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We investigate the order of the QCD chiral transition in the limit of vanishing bare up/down quark masses
and variations of the bare strange-quark mass 0 ≤ ms ≤ ∞. In this limit and due to universality long range
correlations with the quantum numbers of pseudoscalar and scalar mesons may dominate the physics. In
order to study the interplay between the microscopic quark and gluon degrees of freedom and the long range
correlations we extend a combination of lattice Yang–Mills theory and a (truncated) version of Dyson-
Schwinger equations by also taking backreactions of mesonic degrees of freedom into account. Both this
system and the meson backcoupling approach have been studied extensively in the past but this is the first
work in a full (2þ 1)-flavor setup. Starting from the physical point, we determine the chiral susceptibilities
for decreasing up/down quark masses and find good agreement with both lattice and functional
renormalization group results. We then proceed to determine the order of the chiral transition along the
left-hand side of the Columbia plot, for chemical potentials in the range −ð30 MeVÞ2 ≤ μ2q ≤ ð30 MeVÞ2.
We find a second-order phase transition throughout and no trace of a first-order region in the Nf ¼ 3 corner
of the Columbia plot. This result remains unchanged when an additional Goldstone boson due to a restored
axial UAð1Þ is taken into account.
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I. INTRODUCTION

It is one of the main goals of the Beam Energy Scan
program at RHIC/BNL [1] and the ongoing and future
HADES/CBM experiment at GSI/FAIR [2–4] to unravel
the possible existence and location of a critical endpoint
(CEP) in the chiral phase transition line of the QCD phase
diagram. The quest of extracting signals for such a CEP
from the experimental data is quite delicate and much
work is currently being invested to improve the rigorous-
ness of theory-experiment connections (see, e.g., [5,6] for
reviews).
On the theoretical side, there is widespread consensus on

the crossover nature of the chiral transition of QCD at zero
chemical potential. The corresponding pseudocritical tem-
perature has been localized around Tc ≈ 155 MeV [7,8]
with a couple of MeV difference between different
definitions of the chiral order parameter. Furthermore,
thermodynamic properties of the hot matter in a broad

temperature range around Tc have been determined with
great accuracy [9–13].
Different theoretical approaches to QCD agree with

each other that no CEP is found in the region of the
temperature-baryon-chemical-potential plane ðT; μBÞ with
μB=T < 2.5. This region is excluded by recent studies on
the lattice, see, e.g., Refs. [14,15] and references therein, as
well as studies using functional methods [16–21]. Beyond
this region, errors in lattice extrapolations accumulate
rapidly and no definite statements can be made. On the
other hand, functional approaches, i.e., approaches via
Dyson-Schwinger equations (DSE) and/or the functional
renormalization group (FRG), do in principle allow for a
mapping of the whole QCD phase diagram but inherently
depend on approximations and truncations necessary to
make the equations tractable.
One way to learn more on the behavior of QCD for

physical quark masses is to map out the behavior at
unphysical up-, down- and strange-quark masses and track
structures like critical lines and surfaces at zero, imaginary
and real chemical potential. The variation of these reveal
areas of different type of transitions, sketched in Fig. 1, the
“Columbia plot” [22]. Each of these transitions is related to
an underlying symmetry of QCD; chiral symmetry and
center symmetry. Their explicit breaking due to non-
vanishing (chiral) or noninfinite (center) quark masses
generates possible patterns for the order of the transition at
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finite temperature and vanishing chemical potential as a
function of the quark masses displayed in Fig. 1. In the
upper-right corner of each of the three plots, we find the
first-order deconfinement transition in the pure gauge limit
of infinite quark masses, separated by a second-order
critical line from the crossover region. The second-order
separation line in the upper right corner of the Columbia
plot is in the Z(2) universality class and its location in the
u=d-s-quark-mass plane has been mapped out by lattice
gauge theory [23–28], effective models [29,30], the
Dyson-Schwinger approach [31] and background-field
techniques [32,33]. Thus, although the precise location
of the second-order critical line may differ between the
approaches, the qualitative picture is undisputed.
This is different for the chiral upper-left and lower-left

corners of the Columbia plot, and the left-hand side of
varying strange-quark masses in the light chiral limit. This
region is governed by the chiral transition and the corre-
sponding axial symmetries UAð1Þ × SUAðNfÞ. Whereas the
latter one is broken dynamically at low temperatures (and
always explicitly by nonzero quark masses), the former one
is broken anomalously. Both the dynamical and anomalous
breaking can be restored at large temperatures, albeit the
corresponding transition temperatures may very well differ
from each other. Whether UAð1Þ remains broken at the
chiral SUAðNfÞ transition is an open question with con-
flicting indications in both directions [34–42].
The fate of the UAð1Þ symmetry is expected to affect the

order of the chiral SUAðNfÞ transition. With an anoma-
lously broken UAð1Þ at all temperatures, it has been
conjectured that the chiral transition for the two-flavor
theory (upper-left corner) is second order and in the
universality class of the O(4) theory, whereas the chiral
three-flavor theory (lower-left corner) is expected to be first
order [43], since no three-dimensional SUðNf ≤ 3Þ second-
order universality class is known [44,45]. Consequently,
these regions are connected and the left-hand side of the

Columbia plot features a tricritical strange-quark mass mtri
s

where the first-order region around the chiral three-flavor
point merges into the second-order line connected to the
chiral two-flavor point. This is the “standard” plot seen on
the left of Fig. 1. The middle diagram of Fig. 1 shows a
possible scenario with restored UAð1Þ. Then the upper-left
corner may remain first order [43] and the two first-order
corners are expected to be connected along the left-hand
side of the plot.
It is currently an open question which of these scenarios

is realized in QCD. The situation in the upper left corner
and, related, in the light-quark chiral limit of the
Nf ¼ 2þ 1-theory with strange-quark mass fixed is not
clear and indications from lattice simulations vary between
favoring either of the two left scenarios of Fig. 1 [40,46–53].
Both scenarios of Fig. 1 can be also realized in effective
low-energy QCD models such as the PQM or PNJL model,
see, e.g., [54–61] and references therein and FRG
approaches to QCD [62,63]. In Ref. [61], it has been
demonstrated that results on the Columbia plot from
mean-field approaches are substantially modified once
fluctuations have been included.
For the theory with three degenerate flavors, lattice

studies support the existence of a first-order transition for
light-quark masses on coarse lattices [64–70]. However, the
size of the first-order region depends strongly on the
formulation of the lattice action and the temporal extend
of the lattice and has not yet been determined unambigu-
ously. Thus, it has been conjectured [45] that the third
option for the Columbia plot show in the right diagram of
Fig. 1 is a realistic possibility. Indeed, recent results on the
lattice by Cuteri, Philipsen, and Sciarra clearly point in this
direction [71] and have been followed up in [72] with
similar results. In Ref. [73], it has been suggested that a
second-order Nf ¼ 3 transition may not be at odds with
previous FRG results, see [61] and references therein.

FIG. 1. Three different versions of the Columbia plot [22] of phase-transition orders at nonzero temperature and vanishing chemical
potential as functions of quark masses. The “standard plot”with anomalously broken UAð1Þ symmetry is shown on the left, in the middle
we display a possible version with restored UAð1Þ and on the right we show an alternative version without chiral first-order regions.
Here, we assume mass-degenerate up and down quarks, ml ¼ mu ¼ md.
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It is the purpose of this work to reexamine the situation in
a functional continuum framework that takes both, micro-
scopic quark and gluon degrees of freedom and effective,
long-range degrees of freedom with the quantum numbers
of pseudoscalar and scalar mesons, into account. In the
framework of Dyson-Schwinger equations (DSE) that we
employ, these appear naturally as part of fermion four-point
functions in the DSE for the quark-gluon vertex [74,75]. At
nonzero temperature and chemical potential, the corre-
sponding framework has been already explored for physical
quark masses [21,76,77] and has led to a prediction of the
location of the critical endpoint in agreement with recent
FRG studies [18–20]. Here, quarks have been taken into
account on the Nf ¼ 2þ 1 level but the meson sector
remained Nf ¼ 2 [21,76,77]. In this work, we extend the
framework to a consistent Nf ¼ 2þ 1 level and therefore
make it suitable for a study of the left-hand side of the
Columbia plot.
The paper is organized as follows. In the next Sec. II, we

detail the framework of Dyson-Schwinger equations
including the quark and gluon DSEs as well as the
above-mentioned fluctuation effects on the quark-gluon
vertex. We discuss our treatment of the corresponding
meson masses and decay constants for varying strange-
quark mass, taking particularly care of the limits ms → ∞
and ms → 0. In Sec. III, we then present our results for the
order of the phase transition along the left-hand side (i.e.,
chiral up/down quarks but varying strange-quark mass) of
the Columbia plot for zero and small real and imaginary
chemical potential. We discuss critical temperatures, the
resulting Columbia plot and the dependence of our result
on the restoration temperature of the UAð1Þ symmetry. We
conclude in Sec. IV.

II. FRAMEWORK

A. Dyson-Schwinger equations

All necessary quantities for our investigation of the
Columbia plot can be obtained directly from dressed
(i.e., full) quark propagator Sf. For a given quark flavor
f∈ fu; d; sg, its inverse at nonzero temperature T and quark
chemical potential μf is given by

S−1f ðpÞ ¼ iγ4ω̃
f
nCfðpÞ þ iγ · pAfðpÞ þ BfðpÞ: ð1Þ

Here, p ¼ ðp; ω̃nÞ represents the four-momentum, while

ω̃f
n ¼ ωn þ iμf denotes a combination of the fermionic

Matsubara frequencies ωn ¼ ð2nþ 1ÞπT, n∈Z, with the
chemical potential. All nonperturbative information such as
the non-trivial momentum dependence is carried by the
quark dressing functions Af, Bf, and Cf.

To calculate the quark propagator, we solve its associated
Dyson-Schwinger equation (DSE) which reads

S−1f ðpÞ ¼ Z2ðiγ4ω̃f
n þ iγ · pþ ZmmfÞ − ΣfðpÞ: ð2Þ

Above,mf denotes the current-quark mass while Z2 and Zm

labeling the wave function and mass renormalization
constants, respectively, which are calculated in vacuum
using a momentum-subtraction scheme.
The quark DSE is displayed pictorially in the top row of

Fig. 2. The quark self-energy Σf comprises both the gluon
propagator and the quark–gluon vertex. In our framework,
we calculate the gluon propagator explicitly by solving its
DSE albeit in a truncated form (for details see below). For
the quark–gluon vertex we rely on a well-tested vertex
model constructed to (approximately) satisfy Slavnov-
Taylor identities and preserving all perturbative and
renormalization constraints (see below) [16,17,78–80].
As the correlation length diverges in the vicinity of a

second-order phase transition, long-range correlations in
the quark–gluon vertex become important. These arise from
a specific diagram in the DSE for the quark–gluon vertex
that involves a four-quark kernel. In pole approximation,
this diagram is shown in the upper equation of Fig. 3. This
diagram provides contributions to all tensor components of
the quark-gluon vertex [74]. In the quark DSE, the resulting
two-loop diagram can be simplified to a one-loop diagram
using a homogenous Bethe-Salpeter equation (BSE), see
Refs. [21,74] for details. The effect of this specific con-
tribution to the quark-gluon interaction has been studied in
a number of works at zero temperature/chemical potential
including a discussion of the analytic structure of the quark
propagator [75], a discussion of its effect onto the meson
spectrum [81], and an exploratory study of meson-cloud
effects in baryons [82]. In all these studies, it has been
noted that meson-backcoupling effects typically provide
contributions of the order of 10–20% as compared with
other components of the quark-gluon interaction. The effect

FIG. 2. General form of the DSE for the quark propagator (top)
and truncated gluon DSE (bottom). Large grey and white dots
indicate dressed quantities; solid and curly lines represent quark
and gluon propagators, respectively. There is a separate quark
DSE for the up, down and for the strange quarks. The large
shaded dot denotes the quenched gluon propagator that is taken
from the lattice while the quark loop is evaluated explicitly. The
latter contains an implicit flavor sum over up, down and strange.
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of this contribution on the location of the CEP has been
studied in Ref. [21].
The quark-gluon vertex, split into a nonhadronic (NH)

and a mesonic (M) part and inserted into the quark-DSE
leads to the following expression for the analogous splitting
of the quark self-energy:

ΣfðpÞ ¼ ΣNH
f ðpÞ þ ΣM

f ðpÞ; ð3Þ

The nonhadronic part of the quark self-energy corresponds
to the usual quark self-energy from previous works,

ΣNH
f ðpÞ ¼ ðigÞ2 4

3

Z2

Z̃3

T
X
ωn

Z
d3q
ð2πÞ3DνρðkÞγν

× SfðqÞΓf
ρðp; q; kÞ: ð4Þ

Here, k ¼ p − q indicates the gluon momentum, g labels
the strong coupling constant, Z̃3 represents the ghost
renormalization constant and Dνρ is the dressed gluon
propagator. The prefactor of 4=3 originates in the trace over
color space which has already been carried out for Nc ¼ 3

colors.
The new element of the truncation used in this

work as compared to Ref. [21] is the inclusion of
the strange-quark contributions to the mesonic part of
the vertex. The necessary technical steps are discussed in
detail in Sec. II B below.
In Eq. (4), Γf

ρ labels the nonhadronic quark-gluon vertex
for which we employ the ansatz,

Γf
ρðp; q; kÞ ¼ ΓðxÞ

�
δρiγ

i AfðpÞ þ AfðqÞ
2

þ δρ4γ
4
CfðpÞ þ CfðqÞ

2

�
: ð5Þ

This is a combination of the leading Dirac tensor
structure of the Ball-Chiu vertex [83]—which leads to
backcoupling effects of the quarks onto the vertex—with a

phenomenological vertex dressing function,

ΓðxÞ ¼ d1
d2 þ x

þ x
Λ2 þ x

�
αβ0
4π

lnðx=Λ2 þ 1Þ
�

2δ

: ð6Þ

The first term is an IR enhancement inspired by Slavnov-
Taylor identities while the second term ensures the correct
perturbative behavior of the propagators in the UV. The
running coupling is given by α ¼ 0.3, the scales d2 ¼
0.5 GeV2 and Λ ¼ 1.4 GeV are fixed to match the ones
in the gluon lattice data. The anomalous dimension reads
δ ¼ −9Nc=ð44Nc − 8NfÞ and β0 ¼ ð11Nc − 2NfÞ=3. For
the argument, we have x ¼ k2 in the quark DSE while
x ¼ p2 þ q2 in the gluon DSE in Eq. (8) to ensure
multiplicative renormalizability. More details on the vertex
and the choice of the parameters can be found in
Refs. [16,17] and references therein.
Since the meson-backcoupling diagrams originate

in a modification of the vertex, we need to adjust the
vertex-strength parameter d1. We tune d1 such that the
pseudocritical temperature obtained from the chiral sus-
ceptibility at the physical point, i.e., the maximum ofmπ ¼
139 MeV in Fig. 6, corresponds to the one from the lattice
Tp
c ¼ 156.5 MeV. This yields d1 ¼ 8.98 GeV2 as opposed

to d1 ¼ 8.49 GeV2 without meson contributions [17].
The gluonic part of our truncation is unchanged as

compared to previous works, i.e., in the Yang-Mills sector
we do not take the meson effects explicitly into account.1

As stated earlier, the gluon propagator is calculated using a
simplified version of the full gluon DSE (illustrated in the
bottom row of Fig. 2),

D−1
νρ ðkÞ ¼ ½DYM

νρ ðkÞ�−1 þ ΠνρðkÞ: ð7Þ

Here,DYM
νρ denotes the quenched gluon propagator given by

a combination of all pure Yang-Mills for which we use

FIG. 3. Top: vertex ansatz for including long-range correlations originating the in the skeleton expansion of the quark–gluon-vertex
DSE. Bottom: resulting DSE for the quark propagator.

1The main reason is feasibility; in the quark-loop diagram of
the gluon-DSE the meson-exchange diagram remains two-loop
and is therefore too expensive in terms of CPU time. However,
these contributions are also irrelevant when it comes to critical
exponents [84].
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temperature-dependent fits to results of quenched lattice
calculations [79,85,86] as input. The quark loop Πνρ,
however, is calculated explicitly within our framework.
This leads to an unquenching of the gluon and consequently
a nontrivial backcoupling of the chiral dynamics of the
quarks onto the gluon. It is given by

ΠνρðkÞ ¼
ðigÞ2
2

X
f

Z2

Z̃3

T
X
ωn

Z
d3q
ð2πÞ3 Tr½γνSfðqÞ

× Γf
ρðp; q; kÞSfðpÞ�: ð8Þ

The prefactor of 1=2 stems from the color trace, the flavor
sum f∈ fu=d; sg runs over the investigated 2þ 1 quark
flavors. We work in the isospin-symmetric limit of degen-
erate up and down quarks (mu ¼ md, μu ¼ μd). Therefore,
wewill from now on only refer to a “light” quark l ¼ u ¼ d
for the sake of simplicity. At the physical point, the quark
masses are fixed using results for the pion and kaon masses
in vacuum obtained from the Bethe-Salpeter formalism
developed in Ref. [87]. This leads to values of ml ¼
0.8 MeV and ms ¼ 20.56 MeV at a renormalization point
of 80 GeV.

B. Meson-backcoupling self-energy

In this subsection, we discuss the mesonic part of the
quark self-energy in some detail. To this end, we begin
again with the two-loop expression in the quark DSE in the
lower equation of Fig. 3. This diagram originates from the
meson pole approximation of a fermion four-point function
in the DSE for the quark–gluon vertex [74]. The corre-
sponding meson propagator in the diagram is therefore bare
and accompanied by two Bethe-Salpeter amplitudes that
connect the quark lines with the exchanged meson in
question. In Ref. [74], it has been realized that the left half
of the two-loop diagram displayed in Fig. 3 can be
interpreted as the interaction diagram in a homogeneous
BSE and therefore can be replaced with a Bethe-Salpeter
amplitude (BSA). This way, the mesonic part of the quark
self-energy reduces to a one-loop diagram illustrated in
Fig. 4. Of course, this simplifies calculations tremendously.

In principle, this diagram contains mesons with all
quantum numbers that can be build from a quark-antiquark
pair. In practice, we are only interested in those mesons that
have the potential to become massless at phase transitions,
i.e., the pseudoscalar meson octet, its critical chiral partner
modes and the pseudoscalar singlet in case the axial UAð1Þ
is restored at the transition temperature. All these are
potentially long ranged and are expected to become the
dominant degrees of freedom at second-order phase tran-
sitions. All other meson contributions are subleading due to
their large masses in the meson propagator and are therefore
omitted in our approach.
We thus end up with the lightest pseudoscalar octet, i.e.,

pions, kaons and the η8, as well as the η0 in a crosscheck
calculation (see Sec. III). Additionally, we consider the
scalar σ meson [i.e., the f0ð500Þ] as it is vital for the correct
O(4)-scaling behavior in the upper left corner of the
Columbia plot and the ss̄-partner of the σ (which we
identify with the f0ð980Þ) that may be important in the
Nf ¼ 3 chiral limit. As detailed below, Eq. (11), we assume
the f0 to be massless in the chiral Nf ¼ 3 limit, since it has
the quantum numbers of the strange-quark condensate. In
order to obtain a consistent Nf ¼ 3 limit, we alter its flavor
factor by hand to match the one of the σ meson thus
obtaining three identical DSEs for the up, the down and the
strange quark in this limit (cf. Table I).2

Restricting to the pions and σ meson, this type of meson
backcoupling was discussed in detail, e.g., in Refs. [21,84].
Building on the explanations therein, we generalize this to
the Nf ¼ 2þ 1 case to arrive at the following mesonic
contribution to the quark self-energy:

ΣM
f ðpÞ ¼

X
X

Ff
X

X
ωq

Z
d3q
ð2πÞ3DXðPÞ

× Γ̃f
Xðl1;−PÞSfXðqÞΓ̂f

Xðl2; PÞ: ð9Þ

Here, P ¼ p − q denotes the meson’s total momentum
while li represent the relative momenta of the Bethe-
Salpeter amplitudes. Using an appropriate momentum
routing, we can identify l1 ¼ p and l2 ¼ q.
Most quantities in Eq. (9) are specific to the flavor of the

external quark f∈ fl; sg and the exchanged meson
X∈ fπ; K; η8; σ; f0; ðη0Þg. First, there are the multiplicities
Ff
X of the respective meson-backcoupling diagram

obtained by performing the trace over flavor space.
Second, we have the quark propagator of the internal
quark SfX which differs from the external one for the kaon,
i.e., SlK ¼ Ss and SsK ¼ Sl.

FIG. 4. One-loop meson-backcoupling diagram in the
quark self-energy as an approximation of the two-loop diagram
of Fig. 3.

2In a more complete framework, we would additionally
include the a0 and all other members of the scalar meson
multiplets and determine their masses, wave functions and decay
constants dynamically. In this case, adjusting flavor factors by
hand would not be necessary.
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The (inverse) meson propagator at nonzero temperature
is given by [88]

D−1
X ðPÞ ¼ P2

4 þ u2XðP2 þm2
XÞ; ð10Þ

with uX ¼ fsX=f
t
X being the meson velocity which is given

by the ratio of the spatial and temporal meson decay
constants, fsX and ftX, respectively. Again, we restrict
ourselves to potentially critical modes and consider only
the zeroth Matsubara frequency of the meson propagator,
i.e., P4 ¼ 0. All other Matsubara frequencies act as an
effective meson mass that leads to suppression of the
respective contribution. This restriction implies ωq ¼ ωp

in Eq. (9) and consequently cancels theMatsubara sum [89].
For the meson massesmX, we choose the vacuum values

mπ ¼ 156.525 MeV1=2 ·
ffiffiffiffiffiffi
mu

p
; mσ ¼ 2mπ;

mK ¼ 74.2 MeV1=2 ·
ffiffiffiffiffiffi
ms

p þ 1.54 ·ms;

mη8 ¼ mf0 ¼ 2mK: ð11Þ

that have been obtained in the following way. We have
solved the coupled system of Nf ¼ 2þ 1 DSEs without

meson-backreaction effects in the vacuum and for complex
quark momenta and then extracted the corresponding meson
masses from solving their corresponding Bethe-Salpeter
equations for different up-/down- and strange-quark masses.
The resulting mass curves for the pion and the kaon have
been fitted with the expressions above, which correspond to
the expected behavior from Gell-Mann-Oakes-Renner rela-
tions. The remaining masses are expressed in terms of these
for the sake of simplicity in such a fashion that the correct
massless modes appear in the Nf ¼ 2 and Nf ¼ 3 chiral
flavor limits.
Note that this treatment overestimates the effects of the

critical modes in the low-temperature, chirally broken phase
since the critical modes are already massless by construction
instead of becoming massless at the critical temperature. We
have checked that this simplification does not affect the
order of the transition, but it may affect the location of
the transition, i.e., the critical temperature. We discuss this
further in Sec. III, when we present our results. In principle,
one could solve the temperature-dependent Bethe-Salpeter
equations also at nonzero temperature along the lines of
Ref. [89]. There, it has been shown explicitly that the pion
and sigma modes follow the correct pattern of symmetry
breaking and restoration in the Nf ¼ 2 chiral limit. In
practice, this would add an extra layer of complications
and an order of magnitude more in computing time to an
already demanding endeavor and we there resort to the
simplifications expressed in Eq. (11).
The central unknown quantities are the meson Bethe-

Salpeter amplitudes Γ̂X. In the chiral limit, it is an exact
property of QCD [90,91] that the leading BSA of the
Goldstone boson can be expressed through the scalar
dressing function B of the quark propagator and the
Goldstone-boson decay constant via ΓXðlÞ ¼ γ5BðlÞ=fX,
with relative momentum l between the quark and the
antiquark, see [92] for a review and a detailed explanation
of this property. This behavior persists approximately also
away from the chiral limit with the caveat that the quark
dressing function then develops a logarithmic tail at large
momenta, whereas the Bethe-Salpeter amplitude always
falls like a power in momentum. We therefore adopt the
following prescription for our meson amplitudes:

Γ̂f
Xðl; PÞ ¼ γX

BfðlÞ
ff;tX

·
a

aþ l2
; a ¼ 80 GeV2; ð12Þ

where ff;tX labels the respective temporal meson decay
constant and γX ¼ γ5 for the pseudoscalar mesons and γX ¼
I for the scalar mesons. Additionally, we also apply these
relations to mesons comprising nonchiral strange quarks. To
account for the correct power-law behavior in the large
momentum limit, we supplement the quark dressing func-
tion with a Pauli-Villars-like term with a scale that matches
our renormalization point [93]. As a consequence, this also
renders the meson-backcoupling diagrams ultraviolet finite

TABLE I. Information of multiplicities, internal quark propa-
gators and decay constants for all considered meson backcou-
pling diagrams.

Nf ¼ 2þ 1:

f X Ff
X SfX ffX

l π 3=2 Sl fpsll
l σ 1=2 Sl fscll
l K 1 Ss fpsls
l η8 1=6 Sl fpsll
l (η0) 1=3 Sl fpsll
s K 2 Sl fpssl
s η8 2=3 Ss fpsss
s (η0) 1=3 Ss fpsss
s f0 1=2 Ss fscss

Nf ¼ 2:

f X Ff
X SfX ffX

l π 3=2 Sl fpsll
l σ 1=2 Sl fscll
l (η0) 1=3 Sl fpsll

Nf ¼ 3:

f X Ff
X SfX ffX

l π; K; η8 8=3 Sl fpsll
l σ 1=2 Sl fscll
l (η0) 1=3 Sl fpsll
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so that no further regularization is necessary. Note that for
mesons with mixed flavor content we always use the B
function of the quark external to the loop in which the BSA
appears. This turned out to be numerically advantageous for
a consistent Nf ¼ 3 limit.
Additionally, we introduce the closely related quantity

Γ̃X which originates in the two-loop diagram of the vertex
expansion. Apart from a nontrivial sign which is a result of
its two-loop origin, we identify it with the BSA Γ̂X,

Γ̃f
Xðl; PÞ ¼ ð−1ÞXΓ̂f

Xðl; PÞ; ð13Þ

where ð−1ÞX ¼ −1 for the pseudoscalar mesons and
ð−1ÞX ¼ þ1 for the scalar mesons.
Last, we also require the meson decay constants.

These are calculated using a generalized Pagels-Stokar
formula [94],

iP̃μðfY;txyzÞ2 ¼ 3T
X
ωq

Z
d3q
ð2πÞ3 Tr

�
Sxðqþ PÞγYγμ

× SyðqÞγYBzðqÞ ·
a

aþ q2

�
; ð14Þ

which merits some explanations. First, we use the abbre-
viation P̃μ ¼ ðωP; uXPÞ, while x and y label the flavor
indices of the quarks contributing to the meson in question.
Consequently, the temporal and spatial decay constants are
obtained in the limit Pμ → 0 from the temporal and spatial
momentum component, respectively. The index z labels the
quark flavor of the external quark of the backcoupling
diagram where the meson appears and Y ∈ fps; scg repre-
sents the parity of the meson. This relation is pictorially
displayed in Fig. 5. This notation is necessary for the
following reason; the decay constants in our diagrams do
not depend on the mesons directly but rather on the
contributing quark propagators of the backcoupling dia-
gram. Furthermore, they have to match the type of scalar
dressing function used in the BSA. For hidden-flavor
mesons this is unproblematic and Eq. (14) matches the
usual Pagels–Stokar approximations. For open-flavor mes-
ons, however, the four kaons in our approach, this has the
consequence that the decay constant appearing in the light-
quark DSE is different from the one in the strange-quark
DSE since the external quark is different. Equation (14)
accounts for this. Furthermore, we symmetrize Eq. (14) in a

mathematically well-defined manner3 with the arithmetic
mean of the exchanged quark flavors. This way, we arrive at
the following definitions:

fY;sxy fX;txy ¼ ðfY;sxyxfY;txyx þ fY;syxxfY;tyxxÞ=2; ð15Þ

ðfY;txy Þ2 ¼ ððfY;txyxÞ2 þ ðfY;tyxxÞ2Þ=2; ð16Þ

from which we can obtain the required (temporal) meson
decay constants used in our calculations,

fYxy ≔ fY;txy ¼ fY;sxy fY;txy =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfY;txy Þ2

q
: ð17Þ

Of course, this procedure is only relevant for finite,
nonzero strange-quark masses along the left-hand side of
the Columbia plot. In the chiral Nf ¼ 2 and Nf ¼ 3 limits
(lower and upper-left corners), it becomes immaterial. In
total, we summarize all necessary information for our
meson-backcoupling procedure compactly in Table I.

III. RESULTS AND DISCUSSION

In this section, we present the numerical results obtained
in our framework. Our investigation of the Columbia plot is
based on monitoring the behavior of the light-quark
condensate as the order parameter for chiral symmetry
breaking. It can be obtained from the quark propagator via
the relation

hψ̄ψif ¼ −3Zf
2Zmf

T
X
ωq

Z
d3q
ð2πÞ3 Tr½SfðqÞ�; ð18Þ

where the factor three stems from the color trace and, as
always, f∈ fl; sg. The quark condensate is quadratically
divergent for all flavors with a nonzero bare-quark mass
due to a contribution proportional tomfΛ2 whereΛ denotes
the ultraviolet (UV) momentum cutoff. As a consequence,
the divergent part of the light-quark condensate can be
canceled with the corresponding one of the strange-quark
condensate when the latter is multiplied with the light-to-
strange mass ratio. In our (2þ 1)-flavor setup, a regularized
expression for the light-quark condensate can therefore be
obtained by considering the difference

Δls ¼ hψ̄ψil −
Zl
m

Zs
m

ml

ms
hψ̄ψis; ð19Þ

FIG. 5. Pictorial representation of the generalized Pagels-
Stokar formula in Eq. (14) we use to calculate the pseudoscalar
and scalar meson decay constants.

3This is done by a shift of the integration momentum which
can be compensated in the BSA with a different momentum
routing.
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Note that we are working with renormalized quantities,
hence the appearance of the renormalization constants Zf

m

in order to preserve multiplicative renormalizability. In the
case of massless light quarks, the subtracted condensate
reduces to the unsubtracted one which is then well-defined,
i.e., UV finite.
The chiral susceptibility is then defined as the derivative

of the regularized condensate with respect to the light-quark
mass:

χmls ¼
∂

∂ml
Δls: ð20Þ

Up to normalization factors and for ml ¼ mu ¼ md, this
definition is equivalent to the ones used in Refs. [63,95].
The remainder of this section is structured as follows.

First, we study the line between the physical point and the
left-hand side of the Columbia plot by analyzing the
dependence of the chiral susceptibility on the pion (and
thus the light-quark) mass. Second, we investigate the type
of the chiral phase transition across the whole left-hand side
of the Columbia plot, i.e., for chiral light quarks and strange-
quark masses between ms ∈ ½0;∞Þ. We also quantify the
dependence of the critical temperature on the strange-quark
mass. Third, we analyze the scaling behavior of the light-
quark condensate. Last, we extend our analysis to small but
nonzero chemical potential, both real and imaginary.

A. Towards the chiral limit

We start our investigation of the Columbia plot with the
line between the physical point and the left-hand side. That
is, we keep the strange-quark mass physical ms ¼ mp

s and
decrease the light-quark mass from its physical value down
to zero. This path has been explored already by the
HotQCD Collaboration [95] with lattice QCD methods,
the fQCD Collaboration using the FRG [63] as well as with
a combined FRG-DSE approach in Ref. [96].
In the left diagram of Fig. 6, we show the chiral

susceptibility as a function of temperature for four different
pion masses compared to the lattice results of Ref. [95].
Analogously to Ref. [63], we normalize the susceptibilities
to the maximal value at a physical pion mass,

χ̄mls ¼ −max
T

jχmlsðT;mπ ¼ 140 MeVÞj: ð21Þ

Qualitatively, we find similar results as both the lattice,
the FRG and the FRG-DSE approach in Refs. [63,95,96].
That is, for decreasing pion masses, the peak of the
susceptibilities increases in height and moves towards lower
temperatures monotonically. Quantitatively, the results are
also very similar. Namely, the peak heights are comparable
with the FRG and FRG-DSE findings for all investigated
pion masses and the (pseudo)critical temperatures away
from the chiral limit do not deviate more than 2 MeV and

FIG. 6. Left: chiral susceptibility as a function of temperature for fixed, physical strange-quark mass but different up/down-quark
masses corresponding to different pion masses. The susceptibilities are normalized to the maximal value of mπ ¼ 140 MeV. The lattice
data have been taken from Ref. [95]. Right: critical temperatures for the same pion masses. Shown in a linear extrapolation of our data at
finite pion masses to zero mass compared with the result of an explicit calculation at zero pion mass.

TABLE II. Comparison of critical temperatures for different up/down-quark masses corresponding to different pion masses and fixed
physical strange-quark masses between our DSE findings, the FRG, FRG-DSE and the lattice results, respectively.

mπ [MeV] 0 55 80 110 140

Tc [MeV] DSE 146.7 149.9 151.6 154.0 156.7
FRG [63] 142 148.0 150.5 153.6 156.3

FRG–DSE [96] 141.3 146.5 149.1 152.1 155.4
HotQCD (Nτ ¼ 12) [95] � � � � � � 149.7þ0.3

−0.3 155.6þ0.6
−0.6 158.2þ0.5

−0.5
HotQCD (Nτ ¼ 8) [95] � � � 150.9þ0.4

−0.4 153.9þ0.3
−0.3 157.9þ0.3

−0.3 161.0þ0.1
−0.1
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3.5 MeV, respectively, see Table II. It is, however, interest-
ing to note that the linear extrapolation of our results
towards the chiral limit, shown in right diagram of
Fig. 6, underestimates the chiral transition temperature
calculated explicitly in the chiral light-quark limit by about
two MeV. The linear extrapolation results in 145.4 MeV,
whereas we find the value

Tcðml ¼ 0Þ ¼ 146.7 MeV; ð22Þ

which is about 5–5.5 MeV larger than the FRG and FRG-
DSE results, respectively, and more than ten MeV larger
than the extrapolated lattice value THotQCD

c ¼ 132þ3
−6 MeV.

We attribute this to our vertex construction, which contains
a strength parameter d1 which is fixed at the physical point
and not changed with quark mass. We therefore slightly
overestimate the interaction strength in the chiral limit
leading to slightly too large transition temperatures. This
will be discussed again also in the next section.

B. Left edge of the Columbia plot

Next, we turn our analysis to the left edge of the
Columbia plot. To this end, we display the temperature
dependence of the quark condensate for chiral light quarks
and a set of six selected strange-quark masses between
ms ∈ ½0;∞Þ in the left diagram of Fig. 7. One can immedi-
ately notice that for all investigated strange-quark masses
we observe a second-order phase transition. That is, the
quark condensate continuously changes from a nonzero
value to zero with increasing temperature with no (apparent)
jumps. As we will see in Sec. III C, it is indeed a genuine
second-order transition since the condensate exhibits a
scaling behavior in the vicinity of the respective critical
temperatures. We emphasize that this also holds true for the
Nf ¼ 3 corner where we consequently find no first-order
region at all. In general, the condensate is smaller for
smaller strange-quark masses at all temperatures. The only

exception occurs close to the three-flavor limit at around
ms ∼ 10−9 MeV where we do find a sudden and small
increase in the condensate for all temperatures which then
remains constant until ms → 0. In the left diagram of
Fig. 7, this increase is visible when comparing the ms ¼
10−3 MeV result with the one at ms ¼ 0 MeV. Since we
neither found a technical nor a physical reason for this glitch
we attribute it (for the moment) to a pure numerical artifact
of the three-flavor limit.
The dependence of the critical temperature on the

strange-quark mass is illustrated in the right diagram of
Fig. 7. Qualitatively, we find that Tc varies very little for
very small and very high strange-quark masses but increases
monotonously in the range ms ¼ 1 MeV–104 MeV.
In Table III, we compare our findings of the critical

temperature quantitatively to the most-recent lattice results
available for zero, physical and infinite strange-quark
masses. We observe that our values for Tc are consistently
larger than the ones found on the lattice, with the smallest
difference at the physical strange-quark mass. Our explan-
ation for this discrepancy is based on the discussion above.
We fix the interaction strength d1 for the nonhadronic part
of our quark-gluon interaction, Eq. (6), at the physical point
and do not take into account any changes of the vertex
strength with variation of the quark masses. Presumably,
this leads to the small discrepancy in transition temperature
in the light chiral limit with physical strange quarks already
discussed above and larger discrepancies in the chiral
corners of the Columbia plot. We have explicitly checked
what happens in the Nf ¼ 3 limit, when we adapt the
vertex strength. With d1 ¼ 7.13 GeV2 we reproduce the
transition temperature of Ref. [72] while the transition is
still second order. Thus, the value of d1 (at least within the
range studied here) had no material influence on the order
of the transition.
Finally, we investigated whether the fate of the UAð1Þ

symmetry has any influence on the order of the transition.

FIG. 7. Left: regularized quark condensate as a function of temperature for different strange-quark masses in the up/down quark chiral
limit. Right: dependence of the critical temperature on the strange-quark mass in the same limit. The dashed vertical line indicates the
physical strange-quark mass.
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On the complexity level of the present truncation, an
anomalously broken UAð1Þ at the critical temperature
results in a massive η0 meson, whereas a restored UAð1Þ
renders the η0 meson massless. So far, we assumed the first
case and neglected the η0 meson in the backreaction
diagrams completely together with all other mesons that
remain massive in the chiralNf ¼ 3 limit. In order to gauge
the influence of the η0 on the order of the transition in this
limit, we repeated our calculation with the massive η0 and,
even more importantly, with a massless η0 explicitly present
in the loops. As a result, we find only a very small reduction
of the transition temperature of about 0.3 MeV when
including a massive η0 with no changes in the second-
order nature of the transition. This result confirms our
notion that additional massive mesons barely have any
influence on our results and their omission, therefore, is a
good approximation. Including a massless η0 reduces the
transition temperature further by about 1.5 MeV but again
does not change the second-order nature of the phase
transition. We therefore conclude that within the framework
presented here the fate of the anomalously broken axial
UAð1Þ symmetry with temperature has no material effect on
the order of the chiral phase transition.

C. Scaling behavior

In the vicinity of a second-order phase transition the
order parameter, obeys a power law with respect to some
(universal) reduced quantity. For the regularized conden-
sate, we expect the following behavior:

ΔlsðTÞ ∼ ctβ; where t ¼ Tc − T
Tc

ð23Þ

labels the reduced temperature, β indicates the critical
exponent depending on the underlying universality class
and c denotes a nonuniversal constant. The scaling proper-
ties of the quark DSE and, related, that of the condensate
have been studied in Ref. [84] in the chiral Nf ¼ 2 limit.
Here we expect a second-order phase transition in the O(4)
universality class of the Heisenberg antiferromagnet, see,
e.g., Ref. [43]. Indeed, it has been shown in Ref. [84] that
the correct scaling is obtained if (and only if) the scaling
of the temporal meson decay constants is taken into account.

Therefore, to obtain self-consistent scaling from the quark
DSE, one would need to explicitly include the BSE for
the relevant long-range degrees of freedom, the pion and the
sigma, as well as the corresponding equations for their
decay constants in a self-consistent manner. This is beyond
the present truncation and would require extensive addi-
tional work. A shortcut, also used in Ref. [84], is to assume
the critical scaling of the decay constants and only check for
consistency in the quark DSE using an appropriate ansatz
for this scaling. Indeed, one then finds that the diagrams
with long-range massless meson degrees of freedom
dominate over the gluon ones, i.e., universality sets in
and scaling is observed. On the other hand, any setup
without scaling decay constants delivers the usual mean-
field scaling observed in rainbow-ladder-type truncations
already very early and reviewed in Ref. [98].
For completeness, we have checked both, mean field

scaling without and O(4) scaling with proper scaling decay
constants. For the former we use the Pagels-Stokar approxi-
mation for the decay constants discussed in Eq. (14), for the
latter we use the following ansatz4

f̃YllðTÞ ¼ fYllðT0Þ
�
Tc − T
Tc − T0

�
β

; ð24Þ

f̃pslsðTÞ ¼ fpslsðT0Þ
�
Tc − T
Tc − T0

�
β=2

; ð25Þ

f̃YxyðTÞ ¼ fYxyðT0Þ: ð26Þ

Here, we use the decay constants from the Pagels-Stokar
setup at some temperature T0 ¼ 100 MeV as input, while
the critical temperatures Tc are the ones from Fig. 7. The
scaling law for fYll is taken from Ref. [84], whereas the
scaling law for fpsls, valid for ms ≠ 0 is obtained from an
analogous scaling analysis as in Ref. [84] for the kaon
diagrams. All other decay constants do not exhibit any
critical scaling. In the limit of ms → 0, we just assume the
same critical scaling for fYll, f

ps
ls and fpsss . This is, however,

for simplicity only since the universality class in this limit is
not known.
In Fig. 8, we display our results. In the left diagram, we

show the (logarithm of the) regularized condensates in the
chiral light-quark limit and for the same strange-quark
masses as in Fig. 7 as functions of the (logarithm of the)
reduced temperature t. For the sake of comparability, we fit
each dataset to the relation in Eq. (23) and divide by their
respective constant c. As can be seen, all curves collapse

TABLE III. Comparison of critical temperatures for different
strange-quark masses between our DSE findings and lattice
results. Adapting our vertex strength parameter to match the
lattice critical temperature in thems ¼ 0 limit does not change the
second-order nature of the chiral phase transition.

ms 0 mp
s ∞

Tc [MeV] DSE 133.4 146.7 204.2
Lattice 98þ3

−6 [72] 132þ3
−6 [95] 174� 3� 6 [97]

4Indeed, this is precisely the behavior we also find when
calculating the decay constants using the Pagels-Stokar formula
except with a mean-field critical exponent of β ¼ 0.5.
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nicely onto each other and align along the line t0.5 for
logðtÞ ≤ −1.5. The spread of data points below logðtÞ ≤ −2
is entirely due to our numerical uncertainty of ΔTc ¼
0.1 MeV in the determination of Tc. We observe the
expected mean-field scaling behavior for all investigated
strange-quark masses.
In the right diagram of Fig. 8, we show corresponding

results under the assumption that the decay constants scale
according to Eq. (24) with the correct O(4) critical
exponents of QCD, where β ¼ 0.73=2. As expected, the
scaling behavior of the decay constants induces a consistent
corresponding scaling of the order parameter. Furthermore,
with induced scaling, the collapse of all datasets for
logðtÞ ≤ −1.5 is almost perfect and the spread for low
logðtÞ vanishes completely. This is due to the fact that the
additional appearance of Tc in the scaling ansatz stabilizes
the numerics considerably.
Of course, since β ¼ 0.73=2 is an input, this setup

reveals nothing about the universality class in the chiral
three-flavor limit. In order to study this issue from DSEs, as
discussed above, one needs to solve the corresponding
Bethe–Salpeter equations and the defining equations for the
decay constants without further approximations. This is
possible, in principle, and should be attempted in future
work. In practice, it may however be more straightforward
to perform this calculation in the framework of the func-
tional renormalization group, where scaling properties are
more directly approachable [57,61,63,99–102].

D. Three-dimensional Columbia plot

Finally, we would like to explore the fate of the second-
order phase transition along the left-hand side of the
Columbia plot when we switch on chemical potential.
Is there a second-order critical sheet? And if yes, does
it bend at some point towards nonzero quark masses and is

it connected to the CEP that we find at physical quark
masses [17,21,78]?
Unfortunately, these questions are difficult to study. Our

current approximation for the meson Bethe-Salpeter
amplitudes, Eq. (12), is known to be accurate at vanishing
chemical potential. From the explicit calculation in
Ref. [76,77], however, it is known that the amplitudes
are modified substantially at large chemical potential. We
can therefore only trust the approximation Eq. (12) at
small chemical potentials.
We therefore restrict ourselves to real and imaginary

baryon chemical potentials of jμBj ¼ 30 MeV. The corre-
sponding results are shown in Fig. 9 together with results
for μB ¼ 0 as a comparison. The calculations have been
performed for ms ¼ 0; mp

s ;∞. In the top panel, we display
the condensate as a function of temperature in the Nf ¼ 3

chiral limit, i.e., ml ¼ ms ¼ 0. We find no significant
changes within this range of chemical potential. Similar
results are obtained for all investigated strange-quark
masses inms ¼ 0; mp

s ;∞. In total, we find little quantitative
and no qualitative difference between the results for
vanishing and small chemical potentials. That is, one
can still observe a second-order phase transition with
identical scaling behavior and an almost unchanged critical
temperature. We therefore arrive at the slice of the three-
dimensional Columbia plot shown in the bottom panel of
Fig. 9. For zero chemical potential, this ties in with the
lattice results of Ref. [71,72] and for imaginary chemical
potential with Ref. [103]. It also agrees with one of the
scenarios displayed in the FRG approach in Ref. [61] (their
right diagram of Fig. 3), but disagrees with the other
scenarios they give. This needs to be reexamined in some
detail. In any case, the analyticity of the second-order
transition plane from small imaginary to small real chemi-
cal potential visible in Fig. 9 is, to our knowledge, shown
for the first time.

FIG. 8. Left: scaling behavior of the regularized quark condensate as a function of the reduced temperature for different strange-quark
masses in the up quark chiral limit without scaling decay constants. Right: same scaling behavior with scaling decay constants (see main
text for discussion).
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Last, we perform a first exploration of the “bottom” line
of the Columbia plot, i.e., the zero chemical-potential line
with a massless strange quark and up/down-quark masses in
the range ml ¼ 0;…; mp

l ;…;∞. Then, the strange-quark
condensate becomes the corresponding order parameter for
the chiral transition at finite temperature, so we include one
massless Goldstone boson due to the dynamical breaking
of a UAð1Þ subgroup of the flavor SUAð3Þ and we expect the
isoscalar scalar f0 with ss̄- content to be the only additional
massless mode at the critical temperature. Furthermore, we
assume a restored anomaly at the critical temperature. The
corresponding meson masses, flavor coefficients and decay
constants are detailed in the Appendix. For this setup, we
indeed find again a second-order phase transition, also
indicated in our three-dimensional Columbia plot in the
bottom panel of Fig. 9. This second-order transition persists
to large but not infinite up/down-quark masses. At some
large up/down-quark mass,ml > 100 GeV, our calculation
breaks down indicating that we are approaching the one-
flavor limit of QCD with different symmetries. The detailed
study of this limit is nontrivial and deferred to future work.

IV. SUMMARY AND CONCLUSIONS

In this work, we studied the order of the phase transition
in the light chiral limit of massless up/down quarks as a

function of the mass of the strange quark and at zero and
small values for the baryon chemical potential. Using a
truncation of Dyson-Schwinger equations that takes into
account microscopic degrees of freedom as well as
potential long-range correlations with the quantum num-
bers of pseudoscalar and scalar mesons, we obtain a chiral
crossover as long as the light-quark masses remain non-
zero, but a second-order phase transition in the light chiral
limit. This behavior persists along the left-hand side of the
Columbia plot, i.e., for all strange-quark masses in
0 ≤ ms ≤ ∞ and also for (small) imaginary and real
chemical potential. It persists regardless whether we
include a massive η0 meson [in case the axial UAð1Þ
remains anomalously broken at Tc] or a massless η0 meson
[in case the axial UAð1Þ is restored at Tc]. Our findings do
not support the long-standing notion of a chiral first-order
Nf ¼ 3 corner in the Columbia plot [43], but agree with
recent findings from lattice QCD [71,72] and notions from
effective models [73].
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APPENDIX: MESON MASSES AND FLAVOR
COEFICIENTS OF THE Nf = 1 + 2 CASE

For the Nf ¼ 1þ 2 setup of Sec. III D with a chiral
strange quark and a varying up/down-quark mass, we
work with two assumptions. First, we assume that the
axial anomaly is restored at the chiral transition temper-
ature such that no anomalous mass contributions arise.
Second, under this assumption, it is natural to assume that
mixing between the isoscalar, pseudoscalar octet and
singlet states results in a pure ss̄ massless Goldstone
boson and a massive meson with up/down-quark content,

FIG. 9. Regularized quark condensate for (small) chemical
potentials in the up- and strange-quark chiral limits. Top: regu-
larized quark condensate as a function of temperature. Bottom:
illustration of the three-dimensional Columbia plot we find.
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i.e., ðη8; η0Þ → ðηl; ηsÞ. The resulting multiplicities are
displayed in Table IV (analogously to Table I). The limit
Nf ¼ 1þ 2 → 3 is consistent with the corresponding limit
Nf ¼ 2þ 1 → 3 in Table IV under inclusion of the η0. In
the scalar meson sector, a massless isoscalar ss̄ (which we
call f0) at the chiral transition temperature reflects the fact
that the strange-quark condensate is the appropriate order
parameter. The kaons are massive away from the Nf ¼ 3

limit, similar to the Nf ¼ 2þ 1 case, but this time due to
the nonchiral up/down quarks. In total, we reuse the
parametrizations of Eq. (11) but adjust the quark masses
in the kaon argument and set the f0 and ηs masses to zero:

mπ ¼ 156.525 MeV1=2 ·
ffiffiffiffiffiffi
ml

p
; mσ ¼ 2mπ;

mK ¼ 74.2 MeV1=2 ·
ffiffiffiffiffiffi
ml

p þ 1.54 ·ml;

mηl ¼ 2mK; mηs ¼ mf0 ¼ 0: ðA1Þ
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