
Partial widths from analytical extension of the wave function: Pc states

Zi-Yang Lin ,* Jian-Bo Cheng ,† Bo-Lin Huang ,‡ and Shi-Lin Zhu §

School of Physics and Center of High Energy Physics, Peking University 10087, China

(Received 19 June 2023; revised 24 June 2023; accepted 16 November 2023; published 14 December 2023)

A new approach to partial widths is proposed through the analytical extension of the wave function in
momentum space. By including the residue of the wave function, the Schrödinger equation is extended to
the second Riemann sheet. As a result, the partial width is associated with the pole of the wave function.
The resonance wave function is convergent in momentum space and can be used to evaluate other
observables. This approach is applied to a coupled-channel analysis for Pc states, involving the contact
interactions and one-pion-exchange potential with the three-body effects. Under the reasonable assumption
that the off-diagonal contact interactions are small, the JP quantum numbers of the Pcð4440Þ and the
Pcð4457Þ are 1

2
− and 3

2
− respectively. The low energy constants are fitted using the experimental masses and

widths as input. The Pcð4312Þ is found to decay mainly to ΛcD̄�, while the branching ratios of the
Pcð4440Þ and Pcð4457Þ in different channels are comparable. Three additional Pc states at 4380 MeV,
4504 MeVand 4516 MeV, together with their branching ratios, are predicted. Additionally, a deduction for
the revised one-pion-exchange potential involving the on-shell three-body intermediate states is provided.

DOI: 10.1103/PhysRevD.108.114014

I. INTRODUCTION

Searching for exotic states composed of four or more
quarks has been a hot topic in hadron physics [1–8]. Since
the discovery of the hidden-charm pentaquarks, the Pc

states, (also named as PN
ψ in line with the new naming

convention for the exotic states [9]), have been investigated
in a variety of works. Although the Pc states are commonly
believed to be the bound states of the charmed mesons and
baryons, only their masses or binding energies can be
obtained from the Schrödinger equation. In this work, we
aim to derive their branching ratios in the open-charm
channels, together with their masses and total widths in
a self-consist framework. We apply the complex scaling
method (CSM) to a coupled-channel analysis and explain
how the analytical extension of the wave function works.
Besides, we include the effect of the on-shell three-body
intermediate states.
The Pcð4380Þ and Pcð4450Þ states were first observed

in the J=ψp invariant mass spectrum in the Λ0
b → J=ψpK−

decays by the LHCb Collaboration in 2015 [10,11].

They carried out a more precise analysis with a larger data
sample in 2019, and discovered a new state Pcð4312Þ and
the two peak structure of the Pcð4450Þ, namely Pcð4440Þ
and Pcð4457Þ [12]. Their masses and widths are listed in
Table I, which are fitted under the incoherent relativistic
Breit-Wigner assumptions. Additionally, the evidence of a
new structure Pcð4337Þ was found in the B0

s → J=ψpp̄
decays in 2021 [13].
These pentaquarks lie close to and below the Σð�Þ

c D̄ð�Þ
thresholds, and are commonly believed to be the hadronic
molecules, which were first predicted in Refs. [14–16].
Since their discovery, they have been investigated in the
frameworks of the quark model [17,18], kinematical
effects [19–21], compact states coupled to the meson-
hadron channels [22], the QCD sum rule [23], the vector-
meson-exchange model [24,25], the one-boson-exchange
model [26], the large Nc approximation [27] and the chiral
effective field theory [28,29]. (For a detailed review, see
Refs. [5,6,8] and the review “pentaquark” in Ref. [30]). The
Pc states have also been investigated by lattice QCD in
charmonium-nucleon systems [31,32]. Recently, the Pc

states are first observed on lattice in ΣcD̄ and ΣcD̄�
channels [33].

TABLE I. The Pc states reported in Ref. [12].

State MðMeVÞ ΓðMeVÞ
Pcð4312Þþ 4311.9� 0.7þ6.8

−0.6 9.8� 2.7þ3.7
−4.5

Pcð4440Þþ 4440.3� 1.3þ4.1
−4.7 20.6� 4.9þ8.7

−10.1
Pcð4457Þþ 4457.3� 0.6þ4.1

−1.7 6.4� 2.0þ5.7
−1.9
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Since the pion exchanges provide a strong coupling

between the Σð�Þ
c D̄ð�Þ channels, a coupled-channel analysis

is required in the molecule picture. In two-body coupled-
channel scatterings, the T matrix or the S matrix appears as
a multivalued function of the center-of-mass energy. The
Riemann sheets are classified by the imaginary parts of
the momenta in the corresponding channels. The Riemann
sheet corresponding to the momentum with a positive
imaginary part is called the first (physical) sheet, and the
Riemann sheet corresponding to the momentum with a
negative imaginary part is called the second (unphysical)
sheet. Resonances and bound states, which are poles of the
T matrix, are distributed on these Riemann sheets. Among
them only the poles near the physical region significantly
affect the cross section. The Pc states are most likely to be
the quasi-bound states (Feshbach resonances). They are
on the first Riemann sheet with respect to the higher
thresholds and on the second Riemann sheet with respect to
the lower thresholds, which is also referred to as “proxi-
mal” Riemann sheet. Poles on these sheets usually cause
bumplike resonances seen in the cross section. In a
coupled-channel analysis, the two-body open-charm decay
widths will be obtained automatically. In Refs. [34–37], the
widths and T matrix residues of the Pc states are obtained
through the Bethe-Salpeter equation or the Lippmann-
Schwinger equation (LS equation).
The three-body effect should be taken into account

since the mass difference between the DðΛcÞ and D�ðΣcÞ
is comparable to the pion mass. The large transferred
energy of the exchanged pion results in a retarded
potential in coordinate space. Besides, the intermediate
ΛcD̄π state can be on-shell and contribute to the total
width. In Ref. [38], the authors discussed the three-body
effect and the consequent left-hand or right-hand cut in
the Tþ

cc state. When the mass difference is larger than the
pion mass, the one-pion-exchange (OPE) potential intro-
duces a right-hand cut at the three-body threshold and
the quasibound state lies on the second Riemann sheet
with respect to the three-body threshold. In Ref. [36,39],
the authors calculated the pole positions and couplings
of the Pc states in the framework of the time-ordered-
perturbation theory and the LS equation. In this work, we
retain both the relativistic form and the three-body effect
in the OPE potential and adopt the complex scaling
method (CSM).
The CSM is a shortcut to derive the bound states and

resonances simultaneously by extending the Schrödinger
equation to the complex plane [40,41]. In Ref. [42], we put
forward the CSM in momentum space to investigate the Tþ

cc
and Xð3872Þ. In this work, we further study the complex
wave function and develop the partial width formula.
Moreover, we systematically illustrate the CSM in momen-
tum space from the point of view of analytical extension. In
principle, with an appropriate choice of the integral path,
we can solve the poles of the T matrix on any Riemann

sheets. Similar transformations can be employed in LS
equations [43].
This paper is organized as follows. In Sec. II, we

introduce the Lagrangians including the OPE and contact
terms. In Secs. III and IV, we explain the CSM in
momentum space and its application to calculate the partial
width. In Sec. V, we derive the OPE potential involving
the three-body effect. Then in Sec. VI, we present the
parameters and effective potentials. In Sec. VII, we fit the
low energy constants (LEC) using the masses and widths
of the Pcð4312Þ, Pcð4440Þ and Pcð4457Þ as inputs and
predict their branching ratios in the open-charm channels.
We predict several states. Section VIII is a summary.

II. LAGRANGIAN

We interpret the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ as
the ΣcD̄ð�Þ molecules. A coupled-channel analysis is

performed in the Σð�Þ
c D̄ð�Þ system. The Lagrangian is

constructed under heavy quark spin symmetry (HQSS)
[44]. The leading order contact terms and OPE are
included.
Following Refs. [29,45], we organize the Λc and Σð�Þ

c

states into an isosinglet and an isotriplet. The matrices in
SUð2Þ flavor space read

ψ1¼
�

0 Λþ
c

−Λþ
c 0

�
; ψ3¼

2
64Σþþ

c
Σþ
cffiffi
2

p

Σþ
cffiffi
2

p Σ0
c

3
75; ψμ

3� ¼

2
64Σ�þþ

c
Σ�þ
cffiffi
2

p

Σ�þ
cffiffi
2

p Σ�0
c

3
75
μ

;

ð1Þ

where “1” denotes the iso-singlet, and “3” denote
the isotriplet. The ψμ

3� denotes the spin-3
2

Rarita-
Schwinger field.
The Σc and Σ�

c form a multiplet under HQSS, which can
be arranged into a superfield,

ψμ ¼ Bμ
3� −

1ffiffiffi
3

p ðγμ þ vμÞγ5B3;

ψ̄μ ¼ B̄μ
3� þ

1ffiffiffi
3

p B̄3γ
5ðγμ þ vμÞ; ð2Þ

where Bi (i ¼ 1; 3; 3�) is the light components of the heavy
baryon fields,

Bi ¼ eiMiv·x
1þ =v
2

ψ i; Hi ¼ eiMiv·x
1 − =v
2

ψ i: ð3Þ

Under the heavy quark symmetry, only the light compo-

nents with the projection operator 1þ=v
2

survive in the
leading order. The heavy components only contribute to
1=MQ corrections and vanish when the heavy quark mass
MQ → ∞. Considering the SUð2Þ chiral symmetry in
flavor space, the LO Lagrangian reads,
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LBϕ ¼ −Trðψ̄μiv ·DψμÞ þ iδa
2

Trðψ̄μσμνψ
νÞ

þ ig1ϵμνρσTrðψ̄μuρvσψνÞ þ g2Trðψ̄μuμB1 þ H:c:Þ;
ð4Þ

where the covariant derivative is Dμ ¼ ∂μ þ iΓμ, and δa
introduces the mass splitting between the Σc and the Σ�

c. Γμ

and uμ denotes the chiral connection (vector current) and
the axial current of Goldstone boson fields,

Γμ ¼
i
2
½ξ†; ∂μξ� ¼ −

1

4f2π
ϵabcτcðϕa

∂μϕ
bÞ þ � � � ;

uμ ¼
i
2
fξ†; ∂μξg ¼ −

1

2fπ
τa∂μϕ

a þ � � � ;

ξ ¼ expðiϕ=2fπÞ;

ϕ ¼ ϕaτa ¼
ffiffiffi
2

p  π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

!
; ð5Þ

where ϕ denotes the Goldstone boson field, τa denotes the
Pauli matrices in SUð2Þ flavor space, and fπ ¼ 92 MeV
stands for the pion decay constant.
Noticing that the total spin of light quarks in the

superfield is either 0 or 1, the spinor part of the superfield
corresponds to the spin of the heavy quark. Terms such as
ψ̄μ=uψμ and ψ̄μσνρuνvρψμ are forbidden in the leading order,
since the gamma matrices break the HQSS. In principle,
there are only two independent coupling constants g1 and
g2 in Eq. (4). In previous works [28,46], they are usually
related using quark models, and g2 can be evaluated from

the Σð�Þ
c → Λcπ decay,

g1 ¼ −1.47 ¼ −
ffiffiffi
2

p
g2; g2 ¼ 1.04: ð6Þ

The Lagrangians for the D̄ð�Þ sector can be constructed
similarly. The superfield H̃ for D̄ð�Þ reads

H̃ ¼ ðP̃�
μγ

μ þ iP̃γ5Þ
1 − =v
2

;

¯̃H ¼ γ0H†γ0 ¼ 1 − =v
2

ðP̃�†
μ γμ þ iP̃†γ5Þ;

P̃ ¼
�
D̄0

D−

�
; P̃�

μ ¼
�
D̄�0

D�−

�
: ð7Þ

Then the LO Lagrangian for the D̄ð�Þπ interaction reads

LH̃ϕ¼−hðiv ·D ¯̃HÞH̃i−1

8
δh ¯̃HσμνH̃σμνiþgh ¯̃H=uγ5H̃i: ð8Þ

Apart from the OPE potential, contact terms are required to
mimic the short-range interactions. There are six indepen-
dent terms in the LO Lagrangian since the gamma matrices,

which are related to the spin of the heavy quark, are not
allowed,

LBH ¼ C1h ¯̃H H̃iTrðB̄1B1Þ þ C2h ¯̃Hγμγ5τaH̃iTrðB̄1τ
aψμÞ

þ H:c: ð9Þ

þC3h ¯̃HH̃iTrðψ̄μψμÞþ iC4ϵσμνρvσh ¯̃Hγργ5H̃iTrðψ̄μψνÞ
ð10Þ

þ C5h ¯̃HτaH̃iTrðψ̄μτaψμÞ
þ iC6ϵσμνρvσh ¯̃Hγργ5τaH̃iTrðψ̄μτaψνÞ; ð11Þ

where h� � �i stands for the trace in spinor space and Trð� � �Þ
stands for the trace in flavor space. The C3ðC4Þ and C5ðC6Þ
terms differ only by an isospin factor. Since we focus on the
I ¼ 1

2
case, there are only four independent terms.

III. COMPLEX SCALING METHOD

We use CSM to search for the possible bound states or
resonances. The CSM is an analytical extension of the
Schrödinger equation, proposed by Aguilar, Balslev, and
Combes [47,48]. For a two-body scattering process, it is
equivalent to the nonrelativistic LS equation.
We start from the Schrödinger equation in momentum

space

EϕlðpÞ ¼
p2

2m
ϕlðpÞ þ

Z
p02dp0

ð2πÞ3 Vl;l0 ðp; p0Þϕl0 ðp0Þ; ð12Þ

where l, l0 are quantum numbers of the orbital angular
momenta, and p denotes the momentum in the center-of-
mass frame. The corresponding LS equation reads

Tðk0;k;k0Þ¼Vðk0;kÞþ
Z

∞

0

p2dp
ð2πÞ3

Vðk0;pÞTðp;k;k0Þ
Ek0−Epþi0þ ; ð13Þ

where Ek0 ¼
k2
0

2m, Ep ¼ p2

2m are the nonrelativistic kinetic
energies.
With a complex scaling operation on Eq. (12), p →

pe−iθ, ϕ̃lðpÞ¼ϕlðpe−iθÞ, which will not change the eige-
nenergy E, we derive the complex scaled Schrödinger
equation with a scaling angle θ,

Eϕ̃lðpÞ ¼
p2e−2iθ

2m
ϕ̃lðpÞ þ

Z
p02e−3iθdp0

ð2πÞ3
× Vl;l0 ðpe−iθ; p0e−iθÞϕ̃l0 ðp0Þ: ð14Þ

An equivalent complex scaling operation in coordinate
space will make the resonance wave functions convergent
at r → ∞. This can be roughly understood from the point of
view of the asymptotic wave function
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ψðrÞ⟶r→∞
fþl ðkÞe−ikr þ f−l ðkÞeikr;

⟶
r→r expðiθÞ

fþl ðkÞe−ikre
iθ þ f−l ðkÞeikre

iθ
; ð15Þ

where f�l ðkÞ are Jost functions. Resonances and bound
states correspond to the poles of the T matrix, or the zeros
of fþl ðkÞ. The first term vanishes and the second term
converges when Argkres > −θ. However, we stress that
this is an inaccurate explanation since the asymptotic form
is obtained assuming r is real, and in general, cannot
be extended to the whole complex plane [49]. A strict
analytical form of the wave function in coordinate space is
obtained in Eq. (22). As explained in Sec. IV, whether the
divergent term shows up depends on the integral path and
the poles of the wave function.
A typical distribution of the eigenenergies solved by the

CSM is shown in Fig. 1. The continuum states line up and
rotate as the complex scaling angle θ varies. Poles are
isolated from the continuum states. The region between the
continuum line and þx-axis corresponds the second
Riemann sheet and is where the resonances lie. The rest
of the complex plane corresponds to the 1st Riemann sheet
and is where the bound states lie.
In the coupled-channel cases, only the bound states

below the lowest channel can be directly solved in the
normal Schrödinger equation [Eq. (12)]. For a “bound
state” coupling to an open channel with a lower threshold,
its wave function of the lower channel will be divergent,
and thus cannot be solved. Poles of this type lie on the 1st
Riemann sheet of the higher channel, and the second
Riemann sheet of the lower channel. They are called the

quasibound states, Feshbach-type resonances or unstable
bound states. Using CSM, both their energies and widths
can be solved directly from Eq. (14). For a more precise
classification of the poles, see Ref. [50].

IV. ANALYTICAL EXTENSION OF WAVE
FUNCTION AND PARTIAL WIDTHS

Since the complex scaled Schrödinger equation is
equivalent to the LS equation, we can dig out the informa-
tion of the T matrix at the resonance energy Eres from
the corresponding resonance wave function. We will
present an approach to calculate the residues of the T
matrix, which corresponds to the partial widths of the states
under the narrow resonance approximation. There are
several previous works dealing with the partial widths
using CSM [51,52]. Our approach is derived in momentum
space without extra approximations.
The complex scaled wave function ψ̃ðrÞ solved from

Eq. (14) is indeed an analytical extension of the real wave
function ψðrÞ solved from Eq. (12). They are associated
through the Schrödinger equation,

hkjT̂ þ V̂jϕi ¼ ERhkjϕi; ð16Þ

where T̂, V̂ denotes the kinetic energy and the potential,
respectively, and the ER ¼ M − i Γ

2
is the resonance energy.

In the momentum presentation, we obtain

k2

2m
ϕðkÞ þ

Z
d3p
ð2πÞ3 Vðk; pÞϕðpÞ ¼ ERϕðkÞ; ð17Þ

or

ϕðkÞ ¼ 1

ER − k2
2m

Z
d3p
ð2πÞ3 Vðk; pÞϕðpÞ; ð18Þ

where k can be set to be any complex value, while p is
always real as long as we carry out the integral along
the real axis. Then we can extend the wave function to the
complex plane once we obtain the wave function on the
position real axis.
Furthermore, we can employ a complex scaling oper-

ation and derive

ϕðkÞ ¼ 1

ER − k2
2m

Z
d3p
ð2πÞ3 e

−3iθVðk; pe−iθÞϕ̃ðpÞ; ð19Þ

where ϕ̃ðpÞ ¼ ϕðpe−iθÞ.
The complex scaling operation is not always feasible

since it requires limp→∞p3Vl;l0 ðk; pÞϕðpÞ → 0. Here we
assume it to be true since the potential usually contains a
cutoff at large momenta. But it constrains the range of the
complex scaling angle θ, because the potential Vl;l0 ðk; pÞ is
always accompanied by some nonanalytical behaviors

FIG. 1. A typical solution of the complex scaled Schrödinger
equation. Eigenenergies are plotted on the complex plane.
The continuum states line up due to the same arguments
ArgðEÞ ¼ −2θ. Points with different colors stand for eigenener-
gies solved under different θ. With a Hermitian Hamiltonian, the
bound states lie on the negative real axis, while the resonances lie
on the fourth quadrant, and appear only when jArgðEÞj< 2θ.
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(unless it is a constant). For example, a monopole or dipole
regulator 1=ðq2 þ Λ2Þn introduces a left-hand cut to the
potential after the partial wave expansion, and an expo-
nential regulator expð−qn=ΛnÞ introduces a singularity
at infinity, which sets the constraint θ < π=ð2nÞ to avoid
divergence.
FromEq. (19),we see thatϕðkÞ diverges atk¼� ffiffiffiffiffiffiffiffiffiffiffiffi

2mER
p

.
This applies to both the bound states and resonances in the
scattering problems, in which the potential satisfies

lim
r→∞

r2VðrÞ → 0: ð20Þ

The poles of the wave function result in discontinuity
of the integral. (See Fig. 5 in Sec. V as an example.) In
Eq. (14) and Eq. (19), the integral paths above and below
the pole differ by the residue of the pole. Whether we take
into account the contribution of the pole in the integral
determines the type of the state. For a resonance on the
second Riemann sheet, the integral should be performed
below the pole.
Then we focus on the wave function in coordinate space,

which is related to the wave function in momentum space
through the Fourier transformation

ψ lðrÞ ¼
Z

∞

0

4πp2dp
ð2πÞ3 e−3iθϕlðpe−iθÞiljlðpre−iθÞ; ð21Þ

where jl is the lth spherical Bessel function, which is
divergent at p → ∞ when 0< θ < π. If we change the
integral path to θ ¼ 0 then we have to add the residue of the
pole to compensate for the discontinuity

ψ lðrÞ ¼
Z

∞

0

4πp2

ð2πÞ3 ϕlðpÞiljlðprÞdp

þ 2πiRes

�
4πp2

ð2πÞ3 ϕlðpÞiljlðprÞ
�				

p¼kR

¼
Z

∞

0

4πp2

ð2πÞ3 ϕlðpÞiljlðprÞdp

þ ilþ1
k2R
π
jlðkRrÞ lim

p→kR
ðp − kRÞϕlðpÞ; ð22Þ

where kR ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2mER

p
.

The first term in Eq. (22) is convergent at r → ∞, and
the second term gives the asymptotic behavior of ψ lðrÞ
at r → ∞,

ψ lðrÞ →
ilkR
2π

lim
p→kR

ðp − kRÞϕlðpÞ
eiðkRr−πl=2Þ

r
; ð23Þ

which diverges when kR is not real. If we employ a
transformation r → reiθ, then we have to replace p →
pe−iθ in the integral to keep jlðprÞ convergent at r → ∞.

When the integral path passes the pole, the second term
vanishes and the wave function becomes convergent.
In multichannel cases, the wave function of the jth

channel satisfies

ψ l;jðrÞ →
ilkR;j
2π

lim
p→kR;j

ðp − kR;jÞϕl;jðpÞ
eiðkR;jr−πl=2Þ

r
: ð24Þ

where kR;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjðER − Eth;jÞ

p
, mj and Eth;j are the

(reduced) mass and the threshold of the i-th channel.
We stress that Eq. (22) applies only to the poles on the

2nd Riemann sheet. For the poles on the 1st Riemann sheet,
the pole will not cross the integral path when θ varies to
zero. As shown in Fig. 2, for a pole on the 1st Riemann
sheet, the integral path can be rotated continuously from θ
to 0. So the second term in Eq. (22) vanishes. The wave
function tends to 0 as r → ∞. In other words, the state will
not decay to this channel. When calculating the partial
widths, we only need to consider the channels in which the
pole is on the 2nd Riemann sheet, no matter whether the
resonance energy is above or below the threshold. Notably,
kR;j is usually complex and kR;j in different channels can be
quite different.
The coefficients of the spherical wave in different

channels correspond to the component proportions of
the outgoing state. It represents the amplitudes of
decaying to different final states and is related to the
branching ratios of the resonance. It is not the modulus of

FIG. 2. The differences between the poles on the 1st and 2nd
Riemann sheets. Integrals along the brown dashed line and the
blue solid line are equal for the bound states, but different for
the resonances. The correct choice of the integral paths for the
resonances is the brown dashed line, which corresponds to the
equation on the 2nd Riemann sheet. For the resonances, if we
change the integral path to the blue solid one, then we need an
additional integral path along the green dashed circle for
compensation, which corresponds to the residue of the pole.
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the wave function but the residue of the wave function at
the resonance energy that determines the branching ratios.
Following the formula derived by Moiseyev and Peskin
[53], we obtain

Γ1

Γ2

¼
				 kR;1=μ1kR;2=μ2

				
				 kR;1limp→kR;1ðp − kR;1Þϕ1ðpÞ
kR;2limp→kR;2ðp − kR;2Þϕ2ðpÞ

				2: ð25Þ

Directly calculating the residue of the wave function
may yield a large numerical error, so we use an alterna-
tive approach. Noticing that the residue of ϕðpÞ at p ¼ kR
can be calculated through Eq. (19) by letting k → kR, we
finally derive

Γ1

Γ2

¼
				 kR;1μ1kR;2μ2

				
				 hkR;1jV̂jϕihkR;2jV̂jϕi

				2; ð26Þ

where

hkR;jjV̂jϕi ¼
Z

p2dp
ð2πÞ3 e

−3iθVjmðkR;j; pe−iθÞϕ̃mðpÞ; ð27Þ

where j, m are the channel labels.
If we choose the normalization condition defined by

c-product [54], which reads

ðϕjϕÞ¼
Z

d3k
ð2πÞ3ϕðkÞ

2¼
Z

d3k
ð2πÞ3e

−3iθϕðke−iθÞ2¼1; ð28Þ

then the expression above is exactly the residue of the S
matrix or T matrix,

ResjSjjðEÞjjE¼ER
¼
				 μjkR;j4π2

hkR;jjV̂jϕi2
				; ð29Þ

where j stands for the jth channel.
Compared with the LS equation, CSM gives the same

information of the positions and residues of the poles, but in
a faster and more direct way, since one does not have to
numerically search for the poles.
For the narrow resonances away from thresholds, the

residue of the S matrix corresponds to the partial width of
the resonance,

SijðEÞ ≈ δi;j −
i
ffiffiffiffiffiffiffiffiffi
ΓiΓj

p
E − ðM − i

2
ΓÞ : ð30Þ

For the resonances near the threshold, Eq. (30) does not
hold anymore. The partial widths can be still well defined
as the residues of the S matrix, but they no longer add up to
the total width. In this work, we only use Eq. (26) to
calculate the branching ratio, which is independent of the
choice of the normalization conditions.

V. EFFECTS OF THE THREE-BODY THRESHOLD

In line with Ref. [42], the on-shell intermediateDDðD̄Þπ
state plays an important role in the width of the Tþ

cc and

χc1ð3872Þ. Since the mass splitting between Λc and Σð�Þ
c is

larger than the pion mass, we include the effect of the three-
body intermediate states in the OPE potential in this work.
Still, we retain the 0-th component of the transferred

momentum q ¼ p − p0 for the OPE potential

V1π ¼ −C
ðS1 · qÞðS2 · qÞ

q20 − q2 −m2
π þ i0þ ; ð31Þ

where S1 and S2 are the spin operators of Σ
ð�Þ
c ðΛcÞ and D̄ð�Þ,

and p, p0 represent the center-of-mass momentum of the
initial and final state, respectively. C is a constant depend-
ing on the isospin and coupling constants.
Different from the DD� system, the OPE potential in

Σð�Þ
c ðΛcÞD̄ð�Þ arises from a direct diagram rather than a

cross diagram (see Fig. 3). We choose the q0 as the form

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗02 þm2

3

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

1

q
: ð32Þ

We start from the 4-dimensional equation

Tijðp0; p;p0
0; p0; EÞ ¼ Vijðp0; p;p0

0; p0Þ

þ
Z

d4l
ð2πÞ4 Vikðp0; l;p0

0; l0Þ

× Gkðl;EÞTkjðl; p; l0; p0; EÞ: ð33Þ

To avoid ambiguity, we write the 3-momentum p0; p and
energy p0

0; p0 separately. i; j; k are the channel labels. E is
the total energy and is conserved in the initial, intermediate

FIG. 3. The one-pion-exchange diagram. Left: direct diagram (Pc); Right: cross diagram (Tþ
cc). E denotes the center-of-mass energy.

The on-shell intermediate state contributes to the imaginary part.
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and final states. In general, the T matrices need not be on-
shell, namely p0

0; p0; E can be set to any value regardless of
p0; p. But for the on-shell T matrices, all momenta are on-
shell and the energies sum up to E, either in the initial or
final states.
Then we perform the integral on l0 using the residue

theorem. The propagator of the ith channel reads

Gkðl;EÞ ¼
i

ðl2 −M2
k1 þ iϵÞ½ðP − lÞ2 −M2

k2 þ iϵ� ; ð34Þ

where Mk1, Mk2 denote the masses of the particles in the
kth channel. P ¼ ðE; 0; 0; 0Þ is the total 4-momentum.
Then the poles read

ε�1 ¼ ∓

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þM2
k1

q
− iϵ

�
≈∓Mk1;

ε�2 ¼ E∓

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þM2
k2

q
− iϵ

�
≈ E∓Mk2: ð35Þ

The relative position of the poles are shown in Fig. 4.
There is also a pole in Vikðp0; l;p0

0; l0Þ, which can be
derived from Eq. (31)

ε�3 ¼ p0
0 ∓


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − p0Þ2 þm2

π

q
− iϵ

�
≈Mi1 ∓mπ ð36Þ

The possible poles of the T matrices are not considered.
For illustration, we regard Eq. (39) as an analytical extension
of T on p0

0-plane [like Eq. (19)] by setting the p0; p0 to
complex values while the integral on l is performed along the
real axis. Obviously, there are no poles of T on the p0

0-plane
other than those of V. In fact, we can solve the T matrix
formally T ¼ ½1 − VG�−1V. If we fix the p and E to certain
values and discretize thep0 or l, then the T matrix will reduce
to a “vector”. The poles correspond to the zeros of the
determinant j1 − VGj, where every term of the discretized T
vector is divergent. I.e., even a half-on-shell Tðp0; p;EÞ
matrix (p is on-shell while p0 is not) is divergent. The pole
structure does not appear on thep0

0-plane but is related to the
variable E.
Since we are discussing low energy physics, we suppose

the integral on l is regulated in a certain way, so the integral

is convergent and 3-momentum is small compared to the
masses of the charmed hadrons. Then we can estimate the
contributions of the poles.
In general, the far-away poles contribute little to the

integral, and we only count the poles with the other
poles in their neighborhood. For instance, ε−1 and εþ2 are
close to each other since E ≈Mk1 þMk2 in the non-
relativistic limit, from which the nonrelativistic form is
deduced,

Z
d4l
ð2πÞ4 Vikðp0; l;p0

0; l0ÞGkðl;EÞTkjðl; p; l0; p0; EÞ

→ −2π
Z

d3l
ð2πÞ4

Vikðp0; l;p0
0; ε

þ
2 ÞTkjðl; p; εþ2 ; p0; EÞ

ðεþ2 − ε−2 Þðεþ2 − ε−1 Þðεþ2 − εþ1 Þ
;

¼
Z

d3l
ð2πÞ3

Vikðp0; l;p0
0; ε

þ
2 ÞTkjðl; p; εþ2 ; p0; EÞ

4E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k2 þ l2
q

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k2 þ k20

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k2 þ l2
q

Þ
;

ð37Þ

where the center-of-mass momentum k0 satisfies

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k1 þ k20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

k2 þ k20

q
. After applying the non-

relativistic reduction and considering the normalization
constants, we obtain Eq. (13).
The poles εþ1 and ε−2 can be dropped [55] because

there is a (EþMk1 þMk2) in the denominator, and
Vikðp0; l;p0

0; p0Þ is small when p0 deviates from p0
0.

However, the poles ε�3 have a considerable contribution
when ε�3 gets close to εþ2 by accident. The condition reads

jMi1 −Mk1j ∼mπ; ð38Þ

which turns out to be true for the Σc − Λc or D� −D
systems.
Instead of directly calculating the residue of ε�3 , we select

an appropriate integral contour to include only one pole.
For example, ifMk1 −Mi1 ∼mπ, we perform the integral in
the upper half plane and consider only εþ2 . Subsequently,
we obtain the 3-dimensional LS equation

Tijðp0; p;p0
0; p0; EÞ ¼ Vijðp0; p;p0

0; p0Þ

þ
Z

d3l
ð2πÞ3 Vikðp0; l;p0

0; ε
þ
2 ðlÞÞ

×Gkðl;EÞTkjðl; p; εþ2 ðlÞ; p0; EÞ;
ð39Þ

where Gkðl;EÞ is a 3-dimensional propagator, as seen in
Eq. (13). In different channels, the choice of εþ2 and ε−1 can
be determined independently. Notably, the T matrix in the
left and right sides must have the same form to ensure the
LS equation to be an iterative equation. Then p0

0 must be set
to εþ2 ðp0Þ [56].

FIG. 4. The poles arise from the integral in Eq. (39). The
positions of ε�3 depend on the mass difference of the initial and
final particles. In this figure, the major contributions arise from
ε−1 , ε

þ
2 and εþ3 . We can perform the integral in the lower half plane

and consider only the residue of ε−1 .
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Then an appropriate choice of q0 in the OPE potential reads

q0 ¼
8<
:

εþ2 ðp0Þ − εþ2 ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

k2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þM2

i2

p
; Mk1 −Mi1 ∼mπ;

ε−1 ðp0Þ − ε−1 ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þM2

k1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i1

p
; Mi1 −Mk1 ∼mπ:

ð40Þ

One can use either of them if the mass difference is far away
from the pion mass. If repeating the analysis of the cross
diagram in the DD� system, one will find the appropriate
choice of q0 is always �ðE −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

D

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þM2

D

p
Þ,

as presented in Ref. [42], which indicates that it is theDDπ
intermediate state, rather than D�D�π, that is important.
When q0 > mπ , there is a singularity in the OPE

potential, which results in a right-hand (unitary) cut. It is
related to the on-shell three-body intermediate state accord-
ing to the optical theorem. As shown in Fig. 5, we use a
nonzero complex scaling angle θ to skip the singularity and
perform the integral in the 2nd Riemann sheet with respect
to the three-body threshold.

VI. EFFECTIVE POTENTIAL

Compared with the Born approximation in the scattering,
the effective potential is related to the Feynman amplitude
of the two-particle-irreducible diagrams

V ¼ −
1

4
M; ð41Þ

where the factor − 1
4
differs from the usual −

Q
i

1ffiffiffiffiffiffi
2Mi

p
because of the normalization of the heavy meson and
baryon fields.

We adopt a Gaussian regulator to suppress the potential
V at large momentum p, p0, which reads

F ðp; p0Þ ¼ exp ½−ðp2 þ p02Þ=Λ2Þ�: ð42Þ

We demand F ðp; p0Þ → 0 when p; p0 → ∞ before and after
the rotation in the complex plane to ensure that the
Schrödinger equation can be solved numerically, which
constrains the rotating angle θ < π=4.
A coupled-channel calculation is performed to inves-

tigate the mass and width of the Pc states. The channels
considered are listed in Table II. In this work, only the I ¼ 1

2

channels are considered. The masses and widths of the
particles are listed in Table III. We use an average mass for
an isospin multiplet. We do not consider the effect of their
widths, although they contribute to the width of the Pc
states. Apart from the Σ�

c, the width of the other charmed
hadrons is no more than 2 MeV. Since the Pc states are
below the nearest thresholds, the off-shell width of Σc is
smaller than its on-shell value. In this work, we leave it as
systematic uncertainties.
The LO contact terms have been investigated in many

previous works [28,34,36,37]. We adopt the notations in
Ref. [37] and rewrite the contact terms in Tables IV and V
for simplification. The extra i arises from the relative phase

FIG. 5. The integral path from 0 to ∞ in the complex p-plane.
The red point denotes the pole of the OPE potential located at
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

π

p
. When the pole passes across the positive real

axis, we need to change the integral path to maintain the
analytical continuity (blue solid line). Instead, we can carry
out a complex scaled integral (brown dashed line) to deal with
the pole.

TABLE II. The channels considered in the Σð�Þ
c ðΛcÞDð�Þ

systems (I ¼ 1
2
).

1 2 3 4 5

JP ¼ 1
2
− ΛcD̄ ΛcD̄� ΣcD̄ ΣcD̄� Σ�

cD̄�

JP ¼ 3
2
− ΛcD̄� ΣcD̄� Σ�

cD̄ Σ�
cD̄�

TABLE III. The masses and widths of the charmed baryons and
mesons (MeV). “–” means long-life particles whose width can be
ignored [30].

Baryons Mass Width Mesons Mass Width

Λþ
c 2286.46 – D− 1869.66 –

Σþþ
c 2453.97 1.89 D̄0 1864.84 –

Σþ
c 2452.65 2.3 D�− 2010.26 8.34 × 10−2

Σ0
c 2453.75 1.83 D̄�0 2006.85 <2.1

Σ�þþ
c 2518.41 14.78

Σ�þ
c 2517.4 17.2

Σ�0
c 2518.48 15.3
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of D̄ and D̄� in the definition of the superfield. The matrix
is Hermitian and the lower half of the table is omitted. The
constant A and B correspond to C1 and C2 in Eq. (11). Ca
corresponds to C3 and C5. Cb corresponds to C4 and C6.
We determine the LECs by fitting the masses and widths of
the Pc states.
Since we consider only the S-wave interactions, the OPE

potential can be written in an equivalent form,

V1π ¼ −C
ðS1 · qÞðS2 · qÞ

q20 − q2 −m2
π þ i0þ→ −C

1
3
q2ðS1 · S2Þ

q20 − q2 −m2
π þ i0þ ;

ð43Þ

where S1 and S2 are the vectors related to the spin operators

of the Σð�Þ
c ðΛcÞ or the D̄ð�Þ.

In Tables VI and VII, we list the coefficients Cij of the
OPE potentials. q0 for the different channels is determined

to be the energy difference of Σð�Þ
c or Λc in the initial and

final states. The coefficient matrix is symmetric and the
lower half of the table is omitted. Cij is defined as

V1π;ij ¼ Cij
1

f2π

q2

−q20 þ q2 þm2
π − i0þ : ð44Þ

VII. NUMERICAL RESULTS AND DISCUSSIONS

A. Fitting the LECs

We discretize Eq. (14) in momentum space to derive the
eigenenergies, which corresponds to the pole position of
the Pc states. In this work, the Pcð4312Þ is assigned to a
1
2
− ΣcD̄ state. The Pcð4440Þ and Pcð4457Þ are assigned to
the 1

2
− and 3

2
− ΣcD̄� states. As shown in Table VI, the OPE

potential is attractive in 1
2
− channel but repulsive in 3

2
−

channel. So we prefer to assign the Pcð4440Þ to the 1
2
−

channel. The fit under the opposite assignment is shown in
the Appendix.
In our fits, the cutoff Λ is fixed to 500 MeV, and there are

four LECs to be determined. However, the LEC A only
appears in the diagonal terms of the ΛcD̄ð�Þ channel. It
weakly affects the masses and widths through the coupled-
channel effects. Thus the fit is not sensitive to A. On the
other hand, A is important to determine whether the ΛcD̄ð�Þ
systems are bound. Thus we adopt two fitting strategies:
(1) setting A ¼ 0; (2) letting A varies to find the best fit.
The statistical uncertainties in the tables are estimated

by the condition χ2 ≤ 1þd:o:f:
d:o:f: χ20, where χ20 stands for the

minimum of χ2. The pole positions in Table VIII are
derived from the optimal set of LECs.
Table VIII shows the results when we assign Pcð4440Þ to

1
2
− and Pcð4457Þ to 3

2
−. In this case, Ca plays a major role

while the other LECs are relatively small. The Ca term

provides an attractive central potential to bind the Σð�Þ
c and

D̄, while the OPE potential provides the coupled-channel
interactions and introduces the spin splitting between the
Pcð4440Þ and Pcð4457Þ. Since the OPE potential in JP ¼
3
2
− ΣcD̄� system is repulsive, its mass is larger. A similar
relationship shows up in the Σ�

cD̄� system. There are bound
states in both 3

2
− and 1

2
− channels, and the energy of the 3

2
−

state is higher. Their mass splitting is of the same order of
magnitude as the mass splitting between the Pcð4440Þ
and Pcð4457Þ.
In Fit 2, the best fit reveals a large negative A. This

results in a bound ΛcD̄ð�Þ state, while the influence on the

TABLE V. The contact terms for the JP ¼ 3
2
− channels.

3=2− ΛcD̄� Σ�
cD̄ ΣcD̄� Σ�

cD̄�

ΛcD̄� A
ffiffiffi
3

p
iB B

ffiffiffi
5

p
B

Σ�
cD̄ Ca

iCbffiffi
3

p
ffiffi
5
3

q
iCb

ΣcD̄� Ca þ 2
3
Cb −

ffiffi
5

p
3
Cb

Σ�
cD̄� Ca − 2

3
Cb

TABLE VI. The coefficients Cij of the OPE potential for JP ¼
1
2
− channels.

1=2− ΛcD ΛcD̄� ΣcD̄ ΣcD̄� Σ�
cD̄�

ΛcD̄ 0 0 0
ffiffi
6

p
12
igg2

ffiffi
3

p
6
igg2

ΛcD̄� 0 −
ffiffi
6

p
12
igg2 −

ffiffi
2

p
6
gg2

1
6
gg2

ΣcD̄ 0
ffiffi
3

p
9
igg1 −

ffiffi
6

p
18
igg1

ΣcD̄� − 2
9
gg1 −

ffiffi
2

p
18
gg1

Σ�
cD̄� − 5

18
gg1

TABLE VII. The coefficients Cij of the OPE potential for
JP ¼ 3

2
− channels.

3=2− ΛcD̄� Σ�
cD̄ ΣcD̄� Σ�

cD̄�

ΛcD̄� 0 −
ffiffi
6

p
12
gg2

ffiffi
2

p
12
gg2

ffiffiffiffi
10

p
12

gg2
Σ�
cD̄ 0

ffiffi
3

p
18
igg1

ffiffiffiffi
15

p
18

igg1
ΣcD̄� 1

9
gg1 −

ffiffi
5

p
18
gg1

Σ�
cD̄� − 1

9
gg1

TABLE IV. The contact terms for the JP ¼ 1
2
− channels.

1=2− ΛcD ΛcD̄� ΣcD̄ ΣcD̄� Σ�
cD̄�

ΛcD̄ A 0 0
ffiffiffi
3

p
iB

ffiffiffi
6

p
iB

ΛcD̄� A −
ffiffiffi
3

p
iB −2B

ffiffiffi
2

p
B

ΣcD̄ Ca
2ffiffi
3

p iCb −
ffiffi
2
3

q
iCb

ΣcD̄� Ca − 4
3
Cb −

ffiffi
2

p
3
Cb

Σ�
cD̄� Ca − 5

3
Cb
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observed Pc states is small. The widths of the ΛcD̄ð�Þ
molecules arise from the imaginary part of the OPE poten-
tials, which is probably overestimated in our approximation.
Comparing Fit 1 and Fit 2, we conclude that the coupled-
channel interactions from OPE between ΛcD̄ð�Þ and ΣcD̄ð�Þ

are not sufficient to generate a ΛcD̄ð�Þ bound state. Never-
theless, if the interaction in ΛcD̄ð�Þ system is attractive
enough, there may exist three additional narrow states.
The total width of Pcð4312Þ is the largest, which

physically arises from the strong coupling and proximity
of the ΛcD̄� and ΣcD̄ channels. This differs from the center
value of the experimental result. One reason is the
uncertainties for the experimental widths are large, espe-
cially for Pcð4440Þ. This reduces the weight of the width of
Pcð4440Þ in the fit. Another important reason is that the
width of Σc is not included in the calculation, which may
influence the width of the Pc state by 1 to 2 MeV. For the
states with Σ�

c, the width may increase by 10 MeV.
In contrast, the width of the 1

2
− ΣcD̄� bound state is small

(except for the effect of the width of Σð�Þ
c ), although it is

strongly coupled to the 1
2
− ΛcD̄ channel and the phase space

is large. It indicates the influence from a relatively far
threshold is small. Since themomentum in the lower channel
could be large and the potential could be suppressed by the
regulator, it is not quite reasonable to consider the far-away
thresholds in a nonrelativistic framework.
In all fits, we find the JP ¼ 3

2
− states near the Σ�

cD̄ and
the Σ�

cD̄� thresholds always exist. They are on the 1st
Riemann sheet with respect to the Σ�

cD̄ð�Þ threshold. The
former corresponds to the previously reported Pcð4380Þ
and the latter is predicted to be located in the vicinity of

4520 MeV, whose width could be much larger than our
results since Σ�

c has a large width.

B. Partial width

The interaction between Λc and D̄ð�Þ is believed to be
weak because the spin and the isospin of the light quarks in
Λc are both zero. Through a S-wave interaction, they can be
coupled only to isospin-0 scalar mesons. Thus we choose
Fit 1 to calculate the branching ratios, root-mean-square
(rms) radii and component proportions of the Pc states. The
uncertainties are estimated in the domain χ2 ≤ 1þd:o:f:

d:o:f: χ20.
The uncertainties of Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
are similar to the experimental uncertainties due to the fit,
and the uncertainties of widths are large.
The rms radius and the component proportion are

defined by the c-product [57]

ðψ jr2jψÞ ¼
X
i

Z
r2ψ iðrÞ2d3r;

ðψ ijψ iÞ ¼
Z

ψ iðrÞ2d3r; ð45Þ

in which the wave function of the ith channel ψ i satisfies
the normalization conditionX

i

ðψ ijψ iÞ ¼ 1: ð46Þ

In the c-product, the inner product is defined using the
square of the wave function rather than the square of its
modulus. Although ψ iðrÞ is divergent at infinity in open
channels, the integral in Eq. (45) can be defined using
analytical extension, and is generally not real.
As shown in Table IX, the imaginary part of the

rms radius is small, which indicates the state is similar
to the stable states. The rms radii are of the order of
magnitude of 1 fm and qualitatively in proportion to the
inverse of the binding energies, which is in accordance with
the molecular state assumption.
All the states are found to be the quasibound states. In

other words, the momenta with respect to the higher
thresholds have positive imaginary parts, which results
in convergent wave functions in coordinate space, while it
is opposite for the lower thresholds. In the higher channels,
the pole is on the 1st Riemann sheet and the divergent term
of Eq. (22) vanishes. The wave function is similar to that of
the bound states, which implies the possibility of finding
two free particles in infinity is zero. Although the residue of
the T matrix in Eq. (30) may be large, the state will not
decay to the corresponding channel. Thus, when we
evaluate the branching ratios, only the lower channels,
of which the pole lies on the 2nd Riemann sheet, are
considered. The three-body decays are partly included in
the total width, but not considered in the branching ratios.

TABLE VIII. The fitting result when assigning Pcð4440Þ to 1
2
−

and Pcð4457Þ to 3
2
−. The units for LECs are GeV−2, and the units

for the pole positions (M − iΓ
2
) and cutoff Λ are MeV. The

quantum numbers and main components are listed in parentheses.

Fit 1 Fit 2

χ2=d:o:f 1.13 1.08
Λ 500 500
A 0 −32þ15

−50
B 2.3þ5.6

−3.8 −0.3þ5
−5

Ca −53.0þ3.0
−3.0 −59.0þ8

−6
Cb 1.3þ2.2

−4.8 4.3þ3
−10

Pcð4312Þ 4309.4 − 3.8iðΣcD̄; 1
2
−Þ 4312.4 − 5.1iðΣcD̄; 1

2
−Þ

Pcð4440Þ 4443.4 − 1.6iðΣcD̄�; 1
2
−Þ 4438.7 − 1.8iðΣcD̄�; 1

2
−Þ

Pcð4457Þ 4458.6 − 0.5iðΣcD̄�; 3
2
−Þ 4457.6 − 0.9iðΣcD̄�; 3

2
−Þ

Other states

4158.1 − 0.3iðΛcD̄; 1
2
−Þ

4288.4 − 0.8iðΛcD̄�; 1
2
−Þ

4377.8 − 1.6iðΣ�
cD̄; 3

2
−Þ 4292.6 − 1.7iðΛcD̄�; 3

2
−Þ

4503.9 − 0.5iðΣ�
cD̄�; 1

2
−Þ 4375.4 − 1.8iðΣ�

cD̄; 3
2
−Þ

4516.0 − 1.6iðΣ�
cD̄�; 3

2
−Þ 4497.2 − 0.9iðΣ�

cD̄�; 1
2
−Þ

4513.0 − 2.6iðΣ�
cD̄�; 3

2
−Þ

LIN, CHENG, HUANG, and ZHU PHYS. REV. D 108, 114014 (2023)

114014-10



Although the branching ratios in different channels are
mostly comparable, the Pcð4312Þ is an exception. The state
decays mainly to the ΛcD̄� channel, while the decay to
the ΛcD̄ channel is suppressed since the OPE potential
vanishes in the ΛcD̄� → ΛcD̄ or ΣcD̄ → ΛcD̄. In disregard
of the uncertainties, the branching ratios to the closer
channels are likely to be larger. For the Pcð4457Þ, the
branching ratio to the Σ�

cD̄ channel is larger. For the

Pcð4440Þ and Pcð4504Þ, the branching ratios to the
ΛcD̄� channel are relatively small.
We further calculate the proportion of components using

the probability defined by c-product and the results are
listed in Table X. The Pcð4312Þ shows a mixing of ΛcD̄�

and ΣcD̄, while the other states are nearly a single-channel
bound state. Since they are bound states in the correspond-
ing channels, they can only decay to the lower channels.

TABLE X. The components of the Pc states. The probability in the ith channel is defined by the c-product ðϕijϕiÞ
and hence has an imaginary part. The unit is %.

1
2
− Pcð4312Þ Pcð4440Þ Pcð4504Þ
ΛcD̄ 0.00þ0.00

−0.00 0.07þ 0.01iþ0.03þ0.00i
−0.06−0.00i 0.06þ 0.07iþ0.03þ0.02i

−0.06−0.04i
ΛcD̄� 5.3 − 0.5iþ5.5þ3.9i

−4.6−0.9i 0.14 − 0.01iþ0.10þ0.01i
−0.12−0.01i 0.08þ 0.05iþ0.05þ0.00i

−0.07−0.02i
ΣcD̄ 94.5þ 0.2iþ4.6þ0.9i

−5.5−4.1i 0.11þ 0.04iþ0.08þ0.02i
−0.08−0.03i 0.07 − 0.02iþ0.06þ0.02i

−0.05−0.01i
ΣcD̄� 0.2þ 0.3iþ0.1þ0.2i

−0.2−0.3i 99.1þ 0.2iþ0.5þ0.1i
−0.4−0.1i 0.09þ 0.22iþ0.04þ0.18i

−0.07−0.16i
Σ�
cD̄� 0.02þ 0.05iþ0.03þ0.05i

−0.04−0.04i 0.6 − 0.2iþ0.4þ0.1i
−0.4−0.1i 99.7 − 0.3iþ0.2þ0.2i

−0.1−0.2i

3
2
− Pcð4380Þ Pcð4457Þ Pcð4516Þ
ΛcD̄� 0.24þ 0.17iþ0.12þ0.08i

−0.21−0.06i 0.01þ 0.00iþ0.01þ0.01i
−0.01−0.00i 0.03þ 0.08iþ0.05þ0.02i

−0.04−0.05i
Σ�
cD̄ 99.6 − 0.3iþ0.2þ0.2i

−0.3−0.1i 0.01þ 0.01iþ0.01þ0.02i
−0.01−0.01i 0.08þ 0.03iþ0.05þ0.03i

−0.05−0.03i
ΣcD̄� 0.08þ 0.06iþ0.13þ0.03i

−0.08−0.05i 99.92 − 0.07iþ0.04þ0.04i
−0.09−0.06i 0.07þ 0.09iþ0.05þ0.08i

−0.05−0.07i
Σ�
cD̄� 0.10þ 0.07iþ0.19þ0.04i

−0.10−0.06i 0.06þ 0.05iþ0.08þ0.05i
−0.03−0.03i 99.81 − 0.19iþ0.09þ0.09i

−0.06−0.09i

TABLE IX. The root-mean-square radii and open-charm branching ratios of the Pc states. LECs in Fit 1 are
adopted. The unit for M and Γ is MeV, the unit for RMS radii is fm, and the unit for the branching ratios is %. “–”
means the state will not decay to the channel.

1
2
− Pcð4312Þ Pcð4440Þ Pcð4504Þ
M 4309.4þ2.7

−2.5 4443.5þ3.7
−3.5 4504.0þ6.1

−4.7
Γ 7.8þ6.6

−6.6 3.1þ0.8
−1.4 1.5þ0.4

−1.4
Mexp 4311.9� 0.7þ6.8

−0.6 4440.3� 1.3þ4.1
−4.7

Γexp 9.8� 2.7þ3.7
−4.5 20.6� 4.9þ8.7

−10.1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕijr2jϕiÞ

p
0.63 − 0.11iþ0.07þ0.09i

−0.07−0.09i 0.60 − 0.01iþ0.03þ0.01i
−0.01−0.00i 0.58þ 0.00iþ0.03þ0.00i

−0.01i−0.01i
ΛcD̄ 0.04þ0.01

−0.02 10.8þ8.0
−2.7 8.7þ7.0

−6.6
ΛcD̄� 99.96þ0.02

−0.01 38.4þ24.9
−30.6 24.6þ17.1

−18.3
ΣcD̄ – 50.9þ38.6

−27.4 31.6þ16.2
−14.4

ΣcD̄� – – 35.2þ8.7
−9.7

Σ�
cD̄� – – –

3
2
− Pcð4380Þ Pcð4457Þ Pcð4516Þ
M 4377.9þ2.3

−3.0 4458.6þ1.4
−2.5 4516.0þ2.1

−2.5
Γ 3.2þ1.7

−3.1 1.0þ0.3
−0.4 3.2þ1.4

−1.7
Mexp 4457.3� 0.6þ4.1

−1.7
Γexp 6.4� 2.0þ5.7

−1.9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕijr2jϕiÞ

p
0.74 − 0.03iþ0.06þ0.02i

−0.06−0.02i 0.84þ 0.01iþ0.08þ0.01i
−0.08−0.01i 0.67 − 0.01iþ0.03þ0.01i

−0.02−0.01i
ΛcD̄� 100 26.9þ30.0

−22.5 18.1þ23.7
−14.5

Σ�
cD̄ – 73.1þ22.5

−30.0 45.6þ7.9
−13.1

ΣcD̄� – – 36.2þ6.6
−10.6

Σ�
cD̄� – – –
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The Pcð4380Þ is a molecule of the Σ�
cD̄. The Pcð4440Þ and

Pcð4457Þ are the molecules of ΣcD̄�. The Pcð4504Þ and
Pcð4516Þ are the molecules of Σ�

cD̄�. The branching ratios
are derived from the probabilities.

VIII. SUMMARY

We perform a deduction of the analytical extension of
wave functions in momentum space. Then the analytical
behavior of the wave function in coordinate space is
obtained using the Fourier transformation. We show how
CSM works from the point of view of analytical extension.
Whether we include the residue of the pole of the wave
function in the integral or not will affect which Riemann
sheet the pole is located on. In this way, the branching ratio
is derived from the complex wave function. Such a
formalism can be easily extended to other systems.
In order to make use of the experimental values of the

widths of the Pc states, we have performed a coupled-
channel analysis using CSM. The potential arises from
OPE involving the on-shell three-body intermediate states
and contact terms with undetermined LECs. We use the
masses and widths of the Pcð4312Þ, Pcð4440Þ, Pcð4457Þ as
inputs to fit the LECs. Then we calculate the branching
ratios of the open-charm two-body final states of the
observed Pc states and other predicted states.
Assuming the coupled-channel effects arise mainly from

OPE, which implies the LECs B and Cb are small, we
prefer to assign the Pcð4440Þ to 1

2
− and the Pcð4457Þ to 3

2
−.

Under this assignment, three additional states are obtained
at the vicinity of 4380 MeV, 4504 MeV and 4516 MeV,
which are mainly the bound states of Σ�

cD̄ð�Þ. The mass
splitting of the latter two states is similar to that of the
Pcð4440Þ and Pcð4457Þ, whereas their widths may be
larger than our prediction because of the large width of
the Σ�

c. If we interchange the assignment, the 1
2
− Σ�

cD̄� may
not be bound. Since the observed Pc states depend weakly
on the LEC A, its value is unlikely to be determined.
However, a large negative A in the best fit will result in
extra states which are mainly ΛcD̄� bound states. Given
that the interactions in the ΛcD̄ system are weak in meson-
exchange models, we force A to be zero and calculate the
branching ratios.
Our result shows that all the states are the quasibound

states near the physical region. The Pcð4312Þ has consid-
erable proportions in the ΛcD̄� and ΣcD̄ channels. It lies on
the 1st Riemann sheet with respect to the ΣcD̄ threshold
and the 2nd Riemann sheet with respect to the ΛcD̄�

threshold. It decays mainly to ΛcD̄� rather than ΛcD̄.

Other states are mainly the bound states of the closest
channel, and decay only to the lower channels. The branch-
ing ratios of decaying to the closer channels tend to be larger.
These channels will be helpful to search for the Pc states.
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APPENDIX: INTERCHANGING THE SPIN
ASSIGNMENTS

Table XI shows the result when we assign Pcð4440Þ to 3
2
−

and Pcð4457Þ to 1
2
−. In this case, Cb becomes important

because it reverses the spin splitting between the 3
2
− and 1

2
−

states. One remarkable feature is that Cb introduces a large
repulsive potential in the 1

2
− Σ�

cD̄� channel, and they are not
bound anymore. There will be only one state around the
Σ�
cD̄� threshold with JP ¼ 3

2
−. However, if we allow A to

vary, there will be the ΛcD̄� bound states, and their mass

splitting will not be reversed since Cb is in the Σð�Þ
c sector.

TABLE XI. The fitting result when assigning Pcð4440Þ to 3
2
−

and Pcð4457Þ to 1
2
−. The 1

2
− Σ�

cD̄� system is not bound. The units
for LECs are GeV−2, and the units for the pole positions (M − iΓ

2
)

are MeV. The quantum numbers and main components are listed
in parentheses.

Fit 3 Fit 4

χ2=d:o:f 1.58 0.92
Λ 500 500
A 0 −38.3þ15

−20
B −0.1þ6.1

−2.8 −8.8þ5.4
−4.1

Ca −55.4þ4.7
−3.9 −67.1þ5.0

−4.3
Cb −30.2þ5.0

−4.7 −28.3þ5.2
−3.8

Pcð4312Þ 4308.2 − 3.5iðΣcD̄; 1
2
−Þ 4311.9 − 4.9iðΣcD̄; 1

2
−Þ

Pcð4440Þ 4446.7 − 0.5iðΣcD̄�; 3
2
−Þ 4439.1 − 0.8iðΣcD̄�; 3

2
−Þ

Pcð4457Þ 4458.4 − 1.8iðΣcD̄�; 1
2
−Þ 4457.4 − 3.6iðΣcD̄�; 1

2
−Þ

Other states

4154.2 − 0.6iðΛcD̄; 1
2
−Þ

4277.1 − 0.8iðΛcD̄�; 1
2
−Þ

4377.5 − 1.6iðΣ�
cD̄; 3

2
−Þ 4285.9 − 2.2iðΛcD̄�; 3

2
−Þ

4526.7 − 0.2iðΣ�
cD̄�; 3

2
−Þ 4372.7 − 1.8iðΣ�

cD̄; 3
2
−Þ

4524.5 − 1.4iðΣ�
cD̄�; 3

2
−Þ

4526.9 − 0.3iðΣ�
cD̄�; 1

2
−Þ
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