the inclusion of higher-order LECs.
Therefore, we included LECs and ChPT Δ loops ofOðp4Þ.
This leads to a good description of the LQCD data by both
the dispersive and the ChPT calculations, in the same range
of Q2 and Mπ as for F1. Combining both theories leads
essentially to the same results as the purely dispersive
description. Interestingly, both the dispersive and the
combined results happen to be quite close to the exper-
imental parametrization, even beyond the Q2 ¼ 0.6 GeV−1

fit cutoff. Between these two descriptions, we regard the
combined version a more solid result from the theoretical
point of view.
We have extracted κdispþChPT

phys ¼ 3.605� 0.067, which
is close to the experimental value, and hr22idispþChPT

phys ¼
0.788� 0.015 fm2, in agreement with experiment.
Furthermore, the values of several LECs have been deter-
mined, which are useful for future calculations. For this
first exploration of the combined scheme, we did not
attempt to determine a theoretical uncertainty. The reported
errors are purely statistical and likely to be underestimated.
To sum up, the isovector component of the Dirac and

Pauli FFs are successfully described accounting not only
for the Q2, but also for the Mπ dependence in the
aforementioned range, obtaining a good agreement with
lattice and experiment. We demonstrate that the disper-
sively modified ChPT outperforms both the dispersive
method where only the 2π channel is considered and the
plain ChPT without the dynamics of the ρ meson. The
combination of ChPT and dispersion theory improves
the Q2 behavior without worsening the Mπ dependence.
There are natural extensions of the framework presented

here. First of all, one can extend it to other baryon FFs as,
for instance, the Δ FFs or the transition FFs from Δ to
nucleon. Also for these extensions one can hope that the
momentum dependence improves relative to plain ChPT
while the pion-mass dependence is still properly taken care
of. Δ baryons are obtained by just a spin flip of a quark in
the nucleon. Therefore, the properties of Δ states are tightly
connected to the corresponding nucleon properties. In other
words, Δ states are interesting because they provide a
complementary point of view on the structure of nucleons,
and are omnipresent in processes involving hadrons. It is
also conceivable to address strangeness aspects, either
along the lines of [50,51] where only the two-pion channel
is treated dispersively, or by a full-fledged three-flavor
calculation. Scientific questions that can be addressed in
this way include the structure of hyperons and the strange-
ness content of the nucleon.
As should be clear from our understanding of the role of

Goldstone bosons as the agents of long-distance effects, the
calculation of baryon low-energy properties requires a
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proper account of the mesonic input and the corresponding
quark-mass dependence. On the other hand, mesonic
properties are, of course, also interesting in their own
right. In the present work we have provided as a by-product
the quark-mass dependence of the pion p-wave phase shift
and the pion vector FF. We propose a Blatt-Weisskopf
improved IAM and an extension of the Omnès function that
serve to include in the pion vector FF the effects beyond the
two-pion channel. Such effects are small, but observable at
low energies. We found good agreement with the lattice
results concerning the pion-mass dependence of the mass
of the ρ meson. Clearly this approach might be extended to
other mesons and could be further scrutinized by compari-
son to phase shifts and meson FFs extracted from LQCD.
This brings us to the aspect of self-consistency given the

lattice intrinsic uncertainties of continuum-limit and infin-
ite-volume extrapolations. For an even better comparison of
our calculations to lattice results it might be reasonable to
use directly lattice input (instead of ChPT or IAM) for the
quantities that enter our calculations (mesonic input and
pion-nucleon scattering amplitudes).
Another aspect for the very same observables, the

nucleon FFs, concerns the fact that we restricted ourselves
mostly to Oðp3Þ calculations, at least when including the
Δ. Full-fledged Oðp4Þ calculations in ChPT are in a
development stage. In part, this relates to the excessively
growing number of LECs. In addition, the role of the Δ is
not so clear at this order, as we have also seen in the present
work where only a restriction of the two-Δ diagram to its
pure Oðp3Þ part yields a reasonable curvature for the Dirac
FF. On the other hand, the dispersive point of view might
add some new aspects to these considerations. The Δ is an
elastic pion-nucleon resonance. In this sense, the inclusion
of oneΔ line in a ChPTone-loop diagram can be seen as an
important resummation of two- and (higher-)loop effects.
Yet, the inclusion of two Δ propagators constitutes already
a three-loop effect of ordinary Δ-less ChPT. But how this
relates to a proper power counting remains to be seen. Yet it
should be clear that a reasonable Oðp4Þ calculation
combined with dispersion theory should help to improve
the accuracy of the calculations and to provide more
realistic estimates for the systematic theory uncertainties
of our approach.
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APPENDIX A: PION-MASS DEPENDENCE
OF MESONIC QUANTITIES

For the comparison of dispersively modified ChPT to
LQCD results, it is required to know the pion-mass
dependence of the pion vector FF Fvðs;MπÞ and the
pion-pion (p-wave) scattering phase shifts δðs;MπÞ.
For the phase shifts, we rely on the IAM, following to

some extent Ref. [69]. However, at next-to-leading order
(NLO) the p-wave phase shifts δNLOIAM ðsÞ do not approach π
asymptotically as they should. [46,70]. This problem is
remedied at two-loop order by the next-to-next-to leading
order (NNLO IAM) phase shifts. Unfortunately, at physical
pion masses, the ρ-meson peak is not so well-reproduced
by the NNLO IAM fit to LQCD data [69]. For this reason,
in the present work, we use NLO IAM, but instead of
smoothly extrapolating the phase shift to π [70], we modify
the LO ChPT ππ amplitude t2ðsÞ with a Blatt-Weisskopf
form factor [71],

t̃2ðsÞ ¼ t2ðsÞ
1

1þ r2p2
cm

¼ sσ2

96πF2

1

1þ r2p2
cm

; ðA1Þ

with the velocity of the pions σðsÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

π=s
p

. The
range parameter r characterizes the scale that we do not
resolve by our effective theory, i.e., we expect r ∼ 1=Λ. The
modified IAM amplitude tBWIAM is then given as

1

tBWIAM
¼ t̃2 − t̃4

t̃22
¼ t̃2 − Ret4

t̃22
− iσ; ðA2Þ

where

Ret4 ¼
X2
i¼0

biðsÞ½LðsÞ�i þ
X2
i¼1

bliðsÞlri ðA3Þ

with LðsÞ defined as

LðsÞ ≔ log
1þ σðsÞ
1 − σðsÞ : ðA4Þ

The coefficient functions are [69]

bl1ðsÞ ¼ −2bl2ðsÞ ¼
sð4M2

π − sÞ
48πF4

;

b0ðsÞ ¼ −
120M6

π − 197M4
πsþ 61M2

πs2 − 2s3

27648π3F4ðs − 4M2
πÞ

;

b1ðsÞ ¼ −
64M8

π − 55M6
πsþ 6M4

πs2

2304π3F4sσðsÞðs − 4M2
πÞ
;

b2ðsÞ ¼ −
M4

πð6M4
π þ 13M2

πs − 3s2Þ
1536π3F4ðs − 4M2

πÞ2
: ðA5Þ
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It is easy to check that phase shifts δðs;MπÞ extracted
from tBWIAM approach π smoothly.AtNLO, the combination of
LECs, lr2 − 2lr1, appears in t4. In Ref. [69], the authors
find that this combination is roughly in the range
0.009 < lr2 − 2lr1 < 0.019. For physical pion masses, we
fit δðs;Mπ ¼ 0.139 GeVÞ in the range s∈ ð4M2

π; 1.5 GeV2Þ
to the phase shifts extracted from the dispersive analysis of
Ref. [57]. We find that the best-fit values are lr2 − 2lr1 ¼
0.01 and r ¼ 0.12 fm ¼ 1=ð1.6 GeVÞ. The resulting
δðs;Mπ ¼ 0.139 GeVÞ is compared to the corresponding
function from Ref. [57]. Figure 10(b) shows the phase
shifts at different pion masses. It is apparent from the figure
that for Mπ ≈ 0.45 GeV mρ < 2Mπ and the ρ width
approaches zero. In other words, the ρ-meson becomes a
bound state. Above this Mπ value, the developed formal-
ism is not directly applicable and would have to be
modified to account for such a bound state. From the
crossing at π=2 we can extract the mass of the ρ meson.
The results are shown in Fig. 11. We find that with the
parameters r and lr2 − 2lr1 obtained at the physical pion
mass, the ρ mass as a function of Mπ reproduces LQCD
data very well [72]. It is also in agreement with the three-
flavor IAM results of Ref. [73].

We turn now to the pion-vector FF, Eq. (11)

Fvðs;MπÞ ¼ ½1þ αVðMπÞs�Ωðs;MπÞ: ðA6Þ

With the previously calculated pion phase shifts δðs;MπÞ
we can determine the Omnès function Ωðs;MπÞ using
Eq. (10). The unknown αVðMπÞ has been introduced on
phenomenological grounds to achieve an improved
description of the experimental data for the pion vector
FF [40,42,44]. Next we determine the pion-mass depend-
ence of αVðMπÞ, showing also that for physicalMπ it can be
predicted from the pion charge radius. To tackle this issue,
we start with ChPT. At NLO, the radius is [13]

hr2πi ¼
1

16π2F2
ðl̄6 − 1Þ

≕
1

16π2F2
½l̃6ðμ2Þ − 1 − logðM2

π=μ2Þ�: ðA7Þ

To isolate the pion-mass dependence, we have introduced a
LEC l̃6 which is pion-mass independent but depends on the
renormalization scale [13]. Using the experimental value
hr2πi ¼ 0.434 fm2, we find l̃6 ¼ 14.26 for μ ¼ 0.770 GeV.
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FIG. 10. Pion p-wave scattering phase shift δ from Eq. (A1) as a function of the Mandelstam variable s.
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On the other hand, the pion charge radius is defined via the
pion vector FF in the usual way, cf. Eq. (3). This yields

αVðMπÞ ¼
hr2πi
6

− Ω̇ð0;MπÞ ðA8Þ

with

Ω̇ð0;MπÞ ¼
1

π

Z
∞

4M2
π

δðs;MπÞ
s2

ds: ðA9Þ

Matching to hr2πi from ChPT, Eq. (A7), one finds the
numerical αVðMπÞ dependence, shown in Fig. 12. Note that
the logarithmic pion-mass dependence in (A7) is compen-
sated by a corresponding logarithm emerging from (A9).
Therefore, αV has no logarithmic divergence atMπ ¼ 0. As
a cross-check, in Fig. 13 we also present the resulting FvðsÞ
at the physical pion mass. It is displayed together with data
from Belle [74]. We observe an excellent agreement with
data up to energies of about 1 GeV. A pure Omnès function
(αV ¼ 0) yields a less satisfying description.
To summarize, we have obtained reasonable parametri-

zations of the pion p-wave scattering phase shift and of the

pion vector FF as a function ofMπ and at the physical value
of the latter.

APPENDIX B: DIAGRAMS GENERATED
BY DISPERSIVE INTEGRALS

Naively, the optical theorem (1) suggests that a dis-
persive integral produces one-loop diagrams from products
of tree-level amplitudes, two-loop diagrams from products
of one-loop and tree-level amplitudes and so forth. From a
purely perturbative point of view (ChPT regime) this is true.
However, this reasoning would not explain how the whole
FF (including tree level) is generated by Eq. (4). Therefore,
we need a closer look at the integration region of the
dispersive integrals that we utilize. We distinguish the low-
energy region of ChPT, the resonance region of the ρ
meson, and the high-energy region that is actually cut away
by the cutoff Λ (but might leave a Λ dependence). Let us
introduce a second cutoff ΛL that distinguishes the first two
regions, i.e.,

4M2
π ≤ s; s0 < Λ2

L ChPT region;

Λ2
L ≤ s; s0; m2

ρ < Λ2 resonance region;

Λ2 ≤ s; s0 high-energy region: ðB1Þ

For the following semiquantitative discussion it is sufficient
to cover the resonance region in a schematic way by
viewing the ρ meson as a narrow resonance. This means
that in the resonance region the pion p-wave phase shift
δðsÞ changes rather suddenly from about 0 to π, crossing
π=2 at s ¼ m2

ρ. As a consequence, we approximate

FvðsÞ ≈ΩðsÞ ≈ m2
ρ

m2
ρ − s − iϵ

≈
m2

ρ

m2
ρ − s − imρΓρ

;

ΩðsÞF�
vðsÞ ≈ jΩðsÞj2 ≈ πm3

ρ

Γρ
δðs −m2

ρÞ; ðB2Þ

where Γρ denotes the ρ meson width. Finally, we write the
reduced scattering amplitude T from Eqs. (8) and (9)
generically as

TðsÞ≕KðsÞ þ ΩðsÞRðsÞ: ðB3Þ

Obviously, this relation defines R as the sum of the
polynomial P and the Muskhelishvili-Omnès integral.
These ingredients allow us to rewrite the dispersive

integral in Eq. (6) as
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FIG. 12. The dependence of the phenomenological parameter
αV on the pion mass.
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FIG. 13. Our prediction for the pion vector FF FvðsÞ at the
physical pion mass. The data are obtained from the process τ− →
π−π0ντ as measured by the Belle experiment [74].
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ZΛ2

4M2
π

ds
π

ImF2πðsÞ
s − q2 − iϵ

≈
ZΛ2

4M2
π

ds
12π2

KðsÞp3
cmΩ�ðsÞffiffiffi

s
p ðs − q2 − iϵÞ þ

ZΛ2

4M2
π

ds
12π2

RðsÞp3
cmjΩðsÞj2ffiffiffi

s
p ðs − q2 − iϵÞ

≈
ZΛ2

4M2
π

ds
12π2

KðsÞp3
cmΩ�ðsÞffiffiffi

s
p ðs − q2 − iϵÞ þ

ZΛ2
L

4M2
π

ds
12π2

RðsÞp3
cmffiffiffi

s
p ðs − q2 − iϵÞ

þ m2
ρ

12πΓρ

Rðm2
ρÞp3

cmðm2
ρÞ

m2
ρ − q2 − iϵ

: ðB4Þ

We shall discuss the last three integrals one by one. For
large s, both the left-hand-cut component K and the Omnès
function Ω decrease. Either K drops so fast that the first
integral is most sensitive to the ChPT region or one needsΩ
to cut off the s-integration at

ZΛ2

4M2
π

ds
12π2

KðsÞp3
cmΩ�ðsÞffiffiffi

s
p ðs − q2 − iϵÞ : ðB5Þ

In any case, a tree-level input for K is related to the one-
loop diagram 2(f) of Fig. 2. If K drops fast enough, this
triangle diagram is not very sensitive to mρ or Λ. In ChPT,
the result of the integral will not depend on the renorm-
alization scale μ. The results (dispersive and ChPT) will
approximately agree. If K does not drop fast enough, the
dispersive expression is effectively renormalized at a scale
mρ while the ChPT diagram calculated in the standard way
is renormalized at μ. Thus, differences between the dis-
persive and pure ChPT treatments can be compensated by
readjusting counterterms (LECs), cf. also Appendix D. At
low values of s, one has ΩðsÞ ≈ 1þOðp2Þ. If K is of order
OðpnÞ in the chiral counting then the integral (B5) is of
order Oðpnþ2Þ. This matches the usual expectation from
ChPT; LO vertices lead to NNLO one-loop diagrams.
The integral

ZΛ2
L

4M2
π

ds
12π2

RðsÞp3
cmffiffiffi

s
p ðs − q2 − iϵÞ ðB6Þ

corresponds to the ChPT diagrams 2(b) and 2(c) of Fig. 2
and higher-loop diagrams. It is sensitive to the cutoff ΛL,
which again can be traded against changes of LECs.
So far we have seen that tree-level input for the scattering

amplitudes leads to one-loop contributions for the FF. The
less trivial aspects are related to the last term of (B4). The
fact that Ω peaks at the ρ-meson mass has been used to
obtain

m2
ρ

12πΓρ

Rðm2
ρÞp3

cmðm2
ρÞ

m2
ρ − q2 − iϵ

: ðB7Þ

The polynomial terms, P, of Eqs. (8) and (9) produce
polynomial terms in ChPT when one expands (B7) in
powers of q2=m2

ρ. More generally, tree-level input for the
scattering amplitudes leads to tree-level contributions to the
FF. One-loop input leads to one-loop contributions and
so forth.
What does this mean for the power counting? In general,

this means that we need an accuracy of OðpnÞ in the
reduced scattering amplitudes to reach an accuracy of
OðpnÞ for the FF. As discussed in the main text, this
complication is avoided for the Dirac FF by using a
subtracted dispersion relation. For the Pauli FF, however,
we require input beyond LO. We actually cover a signifi-
cant part of the one-loop contributions involving an NLO
vertex and, in particular diagram 2(c) of Fig. 2. To achieve a
fair comparison of pure ChPT and dispersion theory, we
also include ChPT p4 loop diagrams. Further details are
provided in Sec. IV.

APPENDIX C: THE LEFT-HAND CUT
STRUCTURES K1;2

In this appendix, we present how to obtain from the
literature the analytical expressions for the reduced ampli-
tudes K1;2 which enter the dispersion relation for T1;2 in
Eq. (8),

K1ðq2Þ ¼
8m2

N

4m2
N − q2

�
KEðq2Þ −

q2

4m2
N
KMðq2Þ

�
;

K2ðq2Þ ¼
8m2

N

q2 − 4m2
N
ðKEðq2Þ − KMðq2ÞÞ: ðC1Þ

The explicit expressions for the respective nucleon and Δ
contribution to KE;M can be deduced from [44,50]. The
contact terms P1 and P2 are calculated in exactly the same
manner as in Eq. (C1).

APPENDIX D: THE RENORMALIZATION-
GROUP RUNNING OF THE LEC d6

The running of d6 with the dimensional renormalization
scale, μ, is given by

d6ðμÞ ¼ d6ðmρÞ −
1

12

βd6
ð4πF̊πÞ2

log

�
mρ

μ

�
; ðD1Þ

where in ChPT βd6 ¼ βnoΔΔd6 þ βΔΔd6 , while in dispþ ChPT
the running is given just by the loop with two Δ,
βd6 ¼ βΔΔd6 . The beta functions read
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βnoΔΔd6 ¼2−2g̊2Aþ4h2A
ðm̊2þ2m̊m̊Δ−8m̊2

ΔÞ
9m̊2

Δ
;

βΔΔd6 ¼10h2A
ð7m̊4þ6m̊3m̊Δþ9m̊2m̊2

Δþ16m̊m̊3
Δ−48m̊4

ΔÞ
27m̊4

Δ
:

ðD2Þ

The reason why the running differs in the two schemes can
be traced back to the fact that the dispersively treated
loop diagrams do not require an explicit renormalization.
Instead, the Omnès function cuts off the integrals at around
the ρ-meson mass.
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