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Collective modes within a hot quantum chromodynamics (QCD) medium are obtained from the
polarization tensor, considering both constant and time-varying electromagnetic fields. In both scenarios,
five complex modes emerge, reliant on the wave vector (k), with electrical conductivity exerting significant
influence. The impact of the modes on the energy loss of heavy quarks in the hot QCD medium with a
background electromagnetic field has been studied by obtaining the induced electric field in terms of the
polarization tensor while invokingWong’s equations. The findings are seen to be consistent with analogous
approaches, reinforcing the significance of the results.
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I. INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) and the
Large Hadron Collider (LHC) have conducted heavy-ion
experiments, providing evidence of the existence of an
intriguing form of matter known as quark-gluon plasma
(QGP) [1]. This unique state of matter arises from the
intense interactions of quarks and gluons as dictated by the
underlying theory of strong interaction force; viz., quantum
chromodynamics (QCD) exists for very short times (a few
fm=c) at exceedingly high temperatures. Given the com-
plex nature of the strong interaction and, hence, the QGP,
its direct investigation proves challenging, necessitating
indirect methods to unravel its properties. Among these,
two prominent signatures are jet quenching and collective
flow, which have been observed at the RHIC and the LHC.
Through these experiments, compelling evidence has
emerged substantiating the presence of the QGP and its
strong coupling nature that is exemplified by the observa-
tion of an extremely low shear viscosity to entropy density
ratio, further supporting the notion of the QGP as a near-
ideal fluid [2,3].
Experiments at the RHIC and the LHC observed

enhanced directed flow ofD=D0, indicating the presence of
a strong initial magnetic field in heavy-ion collisions [4,5].
The produced magnetic field decays slowly in the medium
and may persist for a longer time due to the backreaction

from the medium. The behavior of the magnetic field in the
medium depends on the conductivity of the medium [6–10].
The behavior of the QGP medium may depend on the
persistent field, and hence it is vital to study the response of
the medium to such a field. Numerous studies delve into this,
encompassing electrical conductivity in weak and time
dependent electromagnetic fields [11–21], as well as thermal
and thermoelectric responses of the medium [22–25].
The investigation of the QGP necessitates an in-depth

exploration of its collective excitations, which carry crucial
information into both equilibrated and evolving non(near)-
equilibrated QGP. In this context, it is imperative to
examine both quark and gluonic collective modes within
the QGP medium. The collective modes of the QGP
medium have been studied through the linear response
formalism [26,27], with momentum anisotropy [28–30],
with equation of state effects [31,32].
The magnetic field in the early stages of the collision is

argued to be of the order jqBj ∼ 10–15m2
π [33–36], which is

much larger than the temperature, i.e. qB ≫ T2. In this
regime, the system obeys Landau quantization, and the
fermion dynamics can be treated under the lowest Landau
level approximation [37,38]. As the magnetic field rapidly
decays, the temperature becomes the dominant scale,
qB ≪ T2. The fermions undergo cyclotron motion due
to the presence of the magnetic field. The analysis of the
collective modes in the weak field limit has been studied
through the perturbative QCD methods [37,39,40] and
the linear response theory [41]. The linear response theory
and perturbative QCD results are generally seen to match
qualitatively, especially at higher temperatures.
In this study, we focus on comprehending the collective

excitations of the QGP medium in the presence of a weak,
time-varying magnetic field through the polarization tensor.
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This marks a novel attempt to understand the properties of
the hot QCD medium under the influence of time depen-
dent magnetic fields, with the inclusion of electric (σe)
and Hall (σH) conductivities obtained through the linear
response theory approach. Our analysis unfolds the pres-
ence of two complex modes and three purely imaginary
modes, two of which display positive growth, signifying
potential instabilities within the medium.
Heavy quarks/antiquarks, produced in the early stages of

collisions, offer valuable insights into the entire spacetime
evolution of the QGP medium, making them excellent
probes of the medium. The energy loss of heavy quarks has
been studied through the transport theory approach [42–46]
and within the finite temperature field theory app-
roach [47–49]. Our focus here is on studying how bottom
and charm quarks lose energy while traversing an isotropic,
collisional QGP. We model the collisions employing the
relaxation-time approximation (RTA) collisional kernel
within the Boltzmann transport equation. When a charged
quark moves through the hot QCD medium, it induces an
electric field, which, in turn, generates a Lorentz force back
on the quark, causing it to lose energy. The induced electric
field is obtained by solving Maxwell’s equation with the
polarization tensor obtained through the transport theory.
The induced field is employed in Wong’s equation to study
the energy loss of the heavy quarks.
The paper is organized as follows: Sec. II deals with the

basic formalism of the polarization tensor with the consi-
deration of different cases of the magnetic field. In Sec. III,
the brief mathematical formalisms for the polarization
tensor and the different collective modes are presented
in different subsections. The formalism for the energy loss
of heavy quarks has been presented in Sec. IV. Section V
contains the results and discussion, and Sec. VI offers a
summary and conclusions of the present work.
Notations and conventions. The subscript k denotes the

particle species. The quantity qk is the electric charge of the
kth species. The particle velocity is defined as v ¼ p

ϵ, where

p is the momentum and ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
is the energy (with

mf as the mass of quark with flavor f) of the particle. The
component of a three vector A is denoted with the Latin
indices Ai. The quantities E ¼ jEj and B ¼ jBj denote the
magnitudes of the electric and magnetic fields.

II. POLARIZATION TENSOR IN HOT QCD
MEDIUM IN ELECTROMAGNETIC FIELDS

The propagator of the hot QCD medium can be obtained
from the polarization tensor, invoking Maxwell’s equation.
The polarization tensor is related to the induced current in
the medium due to the external electromagnetic field. In
this work, we adopt the transport theory approach while
employing the RTA for the collisional kernel.
We consider the transport equation with Fμν, the external

electromagnetic field tensor,

vμ∂μδfk þ qkvμFμν
∂
ðpÞ
ν fk ¼ −

δfk
τR

; ð1Þ

with qk being the charge of the particle and fk being the
quarks/antiquarks momentum distribution function;

fk ¼ f0k þ δfk; f0k ¼
1

1þ exp ðβðϵk ∓ μÞÞ ; ð2Þ

with f0k being the near equilibrium distribution function.
The collision term has been chosen to be the RTA kernel,
with τR being the relaxation time [50].
The general form of the induced vector current in the

QCD medium with a nonvanishing quark chemical poten-
tial μ in terms of quark and antiquark momentum distri-
bution function fk ¼ f0k þ δfk is as follows:

j ¼ 2Nc

X
f

Z
dP v

�
qqfq − qq̄fq̄

�
; ð3Þ

where vi is the component of velocity and dP ¼ d3p
ð2πÞ3. The

flavor summation (over the up, down, and strange quarks)
arises from the degeneracy factor 2Nc

P
f of the quarks/

antiquarks with Nc number of colors. The electric current
can be written as

ji ¼ σeδ
ijEj þ σHϵ

ijEj; ð4Þ

where σe and σH are the Ohmic and Hall conductivities,
respectively. The conductivities can be obtained by solving
the transport equation with the nonequilibrium part of the

distribution function δfk ¼ ðp:ΞÞ ∂f0k
∂ϵk
, containing the elec-

tric and magnetic fields. The vector Ξ is related to the
strength of the electromagnetic field and its first-order
(leading-order) spacetime derivatives, with the following
form:

Ξ ¼ α1Eþ α2Ėþ α3ðE ×BÞ þ α4ðĖ ×BÞ þ α5ðE × ḂÞ
þ α6ð∇ ×EÞ þ α7Bþ α8Ḃþ α9ð∇ ×BÞ: ð5Þ

Here, αi [i ¼ ð1; 2;…; 9Þ] are the unknown functions that
relate to the respective electric charge transport coefficients
and can be obtained by the microscopic description of the
QCD medium. The coefficients are found, as derived in
Ref. [21], to be

α1 ¼ −
Ω̃k

2
ðI1eη1 þ I2eη2Þ; ð6Þ

α3 ¼
qfki

2ϵ
ðI1eη1 − I2eη2Þ; ð7Þ

α5 ¼ −
τRqfki

2ϵ
ðI1eη1 − I2eη2Þ; ð8Þ
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α2 ¼
�
Ω̃kτR
2

þ iΩ2
kτ

2
R

2

�
I1eη1 þ

�
Ω̃kτR
2

− iΩ2
kτ

2
R

2

�
I2eη2

1þ Ω2
kτ

2
R

; ð9Þ

α4 ¼
−
�
Ω̃2

kτ
2
R

2F þ iqfkτR
2ϵ

�
I1eη1 −

�
Ω̃2

kτ
2
R

2F − iqfkτR
2ϵ

�
I2eη2

1þ Ω2
kτ

2
R

; ð10Þ

with Ωk ¼ qfkB
ϵ represents the cyclotron frequency at finite

B and Ω̃k ¼ qfkF
ϵ , where F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB − τRḂÞ

p
for the

time-varying magnetic field. Here the terms ηj and Ij
are defined as

ηj ¼ −
t
τR

þ aj
qfki

ϵ

Z
Fdt; Ij ¼

Z
e−ηj

F
; ð11Þ

with a1 ¼ 1 and a2 ¼ −1. Now, we solve the master
equation of αi for various choices of the electromagnetic
fields E and B.

A. Case I: Constant electric and magnetic fields

For the case of constant electric and magnetic fields, the
terms α2, α4, α5 disappear, and the coefficients α1 and α3
correspond to the Ohmic and Hall conductivity, respec-
tively, as described in Ref. [20]. The expression for α1 and
α3 are given by

α1 ¼
−ϵqfk

τR
��

ϵ
τR

�
2 þ ðqfkBÞ2

� ; α3 ¼
−q2fk��

ϵ
τR

�
2 þ ðqfkBÞ2

� :
ð12Þ

Employing Eq. (12) in Eq. (3), we obtain ji ¼ σeδ
ijEj þ

σHϵ
ijEj with σe and σH denoting the electrical and Hall

conductivities, respectively. The results obtained are in
agreement with the observations of Ref. [11]. The chemical
potential plays an important role with the Hall conductivity
vanishing at μ ¼ 0, zero chemical potential. The electric
current is written as

je ¼
EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3 p

2

	
−
∂f0k
∂ϵ




×
1

τR
��

ϵ
τR

�
2 þ ðqfkBÞ2

� ; ð13Þ

jH ¼ EðtÞ
3

2Nc

X
k

X
f

ðqfkÞ2
Z

d3p
ð2πÞ3

p2

ϵ

	
−
∂f0k
∂ϵ




×
qfkB��

ϵ
τR

�
2 þ ðqfkBÞ2

� ; ð14Þ

which agrees with the results of [51]. The transverse
component, σH, vanishes in the presence of a strong

magnetic field due to the 1þ 1 − D Landau dynamic, with
the longitudinal electrical conductivity being the dominant
electrical charge transport.

B. Case II: Response to time-varying
electromagnetic field

In the case of time dependent electric and magnetic
fields, we choose a particular magnetic field of the form

B ¼ B0e
− t
τB ẑ, where B0 is its amplitude and τB is the decay

time parameter [52,53] such that F ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
. This form

of B may depict the rapidly decaying magnetic field in
noncentral heavy-ion collisions. The decay rate will depend
on the medium properties and is governed by τB (can be
treated as a phenomenological parameter). With the
assumption that the cyclotron frequency Ωk is approxi-
mately equal to the decay frequency (τ−1B ) of the magnetic
field, Eq. (11) reduces to the following form:

ηj ¼ −
t
τR

þ aj

	
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

t



; ð15Þ

Ij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τR
τB

q
B0

e

�
1
τR
þ 1

τB
−aji

ffiffiffiffiffiffi
1þτR

τB

p
τB

�
t

	
1
τR
þ 1

τB
− aji

ffiffiffiffiffiffiffiffi
1þτR

τB

p
τB


 ; ð16Þ

and we proceed with the estimation of all αi coefficients
by substituting Eqs. (15) and (16) in Eqs. (6)–(10).
Incorporating the nonzero contributions associated with
αiði ¼ 1; 2;…; 5Þ in Eq. (5), we obtain five components of
the induced current j ¼ jeêþ jHðê × b̂Þ as follows:

je ¼ jð0Þe þ jð1Þe ; jH ¼ jð0ÞH þ jð1ÞH þ jð2ÞH ; ð17Þ

where je corresponds to the electric current in the direction
of the electric field ê and jH is the electrical current in the
direction perpendicular to both electric and magnetic fields
ðê × b̂Þ with

jð0Þe ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ2
Z

dP
p2

ϵ2

	
−
∂f0k
∂ϵ



M1; ð18Þ

jð1Þe ¼ 2Ė
3
Nc

X
k

X
f

ðqfkÞ2
Z

dP
p2

ϵ2
∂f0k
∂ϵ

M2; ð19Þ

jð0ÞH ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3

	
−
∂f0k
∂ϵ



M; ð20Þ

jð1ÞH ¼ 2Ė
3
Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3
∂f0k
∂ϵ

M3; ð21Þ
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jð2ÞH ¼ 2E
3τB

Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3

	
−
∂f0k
∂ϵ



τRM; ð22Þ

where Ė ¼ jĖj and Mj (j ¼ 1, 2, 3) functions can be

defined as M1 ¼ ð 1τR þ 1
τB
ÞM, M2 ¼ −ðτRM1 −

τ2R
τ2B
MÞ=

ð1þ ðτRτBÞ2Þ, and M3 ¼ ðτRM þ τ2RM1Þ=ð1þ ðτRτBÞ2Þ with

M ¼
2
4 1

τR
þ 1

τB
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

3
5
−1

: ð23Þ

In Eqs. (18)–(22), the leading-order Ohmic current is

represented by jð0Þe , while jð1Þe signifies the correction
due to the Ohmic current resulting from the time-varying
nature of the fields. The Hall current in the medium,
produced by perpendicular electric and magnetic fields, is

denoted by jð0ÞH , while its corrections from (Ė × B) and

(E × Ḃ) are represented by jð1ÞH and jð2ÞH , respectively.
From these expressions for the induced current, the

polarization tensor can be obtained using Πμν ¼ δjμind
δAν

in the

temporal gauge with A0 ¼ 0 and Ai ¼ Ei

iω,

Πij ¼ iωσeδij þ iωσHϵij: ð24Þ

The Fourier transformed Maxwell equation is

−ikνFμνðKÞ ¼ JμindðKÞ þ JμextðKÞ; ð25Þ

where JμextðKÞ is the external current. The induced current
can be expressed in terms of the polarization tensor,
written as

JμindðKÞ ¼ ΠμνðKÞAν: ð26Þ

The Maxwell equation can be written as

�
K2gμν − kμkν þ Πμν

�
AνðKÞ ¼ JμextðKÞ: ð27Þ

Considering the temporal gauge A0 ¼ 0, writing the equa-
tion in terms of the electric field,

½ΔijðkÞ�−1Ej ¼ iωJiext; ð28Þ

where

�
ΔijðkÞ�−1 ¼ �ðk2 − ω2Þδij − kikj þ ΠijðkÞ� ð29Þ

is the inverse of the propagator. The poles of the propagator,
½ΔijðkÞ�, give us the dispersion relation of the collec-
tive modes.

III. COLLECTIVE MODES: FINDING THE POLES
OF THE PROPAGATOR

A. Decomposition of polarization tensor

The polarization tensor encodes the interaction of the
medium. Hence, the properties of the QGP medium can
be analyzed by studying the structure of the polarization
tensor. The general structure of the polarization tensor in a
magnetic field has been studied in Ref. [37].
We have obtained the form of the polarization tensor

through the semiclassical transport theory approach in
Eq. (24). The polarization tensor in the isotropic medium
can be expanded in terms of two components. The longi-
tudinal component Pij

L ¼ kikj=k2, and the transverse com-
ponent Pij

T ¼ δij − kikj=k2. The background magnetic field
induces anisotropy in the medium, and hence an additional
two components are required to describe the polarization
tensor in the presence of a magnetic field, Pij

b ¼ bibj and
Pij
bk ¼ ϵijηbη, where bi ¼ Bi=jBj is the unit vector along the

magnetic field and is taken to be such that biki ¼ 0. With
this, the polarization tensor can be expanded as

Πij ¼ α0P
ij
L þ β0P

ij
T þ γ0P

ij
b þ δ0P

ij
bk; ð30Þ

where α, β, γ, δ are the scalar structure constants. These can
be obtained by taking the appropriate projections of the
polarization tensor with the following projections:

PL:PL ¼ ðkikj=k2Þðkikj=k2Þ ¼ 1; ð31Þ

PT:PT ¼ ðδij − kikj=k2Þðδij − kikj=k2Þ ¼ 2; ð32Þ

PL:PT ¼ ðkikj=k2Þ:ðδij − kikj=k2Þ ¼ 0; ð33Þ

PL:Pb ¼ ðkikj=k2ÞðbibjÞ ¼ 0; ð34Þ

PT:Pb ¼ ðδij − kikj=k2ÞðbibjÞ ¼ 1; ð35Þ

PL:Pbk ¼ ðkikj=k2ÞðϵijηbηÞ ¼ 0; ð36Þ

PT:Pbk ¼ ðδij − kikj=k2ÞðϵijηbηÞ ¼ 0; ð37Þ

Pb:Pbk ¼ ðbibjÞðϵijηbηÞ ¼ 0; ð38Þ

Pbk:Pbk ¼ ðϵijηbηÞðϵijηbηÞ ¼ 1; ð39Þ

where Pa:Pc ¼ ðPaÞijðPcÞij and the dot product refers to
the contraction of both indices. The polarization tensor in
Eq. (24) can be written in terms of the projection tensors as

Πij ¼ iωσePL þ iωσePT þ iωσHPbk: ð40Þ

Using the contractions, Eqs. (31)–(39), to find the coef-
ficients of Eq. (30) in terms of Eq. (24),
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Π:PL ¼ α0 ¼ iωσe; Π:PT ¼ 2β0 þ γ0 ¼ 2iωσe; ð41Þ

Π:Pb ¼ γ0 þ β0 ¼ iωσe; Π:Pbk ¼ δ0 ¼ iωσH: ð42Þ

With these, the coefficients are found to be

α0 ¼ iωσe; β0 ¼ iωσe;

γ0 ¼ 0; δ0 ¼ iωσH: ð43Þ

The structure function corresponding to Pij
b and along

the direction of the magnetic fields is shown to be zero,
γ0 ¼ 0, and the rest, α0, β0, and δ0 are shown to be related
to the conductivities.

B. Propagator and the dispersion relation

The inverse of the propagator can be obtained from the
relation with the Polarization tensor,

½Δ−1�ij ¼ α1P
ij
L þ β1P

ij
T þ δ1P

ij
bk; ð44Þ

where the coefficients are obtained as

α1 ¼ ð−ω2 þ α0Þ; β1 ¼ ½ðk2 − ω2Þ þ β0�; δ1 ¼ δ0;

ð45Þ

where the coefficient γ1 corresponding to Pij
b is

γ1 ¼ γ0 ¼ 0.
The tensor exists in the same space as its inverse; hence,

we can expand the propagator along the same components
and obtain

½Δ�ij ¼ α2P
ij
L þ β2P

ij
T þ δ2P

ij
bk; ð46Þ

using the property, ½Δ−1�ij½Δ�jη ¼ δiη, and using the follow-
ing contractions:

ðPTÞijðPTÞjη ¼
�
δiη −

kikη
k2

�
; ð47Þ

ðPLÞijðPLÞjη ¼
kikη
k2

; ð48Þ

ðPTÞijðPbkÞjη ¼ ϵiηθb
θ −

kikj

k2
ϵjηθbθ; ð49Þ

ðPTÞijðPLÞjη ¼ 0; ð50Þ

ðPLÞijðPbkÞjη ¼
kikj

k2
ϵjηθbθ; ð51Þ

ðPbkÞijðPbkÞjη ¼ −δiη þ bηbi; ð52Þ

we obtain the coefficients of the propagator as

α2 ¼ −
−2α1β1 − 2β21 − δ12

ðα1 þ β1Þðα1β1 þ δ21Þ
; ð53Þ

β2 ¼ −
−α21 − α1β1 þ δ21

ðα1 þ β1Þðα1β1 þ δ21Þ
; ð54Þ

δ2 ¼ −
ðα1 þ β1Þδ1

ðα1 þ β1Þðα1β1 þ δ21Þ
: ð55Þ

To find the poles and the dispersion relations, we can solve
for the denominators to be zero, which are factorized as

Δ1 ¼ α1 þ β1 ¼ 0; Δ2 ¼ α1β1 þ δ21: ð56Þ

The dispersion relations of Δ1 are found by setting
ð−2ω2 þ k2 þ 2iωσeÞ ¼ 0,

ω1 ¼
iσe þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2e − 2k2Þ

p
2

;

ω2 ¼
iσe − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2e − 2k2Þ

p
2

: ð57Þ

The dispersion relations of Δ2 can be found by setting
ð−ω2 þ iωσeÞðk2 − ω2 þ iωσeÞ − ω2σ2H ¼ 0 and solving
for ω,

ω3 ¼
2iωσe
3

−
21=3½ðiωσeÞ2 − 3ðiωσHÞ2 − 3k2�

3l

þ l

3 × 21=3
; ð58Þ

ω4 ¼
2iωσe
3

þ ð1þ i
ffiffiffi
3

p Þ½ðiωσeÞ2 − 3ðiωσHÞ2 − 3k2�
22=3 × 3l

−
ð1 − i

ffiffiffi
3

p Þl
6 × 21=3

;

ω5 ¼
2iωσe
3

þ ð1 − i
ffiffiffi
3

p Þ½ðiωσeÞ2 − 3ðiωσHÞ2 − 3k2�
22=3 × 3l

−
ð1þ i

ffiffiffi
3

p Þl
6 × 21=3

; ð59Þ

where

l ¼
h
2iðiωσeÞ3 þ 18iððiωσeÞðiωσ2hÞ2Þ − 9iðiωσeÞk2

þ �
4
�ðiωσeÞ2 − 3ðiωσHÞ2 − 3k2�3 þ 2iðiωσeÞ3

þ 18iðiωσeÞðiωσHÞ2 − 9iðiωσeÞk2
�
2
�
1=2

i
1=3 ð60Þ

with ω6 ¼ 0. The hot QCD medium in the presence of a
weak magnetic field shows five modes; among these, only
the positive energy dispersion relations are considered. The
negative modes can be shown to arise due to the ambiguity
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in the positive and negative directions of the orthonormal
basis we have constructed.

IV. ENERGY LOSS OF A HEAVY QUARK

A heavy quark moving in the medium loses its energy
and is described by Wong’s equation. The classical equa-
tions which describe the evolution of a point charged
particle are given by

dxμðτÞ
dτ

¼ uμðτÞ;
dpμðτÞ
dτ

¼ gqaðτÞFμν
a ðxðτÞÞuνðτÞ;

dqaðτÞ
dτ

¼ −gfabcuμðτÞAμ
bðxðτÞÞqcðτÞ; ð61Þ

where τ, xðτÞ, and pμðτÞ are the proper time, the trajectory,
and the four momentum of the heavy patron, respectively.

The four velocity uμ is given by uμ ¼ pμðτÞ
m withm being the

mass of the heavy particle.
The energy loss expression of the heavy patrons is

obtained by imposing two conditions on Wong’s equation.
First, the gauge condition where uμAμ

a ¼ 0 implies that
the third Wong’s equation goes to zero, or the charge is
independent of the proper time and a constant. The second
condition is that the quark’s momentum and energy evolve in
time without changing the magnitude of its velocity while
interacting with the field. Now considering the second
Wong’s equation, it simplifies under these conditions,

−
dE
dX

¼ gqa
u
juj :E

a
indðXÞ: ð62Þ

The induced field, EindðXÞ, can be obtained from the
equation of the propagator,

Ej
indðKÞ ¼ iω½ΔijðkÞ�Jexti ðKÞ: ð63Þ

The external current of a point charge in Fourier space is
given by

JextðKÞ ¼ igqau
ω − u:kþ i0þ

: ð64Þ

Contracting the external current with the propagator, we
obtain the induced electric field

Ej
indðXÞ ¼ −igq

Z
dωd3k

�
α2P

ij
Lui þ β2P

ij
T ui þ δ2P

ij
bkui

�

×
exp iðkixi − ωtÞ
ω − ui:ki þ i0þ

; ð65Þ

and using this, the energy loss of the heavy patron can be
written as

−
dE
dX

¼ CFαs
2π2juj

Z
dωd3k

�
α2P

ij
Luiuj þ β2P

ij
T uiuj

þ δ2P
ij
bkuiuj

� exp iðkixi − ωtÞ
ω − ui:ki þ i0þ

; ð66Þ

with CF ¼ 4=3 being the Casimir invariant and αs is the
QCD coupling constant. It can be seen that the antisym-
metric projection tensor does not contribute to the energy
loss of heavy quarks due to the projection of uiuj being
zero, ðPij

bkÞuiuj ¼ 0.

V. RESULTS AND DISCUSSIONS

The dynamics of the hot QCD matter can be understood
through the dispersion relations and can be obtained by
solving for ω in Δ1 and Δ2 as given in Eq. (56). The
solution to Δ1 has one positive real dispersion relation and
two imaginary solutions. The dispersion relations of Δ1 are
related to σe, the Ohmic conductivity. We have plotted the
positive real dispersion relation of Δ1 in the left panel
of Fig. 1. The dispersion relation has been normalized
with the plasma frequency, ωLo

p ¼ mLo
D =

ffiffiffi
3

p
, and plotted
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FIG. 1. Dispersion relation curve of (left panel) ω2 and (right panel) ω3 modes with different conditions of the magnetic field, constant
magnetic field, and time-varying magnetic field with τb ¼ 10, 2 fm−1. The graph is plotted at T ¼ 2TC with TC ¼ 0.17 GeV.
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against k̃ ¼ k=ωLo
p . The time dependent nature of the

magnetic field has been studied by considering three
different cases of the magnetic field, constant magnetic
field, and time dependent magnetic field with two decay
rates of τb ¼ 10; 2 fm−1. We see that the effects of the
magnetic field are more pronounced in the low k̃ region.
The time dependent nature of the magnetic field is seen
to increase the dispersion relation with a faster decaying
magnetic field, τb ¼ 2 fm−1, having the larger effect. The
dispersion relation of Δ2 has one positive real part, ω3,
that has been plotted in the right panel of Fig. 1. The
dispersion relation of Δ2 is related to both the Ohmic and
Hall conductivity, with the Hall one related through
δ1 ¼ iωσH. The behavior of ω3 is similar to that of ω2

while significantly larger than ω2.
Our findings have undergone a comparative analysis

with the outcomes derived from both weak and strong field
hard thermal loop results, as mentioned in [37]. In this
work, magnetic fields of magnitudes jeBj ¼ 0.001 GeV2

and jeBj ¼ 0.36 GeV2 were considered for the analysis,
with the angles between the magnetic field and the wave
number denoted as π=6 and π=2, respectively. It is shown
in [37] that there are only two positive real modes for the
case with the magnetic field being perpendicular to the
wave number, biki ¼ 0, as realized in our case, too. It is
worth highlighting that the conclusions drawn from the
linear response theory align well with those derived
from one loop QCD results. To improve the precision
of predictions offered by the linear response theory,
we propose further refinement through the integration
of medium interactions into the distribution function,
employing the quasiparticle approach. Another avenue
for future investigation would be to analyze the effect of
the collision kernels on the dispersion relations by utilizing
the Bhatnagar-Gross-Krook collision kernel. However,
such considerations are beyond the scope of the present
work and are intended to be explored as a future research
project.

The imaginary dispersion relations are plotted in
Figs. 2–4. The imaginary part of ω1 is plotted at a constant
temperature of t ¼ 2Tc in the left panel of Fig. 2. The
time dependent nature of the magnetic field is seen by
looking at the three cases of the magnetic field, similar
to the analysis in Fig. 1. It is seen to decrease with the
normalized wave number, k̃. The time dependent nature of
the magnetic field decreases the dispersion relation with a
faster decaying magnetic field, τb ¼ 10 fm−1, decreasing
the dispersion relation the most. In the right panel of
Fig. 2, we have plotted the other imaginary dispersion
relation in ω2. The imaginary part of ω2 increases with k̃,
with the faster decaying magnetic field having the most
impact on the dispersion relation. The growing positive
imaginary mode of ω2 may lead to instabilities in the
medium.
The dispersion relations of Δ2 consist of three complex

solutions. The imaginary parts of ω3 and ω4 are plotted in
Fig. 3 and the left panel of Fig. 4, respectively. These results
underscore the influence of the time dependent magnetic

0.00 0.02 0.04 0.06 0.08 0.10

0.45

0.50

0.55

0.60

0.65

k

Im
1 Lo

p

Time Varying B, B 2 fm
Time Varying B, B 10 fm–1

–1

Constant B

0.00 0.02 0.04 0.06 0.08 0.10
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

k

Im
2 Lo

p

Time Varying B, B 2 fm 1
Time Varying B, B 10 fm 1
Constant B

FIG. 2. Imaginary modes of (left panel) ω1 and (right panel) ω2 with different conditions of the magnetic field, constant magnetic field,
and time-varying magnetic field with τb ¼ 10 fm−1 and τb ¼ 2 fm−1. The graph is plotted at T ¼ 2TC with TC ¼ 0.17 GeV.
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field, indicating that the decay rate of the magnetic field
significantly impacts the dispersion relation. In the right
panel of Fig. 4, we have plotted the imaginary part of ω5.
It is seen to be growing with k̃ and may perhaps lead to
instabilities in the medium.
The energy loss of heavy quarks is plotted in Fig. 5 for

the charm (left panel) and bottom quarks (right panel). The
introduction of the time-varying magnetic field increases
the energy loss, with a fast decaying magnetic field having
the most significant effect. The difference between the
energy loss of charm and bottom quarks is also observed
and found to be in accordance with an earlier work [44].
The lighter of the two quarks, the charm quark, experiences
a greater energy loss within the same momentum range
when compared to its heavier counterpart, the bottom
quark. This arises due to the fact that a quark with a
greater mass travels at a slower velocity when the momen-
tum remains constant. Consequently, a particle moving
slowly interacts less with the medium and experiences less
energy loss.

VI. CONCLUSION AND OUTLOOK

The collective modes of a hot QCD medium are obtained
through the polarization tensor in a background weak time
dependentmagnetic field within a linear transport theory. The
dispersion relation and the collective modes are obtained by
invoking Maxwell’s equation. The hot QCD medium inter-
actions are incorporated through the collision term in the
relaxation time approximation. The dependence of the
collective modes on the wave number is plotted, and the
effects of the magnetic field are prominent in the lower wave
number regions. The imaginary parts of the collective modes
are shown to be significantly affected by the magnetic field
and are also dependent on the temperature of the medium
through the conductivities.We have also observed the energy
loss of the heavy quarks moving through a medium in
background time dependent electromagnetic fields. The
decay rate of the magnetic field is seen to impact the energy
loss of the heavy quarks significantly. We observe that the
heavier quark (bottom) loses less energy than the lighter
(charm) quark, the heavier particle at a fixed value of
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FIG. 4. Imaginary modes of (left panel) ω4 and (right panel) ω5 with different conditions of the magnetic field, constant magnetic field,
and time-varying magnetic field with τb ¼ 10 fm−1 and τb ¼ 2 fm−1. The graph is plotted at T ¼ 2TC with TC ¼ 0.17 GeV.
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momentump travels at a lower velocity, and a slowlymoving
particle loses less energy in the medium. These findings are
consistent with existing works with constant magnetic fields.
An immediate extension of the work would be to look

at the effects of the equation of state on the collective
behavior. The effects of momentum anisotropy on the
system would also be a good extension of the project.
Working with more realistic collision kernels such as the
Bhatnagar–Gross–Krook (BGK) and the modified BGK
would be another direction where our future investigations
will focus. The realization of a hot QCD medium in terms
of a refractive index would also be taken up in the future.

Furthermore, investigating RAA in future work could be
crucial as it provides a vital link between theoretical
predictions and experimental findings.
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