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A Hawking-Page phase transition between anti–de Sitter (AdS) thermal and AdS black hole was
presented as a mechanism for explaining the QCD deconfinement phase transition within holographic
models. In order to implement temperature dependence in the confined phase we use a hard-wall AdS/QCD
model, where the geometry at low temperatures is described also by a black hole metric. We then
investigate the temperature dependence of glueball states described as gravitons propagating in deformed
background spaces. Finally, we use potential models to physically describe the implications of our study.
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I. INTRODUCTION

A successful strategy for applying the AdS=CFT corre-
spondence and holography [1,2] to hadron physics is the
so-called bottom-up approach. In this framework, one starts
from some nonperturbative features of QCD and attempts
to construct its five-dimensional holographic dual. The
duality is implemented in nearly conformal conditions
where QCD is defined on the four dimensional boundary.
Moreover, the confinement feature of QCD can be realized
by introducing a bulk space which is a slice of AdS5 whose
size is related to z0 ∼ 1=ΛQCD [3–7]. This is the so-called
hard-wall (HW) approximation. We have recently proposed
the calculations of the spectrum of the scalar and tensor
glueballs under the assumption that, in this holographic
approach, the dual operator to the glueballs could be the
graviton, the latter thus plays a significant role to describe
the lowest lying glueballs. The main result of our inves-
tigations is that we do not need to introduce additional
fields into any AdS5 to describe the glueballs, the gravitons
indeed satisfy the duality boundary conditions and are
able to describe the elementary scalar and tensor glueball
spectra [8,9].
Given the extensive experimental search and theoretical

description of the deconfinement phase transition [10,11],
holographic models could not remain silent. A traditional
description has been carried out via a Hawking-Phase phase
transition from an anti–de Sitter (AdS) thermal phase at low

temperatures to a black hole (BH) phase at high temper-
atures [12]. Much research has been carried out to deter-
mine the deconfinement temperature and the behavior
of the glueball and meson spectra after the phase trans-
ition [12–17]. Recently we have studied also the deconfine-
ment phase transition in a HWAdS/QCD model from the
perspective of our description of the scalar and tensor
glueball spectrum by analyzing the graviton in a BH
metric [18]. We found that the deconfinement phase in the
Herzog approach [12] is reached via a two steps mechanism,
a conclusion shared with other studies [19] and holographic
analyses [20]. However, the phase transition in these studies
was first order or second order while the experimental data
seem to point out that at high temperatures QCD deconfines
via a crossover mechanism [11].
Here we propose a different scenario based on the

behavior of the scalar and tensor glueballs at T ≠ 0, in
AdS5, but only assuming a unique BH metric, for the
background, for both the low and high temperature
regimes. We consider two scales: z0 the confinement
one, and zh the BH horizon. For zh > z0 we impose
Dirichlet or Neumann conditions on the mode functions
at z0, as in the usual HW model. This region resembles
the AdS thermal phase at low temperatures, and differs
from it when zh is close to z0. For any zh we have also a
BH solution for the glueball modes and this solutions
define the high temperature deconfining behavior. Since
we implement boundary conditions in the confined
metric a free energy differences appears between the
two phases which generates a first order phase transition.
Since the AdS model does not predict deconfined states
we implement its properties in potential models to
discuss deconfinement. In these models the dynamics
of the temperature dependence is determined by the
AdS-BH dynamics.
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II. AN AdS5 MODEL
FOR CONFINEMENT

We would like to study behavior of QCD as the
temperature increases by studying its AdS5 dual. For
doing so we will study the behavior of the glueball
spectrum with temperature. At T ¼ 0 the traditional HW
model reproduces quite well this spectrum [8]. In previous
calculations two different metrics where used an AdS
thermal metric in the low T phase and an AdS BH metric at
high temperature [12,18]. In here we shall use a unique BH
metric for all T. The phases will be distinguished by
boundary conditions, with the restriction that we shall
recover the traditional HW results at T ¼ 0. A model with
a BH metric for low T was used to study the heavy quark
potential at finite temperature some time ago [21].
Let us remind the reader that, at T ¼ 0, glueballs can be

described by the gravitons propagating in a AdS5 space
governed by the AdS5 metric:

ds2 ¼ L2

z2
ðdxμdxμ − dz2Þ; ð1Þ

where 0 ≤ z ≤ z0 being z0 the confinement size. The
physical particle modes are described by boundary con-
ditions (BCs) at z0. Here we propose that for T > 0 the AdS
metric is defined by a BH

ds2 ¼ L2

z2
ðfðzÞdt2 − dx⃗2 − f−1ðzÞdz2Þ; ð2Þ

where fðzÞ ¼ 1 − z4=z4h. Note that zh determines the
Hawking’s temperature of the black hole Th ¼ 1=ðπzhÞ.
For T ¼ 0 → zh ¼ ∞ with BC at z0 we recover the AdS5
metric, Eq. (1), from the BH metric.
For T > 0 the graviton propagates in a BH space, and

therefore the equations of motion for the tensor component
in this BH background are [22,23]

d2ϕðzÞ
dz2

þ
�
2

z
−

5z4h− z4

zðz4h− z4Þ
�
dϕðzÞ
dz

þ M2z4h
z4h− z4

ϕðzÞ¼ 0; ð3Þ

and for the scalar gravitons [22,23]:

d2ϕðzÞ
dz2

þ
�
2

z
−

5z4h − z4

zðz4h − z4Þ
�
dϕðzÞ
dz

þ
�

M2z4h
z4h − z4

þ 256z6z4h
ðz4h − z4Þð6z4h − 2z4Þ2

�
ϕðzÞ ¼ 0: ð4Þ

For the sake of simplicity, a constant λ is introduced in
front of the latter Eq. (4) so that λ ¼ 1 corresponds to the
scalar graviton and λ ¼ 0 is the equation of the tensor
graviton:

d2ϕðzÞ
dz2

þ
�
2

z
−

5z4h − z4

zðz4h − z4Þ
�
dϕðzÞ
dz

þ
�

M2z4h
z4h − z4

þ λ
256z6z4h

ðz4h − z4Þð6z4h − 2z4Þ2
�
ϕðzÞ ¼ 0: ð5Þ

Since zh is related to T, the solutions to these equations will
provide the dependence of the spectrum with respect to the
temperature. In order to solve the above equations to look
for stable mode solutions boundary conditions must be
imposed. We define two sectors in zh: (i) a low temperature
sector where zh > z0, which we will characterize by
Dirichlet or Neumann boundary conditions at z0 and (ii) a
high temperature sector zh < z0, which satisfies the appro-
priate boundary conditions at the BH horizon zh. As in
Ref. [18] we would like to find the phase transition region
by studying the behavior of the particle modes as a function
of temperature. The idea behind our analysis is to control
to what extent deconfinement phenomena appear in our
calculation as a steep growth in the bound state masses
associated with a decrease in binding energy due to the
flattening of the binding potential and therefore leads to the
liberation of the valence gluons [9].

A. A two phase model

Let us assume that we have two phases being z0 the
boundary in the fifth dimension z. In order to see the
behavior of the physical observables at the boundary we
follow the development of Ref. [12]. The free energy for a
BH metric with the an appropriate ultraviolet cutoff ε is
proportional to

VðϵÞ∝−4
Z

πzh

0

dt
Z

minðz0;zhÞ

ϵ

dz
z5

¼πzh

�
1

ðminðz0;zhÞÞ4
−
1

ϵ4

�
:

ð6Þ

Let V1 be the free energy for the BH-BC in the confined
phase and V2 that for the free BH. The solutions of the
mode equations for V1 must always satisfy z0 < zh, while
those in V2 have no restriction. Therefore, the free energy
difference becomes proportional to

lim
ϵ→0

ΔVðϵÞ ¼ V2ðϵÞ−V1ðϵÞ∝
(
0 if z0 < zh
πzhð 1z4h −

1
z4
0

Þ if z0 > zh
:

ð7Þ

For z0 > zh only the BH modes are stable, while for z0 >
zh the modes of both solutions are be stable. If we choose
for physical reasons a model BH-BC and BH, a first order
phase transition will appear between the two phases with a
transition temperature T ¼ 1

πz0
. If we choose BH overall

without boundary conditions we will have not phase
transition but a crossover. However, choosing overall the
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BH solution without boundary conditions will lead, as we
will show, to zero mass states at T ¼ 0 and not to the
thermal AdS5 spectrum. Therefore, if we want to recover
the correct spectrum at T ¼ 0 we are required to have at
least a two phase model with a first order phase transition in
the dual scheme.

III. THE TEMPERATURE DEPENDENT
GLUEBALL SPECTRUM WITH DIRICHLET

BOUNDARY CONDITIONS

We next discuss in detail the procedure to get the
temperature dependent scalar glueball spectrum with
Dirichlet boundary conditions.

A. The low temperature phase: BH-Dirichlet

Let us study the solutions of the equation of motion in
the BH background, Eq. (5), for zh > z0. In particular, the
behavior of the equation at the origin z ¼ 0 can be per
properly studied with a change of variable w ¼ z=zh:

d2ϕðwÞ
dw2

þ
�
2

w
−

5 − w4

wð1 − w4Þ
�
dϕðwÞ
dw

þ
�

μ̃2

1 − w4
− λ

256w6

ð1 − w4Þð6 − 2w4Þ2
�
ϕðwÞ ¼ 0; ð8Þ

where the quantity μ̃ ¼ Mzh. In order to find the modes of
this equation, one needs to integrate from w ¼ 0 towards
w0 ∼ z0=zh. The the mode at w ¼ 0 behaves as

ϕðwÞ ∼ Aw4 þ B; ð9Þ

where A, B are integration constants. We take A ¼ 1 and
B ¼ 0, since different values will change the shape of the
mode function but not the mode value, which is our interest
at this time. The behavior of the modes as a function of zh
are shown in Fig. 1. The dropping of the glueball mass

close to the phase transition is a consequence of the AdS-
BH dynamics of our model and this behavior might be
different within other approaches [24]. Here we display μ,
i.e., the adimensional mass M=L from which the physical
one can be obtained by multiplying it for L−1 ¼ 250 MeV,
for Dirichlet boundary conditions [18]. As one can see,
the mass of the glueballs decreases as the temperature
increases. For example μ ¼ 5.135, 5.00, 4.55 for zh ¼
∞; 1.5, 1.1. The asymptotic value corresponds to the
asymptotic free metric. In Fig. 2 we show the mode
function for different values of zh. The results confirm
that as zh increases, the AdS-BH metric approaches the
AdS free one, as expected. Here, from now on, the
numerical evaluations will be performed by fixing z0¼ 1
without losing generality. In fact, our main interest is the
functional form of the mode functions and not their sizes.

B. The high temperature phase

The next step is to study the solution to Eq. (5) for
zh < z0. Boundary conditions must be imposed at the
origin and at the horizon. One has to match the solutions
outward from the origin with the inwards from the horizon
to get the mode energies and the mode functions. To study
the behavior of the solution close to the horizon the
following change of variable is convenient: v ¼ 1 − w4.
Equation (8) now becomes

d2ϕðvÞ
dv2

þ 1

v
dϕðvÞ
dv

þ 1

16vð1 − vÞ3=2
�
μ̃2 þ λ

64ð1 − vÞ
ð2 − vÞ2

�
ϕðvÞ ¼ 0; ð10Þ

where v → 0 at the horizon, i.e., w → 1. The regular
solution at v ¼ 0 has the form of ϕðvÞ ¼ P∞

0 anvn.
Substituting this ansatz into the equation and keeping only

FIG. 1. The scalar glueball modes as a function of zh for
z0 < zh with Dirichlet boundary conditions. The asymptotic
value corresponds to the AdS free metric.

FIG. 2. The scalar glueball mode function as a function of w ¼
z=zh for z0 < zh and Dirichlet boundary conditions. We consid-
ered as an example z0 ¼ 1 and plot the result corresponding to the
AdS5 space (T ¼ 0) (solid), which is related to large zh, the
solution for zh ¼ 1.5 (dotted) and that for zh ¼ 1.1 (dashed).
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terms up to order 3, one obtains recurrence relations for ai,
with i ≥ 1, the latter functions of the independent a0
coefficient. For the three first modes one has

a1¼−
ð16λþ μ̃2Þa0

16
;

a2¼
ð16λ−3μ̃2Þa0− ð32λþ2μ̃2Þa1

128
;

a3¼−
ð80λþ15μ̃2Þa0þð64λ−12μ̃2Þa1− ð128λþ8μ̃2Þa2

1152
:

ð11Þ

The approximate solution with these four first terms and
its derivative are used as initial conditions for the numerical
program at v close to zero. In Fig. 3 we show a mode
function for mode energy μ̃ ¼ 5.53, zh ¼ 0.9, and
a0 ¼ −0.179. The solid line represents the solution from
the origin and the dotted line the inward solution from the
horizon wh ¼ wðzhÞ ¼ 1. w0 ¼ 1=zh represents the con-
finement radius. The BH solution is now fully stable and
contained within the confinement region.
It has been shown [18] that the mode energy of the BH

solution goes like

μ ¼ M
L

¼ 5.53
zh

ð12Þ

for any zh.
Let us stress that once the solution is found, as a function

of zh, the explicit dependence on z0 is lost. In this case both
mode functions and masses do not explicitly depend on z0
and, thus, the solutions are valid, in principle, for any value
of zh. The confinement radius does not impose any restric-
tions on the BH solutions. The present findings can be
extended for any zh leading to a crossover at z0. However, the
mode energies of these solutions tend to zero asymptotically
which does not correspond to phenomenology, see Fig. 4.

On the contrary theDirichlet solutionswithBHbackground,
discussed in the previous section, do reproduce the spectrum
at zero temperature, within the limitations of the model [18].

C. The glueball spectrum
as a function of temperature

In Fig. 4 we show the mode energies for the scalar
glueball ground state in the two scenarios BH-Dirichlet
(BHD) and BH as a function of zh; recall that Th ∼ 1

πzh
. The

BH mode function is continuous at the confinement
boundary, while the BH-Dirichlet mode function is only
defined for zh > z0. We see that the former tends to 0 for
T ¼ 0, while the latter tends to the AdS5 thermal value at
T ¼ 0. Therefore a two phase model is motivated by the
data, with the BH geometry for zh < z0 and the BH-
Dirichlet geometry for zh > z0. In these model the two
energy mode functions have a jump at the confinement
boundary z0, thus manifesting the first order phase tran-
sition described above. This value of z0 corresponds in this
model to T ¼ 1

πz0
∼ 80 MeV since L−1 ¼ 250 MeV for

Dirichlet boundary conditions [18]. It is well known that
the HW models lead to low transition temperatures.
The BH phase describes the deconfined phase in our

model. In the confined region the mass of the modes is
mostly determined by the boundary conditions at z0, while
in the deconfined region it is defined by the boundary
conditions at the BH horizon zh. Thus, in our model based
on the HW approach the phase transition is determined by
boundary conditions and not by the dynamics, i.e., the
phases change due to the boundary conditions and not due
to a change of the background metric.
In Fig. 5 we show the effect of temperature on the excited

scalar glueball states. We note that the same phenomenon,
observed for the ground state, takes place. In the two phase
model a jump in the modes occurs at the transition

FIG. 3. BH mode function for μ̃ ¼ 5.53, zh ¼ 0.9, and
a0 ¼ −0.179. The solid curve is the outward solution and the
dotted curve is the inward solution.

FIG. 4. The energy mode associated with the ground state
scalar glueball as a function of zh, in the BH-Dirichlet and BH
scenarios. The dotted curve represents a hypothetical BH cross-
over scenario to the low T region.
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temperature. Also in these cases one has a non physical
crossover scenario.
In order to conclude the analysis for the Dirichlet

boundary conditions we study the tensor glueballs. Let
us remark that the HW model at zero temperature predicts
that scalar and tensor glueballs are degenerate [8].
However, since in the BH metric the tensor equation differs
from the scalar one, recall Eq. (5), once we heat the system
their masses will be different, a phenomenon that was also
addressed in our previous study of the Herzog type phase
transition [9]. In Fig. 6 we show the phase transition for the
scalar and tensor glueballs. We stress that the modes are
only slightly different at low temperatures because the term
proportional to λ in Eq. (5) is small there, but it becomes
quite distinct at high temperatures.

IV. THE TEMPERATURE DEPENDENT
GLUEBALL SPECTRUM WITH NEUMANN

BOUNDARY CONDITIONS

In this section we describe the dynamics by imposing
Neumann boundary conditions at the confinement boun-
dary z0 to the BH equations of motion, Eq. (5). The
resulting mode functions are shown in Fig. 7. The latter, for
zh < z0, coincide with those already shown in Fig. 3. The
relative mode energies for the hight T region correspond to
those shown in Fig. 4 for zh < z0. In Fig. 8 we plot the
variation of the mode energy as a function of zh comparing
with the Dirichlet case. The mode energies vary slowly
decreasing as zh decreases up to the confinement boundary
z0 and grow dramatically as we go below the confinement
boundary separating the two scenarios, completely analo-
gous to the Dirichlet case as shown in Fig. 8. The solid

FIG. 5. The energy modes associated with the ground state and
two excited states as a function of zh for the scalar glueball in the
BH-Dirichlet and BH scenarios (solid) showing the phase
transition. The dotted curve represents a hypothetical BH cross-
over scenario to the low T region.

FIG. 6. We show the energy modes associated with the ground
state scalar and tensor glueballs as a function of zh in the BH-
Dirichlet and in the BH scenarios (solid) and signal the
hypothetical crossover phenomenon by a dotted curve.

FIG. 8. The energy modes associated with the scalar glueball as
a function of zh, for the Dirichlet (dot dashed) and Neumann
(solid) at low temperature and in the BH scenario (dashed), which
is equal in both scenarios. We also signal the hypothetical
crossover phenomenon by a dotted curve.

FIG. 7. The functional modes associated with the ground state
scalar as a function of w for three values of zh ¼ 2.0 (dotted), 1.5
(dashed), 1.1 (solid).
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curve represents transition of the mode function in the
model. The crossing occurs at z0, which corresponds to a
temperature T ∼ 92 MeV, since L−1 ¼ 290 MeV for the
Neumann boundary conditions [18]. We note that this
temperature is again low. One could proceed by studying
excitations and the tensor components, but the behavior of
the mode function would be similar as before, only the
magnitudes would change.

V. ANALYSIS OF THE TRANSITION

In this section, we analyze the phase transition obtained
in our AdS-BH model from the perspective of two different
constituent gluon models.

A. Constituent gluons

We first consider a constituent model of two heavy
gluons of mass m coupled by a confining potential of the
form

VðrÞ ¼ 2mð1 − e−r=rsÞ; ð13Þ

which we shall call Cornwall-Soni model [25].
By introducing this potential we are assuming that the

glueball is confined bellow 2m. In this case the reduced
Schödinger equation can be written as

d2χ
dr2

¼ mðVðrÞ − EÞÞχ; ð14Þ

where the wave function Ψ is related to the reduced wave
function χ byΨ ¼ χ

r. This equation will provide the glueball
masses for each temperature by relating the potential to zh
equating the glueball masses obtained from the solution of
the Schrödinger equation to those of the AdS5 model.

We do this analysis for Dirichlet boundary conditions only.
To be more specific, we take for zh the corresponding mode
value and transform it into a gluon mass MG dividing by
L−1 ¼ 250 MeV. We then solve Eq. (14) for different
values of rs until E ¼ MG. In this way we find a functional
form of the potential parameter rs in terms of zh. We
assume that the gluon mass m does not change with
temperature and take the value m ¼ 1 GeV used in
Ref. [25]. In Fig. 9 we show the functional relation
of rs on zh both for the Hawking-Page transition model
(HP) [9,12] (dotted) and for the present model (BHD)
(solid). The HP model has a phase transition at zHP ¼ z0

2¼
,

while the BHD model the transition at zh ¼ z0, as proven.
However, the two models coincide beyond the Herzog
temperature [12] (dot dashed).
In Fig. 10 we describe how the confinement potential of

the Cornwall-Soni model is altered as we increase the
temperature. To this aim, we plot the potential for four
values of zh: AdS thermal (solid), zh ¼ 1.05z0 slightly
to the right of the transition temperature (dot dashed),
zh ¼ 0.95 slightly to the left of the transition point
(dashed), and finally for very high temperature (dotted).
As we approach the transition temperature from below the
binding becomes stronger and the glueball mass decreases.
At the transition temperature there is a jump and the mass
of the glueball increases above the thermal value and from
then on keeps on increasing until, at a very high temper-
ature, the binding becomes vanishingly small and the mass
of the glueball becomes 2m, which is that of two free
gluons. The potential becomes wider before the phase
transition, increasing the binding energy, and narrower after
the phase transition, decreasing the binding energy, until
the mass of the glueball becomes that of two free gluons.
Let us try to understand this deconfinement behavior in

terms of a string tension, i.e., two gluons kept together by a

FIG. 9. The dependence of the potential strength parameter rs
as a function of zh for the HP (dotted) before the phase transition
for the BHD (solid) and for both models when they are equal
(dotdashed).

FIG. 10. We show the confinement potential for four temper-
atures. For zero temperature (solid), slightly below the transition
point (dot dashed), slightly above the phase transition (dashed)
and for very large temperature with small binding energy
(dotted). The lines represent the glueball masses for each
potential with the same symbols.
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flux tube. We define the string tension in this potential
model as

σ ¼ jEBj
R

; ð15Þ

where EB is the binding energy and R ¼ R
d3rΨ�r2Ψ is the

mean square radius of the glueball stateΨ for each mass. In
Fig. 11 we plot the string tension as a function of zh. In the
BHD model the string tension decreases after the transition
temperature and coincides with that of the HP model after
the Herzog temperature. The string tension is discontinuous
at the transition temperature, decreasing thereafter and
vanishing after total deconfinement.
It is important to point out that in the potential model the

Schrödinger equation ceases to have solutions for values of
the glueball mass above 2m, as expected in this simple non
relativistic approach. Therefore, in defining the shape of the
potential, Eq. (13), we have introduced a cutoff in the AdS
high temperature spectrum to eliminate the glueballs with
masses above 2m, which appear in our formalism. In fact,
the holographic model has glueball solutions for temper-
atures above the transition temperature both the HP and the
BHD in line with the arguments of Shuryak and Zahed [19].

B. Cornell potential

Let us analyze the results with another potential scheme.
We study a Cornell potential

VðrÞ ¼ ar − 3
αs
r

ð16Þ

that has been usedwithin a semirelativistic approach [26–28].
The treatment of the semirelativistic hamiltonian requires
complicated mathematical tools [29], which would obscure
our analysis. Hence, we have adopted a nonrelativistic
scheme with an effective gluon mass μ which leads to
Eq. (14) with the Cornell potential Eq. (16). The parameters

of the potential in the cited calculations have the following
interpretation: a ¼ Cσ where C ¼ 9=4 is a color factor and
σ ¼ 0.185 GeV2 is the string tension of the mesonic flux
tube; αs ¼ 0.2 is the asymptotic QCD coupling constant.
These authors find an effective mass of about 600 MeV.
From their experience we take for our nonrelativistic model
μ ¼ 600 MeV, αs ¼ 0.2, C ¼ 9=4, but we need a value of
σ ∼ 0.2 Gev2, which is close to theirs, to fit our AdS-HW
T ¼ 0 results. In order to implement the temperature
dependence we will proceed as before we vary a, the gluon
flux tube string tension, in order to fit our AdS T ≠ 0
glueball mass values. We keep the effective mass and the
asymptotic coupling constant fixed. The result of our
calculation can be looked up in Fig. 12, where we also
compare with the HP transition.
In Fig. 13 we describe how the confinement potential of

the Cornell model is altered as we increase the temperature.

FIG. 11. The behavior of the string tension for the HP (dotted)
and BHD (dashed) models when they differ and (dot dashed)
when they coincide.

0.2

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4

0.6

0.8

Z ZHP 0

FIG. 12. The dependence of the potential flux tube parameter a
as a function of zh for the HP (dotted) and for the Cornell (dashed)
before the phase transition, and for both models when they are
equal (dot dashed).

FIG. 13. We show the confinement potential for four temper-
atures. For zero temperature (solid), slightly below the transition
point (dot dashed), slightly above the phase transition (dashed)
and for very large temperature with small binding energy
(dotted). The lines represent the glueball masses for each
potential with the same symbols.
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To this aim, we plot the potential for four values of zh: AdS
thermal (solid), zh ¼ 1.05z0 slightly to the right of the
transition temperature (dot dashed), zh ¼ 0.95 slightly to
the left of the transition point (dashed), and finally for very
high temperature (dotted). The behavior is very similar to
that of the Cornwall-Soni potential. As we approach the
transition temperature from below the binding becomes
stronger and the glueball mass decreases. At the transition
temperature there is a jump and the mass of the glueball
increases above the thermal value and from then on keeps
on increasing. The potential becomes wider before the
phase transition thus increasing the binding energy, and
narrower after the phase transition hence decreasing the
binding energy.
In this case neither the Cornell potential nor our AdS-BH

dynamics have a confinement mechanism at large T. In
order to introduce it we impose a threshold in the potential.
The main difference between the Cornell and Cornwall-
Soni potential is that the latter has a natural threshold at 2m.
Lattice data showscalar glueballs up to 4000MeV [30–32].

Thus, the interpretation of the effective mass of the gluon
by Cornwall-Soni potential seems only valid for the lowest
scalar glueball, whose mass is below 2m. The Cornell
potential does not have a natural threshold, thereforewewill
introduce a threshold by fiat, which is a new ingredient in
our description of confinement.
Let us describe deconfinement again in terms of a string

tension, Eq. (15). In this case we introduce a threshold ETH
and define the binding energy

EB ¼ MG − ETH: ð17Þ

Again R is the mean square distance between the gluons.
In Fig. 14 we plot the string tension as a function of zh

for several thresholds. We do not plot the behavior of the
HP model because is similar to that of the previous
potential, constant at the T ¼ 0 value up to zH ¼ 0.85

and then equal to that of the BDH model. The behavior for
the BHD model is as follows: the string tension is almost
constant in the confined region except close to the phase
transition, where it increases slightly. After the phase
transition in the deconfined region it decreases continu-
ously. We notice that the string tension depends crucially on
the thresholds increasing when we increase the thresholds.
Let us recapitulate, by concluding that to this order in the

1=N expansion, the AdS model leads to an infinite bound
potential, without any threshold. We can interpret these
results as the creation of colored gluon glueballs at high
temperatures without deconfinement [19], and therefore,
this specific holographic model does not allow to reach the
quark gluon plasma.

VI. CONCLUSIONS

Holographic models describe the QCD deconfinement
transition as a Hawking-Page transition from AdS thermal
to a BH phase [12]. We recently investigated how this phase
transition affects the glueball spectrum in the HW model
where the scalar and tensor glueballs are described as
gravitons [9]. We found that the glueball mass grows
rapidly as we increase the temperature above the phase
transition temperature. In our approach the bound state
structure does not disappear, and the mass of the glueballs
becomes higher than that of a fixed number of free valence
gluons. The model thus requires the implementation of a
second phase transition to describe the quark gluon plasma.
The resulting scenario is similar to a phase transition a la
Shuryak-Zahed where massive, even colored states could
appear before total deconfinement [19]. These HP models
lead to a first order phase transition to deconfinement, with
no temperature dependence before the phase transition.
In this work we have followed the same approach as in

our previous investigation by studying the behavior of the
glueball states as we increase temperature. We use again an
HW type model because it simplifies the study consid-
erably and is very indicative of how holography describes
the transition, despite the fact that they are quantitatively
not very successful. The main difference with respect to our
previous calculation [9] is that we use the BH metric for all
values of the temperature. For the BH radius zh greater than
the confinement radius z0, i.e., for small temperatures, we
force the solution to be secluded into the physical volume
0 < z < z0 by imposing on the BH solution Dirichlet or
Neumann boundary conditions at z0. In this way we
introduce temperature dependence in the confining region.
For zh < z0 we solve the BH solution up to the BH radius
zh; however the BH solution exists also beyond z0. Recall
that T ∼ 1

πzh
.

The solution for the first scenario coincides asymptoti-
cally, for zh → ∞, with the AdS thermal solution. When the
temperature increases the mass of the glueballs decrease
very slowly until zh ¼ z0 where they reach a finite value

FIG. 14. The behavior of the string tension for the BHD for the
following thresholds: ETH ¼ 2000 (solid), ETH ¼ 3000 (dashed),
ETH ¼ 4000 (dot dashed).
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(see Fig. 4). On the other hand the BH energy mode
diverges at the origin zh → 0 and decreases towards zero at
zh → ∞. At z0 there is a phase transition which we have
proven is first order.
In the new scheme we see the same phenomenon arising

as in our previous calculation, namely an increase in the
glueball masses associated with the reduction of the gluon
interaction that leads to higher glueball masses. Since our
model is equivalent to a rising potential the glueball masses
tend to infinity at very high temperature. It is clear that the
softening of the potential and the deconfinement of the
gluons is not contemplated in the model. The model points,
as in our previous calculation, to a complicated bound state
scenario after the transition temperature leading to QGP at
higher temperatures. The gluons at some temperature are
escaping the well as their glueball masses become larger
than the constituent gluon masses. The higher the initial
glueball masses the sooner the gluons will be liberated.
In order to understand the AdS models in physical terms

we have introduced potential models to determine the mass
of a glueball formed by two valence gluons. The first one is
constructed to produce deconfinement at 2m [25], m being
the constituent gluon mass. The other model, inspired by
relativistic calculations, is defined by a Cornell type
potential. We have forced the AdS glueball masses into

these potentials finding in this way the dependence of the
potential parameters with temperature. We have described
in this way the HP and the BH transitions for the string
tension, which vanishes at deconfinement. We see that
glueballs still exist beyond the transition temperatures
only ceasing to exist by fiat when they reach the
deconfinement threshold. Thus in this way of proceeding
we have generated a model with two transitions, one
governed by the AdS dynamics and a second by the
imposed threshold.
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