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We investigate the tetraquark bound states that are manifestly exotic using three distinct few-body
methods; Gaussian expansion method (GEM), resonating group method (RGM), and diffusionMonte Carlo
(DMC). We refer to manifestly exotic states that do not involve a mixture with the conventional mesons
through the creation and annihilation of nn̄, where n ¼ u, d. Our calculations are conducted with two types
of quark models; the pure constituent quark model featuring one-gluon-exchange interactions and
confinement interactions, and the chiral constituent quark model, supplemented by extra one-boson-
exchange interactions. This study represents a comprehensive benchmark test of various few-body methods
and quark models. Our findings reveal the superiority of GEM over RGM and DMC methods based on
present implements for the tetraquark bound states. Additionally, we observe a tendency for the chiral
quark model to overestimate the binding energies. We systematically explore the fully, triply, doubly,
and singly heavy tetraquark states with JP ¼ 0þ; 1þ; 2þ, encompassing over 150 states in total. We
successfully identify several bound states, including ½ccn̄n̄�I¼0

JP¼1þ , ½bbn̄n̄�I¼0
JP¼1þ , ½bcn̄n̄�I¼0

JP¼0þ;1þ;2þ ,

½bsn̄n̄�I¼0
JP¼0þ;1þ , ½csn̄n̄�I¼0

JP¼0þ , and ½bbn̄s̄�JP¼1þ , all found to be bound states below the dimeson thresholds.

DOI: 10.1103/PhysRevD.108.114016

I. INTRODUCTION

Since the discovery of Xð3872Þ [1], many heavy-quar-
koniumlike states have been observed in experiments.
These states are challenging to be accommodated within
the quark-antiquark meson spectrum predicted by quark
models, as exemplified in [2,3]. They are considered as
candidates of the tetraquark states (for recent reviews, see
Refs. [4–10]). However, apart from states with the exotic
quantum numbers [11–13], most of the heavy-quarkonium-
like states may be a mixture of the tetraquark states and
quark-antiquark states, influenced by the unquenched
dynamics such as the creation and annihilation of the light
qq̄ pairs (q ¼ u; d; s) [14–16].
In the past three years, a series of exotic hadron states

composed of at least four (anti)quarks have been observed.
The LHCb collaboration first discovered the Xð6900Þ with

a quark composition of ccc̄c̄ [17]. Subsequently, the CMS
[18] and ATLAS [19] collaborations confirmed the exist-
ence of the Xð6900Þ state and reported additional candi-
dates for the fully charmed tetraquark states. In 2020, the
BESIII Collaboration reported the Zcsð3985Þ state with the
minimal quark content cc̄s̄u in the recoil-mass spectra of
Kþ in the process eþe− → KþðD−

s D�0 þD�−
s D0Þ [20].

Later, the LHCb also reported the state Zcsð4000Þ with the
same quark contents but with a slightly higher mass and
larger width. The LHCb Collaboration also reported spin-0
and spin-1 states in the invariant mass spectrum ofD−Kþ in
the decays Bþ → DþD−Kþ [21,22]. These states were
named as Tcs0ð2900Þ0 and Tcs1ð2900Þ0 according to the
new naming convention [23]. The two states are candidates
of the csūd̄ tetraquarks. In addition, two charmed-strange
tetraquark states, Tcs̄0ð2900Þþþ and Tcs̄0ð2900Þ0, with the
minimal quark compositions of cs̄ud̄ and cs̄ūd, were
observed by LHCb [24,25]. The former is the first doubly
charged tetraquark state observed in experiments, and
the latter is likely its neutral partner. Furthermore, the
doubly heavy tetraquark states, anticipated for about forty
years [26–29], were also discovered. The Tccð3875Þþ
state, composed of ccūd̄, was observed by the LHCb
Collaboration [30,31]. All the aforementioned states con-
sist of four (anti)quarks if we neglect the unquenched effect
of the heavy quark-antiquark pairs. Undoubtedly, we are
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rapidly entering the era of the “genuine” multiquark states.
These multiquark states have ignited heated theoretical
discussions [32–47].
Historically, various quark models have made various

predictions regarding tetraquark states. In this study, we
focus exclusively on the nonrelativistic quark potential
models. We do not consider quark models that parametrize
the matrix elements without considering the spatial wave
function [48–52], or incorporate relativistic effects [53–55]
in our analysis. In Fig. 1, we present the case of the ccn̄n̄
state (n ¼ u; d) with IðJPÞ ¼ 0ð1þÞ as an example to
illustrate the predictions of various quark models. It is
evident that these results exhibit significant divergence.
Some calculations anticipate deeply bound states located
below the DD� threshold with binding energies up to
300 MeV, while others suggest loosely bound states.
Additionally, some calculations place the state above the
DD� threshold, rendering it unstable. These significant
variations can be attributed to differences in the potential
models and the methodologies to solve the few-body
problems.
In this study, we conduct benchmark calculations aimed

at assessing the performance of various few-body methods
to analyze the tetraquark bound states. Similar benchmark
tests have previously been carried out for the four-nucleon
systems [67], in which seven different few-body methods
were cross-referenced to compute the four-nucleon systems
employing the same nucleon-nucleon (NN) interactions.
For the tetraquark states, we will employ three distinct few-
body methods, namely the Gaussian expansion method
(GEM) [68], the resonating group method (RGM) [69], and
the diffusion Monte Carlo method (DMC) [70–73]. We
check their consistency by comparing their results for the
tetraquark bound states using the same quark potential
models.
Another objective of this study is to explore the

distinctions between different quark potential models for
the tetraquark states. Unlike the nucleon systems where the

NN scattering phase shifts constrain the interaction to
several high-precision nucleon forces see Refs. [74–76],
the interactions among quarks exhibit greater variability.
Basically, there are two types of constituent quark models:
those featuring one-gluon-exchange (OGE) interaction
combined with the confinement interaction, and those
encompassing both of these interactions alongside an
additional one-boson-exchange (OBE) interaction. The
latter category is referred to as the chiral constituent quark
models (χCQM), owing to the inclusion of the pseudoscalar
meson exchange interactions arising from the spontaneous
breaking of chiral symmetry. In this work, we designate the
former quark models without OBE as the pure constituent
quark models (PCQM). The debate over which type of
quark models is superior has persisted for many years, yet
without definitive conclusions. For instance, it has been
argued that the two types of quark models yield qualita-
tively consistent baryon-baryon scattering results [77]. In
this study, we select the AL1 and AP1 models [57,78] as
the representative examples of PCQM, while we employ
a quark model proposed by the group at Salamanca
University [79,80] as an example of a chiral quark model.
After testing the reliability of the quark potential models

and few-body methods, we proceed to predict the tetra-
quark states located below the strong decay threshold. We
focus on the tetraquark states that have no admixture with
the conventional mesons due to the creation and annihi-
lation of the nn̄ pairs, where n ¼ u; d. It is important to note
that we loosen the constraint and assume the unquenched
effect of the ss̄ pairs is suppressed. In our investigation, we
examine systems of QQQ̄Q̄, QQQ̄q̄, QQq̄q̄, and Qqq̄q̄
with JP ¼ 0þ; 1þ, and 2þ, encompassing a total of over
150 systems. Here, Q ¼ c; b and q ¼ u; d; s.
The paper is organized as follows. In Sec. II, we present

an introduction to three different quark models and three
distinct few-body methods. In Sec. III, we provide a
detailed exploration of the possible bound solutions,
including the fully, triply, doubly, and singly tetraquark
states. In this section, we offer a comprehensive compari-
son of the results obtained from different models and
different few-body methods, alongside a direct comparison
with the lattice QCD results. In Sec. IV, we summarize our
findings and assessment of various quark models and few-
body methods. We also list the final candidates of the
tetraquark bound states against strong decays.

II. FORMALISM

A. Constituent quark models

In this work, we only focus on the nonrelativistic quark
models with the Hamiltonian,

H ¼
X4
i

�
mi þ

p2i
2mi

�
− TCM þ

X
i<j

VijðrijÞ; ð1Þ
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FIG. 1. Theoretical predictions for the masses relative to the
DD� threshold of the ccn̄n̄ tetraquark state with IðJPÞ ¼ 0ð1þÞ
[28,54,56–66], where theoretical uncertainties have been ne-
glected. The red pentagram and blue cross correspond to the
experimental result and theoretical predictions, respectively.
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where the kinetic energy of the center of mass TCM is
subtracted. We only consider the pairwise interaction. One
can find the effect of other kinds of interactions in
Refs. [72,81].
A minimal quark model consists of the OGE interaction

and confinement interaction. In this work, we choose the
quark models proposed in Refs. [57,78],

VALl=APl
ij ¼ −

3

16
λci · λ

c
j

�
−

κ

rij
þ λrpij − Λ

þ 2πκ0

3mimj

expð−r2ij=r20Þ
π3=2r30

σi · σj

�
; ð2Þ

where the power coefficient is 1 for AL1 model and 2=3 for
AP1 model. The λci is the Gell-Mann matrix for the SU(3)
color symmetry, and σi is the Pauli matrix in the spin space.
mi is the quark mass. κ, κ0 and λ are the coupling constants
for the Coulomb interaction, Gaussian hyperfine interaction
and confinement interaction, respectively. r0 and Λ are the
typical scale of the hyperfine interaction and overall shift
parameter, respectively. All the above parameters were
determined by the meson and baryon spectra. One can find
their specific values in Ref. [57]. For the minimal quark
model, one can find different choices of parameter sets
in Ref. [82].
For the χCQM, we choose the quark model proposed by

the group of University of Salamanca (SLM for short) as an
example. The idea of this model can be traced back to the
Ref. [69] to depict the NN system. The specific form was
set up in Ref. [79] and the parameters were redetermined in
Ref. [80] by fitting the meson spectrum. The interactions
read,

VSLM
ij ¼ λci · λ

c
j

�
αs
4

�
1

rij
−

1

6mimj

e−rij=r0

r20rij
σi · σj

�

þ ð−acð1 − e−μcrijÞ þ ΔÞ
�
þ VOBE

ij ; ð3Þ

where the λci is the Gell-Mann matrix for the SU(3) color
symmetry and σi is the Pauli matrix in the spin space. mi is
the quark mass. αs and ac are the coupling constants for
the OGE interaction and confinement interaction, respec-
tively. Here, the Yukawa-type hyperfine interaction is
chosen with a typical scale r0. Δ is the overall shift
parameter. For the confinement potential, the color screen-
ing effect is included, which becomes a linear interaction at
the short distance and a constant at the long distance. In
addition to the OGE and confinement interaction, the
pseudoscalar meson exchange is included considering
the spontaneous breaking of the chiral symmetry [83].
Meanwhile, the meson-exchange interaction is extended to
the scalar-meson-exchange interaction to mimic the two-
pion-exchange interaction. All the above OBE interactions
read,

VOBE
ij ¼ Vπ

ij

X3
a¼1

ðλai · λaj Þ þ VK
ij

X7
a¼4

ðλai · λaj Þ

þ Vη
ij½cos θPðλ8i · λ8jÞ − sin θP� þ Vσ

ij; ð4Þ

with

Vχ
ij ¼

g2ch
4π

m2
χ

12mimj

Λ2
χ

Λ2
χ −m2

χ
mχðσi · σjÞ

×
�
YðmχrijÞ −

Λ3
χ

m3
χ
YðΛχrijÞ

�
; χ ¼ π; K; η

Vσ
ij ¼ −

g2ch
4π

Λ2
σ

Λ2
σ −m2

σ
mσ

�
YðmσrijÞ −

Λσ

mσ
YðΛσrijÞ

�
; ð5Þ

where λa is the Gell-Mann matrix in the SU(3) flavor
symmetry. YðxÞ ¼ e−x=x is the Yukawa function. The
coupling constant gch is determined by the experimental
NNπ vertex [69]. θP is the mixing angle to introduce the
physical η rather than the one in the octet of the SU(3)
symmetry limit. mχ are the experimental masses for the π,
K and η mesons. The mσ is determined via the PCAC
relation m2

σ ∼m2
π þ 4m2

u;d. The cutoff Λχ and Λσ are
determined by fitting the meson spectrum. In this work,
we use the parameter values in Ref. [80]. It is worthwhile to
mention that the vector-meson-exchange interactions are
also incorporated in some chiral quark models [84,85].
With the three different quark models, we present the

theoretical ground meson spectra in Table I. One can see
their numerical results agree with the experimental results
well. For simplicity, we assume there is no mixing effect
between ηðnn̄Þwith I ¼ 0 and ηðss̄Þ, which are irrelevant to
our tetraquark bound-state predictions.

B. Gaussian expansion method

The first few-body method used to solve the tetraquark
systems is the Gaussian expansion method [68]. Namely,
we expand the spatial wave function of r using the
following basis:

ϕnlmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ5=2

Γðlþ 3
2
Þr3n

s �
r
rn

�
l
e
−r2

r2nYlmðr̂Þ; ð6Þ

where the rn is taken in geometric progression,
rn ¼ r0an−1. Ylm is the spherical harmonics representing
the angular momentum. The basis functions are not
orthogonal but could be approximately complete if a large
range of rn were taken. It has been proved that the choice of
the basis can embed both long-range and short-range
correlations simultaneously [68].
For a four-body system omitting the motion of the center

of mass, there are three independent coordinates. As
depicted in Fig. 2, various sets of Jacobi coordinates can
be chosen. In principle, different choices of the set of Jacobi
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coordinate will give the same results if the basis functions
are complete. One can choose either set of Jacobi coor-
dinates and construct the basis with the total angular
momentum J by combining the spatial angular momenta
regarding three coordinates and the spin wave functions. To
make the basis function complete, the orbital excited basis
functions should be incorporated. However, it takes great
pains to handle the angular momentum in GEM, although
the strategy has been invented [68]. Alternatively, we only
use the l ¼ 0 spatial wave functions in Eq. (6) but include
different Jacobi coordinates to consider the different spatial
correlations. In our calculation, we include three different
sets of Jacobi coordinates as shown in Fig. 2. For each
coordinate, we choose six basis functions with rn in
geometric progression. In order to make the basis functions
more efficient, we choose different r0 and rmax,

8>>><
>>>:

r0 ¼ 0.1 fm; rmax ¼ 2 fm q − q or q̄ − q̄

r0 ¼ 0.1 fm; rmax ¼ 2 fm ðqqÞ − ðq̄q̄Þ
r0 ¼ 0.1 fm; rmax ¼ 1 fm q − q̄

r0 ¼ 0.1 fm; rmax ¼ 5 fm ðqq̄Þ − ðqq̄Þ

; ð7Þ

where we take a large rmax for the spatial wave functions
between two qq̄ clustering to depict the possible molecular
solutions. In general, there are four extra K-type coordi-
nates as mentioned in Refs. [33,68]. We have verified that
the current selection without them already yields very
precise results.

In addition to the spatial wave functions, we also have
different options to construct the discrete wave function.
For the color wave functions, one could use either of the
following color wave functions:

color-I∶
� ½ðq1q2Þ3̄ðq̄3q̄4Þ3�1
½ðq1q2Þ6ðq̄3q̄4Þ6̄�1

; ð8Þ

color-II∶
� ½ðq1q̄3Þ1ðq2q̄4Þ1�1
½ðq1q̄4Þ1ðq2q̄3Þ1�1

; ð9Þ

color-III∶
� ½ðq1q̄3Þ1ðq2q̄4Þ1�1
½ðq1q̄3Þ8ðq2q̄4Þ8�1

: ð10Þ

The color-I is the diquark-antidiquark basis in the color
space. Color-II represents the dimeson basis, where two
basis are not orthogonal but complete. The color-III is
orthogonal and complete. For the spin-wave functions, one
can choose one of the following basis functions,

spin-I∶
S12 ¼ 0; 1; S34 ¼ 0; 1

S12 ⊗ S34 → J
; ð11Þ

spin-II∶
S13 ¼ 0; 1; S24 ¼ 0; 1

S13 ⊗ S24 → J
; ð12Þ

spin-III∶
S14 ¼ 0; 1; S23 ¼ 0; 1

S14 ⊗ S23 → J
; ð13Þ

where the S-wave orbital angular momentum is assumed.
The spin-I is the diquark-antidiquark basis and spin-II and
spin-III are two dimeson basis. Each of them is complete. In
addition to above coupling modes in color and spin, one
can also construct the discrete basis in a sequence of
combining three (anti)quarks first and then with the forth
(anti)quark. Similarly, one can find possible options of the
complete flavor wave functions.

Diquark-antidiquark Di-meson Di-meson

FIG. 2. Jacobi coordinates used in the GEM of this work.

TABLE I. Mass spectra of the ground-state mesons from three different quark models (in units of MeV). The “Exp.” represents the
experimental results [86] as a comparison.

JP ¼ 0− π ηðnn̄Þa ηðss̄Þ K D Ds B Bs Bc ηc ηb

Exp. 139.57 547.86 957.78 493.68 1869.7 1968.4 5279.3 5366.9 6274.5 2983.9 9398.7
AL1 138.16 138.16 713.00 490.92 1862.4 1962.5 5293.5 5361.0 6291.6 3005.3 9423.7
AP1 138.95 138.95 700.9 498.22 1881.3 1954.8 5311.2 5355.6 6268.6 2982.4 9401.2
SLM 139.76 686.96 813.77 468.62 1896.1 1983.3 5274.8 5347.5 6274.5 2989.5 9451.2

JP ¼ 1− ρ ω ϕ K� D� D�
s B� B�

s B�
c J=ψ ϒ

Exp. 775.26 782.66 1019.5 891.67 2010.3 2112.2 5324.7 5415.4 6328.9 3096.9 9460.3
AL1 767.00 767.00 1020.8 903.55 2016.1 2102.0 5350.5 5417.5 6343.2 3101.3 9461.5
AP1 770.12 770.12 1021.4 907.56 2033.1 2106.9 5367.3 5418.0 6337.8 3102.5 9460.6
SLM 773.03 692.7 1000.3 901.90 2017.7 2110.8 5316.8 5393.3 6328.9 3096.8 9502.0

aFor simplicity, we assume there is no mixing effects between ηðnn̄Þ with I ¼ 0 and ηðss̄Þ, which are irrelevant to our tetraquark
bound-state predictions.
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In our calculations, the wave functions of tetraquark
states are expressed as the direct product of flavor wave
function χf, color-spin wave function ψcs, and spatial wave
function ψ ,

Ψ ¼ Aðχf ⊗ ψcs ⊗ ψÞ; ð14Þ

Here, A denotes the antisymmetrization operator, repre-
senting the exchange of identical quarks. For instance, in
the case of bbn̄n̄ states, the antisymmetrization operator is
defined as A12;34 ¼ ð1 − P12Þð1 − P34Þ, whereas for bcn̄n̄
states, it becomesA34 ¼ ð1 − P34Þ, where Pij permutes the
ith and jth (anti)quarks. Our approach involves construct-
ing basis wave functions with fixed quantum numbers,
followed by the application of the antisymmetrization
operator. It is important to note that antisymmetrization
introduces additional constraints, potentially reducing the
basis space. In other words, independent basis functions
may become linearly dependent after antisymmetrization.
To address this, we employ the algorithm outlined in the
Appendix to automatically eliminate redundant bases in our
calculations.
In our calculation, we test five different choices of wave

functions numerically,

ΨA ¼ Aðχf ⊗ χAllcs ⊗ ψAllÞ;
ΨB ¼ Aðχf ⊗ χdimeson

cs ⊗ ψAllÞ;
ΨC ¼ Aðχf ⊗ χdiquarkcs ⊗ ψAllÞ;
ΨD ¼ Aðχf ⊗ χAllcs ⊗ ψdimesonÞ;
ΨE ¼ Aðχf ⊗ χAllcs ⊗ ψdiquarkÞ; ð15Þ

with

χdiquarkcs ≡ χIc ⊗ χIs;

χdimeson
cs ≡ ðχII;1c ⊗ χIIs Þ ⊕ ðχII;2c ⊗ χIIIs Þ;
ψAll ≡ ψdiquark ⊕ ψdimeson;

χAllcs ≡ χdiquarkcs ⊕ χdimeson
cs ; ð16Þ

where χf, χs, χc, and ψ represent flavor, spin, color, and
spatial functions, respectively. Their superscript shows the
specific choice of the wave functions in Eqs. (8)–(13) and
Fig. 2. The χII;1c and χII;2c are the first and second color basis
in Eq. (9), respectively. Among them, ΨA is the most
general basis. ΨB and ΨC are basis wave functions with
general spatial wave function but dimeson and diquark-
antidiquark discrete wave functions, respectively. The
discrete wave functions of ΨD and ΨE are general but
with dimeson and diquark-antidiquark spatial wave func-
tions, respectively.
We use ½ccn̄n̄�I¼0

JP¼1þ , ½bbn̄n̄�I¼0
JP¼1þ and ½bcn̄n̄�I¼0

JP¼2þ as
three examples to test different choices of the basis wave
functions. The results are presented in Table II. It should be
noticed that the basis wave functions which yield a lower
ground state are more precise according to the variational
principle. Our numerical results show that using different
discrete basis functions makes little difference once they
are complete. Meanwhile, including both the dimeson and
diquark-antidiquark spatial functions is very important.
Otherwise, one can obtain biased results. For example,
neglecting the dimeson spatial wave functions makes the
bounded ½bcn̄n̄�I¼0

JP¼2þ states unbound in the result of ΨE.
The absence of the diquark-antidiquark spatial wave
functions in ΨD makes the deeply bound ½ccn̄n̄�I¼0

JP¼1þ state
in SLMmodel a loosely bound state. In our final results, we
choose the most general ΨA as our basis functions of GEM.

C. Resonating group method

In this work, we choose the formalism of RGM in
momentum space [69]. In the RGM formalism, the wave
functions of the tetraquark states are formulated as

ΨðP; p1; p2Þ ¼ A½ψM1ðp1ÞψM2ðp2Þψ12ðPÞχM1M2
csf �; ð17Þ

where ψM1 and ψM2 are spatial wave functions of two
mesons, with the p1 and p2 the relative momentum of the
quark and antiquark inside two mesons, respectively.
Accordingly, the discrete wave functions χM1M2

csf are also
the dimeson-type ones. In our calculation, we obtain the
mesonwave functions from the GEM. The ψ12 is the relative

TABLE II. Comparisons of the GEM results in different basis functions in Eqs. (15). The energies are with respect to the lowest
relevant thresholds (in units of MeV). “NB” represents that there is no bound solution. “↪ Excited” labels the excited bound-state
solutions. The Thresho. represents the corresponding lowest threshold.

Systems Thresh.

AL1-GEM AP1-GEM SLM-GEM

A B C D E A B C D E A B C D E

½ccn̄n̄�I¼0
JP¼1þ

DD� −14.0 −13.6 −14.0 NB NB −22.2 −21.7 −22.2 −0.94 NB −189.6 −188.9 −189.6 −5.9 −139.1
½bbn̄n̄�I¼0

JP¼1þ B̄B̄� −151.6 −151.2 −151.6 −78.5 −129.5 −174.8 −174.5 −174.8 −102.8 −154.7 −359.6 −359.4 −359.6 −103.1 −336.5
↪ Excited −0.70 −0.46 −0.70 −3.3 −3.0 −3.3 −66.0 −65.5 −66.0
½bcn̄n̄�I¼0

JP¼2þ D�B̄� −2.9 −2.7 −2.9 −2.3 NB −4.4 −4.2 −4.4 −3.9 NB −2.4 −2.2 −2.4 −1.8 NB
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wave functions of the two mesons with the corresponding
relative momentum P. We could act ψM1ψM2χ

M1M2
csf on the

Schrödinger equation from the left, ĤΨðP; p1; p2Þ ¼
EΨðP; p1; p2Þ. We obtain an equation of ψ12,Z

d3P½VDðP0;PÞ þ KExðP0;PÞ�ψ12ðPÞ

þ
�

P02

2μM1M2

− E

�
ψ12ðP0Þ ¼ 0; ð18Þ

where VD and KEx are the kernels stemming from the direct
diagrams and exchange diagrams in Fig. 3. μM1M2 is the
reduced mass of the two clusters. In our calculation, the
explicit VD and KEx can be derived from the meson wave
functions. We can solve Eq. (18) by performing the partial
wave expansion and discretizing the magnitude of the P and
P0. In our calculation, we choose the coupled-channel
formalism and sum over all the possible two ground meson
states with the S-wave relative angular momentum in the
wave function of Eq. (17). Equation (18) becomes the
coupled-channel integral equations accordingly. One can
find details about RGM in momentum space in Ref. [69].
It should be noticed that the diquark-antidiquark spatial

wave functions are absent in the trail functions of RGM. If
we use the notations of Sec. II B, the wave functions is
similar to

Ψ ¼ Aðχf ⊗ χdimeson
cs ⊗ ψdimesonÞ: ð19Þ

The trial functions are not as general as ΨA used in GEM.
Meanwhile, the meson wave functions are determined
which correspond to the free mesons. The distortion effect
of the meson wave functions within the tetraquark bound
states is also neglected. Thus, from the variational principle,
we expect the RGM will give a higher solutions than those
from GEM.

D. Diffusion Monte Carlo method

Unlike the two previous methods based on the basis
expansion (essentially the variational method), the DMC is
a kind of projection Monte Carlo method. One can find the
detailed formalism in Refs. [72,73]. To make this paper
self-contained, we introduce it briefly. The imaginary time
Schrödinger equation reads,

−
∂ΨðR; tÞ

∂t
¼

�
1

2μ
∇2 þ VðRÞ − ER

�
ΨðR; tÞ; ð20Þ

with

ΨðR; tÞ ¼
X
i

ciΦiðRÞe−½Ei−ER�t; ð21Þ

where ER is a shift parameter of the energy. Φi are the
eigenstates with the eigenvalue Ei. One can see if we take
the ER to approach the ground-state energy, all Φi except
the Φ0 will be suppressed exponentially after a long-time
evolution.
The DMC is implemented by sampling the wave

function with walkers. The distribution of walkers repre-
sents the wave function. The imaginary time Schrödinger
equation is actually a diffusion equation with the source
and sink. As shown in Fig. 4, one can start from a Ψint
which is not orthogonal to the ground-state wave function.
For every small time step, the walkers will perform a
random walk (diffusion process) and experience the death
or birth (branch process). In the branch process, one walker
could be replicated for several times or be deleted. After a
long-time evolution, the distribution of the walkers will
approach the ground-state wave function. For a practical
calculation, the importance sampling is adopted where in
addition to the diffusion and branch process, there is an
extra drift process (see Refs. [72,73] for details).
As shown in Sec. II B, one needs to use either very

general or very proper trial functions in the variational
method-based approaches to get accurate solutions of a
few-body problem. In other words, one should assign
a priori clustering behavior to solve the tetraquark states
efficiently. However, DMC could get the ground-state
energy without the preassignment of the clustering behav-
iors. In principle, the wave function space allowed by the
DMC calculation could be very general. The correct cluster

Direct diagram Exchange diagram

FIG. 3. The direct and exchange diagrams in RGM.
FIG. 4. Illustration of the DMC method [87], where the wave
function is sampled by the walkers.
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behaviors could be obtained automatically after a long-time
evolution. It has been proved that in molecular physics [88],
solid physics [89], and nuclear physics [90], the DMC
method is very efficient and precise. In hadronic physics,
the DMC method has been used in quark models in several
works [70–72,91–94]. However, some advantages of the
DMC have not been realized in the past calculations. For
example, in Ref. [70], the authors performed the calcu-
lations for the fully tetraquark states via DMC and obtained
many solutions above the corresponding the dimeson
thresholds. In principle, one should get the dimeson
thresholds if there are no bound-state solutions.
Compared with the electron systems in the molecular

physics and solid physics, and the nucleon systems in the
nuclear physics, there are two distinct features in the multi-
quark systems. First, there are complicated color structures
for the multiquark systems, which result in complicated
discrete wave functions or more coupled channels.
Meanwhile, the confinement effect makes the dimeson
thresholds the only meaningful thresholds. The four-quark
threshold and the triquark-quark thresholds are meaningless.

To suit the calculations of the multiquark systems, one has to
adjust the implements of the DMC method.
In Ref. [72], we improved the implements of the DMC

and finally got the dimeson thresholds for the fully
tetraquark systems by taking more coupled channels into
considerations. In Ref. [73], we adopted the same strategies
to calculate the possible tetraquark bound states of the
doubly heavy tetraquark states. In this work, we will further
compare the results from the DMC with those from the
variational methods, GEM and RGM.

III. NUMERICAL RESULTS

We adopt the GEM and RGM to calculate the fully,
triply, doubly and singly heavy tetraquark states. We also
compare the results from GEM and RGM with those from
the DMC for the doubly heavy tetraquark states. In our
tetraquark calculations, we focus on the difference between
the tetraquark masses and the lowest dimeson thresholds in
the same quark potential models rather than the absolute
values. In Figs. 5–7, we present the possible bound
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FIG. 5. Bound states of the QQq̄q̄ systems from GEM, RGM, and DMC in three quark models. The relevant theoretical dimeson
thresholds are aligned to the physical ones.
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solutions, where the theoretical results are shifted to align
the relevant dimeson thresholds to the experimental ones.

A. Fully heavy and triply heavy tetraquark

We calculate the JP ¼ 0þ; 1þ; 2þ fully heavy tetraquark
states with the following quark contents:

� ½ccc̄c̄�C¼�; ½bbb̄b̄�C¼�; bbb̄c̄;

½bcb̄c̄�C¼�; bbc̄c̄; ccc̄b̄;
ð22Þ

where C ¼ � represents that both states with even and
odd C-parities are investigated. The three quark models
with different few-body methods yield consistent results.
There do not exist the bound-state solutions for these
systems. These results agree with those qualitatively in
Refs. [82,95–98] where the AL1 and SLM were used,
respectively. In lattice QCD simulations, it was shown
that there are no bound states of JPC ¼ 0þþ, 1þ− and
2þþ bbb̄b̄ bound states below the noninteracting dimeson
thresholds [99]. In Ref. [100], the lattice QCD simulations
disfavor the existence of the stable spin-0 bbc̄c̄ state. These
lattice QCD results are also consistent with our findings.
For the triply heavy tetraquark states, we perform the

calculations to find possible bound states with JP ¼
0þ; 1þ; 2þ for the following systems:

8<
:

bbb̄n̄; bbb̄s̄; bbc̄n̄; bbc̄s̄;

ccc̄n̄; ccc̄s̄; ccb̄n̄; ccb̄s̄;

cbb̄n̄; cbb̄s̄; cbc̄n̄; cbc̄s̄:

ð23Þ

Our results indicate that there is no bound solution below
the relevant dimeson thresholds, which is consistent with

results in Ref. [101]. The bbc̄q̄ tetraquarks were also
investigated in lattice QCD [100,102], where the existence
of the bound solutions is inconclusive. It was shown that
there is a spin-1 bbc̄s̄ state below the threshold in
Ref. [100], where the finite volume effect was not consid-
ered. To pin down its existence, more data is needed to
handle the finite-volume effect.

B. Doubly heavy tetraquark states

We investigate the JP ¼ 0þ; 1þ, and 2þ doubly heavy
tetraquark states with the following quark contents,8>><

>>:
½bbn̄n̄�I¼0;1; bbn̄s̄; bbs̄s̄;

½ccn̄n̄�I¼0;1; ccn̄s̄; ccs̄s̄;

½bcn̄n̄�I¼0;1; bcn̄s̄; bcs̄s̄:

ð24Þ

Among them, we get several bound states, which are
presented in Fig. 5 and Table III. Evidently, the results
obtained from different models using various few-body
methods exhibit significant divergences.
We first compare two methods based on variational

methods, GEM and RGM. As we expected, the GEM gives
the lower bound states than the RGM. For example, for the
JP ¼ 1þ ½ccn̄n̄�I¼0 state [the candidate of the experiment
Tccð3875Þþ state], the GEM yields a bound state solution
in the AL1 model while the RGM calculation indicates no
bound sate. For the same state in the SLM model, GEM
gives a very deep bound state with the binding energy about
200 MeV while the binding energy in RGM is about
4 MeV. These disparities arise from the fact that the trial
functions or basis functions of GEM are more general than
those of RGMwhere only the dimeson-type wave functions

TABLE III. Bound states of the QQq̄q̄ systems. The energies are with respect to the lowest relevant thresholds (in units of MeV).
“NB” represents that there is no bound solution. “...” labels systems that are not investigated in the literature. “↪ Excited” labels the
excited bound-state solutions. The Thresho. represents the corresponding lowest threshold.

JP Systems Thresh.

AL1 AP1 SLM

GEM RGM DMC [57] GEM RGM DMC [57] GEM RGM DMC [103]

0þ ½bbn̄n̄�I¼1 B̄B̄ NB NB NB � � � NB NB NB � � � NB NB NB −13.1
½bcn̄n̄�I¼0 DB̄ −26.0 −9.1 −21 1 −35.8 −13.1 −31 −13 −194.9 −10.7 −185 � � �
bcn̄s̄ DB̄s NB NB NB � � � � � � −2.9 −0.8 −1 � � �

1þ ½ccn̄n̄�I¼0 DD� −14.0 1.2 0 11 −22.2 −0.5 −1 −1 −189.6 −4.2 −156 −0.387
½bbn̄n̄�I¼0 B̄B̄� −151.6 −71.9 −145 −142 −174.8 −95.3 −170 −167 −359.6 −87.4 −345 −21.9
↪ Excited −0.70 −3.3 −66.0
½bbn̄n̄�I¼1 B̄B̄� NB NB NB � � � NB NB NB � � � NB NB NB −10.5
bbn̄s̄ B̄sB̄� −63.8 −16.5 −51 −56 −69.1 −20.5 −57 −61 −33.2 −7.5 −14 � � �

½bcn̄n̄�I¼0 DB̄� −26.5 −6.0 −14 −5 −37.8 −9.2 −27 −20 −219.5 −10.5 −203 � � �
bcn̄s̄ DB̄�

s NB NB NB � � � NB NB NB � � � −3.3 −0.9 −4 � � �
2þ ½bbn̄n̄�I¼1 B̄�B̄� NB NB NB 24 −1.4 NB NB 24 NB NB NB −7.1

½bcn̄n̄�I¼0 D�B̄� −2.9 −2.4 −1 � � � −4.4 −3.3 −2 � � � −2.4 −1.6 NB � � �
bcn̄s̄ D�B̄�

s NB NB NB � � � NB NB NB � � � −2.4 −1.4 NB � � �
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are used. In order to testify the above statement, we also
employ the GEMwith only the dimeson-type functions, see
(19), for the JP ¼ 1þ states. We compare the results with
those from the RGM and GEMwith general wave functions
in Fig. 6. One can see the GEM results with only the
dimeson-type trial functions are very similar to those from
the RGM. For example, the bound solution of ½ccn̄n̄�I¼0 in
AL1 model disappears and the result in SLM model
becomes a loosely bound state. We can find the GEM
with only the dimeson-type wave functions still yields
slightly lower solutions than the RGM. This is because in
the implement of the RGM, the meson wave functions is
constrained to be the same as those of the free mesons.
However, in the GEM-dimeson scheme, the meson wave
functions are also determined by the variational parameters,
where the possible distortion effect of the meson wave
functions is included.
It should be noticed that the constrained trial functions

in RGM could change the results qualitatively. One will
miss the bound solution of JP ¼ 1þ ½ccn̄n̄�I¼0 state in
AL1 model. Meanwhile, one could identify the JP ¼ 1þ

½bbn̄n̄�I¼0 state as the molecular states rather than the
compact tetraquark quark states via RGM. Thus, the GEM
with the general basis functions is superior than the RGM.
We can also compare the bound state solutions from

DMC in Fig. 5 and Table III with those from GEM
and RGM. It is evident that the majority of DMC results
exhibit lower energies compared to the RGM outcomes.
Qualitatively, the DMC results are consistent with those
obtained through GEM, as exemplified by the presence of
deep bound states for the JP ¼ 1þ ½ccn̄n̄�I¼0 configuration
in the SLM model. In essence, the DMC method, devoid of
any prior constraints on the clustering behavior of the wave
functions, naturally provides the roughly proper clustering
behavior in the present implementation. A more compre-
hensive discussion is available in Ref. [73]. When com-
pared to GEM results, the masses obtained through DMC
generally are higher. For instance, in the case of the
JP ¼ 1þ ½ccn̄n̄�I¼0 configuration in the AL1 model,
DMC only yields the dimeson thresholds, whereas GEM
predicts the existence of a bound state with a binding
energy of approximately 14 MeV. It should be noted that
the statistical uncertainties in the current DMC calculations
are estimated to be at the order of 1 MeV [73].
Consequently, it is reasonable to conclude that the observed
differences stem from systemic uncertainties within the
DMC method that have yet to be fully comprehended. One
plausible explanation could be that the importance func-
tions employed in Ref. [73] may not be optimized for
addressing the coupled-channel complexities inherent to
the tetraquark systems. In principle, the antisymmetrization
of the identical Fermions and the associated sign problem
should be addressed through proper choices of the impor-
tance functions, thereby opening up avenues for future
improvements.

Based the above comparisons, it is evident that the GEM
is superior than the RGM and DMC method. With this in
mind, we will utilize the results obtained through the GEM
to conduct a comprehensive comparison across the three
distinct quark potential models.

1. JP = 1+

The experimental Tccð3875Þþ state is the candidate of
JP ¼ 1þ ½ccn̄n̄�I¼0 tetraquark state. Notably, both the
PCQM and χCQM yield the bound-state solutions, which
can be viewed as the predictions made by these quark
models prior to the experimental observation. In the
original work of AL1 and AP1 models [57], the existence
of the bound states was not conclusively established due to
the limitations in computational resources at the time.
Meanwhile, the results from AL1 and AP1 are more
consistent with the experimental result of Tccð3875Þþ, a
very loosely bound state. Conversely, the SLM model
suggests the presence of a compact tetraquark state well-
below theDD� threshold, with a substantial binding energy
of approximately 200 MeV. In Ref. [103], employing the
same SLM, a loosely bound state was achieved through the
RGM. The result stems from the constrained basis wave
function in RGM. Before the experimental observations,
investigations of the JP ¼ 1þ ½ccn̄n̄�I¼0 tetraquark state
were undertaken in lattice QCD simulations in
Refs. [100,104,105], but the existence of this state
remained inconclusive. Subsequent to the experimental
observations, lattice QCD simulations based on
Lüscher’s method [106] and the potential method (HAL
QCD method) [107] reported virtual states in this channel.
In all three quark models, we consistently obtain very

deep bound state of JP ¼ 1þ ½bbn̄n̄�I¼0, which is the
possible heavy quark-flavor symmetry partner of Tcc state.
The three quark models indicate that both the ground states
and the first excited states of the system are the bound
states. It is worth noticing that the binding energy obtained
in SLM is still much larger than those from AL1 and AP1
models. This state has also been extensively investigated in
lattice QCD simulations [100,108–110], which consistently
establish the existence of the bound states with the binding
energies about 100–200 MeV. Additionally, the static
potentials from lattice QCD [111–114] also indicate the
existence of the deeply bound Tbb states. Furthermore,
these three distinct models also predict the existence of
JP ¼ 1þ ½bcn̄n̄�I¼0 bound states. It is worthwhile to notice
that the result from SLM is significantly deeper than those
from the AP1 and AL1 models. For this state, the lattice
QCD simulations have not provided a consistent conclu-
sion [102,105,115,116].
In our calculations, there is no isovector bound state for

the QQn̄n̄ systems. However, in Ref. [103], a JP ¼ 1þ

½bbn̄n̄�I¼1 bound states were obtained in SLM within the
RGM framework. Apparently, this result conflicts with our
calculation. The absence of an isovector bound state in
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JP ¼ 1þ ½bbn̄n̄�I¼1 system is widely acknowledged and is a
consensus reflected in the majority of pertinent publica-
tions, such as Refs. [61,117,118].
Another state worth attention is the J ¼ 1þ bbn̄s̄ state.

We obtain the bound state below the B̄sB̄� threshold
with the binding energy 30–70 MeV. In lattice QCD
simulations, the existence of this bound state was also
implied [100,108,115,119].
In addition to the above bound states existing consis-

tently in three different quark models, the SLM model also
predicts a bcn̄s̄ bound state, which is absent in AL1 and
AP1 models.

2. JP = 0+ and JP = 2+

For the doubly heavy tetraquark states with JP ¼ 0þ and
2þ, the PCQM and χCQM both predict the ½bcn̄n̄�I¼0

bound states. The main difference is the JP ¼ 0þ state from
SLM is much lower than those from AL1 and AP1.
Additionally, the SLM model predicts the extra bcn̄s̄ states
for JP ¼ 0þ and 2þ. The AP1 model predicts the extra
isovector tensor bbn̄n̄ bound state.

C. Singly heavy tetraquark states

For the singly heavy quark states, we investigate the
JP ¼ 0þ; 1þ, and 2þ system with the following quark
contents:8>><

>>:
½bns̄n̄�I¼1; ½bsn̄n̄�I¼0;1; bss̄n̄; bns̄s̄;

½cns̄n̄�I¼1; ½csn̄n̄�I¼0;1; css̄n̄; cns̄s̄;

½bnn̄n̄�I¼3=2; ½cnn̄n̄�I¼3=2; bss̄s̄; css̄s̄;

ð25Þ

where the ½Qns̄n̄�I¼0 and ½Qnn̄n̄�I¼1=2 are not considered
because we only focus on the manifestly exotic states. We
use the GEM and RGM to solve the spectra in three models.
The results are presented in Table IV and Fig. 7.
Comparing the results from GEM and RGM, it is

apparent that the results from RGM could be biased due
to the constrained basis functions. We still employ the

GEM to compare the results from different quark potential
models.
One can see that three quark models all predict the JP ¼

0þ ½csn̄n̄�I¼0, JP ¼ 0þ; 1þ ½bsn̄n̄�I¼0 bound states. For all
the above results, the predictions from SLM tend to be
much deeper. It should be noticed that the JP ¼ 0þ

½csn̄n̄�I¼0 is irrelevant to the experimental Tcs0ð2900Þ state
which is a resonance state close to the D�K̄� threshold.
Additionally, the SLM model predicts several extra bound
states, JP ¼ 1þ ½csn̄n̄�I¼0 state, JP ¼ 2þ css̄n̄ state, JP ¼
2þ ½bsn̄n̄�I¼0 state, and JP ¼ 2þ bss̄n̄ state.
In Ref. [120], the authors investigated the spin-0 and

spin-1 csn̄n̄ and cns̄n̄ states in SLM and obtained no bound
solution, which conflicts with our JP ¼ 0þ; 1þ ½csn̄n̄�I¼0

bound states. In their calculations, several virtual states
are found.

IV. DISCUSSIONS AND SUMMARY

In this study, we conduct benchmark test calculations to
investigate the tetraquark bound states that are manifestly
exotic across three distinct quark models (AL1, AP1, and
SLM) and employ three different few-body methods
(GEM, RGM, and DMC). In the GEM calculations, we
find the results is insensitive to the choice of the discrete
wave functions once they are complete. However, when it
comes to the spatial wave functions, the inclusion of both
diquark-antidiquark and dimeson types is imperative for
obtaining precise solutions. We use the GEM with the
general wave functions as the standard to compare with the
results from the RGM and DMC.
Our results show that the GEM is superior than RGM and

DMCbyobtaining themore lower ground-state energies and
detecting extra bound solutions. Because GEM is a method
based on the variational principle, the lower ground-state
solutions mean more precise results. While RGM can
identify the molecular-type states, it tends to produce biased
results for the deeply bound states due to its constraints on
the basis functions, particularly the dimeson-type wave
functions. DMC can identify both the compact tetraquark

TABLE IV. Bound states of the Qqq̄q̄ systems. The notations are the same as those in Table III. The Thresho. represents the
corresponding lowest threshold.

JP Systems Thresh.

AL1 AP1 SLM

GEM RGM GEM RGM GEM RGM [120]

0þ ½bsn̄n̄�I¼0 B̄K̄ −3.4 −0.7 −5.1 −1.2 −34.4 −6.6 � � �
½csn̄n̄�I¼0 DK̄ −2.7 −0.6 −4.4 −1.2 −26.6 −3.7 virtual state

1þ ½bsn̄n̄�I¼0 B̄�K̄ −1.2 NB −2.6 −0.1 −30.6 −2.6 � � �
½csn̄n̄�I¼0 D�K̄ NB NB NB NB −19.4 −0.3 NB
½csn̄n̄�I¼1 D�K̄ NB NB NB NB NB NB virtual state

2þ bss̄n̄ B̄�
sK̄� NB NB NB NB −0.4 −0.2 � � �

css̄n̄ D�
s K̄� NB NB NB NB −0.6 −0.4 � � �

½bsn̄n̄�I¼0 B̄�K̄� NB NB NB NB −0.5 −0.4 � � �
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states and loosely bound molecular states without a priori
assumption about the clustering behaviors of the wave
functions. However, when compared to GEM, the current
implementation of DMC falls slightly short in terms of
precision. This could be attributed to the possibility that the
importance functions used in Ref. [73] may not have been
optimized to suit the multiquark systems. Up to now, the
advantages of the DMC method, as demonstrated in atomic
and molecular physics as well as nuclear physics, has not
been fully exploited in the multiquark systems. DMC
remains a promising approach distinct from the variational
method. The DMC method circumvents the challenges
associated with the exponentially growing basis set with
number of particles and the intricate integrals tied to few-
body forces in the variational approach. Its advantages are
likely to become apparent in the case of multiquark states
with a large number of quarks [92] and in systems featuring
flux-tube few-body potentials [72]. It holds potential for
further development and refinement.
In Table III, we also consider the potential excited states

½bbn̄n̄�I¼0
JP¼1þ . The basis expansion method can be extended

to encompass these excited states, although the Ritz
theorem in quantum mechanics textbooks typically empha-
sizes the variational method’s role in establishing an upper
limit for ground states. The expectation value of the
Hamiltonian remains stationary in the vicinity of its discrete
eigenvalues. Consequently, with an increase in the dimen-
sions of the basis space, the eigenvalues within this space
converge towards the exact solutions of the Hamiltonian,
encompassing both ground and excited states. Further
details can be found in Ref. [121]. Alternatively, the
diffusion Monte Carlo (DMC) method can be extended
to identify excited states as well (see Ref. [122]).
We use the results from GEM to compare the results

from three quark models belonging to two types, PCQM
(AL1 and AP1) with the minimal OGE interaction and
confinement interaction, and χCQM (SLM) with both two
interactions and extra OBE interaction. Our analysis reveals
that the SLM models tend to yield more deeper bound
states or provide extra bound-state solutions than the AL1
and AP1 models.
We perform the calculations for over 150 tetraquark states

for the fully, triply, doubly and singly heavy tetraquark
systemswith JP ¼ 0þ; 1þ and 2þ.We summarize the bound
states existing in all three quark potential models in Table V.
We find there are no fully heavy and triply heavy tetraquark
bound states. For the doubly heavy tetraquark systems, we
find the ½ccn̄n̄�I¼0

JP¼1þ [candidate state of the experimental
Tccð3875Þþ state], and its heavy-quark flavor symmetry
partners ½bbn̄n̄�I¼0

JP¼1þ and ½bcn̄n̄�I¼0
JP¼1þ are all bound states. In

addition, the ½bcn̄n̄�I¼0
JP¼0þ;2þ and ½bbn̄s̄�JP¼1þ are also bound

states. It is worthwhile to mention that the ½bbn̄s̄�JP¼1þ

bound state was also supported by the lattice QCD
simulations. For the singly heavy systems, we find the

½bsn̄n̄�I¼0
JP¼0þ;1þ and ½csn̄n̄�I¼0

JP¼0þ bound states. We hope these
stable states against the strong decaysmay be searched for in
the experiments.
We find the SLM quark potential models tend to give

more and deeper bound states and the RGM tends to
underestimate the bind energy. However, it is still irrational
to discard them. On the one hand, we still have the room to
refine the parameters in SLM to fit the experiment results.
Meanwhile, the SLM was originally proposed to depict the
NN scattering phase [69] via RGM with presuming
dibaryon clustering behaviors. If one adopts a general trial
wave functions of the six quarks, one perhaps obtains quite
different solutions of SLM (e.g., deep-bound states) instead
of the NN scattering states or deuteron. In other words, the
SLM model and RGM were used in combination at the
birth of this quark potential model. Perhaps, they should
still be used in combination. The combination of the SLM
and RGM provides a loosely bound solutions for ½ccn̄n̄�I¼0

J¼1,
which is consistent with the experimental Tccð3875Þþ state.
If that is the case, it is still reasonable to use the SLMmodel
when it is assumed in advance that the target state is a
molecular state.
In fact, we do have some hints that the mixing effect

between the molecular configurations and the diquark-
antidiquark configurations is suppressed. For example, in
the flux-tube models, one can model the complicated
dynamics of the sea quarks and gluons as the flux-tubes.
There could be the dimeson-type flux-tube and the diquark-
antidiquark-type (butterfly-type) flux-tube. When consid-
ering the possible mixture of the dimeson constructions and
diquark-antidiquark constructions, in addition to the
valence quark wave functions, one has to consider the
flux-tube wave functions, which represent the dynamics of
the sea quarks and gluons. The small overlap of the flux-
tube wave functions for the different configurations could
suppress their mixing effect. In the weak mixing limit, we
could get the molecular states without the effect from the
diquark-antidiquark configurations. For these states, it is
reasonable to use the dimeson basis functions to expand the
wave functions like RGM. One can find similar discussion
in Refs. [73,81,123]. One can also assume the SLM is a
quark potential model only working for the molecular
configurations. In this way, the combination of the RGM
and SLM becomes reasonable.

TABLE V. Final results of the bound states that exist in all three
quark potential models.

JP Bound states

0þ ½bcn̄n̄�I¼0 ½csn̄n̄�I¼0 ½bsn̄n̄�I¼0

1þ ½ccn̄n̄�I¼0 ½bcn̄n̄�I¼0 bbn̄s̄
½bbn̄n̄�I¼0 ½bsn̄n̄�I¼0

2þ ½bcn̄n̄�I¼0
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In our benchmark test calculations, we unveil discrep-
ancies among the various quark potential models and few-
body methods on the market. Furthermore, when we
compare our results with those in employing the same
quark potential models, we continue to encounter incon-
sistencies. While some of these inconsistencies may be
attributed to limitations in computational precision in
earlier years, others remain unexplained. As we are rapidly
entering the era of the “genuine” multiquark states, it
becomes increasingly vital to conduct additional bench-
mark tests of quark model calculations, particularly when
involving different research groups.
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APPENDIX: ELIMINATE THE (NEARLY)
REDUNDANT BASES

In the variational method based on basis expansion, the
final step involves solving the generalized eigenvalue
problem:

Hv ¼ λNv; H ¼ hijĤjji; N ¼ hijji: ðA1Þ

Here, H and N represent the Hamiltonian matrix and the
overlap matrix, respectively. λ and v correspond to the
eigenvalue and eigenvector, and jii and jji denote the basis
states, which may not be orthogonal. In a more general
context, basis states may exhibit dependencies, either in a
rigorous sense, such as complete basis states becoming
linearly dependent after antisymmetrization, or in a less
strict sense, where almost “parallel” basis states are
considered linearly dependent, taking into account the
machine precision truncation error. The presence of
(nearly) dependent bases can lead to ill-conditioned matri-
ces, breaking down algorithms designed to solve the

general eigenvalue problem. Therefore, for robust results,
it is crucial to eliminate (nearly) redundant bases.
To this end, various methods can be employed, including

the Gram–Schmidt process. In our calculations, we opt for
the diagonalization of the overlap matrix N,

�
Ta×n

Mb×n

�
Nn×n½ T†

n×a M†
n×b � ¼

�
Da×a 0

0 0

�
ðA2Þ

with TNT† ¼ D, where the transformation matrix are
decomposed to two blocks. The total number of bases is
denoted as n ¼ aþ b, with only a of them being linearly
independent. The matrix D is diagonal, and it is apparent
that N is semi-positive-definite, ensuring that the diagonal
elements of D are all positive. The matrix N becomes
positive-definite if and only if the basis states jii are
linearly independent. To eliminate the (nearly) redundant
basis vectors, we introduce a set of new bases jβi with a
number of a,

jβi ¼
Xn
j¼1

jjiT†
jβ; ðA3Þ

that are orthogonal

hαjβi ¼
Xn
i;j¼1

TαihijjiT†
jβ ¼ dαδαβ; ðA4Þ

where dα is the elements of matrix D. One can further make
the set of bases normalized, jβ̃i ¼ jβi ffiffiffiffiffi

dβ
p

. One can get the
matrix elements of the Hamiltonian under the orthogonal
and normalized bases,

hα̃jHjβ̃i ¼
ffiffiffiffiffiffiffiffi
D−1

p
THT†

ffiffiffiffiffiffiffiffi
D−1

p
: ðA5Þ

In practical applications, one can establish a tolerance for
the eigenvalues of N and eliminate basis states associated
with very small eigenvalues. This approach effectively
removes (nearly) redundant bases, contributing to the
robustness of the algorithm.
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