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The possible occurrence of crystalline or inhomogeneous phases in the QCD phase diagram at large
chemical potential has been under investigation for over thirty years. Such phases are present in models of
QCD such as the Gross-Neveu model in 1þ 1 dimensions, Nambu–Jona-Lasinio (NJL) and quark meson
models. Yet, no unambiguous confirmation exists from actual QCD. In this work, we propose a new
approach for a stability analysis that is based on the two-particle irreducible effective action and compatible
with full QCD calculations within the framework of functional methods. As a first test, we reproduce a
known NJL model result within this framework. We then discuss the additional difficulties which arise in
QCD due to the nonlocality of the quark self-energy and suggest a method to overcome them. As a proof of
principle and as an illustration of the analysis, we consider the Wigner-Weyl solution of the quark Dyson-
Schwinger equation (DSE) within a simple truncation of QCD in the chiral limit and analyze its stability
against homogeneous chiral-symmetry breaking fluctuations. For temperatures above and below the
tricritical point we find that the boundary of the instability region coincides well with the second-order
phase boundary or the left spinodal, respectively, obtained from the direct solutions of the DSEs. Finally,
we outline how this method can be generalized to study inhomogeneous fluctuations.
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I. INTRODUCTION

At high densities and low temperatures, systems of
interacting fermions may form crystalline, i.e., spatially
inhomogeneous phases. Unsurprisingly, systems governed
by the strong interaction are no exception. The idea of
density waves in nuclear matter dates back to Overhauser in
1960 [1], followed by Migdal’s renowned works on p-wave
pion condensation in the 1970s [2,3]. A first relativistic
treatment of chiral-density waves (CDWs) in nuclear matter
was presented in Ref. [4], while already in 1990 the idea
was transferred to quark matter [5] (see Ref. [6] for a brief
review on those early works). In the early 2000s, the
possible existence of color superconducting (CSC) phases
attracted much attention [7], and in this context both

crystalline CSC phases [8–14] as well as inhomogeneous
chiral phases in coexistence with homogeneous CSC
phases [15,16] have been explored. Roughly at the same
time, sophisticated analyses of the 1þ 1 dimensional
Gross-Neveu (GN) and chiral GN models in the large-N
limit revealed not only the existence of inhomogeneous
phases in these models but also the exact shapes of the
inhomogeneities [17–20]. The discovery that these lower-
dimensional solutions could also be embedded into higher
dimensions [21] triggered further studies in particular in the
Nambu–Jona-Lasinio (NJL) and quark-meson (QM) mod-
els, which seemed to confirm that inhomogeneous phases
are a rather robust feature of this kind of models (see
Ref. [22] for a review).
However, while the existence of inhomogeneous phases

has rigorously been proven for the 1þ 1 dimensional GN
and chiral GN models in the large-N limit, recent works
within higher dimensional NJL and GN models signal the
possibility that inhomogeneous phases may only appear as
cutoff artefacts [23–25], also see Refs. [26,27] for early
studies on cutoff effects. This casts some general doubt that
models that are nonrenormalizable and, consequentially,
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cutoff dependent, could ever produce trustworthy results
concerning such phases.
It is thus an interesting and open question, whether

inhomogeneous phases exist in actual quantum chromody-
namics (QCD). In fact, it was shown in Refs. [28,29] that, for
large number of quark colorsNc, homogeneous quark matter
at high density is unstable against the formation of chiral
waves—a phase in which chiral symmetry is inhomoge-
neously broken [30]. Yet Ref. [29] also showed that this was
unlikely to happen at Nc ¼ 3, for which they are strongly
disfavored against CSC phases. These analyses, however,
rely on weak-coupling expansions, which are valid only at
very high densities. They are therefore not applicable to
the phenomenologically more interesting nonperturbative
regime between about one and a few times nuclear
saturation density.
On the other hand, since this regime is not accessible by

lattice simulations either, the question about the existence
of inhomogeneous chiral phases in QCD has to be
addressed with functional methods. In Ref. [32], where
three-flavor QCD was investigated within the functional
renormalization group, indications of inhomogeneity in a
region around the critical endpoint have been observed
but the finding was not fully conclusive [33]. Within a
truncation of the (renormalized) Dyson-Schwinger equa-
tions (DSE) of QCD Ref. [34] managed to find an
inhomogeneous solution to the quark propagator at finite
density. However, the analysis was restricted to a particular
Ansatz for the inhomogeneity, making it extremely difficult
to improve the truncation.
In this work, we therefore aim at developing a more

flexible approach to study the existence of inhomogeneous
phases in QCD. We propose a generalization of the stability
analyses that have successfully been applied to models like
NJL [24,35,36], GN [23,37] or the QM [38] model. In its
new form the method is not only applicable to renormaliz-
able theories such as QCD but also to beyond mean-field
applications of NJL and QM models.
The paper is organized as follows: In order to place our

work in the context of previous approaches, we briefly
review in Sec. II how inhomogeneous phases are studied
within models, putting particular emphasis on stability
analyses in the NJL model. As we will discuss, this method
cannot immediately be applied to QCD. In Sec. III we will
therefore present a new framework using the 2PI effective
action of QCD. We then follow with a small number of
general remarks on potential generalizations to nPI effec-
tive actions. In Sec. IV, as a first test, we apply the approach
again to the NJL model and show that we can reproduce
the known results. Then, in Sec. V we discuss additional
difficulties which arise in QCD as compared to the NJL
model and propose a method how to overcome them. In
Sec. VI we perform a first numerical test of this approach
by applying it to study the second-order transition from the
homogeneous chirally broken to the chirally restored phase

in the chiral limit of (a truncation of) QCD and comparing
the result to that from directly solving the corresponding
DSE. As we will see, this gives vital clues as to the working
of the method and how to extend it to study inhomogeneous
phases. We conclude this work with a short summary
and an outlook toward more sophisticated calculations
within QCD.

II. MODEL STUDIES OF INHOMOGENEOUS
PHASES

As mentioned above, most studies of inhomogeneous
phases in strong-interaction matter have been performed
within QCD inspired models. In addition simplifications
have been used, since it is a nontrivial matter to study
phases which break translational symmetry. Most com-
monly, two approaches are available. First, one might
propose an ad hoc Ansatz for an inhomogeneous phase
and simply verifies whether or not this proposed Ansatz
phase is more stable than the homogeneous one (by
comparing their free energies). Alternatively, one may
perform a stability analysis of the homogeneous phase,
i.e., one determines whether or not the homogeneous phase
is unstable against small inhomogeneous fluctuations of
any shape. Both NJL, GN and QM studies have been
carried out within these two approaches (see, e.g., [36–41]
and references therein).
As an illustration, take the standard NJL model

LNJL ¼ ψ̄ði=∂ −mÞψ þ G
X
M

ðψ̄VðMÞψÞ2 ð1Þ

where ψ denotes a quark field with two flavor degrees of
freedom and bare mass m. The second term with coupling
constant G > 0 and vertices VðMÞ ∈ f1; iγ5τag, where τa,
a ¼ 1, 2, 3, are the Pauli matrices in isospin space,
correspond to four-point interactions in the scalar-isoscalar
and pseudoscalar-isovector channels. Assuming the pres-
ence of the (possibly inhomogeneous) condensates

ϕMðx⃗Þ ¼ hψ̄ðx⃗ÞVðMÞψðx⃗Þi; ð2Þ

the mean-field thermodynamic potential, corresponding to
the free-energy density, then takes the form

ΩMF ¼ −
T
V
Tr log

�
S−1

T

�
þ G

X
M

1

V

Z
d3xϕ2

Mðx⃗Þ; ð3Þ

where

S−1 ¼ S−10 þ 2G
X
M

VðMÞϕMðx⃗Þ ð4Þ

is the inverse dressed quark propagator and S−10 is its
bare counterpart. T is the temperature, while the chemical
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potential is hidden in the bare propagator. The functional
trace Tr is over internal degrees of freedom as well as the
Euclidean four-volume V4 ¼ ½0; 1T� × V with the spatial
volume V, which will be sent to infinity.
It is important to note that the quark self-energy Σ ¼

S−1 − S−10 is a linear combination of the condensates. This
is a feature of mean-field NJL, which is absent in QCD. It
allows us to view the mean-field thermodynamic poten-
tial as a functional of the condensates, ΩMF ¼ ΩMF½ϕM�.
Yet, in order to determine the ground state of the system,
we have to minimize ΩMF with respect to the condensates,
which is a nontrivial task as their spatial shapes are
unknown [42].
In this context, basically two strategies have been

employed in the literature. The first one consists in making
a direct Ansatz for the condensates with a finite number
of parameters and then minimizing the free energy with
respect to these parameters. Probably the most popular
example is the chiral density wave (CDW) [4,5,43],

ϕSðx⃗Þ¼−
Δ
2G

cosðq⃗ · x⃗Þ; ϕP;3ðx⃗Þ¼−
Δ
2G

sinðq⃗ · x⃗Þ; ð5Þ

with parameters Δ, related to the amplitude, and a wave
vector q⃗. This Ansatz corresponds to a rotation in the plane
of scalar (VðSÞ ¼ 1) and pseudoscalar (VðP;3Þ ¼ iγ5τ3)
condensates as one goes along the direction of the wave
vector q⃗. A more sophisticated Ansatz is the real-kink-
crystal (RKC) [21], where the scalar condensate takes
the form of a Jacobi elliptic function, ϕSðxÞ ¼
Δ

ffiffiffi
ν

p
=2GsnðΔxjνÞ, with elliptic modulus ν. Other exam-

ples studied are one- and two-dimensional sinusoidal
shapes in the scalar sector [44]. All of these shapes were
typically found to be favored over the homogeneous phase
in a certain region of the phase diagram, with the RCS
Ansatz being the most favored one studied so far [22].
The alternative approach is performing a stability analy-

sis of the homogeneous ground state, i.e., the homogeneous
state with the lowest free energy. In contrast to the direct
Ansatz approach it has the advantage of being “modulation
shape agnostic.” This may be a real benefit, since in
practice we usually do not know the exact shape the
inhomogeneous modulation takes [45]. On the downside,
since the analysis relies on continuity, discontinuous first-
order transitions to inhomogeneous phases may not show
up in a stability analysis.
Specifically, one expands the free energy in Eq. (3)

around the homogeneous state. The condensates are then
expressed as

ϕMðx⃗Þ ¼ ϕ̄M þ δϕMðx⃗Þ; ð6Þ

where in this paper we indicate quantities in the homo-
geneous ground state with a bar. So ϕ̄M denotes the

condensates in the homogeneous ground state while the
δϕMðxÞ are small, possibly inhomogeneous, perturbations
around them. We then expand

ΩMF ¼
X∞
n¼0

ΩðnÞ; ΩðnÞ ∝ OðδϕnÞ ð7Þ

where each contribution ΩðnÞ is of the nth power in the
fluctuations. Obviously, the zeroth order is the homo-
geneous case

Ωð0Þ
NJL ¼ −

T
V
Tr log

�
S̄−1

T

�
þ G

X
M

ϕ̄2
M; ð8Þ

where S̄−1 is the inverse quark propagator Eq. (4) evaluated
for ϕM ¼ ϕ̄M.
The first-order term Ωð1Þ vanishes by the quark gap

equation [35], and therefore the leading-order fluctuation
contribution is the second-order term, which can be
written as

Ωð2Þ ¼ 2G2

V

X
M

Z
q⃗
jδϕMðq⃗Þj2D−1

M ðqÞ ð9Þ

where the δϕMðq⃗Þ is the Fourier transform [46] of δϕMðx⃗Þ
and

D−1
M ðqÞ ¼ 1

2G
þ
XZ
k

tr½VðMÞS̄ðkÞVðMÞS̄ðkþ qÞ� ð10Þ

can be interpreted as inverse (unrenormalized) meson
propagators within the NJL model. Here “tr” denotes a
trace over internal (color, flavor, and Dirac) degrees of
freedom, and we introduced the shorthand notations

Z
k⃗
≡
Z

d3k
ð2πÞ3 ;

XZ
k

≡ T
X
ωn

Z
d3k
ð2πÞ3 ð11Þ

where momenta are generically given by k ¼ ðk⃗; k4 ¼ ωkÞ,
with fermionic Matsubara frequencies ωk ¼ ð2nþ 1ÞπT.
Note that, since we only allow for spatial inhomogeneities

but still assume that the fluctuations are time-independent,
δϕMðq⃗Þ only depends on the three-momentum q⃗, which is
integrated over in Eq. (9). The argument q ofD−1

M is then the
corresponding four-momentum vector with zero energy.
Moreover, since we are expanding about a homogeneous
and therefore isotropic state, D−1

M effectively only depends
on jq⃗j.
An important feature of Eq. (9) is that the integrand

depends on the squared modulus of δϕMðq⃗Þ, so the only
way this can ever be negative, and thus, lower the free
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energy, is by having the inverse meson propagators D−1
M ðqÞ

be negative for certain momenta. This is actually a
sufficient criterion for instability because, even if D−1

M ðqÞ
is negative only in a small momentum regime, any
fluctuation which has support only in that regime will
lower the free energy. The phase boundary can then be
identified as a line in the T − μ plane where one of the D−1

M
touches zero at a single value of jq⃗j.
As obvious from Eq. (10), in the limit of vanishing

interactions the positive constant 1=2G dominates and no
instability occurs. On the other hand, the integral is
negative, as we will discuss below. Therefore, it is easy
to see how, if the interaction couplingG is large enough, the
second term wins over the first term and the inverse
propagator becomes negative.
Note that the stability analysis remains blind as to the

nature of the instability. Thus, ideally, the two methods
can be combined. Once the stability analysis reveals the
homogeneous state to be unstable in general one can use the
Ansatz method to search for specifically favored inhomo-
geneous states.
Naturally, the trade-off for such a generality is the fact

that stability analyses can only identify second-order phase
transitions. This makes it a natural companion (rather than a
competitor) of the Ansatz approach. In model studies where
both methodologies have been applied, the boundary
between the restored phase and the inhomogeneous phase
is usually second-order and both methods agree on the
same phase boundary.

A. Beyond models of QCD

Within full QCD—or with any approximated technique
that can be systematically improved toward full QCD—the
same two choices remain, direct Ansatz or stability analy-
sis. As already noted above, in Ref. [34] a chiral density
wavelike Ansatz was tested for QCD within a DSE
framework and a region of the phase diagram was found
which allows for self-consistent solutions of the inhomo-
geneous DSEs with a CDW-like shape.
As for a stability analysis, no such work exists as of

yet. Besides QCD being far more complicated to work
numerically, this is mostly due to the fact that the current
framework described above is not suited for QCD. One
cannot write the thermodynamic potential Ω as a func-
tional of the condensates as for NJL and other models.
This is because, in QCD, the self-energy or the inverse
propagators are not simple linear combinations of the
condensates. In fact, the same problem would appear
beyond mean-field in NJL or QM models [47].
Therefore, the main goal of this paper is to show an
alternative method to perform a stability analysis that
both reproduces the classic NJL results and is applicable
to QCD, beyond mean-field models, and, in fact, any
field theory.

III. 2PI EFFECTIVE ACTION STABILITY
ANALYSIS

In order to formulate the framework for a general
stability analysis, it is first useful to recall some basic
facts. In a classical field theory, the system tends toward
minima of the classical action Scl. The equations of motion
of the theory are given by extrema conditions δScl=δϕ ¼ 0
of the classical action with respect to the fields. In a
quantum field theory, the effective action Γ plays the same
role and the corresponding quantum equations of motion,
the Dyson-Schwinger equations, are found by exactly the
same logic. Also, the effective action is a proxy for the
pressure and other thermodynamic quantities of the theory.
The thermodynamic potential, Ω, at finite temperature T
and finite chemical potential μ is found by subtracting the
vacuum term [54]

ΩðT; μÞ ¼ −
T
V
ðΓðT; μÞ − Γð0; 0ÞÞ ¼ −

T
V
PðT; μÞ: ð12Þ

Furthermore, one can write the effective action of a theory
as a functional of the n-point functions of the fields, the
inverse propagators and vertices (see e.g., the C and
Refs. [55,56]).
Starting from a 2-particle-irreducible (2PI) effective

action [57] such as

Γ ¼ Tr log½S−1� − Tr½1 − S−10 S� þΦ2PI½S�; ð13Þ

where, S is the full propagator, S0 the bare one, and Φ2PI½S�
is the sum of all 2PI diagrams, we find the Dyson-
Schwinger equations by

δΓ
δS

¼ 0 ⇒ −S−1 þ S−10 þ δΦ2PI

δS
¼ 0 ⇒ S−1 ¼ S−10 þ Σ;

ð14Þ

where we identified the derivative of Φ2PI with the self-
energy Σ. Solutions to the equation above will reveal every
stable, unstable or metastable equilibrium configuration of
the system. Let S̄ be an equilibrium solution, namely the
homogeneous configuration. We may analyze if it is stable
or not by taking

S ¼ S̄þ δS:

where δS is a small inhomogeneous propagator (what
sufficiently “small” means is described in a later section).
We can then take a functional Taylor expansion around the
δS ¼ 0 point

Γ½S� ¼ Γ½S̄� þ Tr

�
δΓ
δSxy

δSyx

�
þ 1

2!
Tr

�
δ2Γ

δSxyδSzs
δSyxδSsz

�

þ � � � ð15Þ
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where we again use the bar notation Ō to denote O
evaluated at the homogeneous solution. The indices on
the various δS will from now on be omitted and taken to be
implicitly understood (see Appendix B). We then have

Γð0Þ ¼ −Tr log½S̄� − Tr½1 − S−10 S̄� þΦ2PI½S̄�

Γð1Þ ¼ Tr

��
−S̄−1 þ S−10 þ δΦ2PI

δS

�
δS

�

Γð2Þ ¼ 1

2
Tr½ðS̄−1δSÞ2� þ 1

2
Tr

�
δ2Φ2PI

δSδS
δSδS

�
ð16Þ

where Γð0Þ is the homogeneous effective action, Γð1Þ
vanishes at the stationary point [58], and the thermody-
namic potential

Ωð2ÞðT; μÞ ¼ −
T
V
ðΓð2ÞðT; μÞÞ ð17Þ

arising from Γð2Þ is our starting point for the stability
analysis.

A. Some remarks on the nPI case

The approach described above is not solely applicable to
2PI effective actions. A brief look at the more general case
may be enlightening. Take a 1PI effective action, which is
characterized by the Legendre transform of the connected
generating functional W in the presence of a one-point
source J,

Γ½ϕ� ¼ W½J� − ϕiJi; ð18Þ
where here we use the standard simplified notation of
two repeated indices implying sum and integration of all
discrete indices and continuum variables respectively.
As per usual, the root of

δΓ
δϕi

¼ −Ji; ð19Þ

defines the physical point, and our one-point function—
most generally, in the presence of sources—is

δW
δJi

¼ ϕi: ð20Þ

The second derivatives yield the following relations

δ2Γ
δϕiδϕj

¼ −
δJi
δϕi

;
δ2W
δJiδJj

¼ δϕi

δJj
: ð21Þ

Assuming, as per usual, invertibility of ϕ½J�, we obtain

δ2Γ
δϕiδϕj

¼ −
�

δ2W
δJjδJi

�−1
: ð22Þ

It is an elementary result in quantum field theory that n
derivatives of the generating functional W with respect to
the one-point sources J yield the connected n-point
functions (see Appendix C). Therefore, Eq. (22) shows
that the second derivative of the 1PI effective action with
respect to the 1-point function is (minus) the inverse 2-point
function [59] in the presence of sources.
Note, however, that the NJL result in Eq. (9) is based on a

1PI approach. This comes from the fact that the model is
written as a field theory of the mean-field condensates (the
ΩNJL

MF ½ϕ� defined above). The question is, can this approach
be generalized? Indeed, take a 2PI effective action, i.e., a
functional of two functions whose stationary point defines
self-consistently the one-point and two-point functions

Γ½ϕ; S� ¼ W½J; R� − ϕiJi − SijRij: ð23Þ

The same game can be played and we obtain

δ2Γ
δϕiδϕj

¼−
δJi
δϕi

;
δ2W
δJiδJj

¼δϕi

δJj
;

δ2Γ
δϕiδϕj

¼−
�

δ2W
δJjδJi

�−1
;

ð24Þ

δ2Γ
δSijδSkl

¼ −
δRij

δSkl
;

δ2W
δRijδRkl

¼ δSij
δRkl

;

δ2Γ
δSijδSkl

¼ −
�

δ2W
δRklδRij

�−1
ð25Þ

The second derivative of W with respect to the two-point
source R is the inverse four-point function. If we now
revisit Eq. (15) we see that, at the physical point, it is trivial
that Γð1Þ always vanishes and Γð2Þ is given by (minus) the
inverse 2-point function. Therefore, if we assume both the
one- and two-point functions can be inhomogeneous,
our instability condition will be, analogously to Eq. (15),
given by

Γð2Þ ¼ 1

2!
Tr

�
δ2Γ

δϕxδϕy
δϕxδϕy

�
þ 1

2!
Tr

�
δ2Γ

δSxyδSzs
δSyxδSsz

�

ð26Þ

and thus, negativity of the connected two-point function or
the connected four-point function will signal an instability.
In QCD we do not have an analogous to the one-point
function ϕ. Therefore, an instability will be signalled by
negativity of the four-point functions of the theory.
It is trivial to see how this can be generalized to any

m-loop nPI effective action and the instability condition
will always be given by negativity of the inverse 2n-point
functions. More explicitly, take an nPI effective action

Γ½ϕ; S2; S3; S4;…; Sn�;
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which at the stationary point gives, self-consistently, the
fully-dressed n-point functions of the theory. Negativity
of the second derivative of Γ with respect to any
ϕ; S2; S3; S4;…; Sn at the stationary point—or, in other
terms, negativity of any of the inverse two-particle, four-
particle, …, 2n-particle connected Green’s functions—is
the instability condition.

IV. APPLICATION TO THE NJL MODEL

As a first test, we apply the method developed in Sec. III
to the NJL model, Eq. (1). In Hartree approximation, which
was also the basis of Eqs. (9) and (10), we have the 2PI
functional

Φ2PI ¼ G
Z
x;y

δðx − yÞ
X
M

tr½VðMÞSðx; xÞ� × tr½VðMÞSðy; yÞ�

ð27Þ

with the vertices VðMÞ defined below Eq. (1) and the
integrals are taken over the Euclidean four-volume. As
before the, lower case “tr” notation means a trace over
internal degrees of freedom. From Eq. (14) we then obtain
the quark self-energy

Σðx; yÞ ¼ δΦ2PI

δSðy; xÞ
¼ 2Gδðx − yÞ

X
M

tr½VðMÞSðx; xÞ�VðMÞ

≡ ΣðxÞδðx − yÞ; ð28Þ
making explicit that the self-energy is local, i.e., depends
only on a single space-time coordinate. Of course, this is an
expected consequence of the local four-point interaction
together with the Hartree approximation, but it will become
important later on.
In homogeneous (¼ translationary invariant) matter

the propagator depends only on space-time differences,
S̄ ¼ S̄ðx − yÞ, so that the self-energy becomes constant:

Σ̄ðxÞ ¼ 2G
X
M

tr½VðMÞS̄ð0Þ�VðMÞ ¼ const: ð29Þ

In the following, we will refer to this equation as the
homogeneous gap equation.
As outlined in the previous section, we now consider

small, possibly inhomogeneous, fluctuations δSðx; yÞ of the
propagator around the homogeneous solution S̄, and
expand the effective action in powers of δS. At first order
we obtain

Γð1Þ ¼ −
Z
x;y

tr½Σ̄ðx; yÞδSðx; yÞ�

þ 2G
X
M

Z
x
tr½VðMÞS̄ð0Þ�tr½VðMÞδSðx; xÞ�; ð30Þ

where the first term on the right-hand side originates from
the two functional traces in Eq. (13) and the last term is due
to Φ2PI. Using the locality of the self-energy together with
the homogeneous gap equation, we immediately see that
Γð1Þ ¼ 0, confirming our general expectation.
At second order we have

Γð2Þ ¼ 1

2

Z
w;x;y;z

tr½S̄−1ðw; xÞδSðx; yÞS̄−1ðy; zÞδSðz; wÞ�

þ G
X
M

Z
x
ðtr½VðMÞδSðx; xÞ�Þ2; ð31Þ

where we explicitly wrote the functional trace in coordinate
space. Turning to momentum space this becomes

Γð2Þ ¼ 1

2

XZ
p;q

tr½S̄−1ðpþ qÞδSðpþ q;pÞS̄−1ðpÞδSðp;pþ qÞ�

þG
X
M

XZ
q

�XZ
p

tr½VðMÞδSðpþ q;pÞ�
�

×

�XZ
k

tr½VðMÞδSðk; kþ qÞ�
�
: ð32Þ

As discussed, a positive Γð2Þ, corresponding to a negative
contribution to the thermodynamic potential, signals an
instability of the homogeneous solution. However, if we
compare the above expression with Eq. (9), we see that in
the latter the moduli squared of the fluctuations appear as
isolated factors, so that the question about the stability of
the homogeneous state could be decided solely on the sign
of their coefficients D−1

M . In Eq. (32), on the other hand,
isolating the fluctuations from the rest is inhibited by the
different momentum arguments. As a consequence, a
modulation-shape agnostic stability analysis is not immedi-
ately possible on the basis of this equation.
However, we have not yet exploited the fact that the

quark self-energy and, hence, its fluctuations δΣ are local.
To this end it is more appropriate to expand the effective
action in powers of δΣ, corresponding to fluctuations of
the inverse propagator, rather than in fluctuations of the
propagator itself. This can be achieved by using the Dyson
series,

S−1 ¼ S̄−1 þ δΣ ⇔ S ¼ S̄ − S̄δΣS ¼ S̄ − S̄δΣS̄þ S̄δΣS̄δΣS̄ −… ¼ S̄þ δS; ð33Þ
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and inserting the resulting δS into the above expressions up
to the desired order in δΣ. Since Γð1Þ vanishes to all orders
by the gap equation, we immediately see that in a δΣ
expansion of the effective action the first-order term
vanishes as well. Moreover, the order ðδΣÞ2 contributions
can only arise from inserting the order δΣ propagator
fluctuations δSð1Þ ¼ −S̄δΣS̄ into Γð2Þ. In momentum space,

as a consequence of the locality, δΣ depends only on a
single momentum variable, and δSð1Þ is given by

δSð1Þðk1; k2Þ ¼ −S̄ðk1ÞδΣðk1 − k2ÞS̄ðk2Þ: ð34Þ

Inserting this into Eq. (32) we find

Γ̃ð2Þ ¼1

2

XZ
p;q

tr½δΣðqÞS̄ðpÞδΣð−qÞS̄ðpþqÞ�þG
X
M

XZ
q

�XZ
p

tr½VðMÞS̄ðpþqÞδΣðqÞS̄ðpÞ�
��XZ

k

tr½VðMÞS̄ðkÞδΣð−qÞS̄ðkþqÞ�
�
;

ð35Þ

where the tilde in Γ̃ð2Þ was introduced to indicate that
we have now performed an expansion in δΣ rather than
in δS.
In order to proceed we decompose the fluctuations into

scalar and pseudoscalar parts,

δΣðqÞ ¼
X
M

δΣMðqÞVðMÞ; ð36Þ

and pull the functions δΣM out of the traces. The latter
vanish for unequal vertex factors VðMÞ ≠ VðM0Þ, so we are
left with a single sum over M for both terms. Moreover,
for local fluctuations δΣM are real functions in coordinate
space. In momentum space they therefore satisfy the
relation δΣMð−qÞ ¼ δΣ�

MðqÞ and, hence, their product is
given by jδΣMðqÞj2. Combining all terms Γ̃ð2Þ can then be
written as

Γ̃ð2Þ ¼ G
X
M

XZ
q

jδΣMðqÞj2
XZ
p

tr½VðMÞS̄ðpÞVðMÞS̄ðpþ qÞ�
�

1

2G
þ
XZ
k

tr½VðMÞS̄ðkÞVðMÞS̄ðkþ qÞ�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D−1

M ðqÞ

; ð37Þ

where we identified the inverse meson propagators from
Eq. (10).
Again, since we assume the self-energy fluctuations to be

time independent, their Fourier modes are restricted to
vanishing energy, δΣðqÞ ¼ 1

T δq4;0δΣðq⃗Þ see Appendix A.
From Eq. (17) we then obtain for the second-order
contribution of the thermodynamic potential

Ω̃ð2Þ ¼ −
T
V
Γ̃ð2Þ ¼ −

G
V

X
M

Z
q⃗
jδΣMðq⃗Þj2D−1

M ðqÞlMðqÞ;

ð38Þ

with the loop integral

lMðqÞ ¼
XZ
p

tr½VðMÞS̄ðpÞVðMÞS̄ðpþ qÞ�: ð39Þ

Recall that an instability of the homogeneous ground state
against small fluctuations corresponds to a negative Ωð2Þ.
However, if we compare Eq. (38) with the literature NJL
result Eq. (9) an essential difference seems to be the

additional factor −lMðqÞ in the integrand of the former.
In order to get a deeper understanding of the role of this
factor it is instructive to consider the limit of vanishing
interactions, i.e., a free fermi gas. For this case Ω̃ð2Þ

becomes

Ω̃ð2Þ
ffg ¼ lim

G→0
Ω̃ð2Þ ¼ −

1

2V

X
M

Z
q⃗
jδΣMðq⃗Þj2lMðqÞ; ð40Þ

showing that the stability of the free fermi gas is determined
by lMðqÞ. More precisely, since we expect the free fermi
gas to be stable against inhomogeneous fluctuations,
we can conclude that lMðqÞ is always negative for
q ¼ ðq⃗; q4 ¼ 0Þ. This physical argument is backed up by
numerical calculations.
Returning to Eq. (38), the negativity of lMðqÞ means

that in the interacting case the (in)stability of the homo-
geneous ground state is entirely determined by the sign of
the inverse meson propagators. Exactly as in Eq. (9)
D−1

M ðqÞ < 0 in some momentum regime indicates an
instability, while the absence of such negative regions
means that the homogeneous ground state is stable against
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small inhomogeneous fluctuations. In this context it is
interesting to note that D−1

M ¼ 1
2G þ lM. Thus, the nega-

tivity of lM which guarantees the stability of the non-
interacting Fermi gas, at the same time opens the possibility
for an instability in the interacting system.
So, in summary, we managed to recover the standard

result, Eq. (9), within the 2PI approach. To this end,
however, it was crucial to exploit the locality of the quark
self-energy, which enabled us to isolate a factor jδΣMðq⃗Þj2
and in turn allowed for a modulation-shape agnostic
stability analysis. Without utilizing the locality this was
not possible, as can be seen from Eq. (32) where the
different momentum arguments of the propagator fluctua-
tions inhibit that they can be pulled out of the innermost
integrals and be combined to an absolute value squared. As
we will see in the next section, we will encounter the same
difficulty in QCD where the gluon-mediated interaction
leads to genuine nonlocal quark self-energies.

V. GENERAL CONSIDERATIONS FOR QCD
APPLICATIONS OF THE STABILITY ANALYSIS

The application of the method described above is far
more intricate for QCD than for the NJL-model and a brief
discussion of such difficulties is enlightening. Recall, that
our general starting point for the stability analysis is the
expression Eq. (17) for the second order expansion of the
thermodynamic potential. In the mean field NJL model
the corresponding expressions Eq. (9) and Eq. (38) both
feature the property that the inhomogeneous contribution
be factorized into a “mod-squared” term such as jδΣðqÞj2 in
Eq. (38) or jδϕMðqÞj2 in Eq. (9). This renders a stability
analysis particularly simple, since no assumptions on the
specific form of the instability have to be made.
However, in QCD, even with the drastic approximation

of bare quark-gluon vertices, due to the nonlocal interaction
term, it will not be like this. Take the following 2PI
effective potential [60]

ð41Þ

where Dab
μν is the gluon propagator. From Eq. (16) we get

Tr

�
δ2Φ2PI

δSδS
δSδS

�

¼Tr½γμtaδSðk1;k2ÞγνtbδSðk2−q;k1−qÞDab
μνðqÞ�; ð42Þ

in which case the δSðk1; k2Þ and δSðk2 − q; k1 − qÞ terms
cannot be simply factored out into a jδSj2-type multipli-
cative factor. Thus the specific form of these terms do play a
role. At some point or another in the analysis, we will have
to specify what δS is. This brings about a few complications
which need to be incorporated into the analysis, as will be
discussed in the following.
Conceptually, the analysis described above is very

simple. It can be framed in the following way. First, we
find stationary points of the effective action (denoted by the
bar notation). Then we perform the Taylor expansion
which, at the end of the day, results in calculating a second
derivative

1

2!
Tr

�
δ2Γ

δSxyδSzs
δSyxδSsz

�
: ð43Þ

If it shows positive/zero/negative curvature, it will indicate
the stationary point is a maximum/saddle/minimum. This is
a directional derivative in the infinite-dimensional func-
tional space of which the propagator is an element. The
natural analog with RN case is

first : u⃗ ·
∂fðx⃗Þ
∂x⃗

; second : u⃗ ·
∂

∂x⃗

�
u⃗ ·

∂fðx⃗Þ
∂x⃗

�
;

i.e., the derivative of f in the u⃗ direction, corresponds to

first : Tr

�
δF½ϕ�
δϕðxÞ λðxÞ

�
;

second : Tr
�

δ2F½ϕ�
δϕðxÞδϕðyÞ λðyÞλðxÞ

�
;

the derivative of F in the direction of some test-function
λðxÞ. This is sometimes denoted in the literature as
DλðxÞF½ϕðxÞ�. What we are calculating, then, is the direc-
tional derivative of the effective action in the direction of
δS ¼ S − S̄. In order to make this a well-defined process
the test-function needs to satisfy at least the following
properties:

(i) It is a function δS∶ Rn → C which must go to zero
at infinity.

(ii) It must be a “small” contribution to the propagator.
This is rather subtle, however, it is sufficient to
conceive of a sequence δSλ such that limλ→0 δSλ ¼ 0
uniformly. A “small” δS is then taken to be under-
stood as a large λ case of δSλ. If δSðkÞλ ¼ λfðkÞ,
where fðkÞ is limited, this is sufficient. Moreover,
the λ factors out of Γð2Þ and one can ignore it.

MOTTA, BERNHARDT, BUBALLA, and FISCHER PHYS. REV. D 108, 114019 (2023)

114019-8



(iii) It must follow the propagator’s adjoint relation

δSðω1; k⃗1;ω2; k⃗2Þ† ¼ γ4δSð−ω2; k⃗2;−ω1; k⃗1Þγ4;
ð44Þ

without which the pressure can turn out complex.
Taking this derivative in the direction of a test-function
which does not follow these properties will lead to incorrect
results. Most importantly, though, the imaginary part of the
test-function must be constrained. This is because Ωð2Þ½δS�
is not limited from below and every stationary point is a
saddle point with respect to the imaginary part of the
propagator. This is easily verified, since Ωð2Þ is quadratic in
the δS function. Let δS1 be a real function which follows
the properties listed above and such that Ωð2Þ½δS1� > 0.
Take δS2 ¼ iαδS1. Naturally Ωð2Þ½δS2� ¼ −α2Ωð2Þ½δS1� so,
the larger α, the smaller the free energy. Meaning that
the free energy is unlimited from below with respect to the
imaginary part of δS. We chose then to constrain
the imaginary part of the test-function by the following
condition:

Tr

�
δΩð2Þ

δðδSÞ ImðδSÞ
�
¼ 0: ð45Þ

The condition in Eq. (45) fundamentally maximizes Ωð2Þ
with respect to the imaginary part of δS and thus,
effectively protects the analysis against false instabilities
that could appear due to an inadequate δS. Here thereafter,
Eq. (45) will be understood as an integral part of the
analysis.

VI. CHIRAL PHASE TRANSITION TEST

The approach described in Sec. III and V is not only valid
for inhomogeneous phases. Whatever the nature of the
phase transition may be, it can be tested via stability
analysis as long as the energetically unfavorable phase sits
either on a maximum or a saddle point of the thermody-
namic potential. This is the case, for instance, for the
chirally symmetric phase of massless QCD at the chiral
second order phase boundary to the homogeneous broken
phase. In this section we therefore want to test the method
outlined above by applying it to study that phase transition.
In the chiral limit with vanishing explicit quark masses,

QCD has a chiral-symmetric solution for all temperatures
and densities, i.e., a massless propagator of the form

S−1ðkÞ ¼ ik⃗AðkÞ þ iðk4 þ iμÞγ4CðkÞ; ð46Þ

together with a broken, massive, solution of the form

S−1ðkÞ ¼ ik⃗AðkÞ þ BðkÞ þ iðk4 þ iμÞγ4CðkÞ; ð47Þ

where A, B, and C are so-called dressing functions which
emerge as a self-consistent solutions of the quark Dyson-
Schwinger equation. In the high temperature/chemical
potential phase, this solution is a minimum of the
thermodynamic potential, whereas in the hadronic low
temperature/chemical potential phase it is at a maximum
and therefore unstable. We can analyse the (in)stability
of such a solution by the method above, assuming the
propagator is of the form

SðkÞ ¼ −ik⃗AðkÞ þ δmðkÞ − iðk4 þ iμÞγ4CðkÞ
k⃗2AðkÞ2 þ ðk4 þ iμÞ2CðkÞ2

¼ −ik⃗AðkÞ − iðk4 þ iμÞγ4CðkÞ
k⃗2AðkÞ2 þ ðk4 þ iμÞ2CðkÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S̄ chiral

þ δmðkÞ
k⃗2AðkÞ2 þ ðk4 þ iμÞ2CðkÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δS breaks chiral symmetry

ð48Þ

that is, a chiral propagator plus a small massive term which
breaks chiral symmetry (δmðkÞ is effectively a small “B”
function). Using this form we may calculate Γð2Þ explicitly.
Note that in this case (chiral instability) we explicitly know
the form of the instability [Eq. (48)] and what is left is to
explore different forms of the mass function δmðkÞ in our
test-function.

A. Truncation

In order to be able to carry out the explicit numerical
calculations, we need to specify the truncation of QCD.
The exact DSE for the quark propagator is shown dia-
grammatically in Fig. 1.
In explicit form the DSE equation in homogeneous

matter reads:

½SðkÞ�−1 ¼ Z2½S0ðkÞ�−1

þ CFZ1Fg2
XZ
q

γμSðqÞΓνðk; q; lÞDμνðlÞ; ð49Þ

where the momentum routing is l ¼ ðk − qÞ, CF ¼ N2
C−1
2NC

is the Casimir operator with Nc ¼ 3, and all Zs are

FIG. 1. The DSE for the quark propagator. Note that two factors
of i stemming from the Euclidean quark-gluon vertices have been
included already in the overall sign of the self-energy diagram
and are not part of our definition of the self-energy Σ.
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renormalization constants. The (inverse) dressed quark
propagator has been discussed above, its bare counterpart
is given by

½S0ðkÞ�−1 ¼ iγ · kþ Zmm; ð50Þ

and contains the renormalized quark mass m from the
Lagrangian of QCD. Since we work in the chiral limit,
m ¼ 0.
For this proof of concept we use a simple rainbow-ladder

type approach where the dressed quark-gluon vertex
Γνðk; q; lÞ is replaced by its bare counterpart, i.e.,

Γνðk; q; lÞ ¼ Z1Fγν: ð51Þ

In Landau gauge, the gluon propagator is then given by

DμνðlÞ ¼ PT
μνðlÞDTðlÞ þ PL

μνðlÞDLðlÞ; ð52Þ

with momentum l ¼ ð⃗l;ωlÞ. The bosonic Matsubara
frequencies are ωl ¼ πT2nl. The projectors P

T;L
μν are trans-

verse (T) and longitudinal (L) with respect to the heat bath
vector aligned in four-direction and given by

PT
μν ¼ ð1 − δμ4Þð1 − δν4Þ

�
δμν −

pμpν

p⃗2

�
;

PL
μν ¼ Pμν − PT

μν; ð53Þ

where Pμν ¼ δμν − pμpν=p2 is the covariant transverse
projector.
In our simple truncation scheme we replace the gluon

propagator functions by the temperature and chemical
potential independent effective running coupling

DTðlÞ ¼ DLðlÞ ¼
ðZ2Þ2

g2ðZ1FÞ2
8π2

ω4
De−l

2=ω2 ≡DðlÞ ð54Þ

with parameters D ¼ 1 GeV2 and ω ¼ 0.6 GeV [61]
and specific powers of renormalization factors to pre-
serve multiplicative renormalisability of the DSE.
Essentially, the effective running coupling can be viewed
as a convolution of the nonperturbative dressing of the
gluon and the dressing for the leading γμ structure of
the quark-gluon vertex neglecting all medium effects.
As reviewed in [62], this simple class of toy-models
already displays the essential structure of the QCD phase
diagram without, however, any claims of quantitative
accuracy [63].
The order parameter for the chiral transition with

temperature and chemical potential is the chiral condensate
given by

hψ̄ψi ¼ −Z2ZmNcT
X
n

Z
d3k
ð2πÞ3 TrD½SðkÞ�; ð55Þ

where the trace is taken in Dirac space. Equivalently,
also the value of the scalar quark dressing function
Bðk⃗ ¼ 0; nk ¼ 0Þ at lowest Matsubara frequency and
vanishing three momentum may be used. The resulting
phase diagram in this model is displayed in the left
diagram of Fig. 2. One finds the second order chiral
transition for small quark chemical potential μ, a critical
end-point and a first order transition at large μ. At a fixed
temperature slice below the critical one at μ ¼ 0 we
generically find two solutions for the DSEs for small
chemical potential up to the transition line. The right hand
diagram of Fig. 2 shows our order parameter for chiral
symmetry for both solutions in the region with second
order transition.

B. Stability analysis

We now perform the calculation of Γð2Þ½δS� on fixed
temperature slices using

FIG. 2. Left diagram: phase diagram for the simple model described in the main text, systematic error of �1 MeV shown as the gray
ribbon. Right diagram: Order parameters for the two solutions at fixed temperature slice T ¼ 130 MeV. The broken, and always stable
stable, Nambu-Goldstone solution and the chiral Wigner-Weyl solution.
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δSðkÞ ¼ δmðkÞ
k⃗2AðkÞ2 þ ðk4 þ iμÞ2CðkÞ2

≐
δmðkÞ
dðkÞ ð56Þ

with denominator dðkÞ¼ k⃗2AðkÞ2þðk4þ iμÞ2CðkÞ2 for
several different test-functions for the mass which will be
discussed shortly. The final expression for Γð2Þ is very simple

Γð2Þ½δm�¼V4

XZ
k

�
−4Nc

δmðkÞ2
dðkÞ

þ12NcCFZ2
2

XZ
q

δmðkÞ
dðkÞ

δmðk−qÞ
dðk−qÞ DðqÞ

�
: ð57Þ

We calculate the thermodynamic potential contribution,
Eq. (17) and, since the relevancy is only on the sign
(negative meaning unstable, positive meaning stable), we
normalize it for better visualization:

stability criterium : sign of
Ωð2Þ

μ

jΩð2Þ
μ¼0j

¼ −
Γð2Þ
μ

jΓð2Þ
μ¼0j

: ð58Þ

What remains to be specified is the mass function δmðkÞ.
While in a general instability analysis the specific form of
the energetically favored state is not known, here in our
specific example the situation is different. From our explicit
solutions of the quark-DSE in the chirally broken phase we

FIG. 3. Stability analysis for the homogeneous chiral phase transition test. Left diagrams: thermodynamic potential at a fixed value for
temperature T ¼ 130 MeV < Tcðμ ¼ 0Þ and chemical potential μ ¼ μcðTÞ � δ ¼ 69 MeV� 1 MeV as a function of the scale parameter
L. For the upper diagram we used the Gaussian test-function for δmðkÞ and for the lower diagram the algebraic one, with N ¼ 4 (A4) and
with N ¼ 8 (A8), see main text for further explanations. Right diagrams: normalized thermodynamic potential as a function of chemical
potential on the same fixed temperature slice T < Tcðμ ¼ 0Þ. Note that, although the minimal L value changes with chemical potential, the
figures on the right-hand side (rhs) were calculated with a fixed L, namely, the minimum L close to the critical chemical potential.
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know that the resulting mass function is roughly given by a
Gaussian. This is a direct consequence of our choice of the
effective running coupling, Eq. (54). For the sake of our
proof of concept, however, we will pretend to not know the
specific shape, but test two different Ansätze for δmðkÞ.
One is the expected Gaussian, the other a polynomial. Both
Ansätze contain a free parameter, L, which correspond to an
intrinsic scale. The functions are given by [64]

(i) Gaussian δmðkÞ ¼ λ exp ð− k2
4
þk⃗2

L2 Þ
(ii) Algebraic decaying δmðkÞ ¼ λð1þ k2

4
þk⃗2

NL2 Þ
−N

This choice allows us to test, if we could infer the actual
shape and scale of the energetically favored instability from
the stability analysis alone.
Indeed, we find instabilities only for a range of values of

the scale L. A typical situation is displayed in the upper left
plot of Fig. 3, where we plot the instability condition for
the Gaussian test-functions a function of the scale L for
chemical potentials just before and just after the phase
transition, respectively at μ ¼ 68 MeV and μ ¼ 70 MeV.
Clearly, there is a region around the maximally unstable
value L ¼ 880 MeV which is negative and therefore
signals our chiral instability, but only for μ < μc. For
smaller values of chemical potential, this negative region
becomes larger, but never encompasses all possible
scales L. For any chemical potential μ > μc the stability
condition is positive for all scales L, signalling that the
chirally symmetric phase is stable in this region. Plotting
the stability condition for L ¼ 880 MeV on the upper right
diagram of Fig. 3 as a function of chemical potential we can
clearly identify the phase boundary at μ ¼ μc.
Also for the algebraic Ansätze with power N ¼ 4;…; 8

we are able to identify an (N-dependent) optimal scale L
(the minima approaches 880 MeV for larger N) from the
lower left diagram of Fig. 3 at the same chemical potentials.
Observe that the minima become lower and lower for
N → ∞. The corresponding stability condition as a func-
tion of chemical potential, displayed in the lower right
diagram of Fig. 3 shows that negative minima do occur for
all powers of N > 3 at smaller chemical potential and with
increasing power N converge to the one of the Gaussian
test-function in the diagram above. Thus, if we would not
have considered the Gaussian test-function in the first
place, this asymptotic behavior would have given us a
clue as to try a Gaussian next. Therefore even in the
absence of concrete knowledge of the shape of the stable
solution of the propagator, we are able to extract corre-
sponding information from a series of instability analyses
using different Ansätze. In the case at hand, this would lead
us to the correct Gaussian shape of δmðkÞ (recall again that
the mass function of the chirally broken solution of the
DSE is Gaussian in this truncation).
Finally, taking the Gaussian test-function, and perform-

ing the stability analysis within the full phase diagram of
Fig. 2, we obtain the result shown in Fig. 4. The red region
depicts where we find Ωð2Þ to be negative. Note that the

method is not only able to detect the second-order chiral
transition line but also the left-hand spinodal of the first-
order transition. This Wigner-Weyl spinodal line is noto-
riously difficult to accurately pinpoint numerically, since
the calculation of Ωð2ÞðΓð2ÞÞ itself can also be somewhat
numerically intricate. The two terms in Eq. (57) are equally
large in absolute value, but carry different signs [65].
Therefore, numerically, Eq. (57) corresponds to a subtrac-
tion of two big numbers resulting in something several
orders of magnitude smaller, which is numerically delicate.
Nevertheless, despite these technical difficulties, the
method does not seem to ever overestimate the unstable
region. This is extremely advantageous and increases
confidence that whatever instabilities are found, they
correspond to true instabilities and not inaccuracies of
the numerical methods implemented.

VII. CONCLUSIONS

In this work, we have proposed a novel framework for a
stability analysis based on the nPI effective action of a
given quantum field theory. We identified the well-known
NJL stability analysis as the 1PI case of this more general
framework. Within our approach, we intensively discussed
a 2PI-based stability analysis that is suitable for QCD and
beyond mean field NJL and QM models.
Although the QCD case is more complex than the one

for models, it is possible to arrive at meaningful results.
We performed a first cross-check of our approach for the
case of the homogeneous chiral phase transition, where also
explicit numerical results for both, the chirally broken and
the chirally symmetric phase are present. We showed that
our approach correctly identifies those areas of the phase
diagram, where the chiral solution is unstable toward the

FIG. 4. Instability analysis of the chiral Wigner-Weyl solution.
Red values indicate negativity (unstable), whereas purple in-
dicates positivity (stable). The colour-gradient scale corresponds
toΩð2Þ in code units. Although only the sign ofΩð2Þ is relevant for
the analysis, naturally small numbers correspond to a shallow
stability well.
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broken one. We also showed that different test functions
lead to a similar result. Concerning future searches
for instabilities of the homogeneous phase, this is a nice
result. It shows we do not lose much of the generality of the
shape-independent stability analysis. The test-function is
not an Ansatz for the shape of the preferred phase, it is
merely a tool.
One advantage of our analysis is that the truncation of the

DSEs only concerns the description of the homogeneous
phase. Therefore, the truncation only has to be good for the
homogeneous case. This is a major improvement consid-
ering that inhomogeneous DSE calculations (such as in
Müller et al. [34]) could be prohibitively hard with more
sophisticated truncations.
The analysis as it stands is in principle ready to be

applied to the search for inhomogeneous phases. One
necessary first step for such an analysis, is the determi-
nation of the appropriate test-functions. As alluded to
above, the form of Eq. (48) was already known a priori,
which is not the case for inhomogeneous phases.
Furthermore, the calculation of the 2PI effective action
part Γð2Þ (or, equivalently, the thermodynamic potential
Ωð2Þ) is far more numerically intensive in this case. In
addition, one must perform a search over μ and T to
find the phase transition lines, a task that was greatly
alleviated in our cross-check by beforehand knowledge of
the transition line. Moreover, optimization procedures of
scales (like L in our case discussed above) in the test
function have to be carried out at every analyzed point in
the (T,μ)-plane. This makes the search for inhomogeneous
phases a viable but highly cost-intensive procedure that is
relegated to future work.
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APPENDIX A: FOURIER CONVENTIONS

Consider the quark propagator Sðx; yÞ in Euclidean
space at finite temperature, which in general is a function
of two independent coordinates x; y∈V4 ¼ R3 × ½0; 1T�.
Suppressing Dirac and other discrete indices we define
the inverse propagator S−1 by

Z
z
S−1ðx; zÞSðz; yÞ ¼ δðx; yÞ; ðA1Þ

where integrals in coordinate space are always understood
to be over V4.
The correct fermionic boundary conditions are imple-

mented to these functions by relating them to their Fourier
modes Sðp; p0Þ and S−1ðp; p0Þ, respectively, as

Sð−1Þðx; x0Þ ¼
XZ
p;p0

e−iðp·x−p0·x0ÞSð−1Þðp; p0Þ ðA2Þ

with
PR

as defined in Eq. (11). The corresponding inverse
Fourier transforms are given by

Sð−1Þðp; p0Þ ¼
Z
x;x0

eiðp·x−p0·x0ÞSð−1Þðx; x0Þ; ðA3Þ

and one can easily check that the following relation holds:

XZ
k

S−1ðp; kÞSðk; p0Þ ¼
Z
z
eiðp−p0Þ·z

¼ ð2πÞ3δðp⃗ − p⃗0Þ 1
T
δn;n0 ; ðA4Þ

where n and n0 label the Matsubara frequencies corre-
sponding to p and p0, respectively.
In homogeneous matter the propagator only depends on

the difference of the coordinates, Sð−1Þðx;yÞ¼ S̄ð−1Þðx−yÞ.
We then define

S̄ð−1Þðx − yÞ ¼
XZ
p

e−ip·ðx−yÞS̄ð−1ÞðpÞ; ðA5Þ

which is consistent with Eq. (A1) for S̄−1ðpÞS̄ðpÞ ¼ 1.
In general self-energies Σ ¼ S−1 − S−10 are transformed

in the same way as the inverse propagators. For local self-
energies Σðx; yÞ≡ ΣðxÞδðx; yÞ [see Eq. (28)] we obtain

Σðp; p0Þ ¼
Z
x
eiðp−p0Þ·xΣðxÞ≡ Σðp − p0Þ ðA6Þ

with the inverse transformation

ΣðxÞ ¼
XZ
q

e−iq·xΣðqÞ: ðA7Þ

Considering space dependent but time-independent local
self-energy fluctuations δΣðxÞ≡ δΣðx⃗Þ we then get

δΣðqÞ ¼
Z
x4

eiq4x4
Z
x⃗
eiq⃗·x⃗δΣðx⃗Þ ¼ 1

T
δq4;0δΣðq⃗Þ ðA8Þ
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with

δΣðq⃗Þ ¼
Z
x⃗
eiq⃗·x⃗δΣðx⃗Þ: ðA9Þ

APPENDIX B: DERIVATIVES

Take a certain operator defined by a trace of some
(continuous and dense) matrices in configuration or
momentum space, say Γ ¼ Tr½MN�, that is

Tr½MN� ¼
Z
x;y

Mðx; yÞNðy; xÞ:

If we take a derivative, say

δΓ
δMðx; yÞ

that is

δΓ
δMðx; yÞ ¼

Z
x0;y0

δMðx0; y0Þ
δMðx; yÞ Nðy0; x0Þ

¼
Z
x0;y0

δðx − x0Þδðy − y0ÞNðy0; x0Þ ¼ Nðy; xÞ:

By that, we note that the derivative of this trace yields not
Nðx; yÞ but Nðy; xÞ. Therefore, when we write

Γ½S� ¼ −Tr log½S� − Tr½1 − S−10 S� þΦ2PI

the stationary point δΓ=δSðy; xÞ ¼ 0 is

δΓ
δSðy; xÞ ¼ −Sðx; yÞ−1 − S0ðx; yÞ−1 þ

δΦ2PI

δSðy; xÞ ¼ 0 ðB1Þ

and thus we identify the self-energy

δΦ2PI

δSðy; xÞ ¼ Σðx; yÞ

and the DSE

Sðx; yÞ−1 ¼ S0ðx; yÞ−1 − Σðx; yÞ: ðB2Þ

APPENDIX C: CONNECTED n-POINT
FUNCTIONS

Consider a theory with a classical action S½φ�. For
simplicity we consider it as a function of a single field
φ, however, the generalization is trivial. We can write its
Euclidean-space generating functional, including n source
terms for each n-point function, as simply

Z½J;Rð2Þ;Rð3Þ; � � �� ¼
Z

Dφe−ðS½φ�−Jiφi−R
ð2Þ
ij φiφj−R

ð3Þ
ijkφiφjφk−���Þ:

ðC1Þ

It is well known that the derivatives of such a functional
with respect to the sources at the physical point are the
n-point functions.

δnZ
δJi1 � � � δJin

¼ ð−1Þn 1

Z½0�
Z

Dφφi1 � � �φine
−ðS½φ�−Jiφi−R

ð2Þ
ij φiφj−R

ð3Þ
ijkφiφjφk−���Þ

����
J;R→0

: ðC2Þ

However, one can also obtain higher-order n-point
functions via differentiation with respect to the higher-
order source terms. That is, for instance, the four-point
function

δ4Z
δJi1δJi2δJi3δJi4

¼ δ2Z

δRð2Þ
i1i2

δRð2Þ
i3i4

¼−
δZ

δRð4Þ
i1i2i3i4

¼hφi1φi2φi3φi4i:

ðC3Þ

The connected generating functional is defined as

W½J; Rð2Þ; Rð3Þ;…� ¼ logZ½J; Rð2Þ; Rð3Þ;…� ðC4Þ

and differentiation of which will give rise to the connected
n-point functions in the standard way [66,67], in particular
for the 4-point function,

δ4W
δJi1δJi2δJi3δJi4

¼ δ2W

δRð2Þ
i1i2

δRð2Þ
i3i4

¼ −
δW

δRð4Þ
i1i2i3i4

¼ hφi1φi2φi3φi4iconnected: ðC5Þ

From such, we may define its Legendre transform, the
effective action

Γ½ϕ; S2; S3;…�:
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