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In this paper we show that β0�, the β-function slopes in the electric and magnetic theories, are equal at the
corresponding infrared fixed points. This follows from the scaling of the correlators of the trace of the
energy momentum tensors. The slopes β0� determine the scaling dimensions. Our paper can be considered
as a commentary to D. Anselmi, M. T. Grisaru, and A. Johansen [Nucl. Phys. B491, 221 (1997)]; it
proposes an improved derivation not based on a rather contrived construction by D. Kutasov [Phys. Lett. B
351, 230 (1995)], D. Kutasov and A. Schwimmer [Phys. Lett. B 354, 315 (1995)], and D. Kutasov, A.
Schwimmer, and N. Seiberg, [Nucl. Phys. B459, 455 (1996)]. As a byproduct we note that γ0Q�—the slopes

of the matter superfield anomalous dimension—vanish at both edges of the conformal window where one
of the dual theories is strongly coupled. Finally, we determine the two-coupling magnetic fixed point at
weak coupling correcting the result of I. I. Kogan, M. A. Shifman, and A. I. Vainshtein [Phys. Rev. D 53,
4526 (1996); Phys. Rev. D59, 109903(E) (1999)].
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I. INTRODUCTION

Yang-Mills theories withN ¼ 1 supersymmetry produce
a wide variety of exact results. One of the most important is
the Seiberg duality (for reviews see Refs. [1–4]) which states
that in deep infrared an SUðNcÞ gauge theory ofNf flavors is
dual to a SUðNDÞ (ND ≡ Nf − Nc) gauge theory with Nf

flavors and N2
f color-singlet mesons. As is usual with

dualities, when the original (electric) theory is weakly
coupled then the dual theory, referred to as magnetic, is
strongly coupled, and vice versa.
In the conformal window (CW) which lies in the interval,

3

2
Nc ≤ Nf ≤ 3Nc; ð1Þ

both theories are asymptotically free and conformal in the IR
due to an IR fixed point. We will limit ourselves to the
window (1) assuming that Nf;c ≫ 1 with Nf=Nc fixed. The
lower and upper boundaries are referred to as the CWedges.
Above the upper edge the electric theory becomes free while

at Nf < 3
2
Nc the same transition happens in the magnetic

theory. The edges can be obtained either from the Novikov-
Shifman-Vainshtein-Zakharov (NSVZ) beta functions [5,6]
or from the unitarity bound [7]. Recently, an alternative
interpretation has been given in terms of a smooth matching
to the chirally broken phase with pion physics [8].
In this paper we focus on the slopes of the β functions in

both dual theories in the deep IR (labeled by the subscript �),

β0� ¼
∂

∂α
βj

�
: ð2Þ

Since the above slope is related to the scaling dimension of a
physically observable operator, the trace of the energy-
momentum tensor (TEMT), which has a geometrical mean-
ing, the slopes in the electric and magnetic theories must
coincide,

β0�jel ¼ β0�jmag; ð3Þ
for each given value ofNf from the CW. For a the definition
of β0�jmag see Sec. IV.
Equation (3) was originally obtained in [9] by analyzing

the Konishi currents in both dual theories on the basis of the
Kutasov construction [10].1 Our goal in this paper is to
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1That Eq. (3) could be true is supported indirectly by the fact
that in perturbation theory the sign of β0jel changes at higher
orders in the expansion [11].
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bypass the Kutasov construction which is not needed for
the derivation of (3). Also, we derive a previously unknown
relation between γ0Q� and β0� in the electric theory and revisit
numerical calculations near the CW edges.
The organization of the paper is as follows. In Sec. II we

collect some basic elements of the N ¼ 1 theories which
are dual in the CW. Section III is devoted to the study of
the two-point function of the TEMTs which allows us to
establish the anomalous dimension of the x dependence of
the two-point function in question In Sec. IV we address
the analogous two-point function in the magnetic theory.
In the latter, in addition to the gauge interaction, a Yukawa
interaction is present too, proportional to a meson and two
quark superfields. Therefore, instead of the single β func-
tion of the electric theory, in the magnetic theory we have
to deal with two β functions. We define the notion of β0� in
the magnetic theory and determine this quantity. In Sec. V
we derive a new relation between γ0Q� and β0�. In Sec. VI
we calculate β0s and other necessary parameters at weak
coupling near the edges of the CW. We also determine a
stable IR fixed point which corrects the result of [12].
Finally, the Appendix is devoted to the derivation of the
TEMT in the supersymmetric formalism and the R and
Konishi current correlators.

II. PRELIMINARIES AND NOTATION

In this section we outline the formalism to be used below
and introduce our notation. The latter follows the second
book in [2] (which, in turn, is very close to that of Wess and
Bagger [13]).
The electric theory contains SU(Nc) gauge bosons and

the following matter sector; 2Nf chiral superfields in
the fundamental representation, namely, Nf fundamentals
Qk and Nf antiuindamentals Q̃k, k ¼ 1; 2;…; Nf. The
Lagrangian has the form

L¼
�

1

4g2

Z
d2θWaαWa

αþH:c:

�

þ
X

all flavors

�Z
ðd2θd2θ̄Q̄f̄eVQfþ

Z
d2θd2θ̄ ¯̃Qf̄e−VQ̃fÞ

�
:

ð4Þ
The above Lagrangian is written in the ultraviolet; as we
descend down to the IR, 1=g2 is replaced by the running
constant 1=gðμÞ2 and the matter-field Z factor [ZQðμÞ]
appears in front of the second term in (4).2

In the dual magnetic theory the dual quark superfields
are denoted as qf and q̃f and the dual color is

ND ≡ Nf − Nc: ð5Þ

In addition, in the magnetic theory one has to introduce a
color-singlet matter field represented by the matrix Mi

j and
the superpotential

W ¼ fMi
jqiq̃

j; ð6Þ

where f is the Yukawa coupling which can be chosen to be
real. The corresponding kinetic term is normalized canoni-
cally, TrðM̄MÞ.
The β function and the matter anomalous dimension are

defined as

βðαÞ ¼ ∂αðμÞ
∂L

; α ¼ g2

4π
;

γQ ¼ −
d logZQ

dL
; L ¼ log μ: ð7Þ

In the dual magnetic theory we will introduce g2D and

αD ¼ g2D
4π.

Finally we will need the expression for the NSVZ beta
function [5,6],

β ¼ −
α2

2π
½3Nc − Nfð1 − γQÞ�

�
1 −

Ncα

2π

�
−1
: ð8Þ

At one loop

γQ ¼ −
α

π

N2
c − 1

2Nc
→ −

α

2π
Nc: ð9Þ

We will also need the expression for the hypercurrent
divergence which includes all three geometric anomalies. In
the operator form it can be read off from Eq. (A1) provided
we omit the first line which is needed only in the magnetic
theory. Then we conclude that

ðθρρÞel ¼ CGβðαÞOG; ð10Þ

where

OG ¼ −2Re½WαaWa
α�θ2el ¼ ½Ga

μνGμνa − 2D2 − 4iλ̄aα̇D
α̇αλaα�el;
ð11Þ

and

CG ¼ ð16π α2Þ−1: ð12Þ

Here and in what follows we will refer to OG in the right-
hand side of (11) as G2; hence, the corresponding notation.

III. hθρρðxÞθααð0Þi IN THE ELECTRIC THEORY

For a generic local operator OðxÞ the two-point function
hOðxÞOð0Þi in the conformal limit takes the form ðx2Þ−ΔO

2We omit the subscript “el” where there is no option
of confusion.
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where ΔO is the sum of the normal (engineering) and
anomalous dimensions of the operator O,

ΔO ¼ dO þ γO: ð13Þ
The engineering dimension of TEMT is obviously dG2 ¼ 4.
We will focus on the anomalous dimension.
The energy-momentum tensor θαβ is symmetric and

conserved and has a geometric nature. This tensor itself
does not change under the variation of μ, as we descend
from the UV to the IR. Hence, its trace is not renormalized
either. The particular expression for θρρ depends on how we
normalize the gluon-field stress tensor, but the final result
for the x-scaling dependence near the conformal point is
unambiguously determined by the theory and is physical,

hOGðxÞOGð0Þi ∝
1

ðx2ÞΔG2
; ΔG2 ¼ dG2 þ γG2 ; ð14Þ

where dG2 is the engineering dimension of the operator OG
and γG2 is the anomalous dimension of OG.
Without loss of generality we can chooseOG normalized

in accordance with Eq. (4). The TEMT is given in (10)–(12)
where the β function in the electric theory is presented in
(8). Differentiating both sides over L ¼ log μ we arrive at

0 ¼ OG
∂

∂L

�
β

α2

�
þ β

α2
∂OG

∂L
; ð15Þ

which implies

βðαÞOG
∂

∂α

�
β

α2

�
− γG2 OG

β

α2
¼ 0: ð16Þ

Taking into account that βðα�Þ ¼ 0 while α� ≠ 0 we find
the well-known result

ðγG2Þ� ¼
∂β

∂α

����
�
≡ β0�: ð17Þ

Finally we can present the two-point function of the
TEMTs at the points x and 0. Note that the x dependence is
fully determined by the two-point function (14); therefore,

hθρρðxÞθρρð0Þi ∝ ½ð16πα2Þ−1βðαÞjμ�2hOGðxÞOGð0Þiμ
∝ ½ð16πα2Þ−1βðαÞjμ�2

1

ðx2Þ4
1

ðx2μ2Þβ0� : ð18Þ

The μ dependence in Eq. (18) enters explicitly through
μ−2β

0� , and implicitly, through the prefactor. At the con-
formal point μ → 0 the scale dependence of the prefactor

P ¼ ð16π α2Þ−1βðαÞjμ
is

P →

�
μ

Λ

�
β0�
; ð19Þ

where Λ is a μ independent scale parameter which can be
seen as the analog of ΛQCD that determines the logarithmic
running in the chirally broken phase. As a result, we arrive
at the following final result for the correlator at hand,

hθρρðxÞθααð0Þi ∝
1

ðx2Þ4
1

ðx2Λ2Þβ0� : ð20Þ

This is our main result in this section. For completeness,
and since it follows rather directly, we derive the R and
Konishi current correlators in Appendix B.
At first sight, Eq. (20) might seem confusing. Indeed, as

is well-known in the conformal theory the TEMT scaling
dimension is four since the dilatation current is conserved.
In the conformal limit the β function exactly vanishes and
so does the two-point function (up to contact terms) under
consideration. This is consistent with the TEMT vanishing
on “physical states.”
Our analysis is carried out in the vicinity of the

conformal point where the β function can be approximated
by the first nontrivial term of its expansion; namely,

β ¼ β0ðα�Þðα − α�Þ; βðα�Þ ¼ 0;

with α − α� small. At the very end we take the limit
α − α� → 0 where possible. Our strategy should be viewed
as a perturbation theory around the conformal point with
the correlator expanded in terms of β as can be seen
from Eq. (18).

IV. hθρρðxÞθααð0Þi IN THE MAGNETIC THEORY

In the magnetic theory the number of colors ND is given
in (5). In other words, SUgaugeðNcÞ → SUgaugeðNf − NcÞ,
with the same CW

3

2
ND ≤ Nf ≤ 3ND: ð21Þ

The matter fields of the magnetic theory qi and q̃j belong to
the (anti)fundamental representations of SUðNDÞ. In addi-
tion one must add a color-singlet matrix field Mi

j, depend-
ing on the flavor indices, and the superpotential shown in
Eq. (6) where f is the “second” holomorphic coupling
constant of the theory. The Lagrangian takes the form

L ¼
�

1

4g2DðμÞ
Z

d2θWaαWa
α þ H:c:

�

þ
X

all flavors

ZqðμÞ
Z

d2θd2θ̄q̃f̄eVqf

þ
Z

d2θd2θ̄½ZMðμÞTr ðM̄MÞ�

þ
�Z

d2θWðq̃; q;MÞ þ H:c:

�
; ð22Þ
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where the superpotential W is defined in (6). The M
superfield is in the magnetic representation; therefore
its dimension in the UV is one, and the coupling f is
dimensionless. The trace in the second line of (22) runs
over flavors. The Lagrangian (22) explicitly exhibits the
effect of the renormalization group (RG) flow. At the
classical level it is scale and conformally invariant. The μ
dependence breaks the scale symmetry and gives rise to
two β functions, βD for the gauge coupling and βf for the
super-Yukawa coupling. The latter appears only due to the
Zq;M factors when we apply the equations of motion.
Indeed, in passing to the canonically normalized matter
kinetic terms we obtain

f2

4π
→

fðμÞ2
4π

¼ f2

4π
½ZqðμÞ2ZMðμÞ�−1: ð23Þ

In what follows we will use the notation

af ≡ f2

4π
: ð24Þ

Then, the expressions for the magnetic β functions are as
follows:

βfðαD; afÞ≡ ∂

∂L
af ¼ af ½γMðαD; afÞ þ 2γqðαD; afÞ�;

βDðαD; afÞ ¼ −
α2D
2π

½3ND − Nfð1 − γqðαD; fÞÞ�

×

�
1 −

NDαD
2π

�
−1
; ð25Þ

where βD is the β function (8) with Nc → ND and γQ → γq
and the one for βf is obtained by differentiating (23). The
latter holds in principle up to nonperturbative corrections
since the nonrenormalization theorem of the superpotential
is perturbative in nature. However, at weak coupling,
nonperturbative corrections are exhausted by instantons
but they are absent since the R-symmetry implies that the
zero modes do not match for Nf > Nc þ 1. Moreover, it
has been argued that the absence of renormalon ambiguities
inside the conformal window implies the absence of non-
perturbative corrections [14]. We therefore conjecture that
the expression for βf is formally correct for Nf > Nc þ 1.
At the critical values of the coupling constants the sum of

anomalous dimensions vanishes,

γM� þ 2γq� ¼ 0:

Explicit leading-order expressions are given in Sec. VI.
In what follow we aim to show that (20) holds equally for

the magnetic theory when suitably adapted. This requires a
bit more work since in the magnetic theory we have two
couplings. The TEMT in the magnetic theory, given in
(A2), reads

Tρ
ρ ¼ CGβDðαD; afÞOG þ CWβfðαD; afÞOW ; ð26Þ

where OG and OW corresponds to the gluon and super-
potential part respectively, see Eqs. (A3)–(A5) in the
Appendix A. We may linearize both β functions around
the IR fixed point. If we define the coupling vector

δα≡
�
αD − αD�

af − af�

�
; ð27Þ

the linearized β function can be written as

∂

∂L
δα ¼ B�δαþOððδαÞ2Þ; ð28Þ

where B� is the gradient matrix

B� ¼
�
∂αDβD ∂afβD

∂αDβf ∂afβf

�
�
; ð29Þ

evaluated at the IR fixed point. The derivatives in the matrix
B are just numbers independent of the running αD and af
which can depend, however, on the numerical values of αD�
and af� (cf. Sec. VI).
Next, we can diagonalize the matrix B�, which generi-

cally has two unequal real eigenvalues λ− ≤ λþ.
3 Indeed, let

us introduce the matrix U diagonalizing B�,

Bdiag ¼def B̂ ¼ U−1B�U; B̂ ¼
�
λ− 0

0 λþ

�
: ð30Þ

Correspondingly, the “diagonalized form” for the column
δα in (27) becomes

δα̂≡U−1δα: ð31Þ

Then we can write

d
dL

δα ¼ B�δα ¼ UB̂δα̂; ð32Þ

or, alternatively

d
dL

δα̂ ¼ B̂δα̂: ð33Þ

The solution of the equation above takes the form,

δα̂ ¼
 ð μ

Λ−
Þλ−

ð μ
Λþ
Þλþ

!
; ð34Þ

where the eigenvalues λ∓ have to be non-negative and Λ∓
are related to the choice of initial condition, cf. Fig. 1.

3These eigenvalues are scheme independent under analytic
coupling redefinitions e.g., [15].
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Now let us return to Eq. (26). Introducing a row of
operators O,

O ¼ fCGOG; CWOWg; ð35Þ
we can rewrite (26), using the linear approximation in
Eq. (32), as follows:

θρρ ¼ OB�δα ¼ Ô B̂ δα̂; Ô ¼ OU: ð36Þ
Finally, we can find the matrix of anomalous dimensions Γ,

Γ ¼
�
γO1

0

0 γO2

�
; ð37Þ

for the operators O, or to be more exact, for two linear
combinations in Ô. To this end we differentiate both sides
in (36) over ∂L and arrive at

0 ¼ −ÔΓB̂δα̂þ Ô B̂ B̂ δα̂; ð38Þ
implying, in turn, that

Γ ¼ B̂; ð39Þ

cf. Eq. (30). In deriving (38) we used Eq. (33). From the
above we conclude that

hÔ1ðxÞÔ1ð0Þi ∝
1

ðx2Þ4
1

ðx2μ2Þλ− ; ð40Þ

where λ− is the lowest eigenvalue of the matrix B̂ and,
hence, of the matrix B�, see Eq. (29).4 Following [9] to
simplify notation we will denote

λ− ¼ β0mag: ð41Þ

Summarizing this section we conclude that

hTρ
ρðxÞTα

αð0Þimag ∝
1

ðx2Þ4þβ0�jmag
: ð42Þ

Since the Seiberg dual correlators must coincide in the
corresponding IR fixed points,

hTρ
ρðxÞTα

αð0Þimag ⟷
IR hTρ

ρðxÞTα
αð0Þiel; ð43Þ

we confirm that β0�jel ¼ β0�jmag holds as stated in Eq. (3) in
the introduction. This is the central result of our paper.

V. RELATION BETWEEN γ0Q� AND β0�
The β function of the electric theory (8) is essentially a

relation between the matter-field anomalous dimension γQ
and the β function itself. Since we have gained information
on β0� we may exploit this fact to deduce information on γ0Q�
by directly differentiating at the IR fixed point

β0� ¼ −
α2�
2π

Nf

1 − α�
2πNc

γ0Q�: ð44Þ

Hence, β0� and γ0Q� are proportional to each other throughout
the CW with a coefficient depending on the unknown
critical coupling α�. We note that the relation (44) is
generally scheme dependent and so is the fixed-point
coupling α� but β0� and γ0Q� are scheme independent under
analytic redefinitions of the coupling, cf. footnote 3. The
fact that both β0� and γ0Q� are zero simultaneously might not
be completely accidental. They both describe the pertur-
bation around the fixed point for a gauge theory with
massive mater, e.g., [16]. We remind the reader that γQ
equals minus the anomalous dimension of the mass to all
orders in perturbation theory in N ¼ 1 supersymmetry.
With (3) one obtains a strong coupling relation but

unfortunately the right-hand side contains the two unknowns
α� and γ0Q� for which we cannot solve simultaneously.
Nevertheless, one can deduce interesting information.
Since, β0� as a function of Nf starts at zero for Nf ¼ 3Nc

and then raises and lowers towards zero again at Nf ¼ 3
2
Nc,

theremust be at least two number of flavors,NðwÞ
f > NðsÞ

f , for
which

β0�jNðwÞ
f

¼ β0�jNðsÞ
f
; ð45Þ

holds (the superscriptsw and s stand for weakly and strongly
coupled with regards to the electric coupling). As we expect
the electric coupling to become continuously stronger
towards the lower edge of the CW one finds

FIG. 1. Illustration of the RG flow in the magnetic theory. Red
dots denote IR fixed points given in (52) for Nf just above 3

2
Nc

where the magnetic theory is weakly coupled.

4In fact, tracking the μ dependence in the prefactors one would
be able to see that μ in the denominator will be replaced by Λ−, in
much the same way as in passing from Eq. (18) to Eq. (20).
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α�j
NðwÞ

f
< α�j

NðsÞ
f
⇔ γ0Q� jNðwÞ

f
> γ0Q� jNðsÞ

f
; ð46Þ

which shows the curious result that γ0Q� is larger when the
theory is weakly coupled and vice versa.

VI. NEAR THE EDGES
OF THE CONFORMAL WINDOW

With the knowledge of the β functions one can inves-
tigate them at weak coupling. This is particularly interest-
ing in the magnetic case where there are two couplings.
As a warm-up we will first consider the electric case. The

β function is given in (3) and since the electric theory is
weakly coupled for Nf just below 3Nc we expand in the
following quantity

ϵ≡ 3Nc − Nf

Nf
≪ 1; ð47Þ

for which we find the critical coupling and the slope to be

α� ¼
2π

Nc
ϵ; β0� ¼ 3ϵ2; ð48Þ

upon using Eq. (9) for γQ.
In the magnetic case we first need to obtain the explicit

form of the Yukawa β function in (25). We need the
anomalous dimension at leading order in the couplings. We
have computed them explicitly

γq ¼ −
αD
π

N2
D − 1

2ND
þ af
2π

Nf; γM ¼ af
2π

ND; ð49Þ

and find agreement with the results found in Sec. 8 of [12].
The gauge coupling part is identical to the electric case
with the replacement Nc → ND and the part proportional to
the Yukawa coupling af is related to the computation in the
Wess-Zumino model.5 Assembling (25) and (49) we get the
explicit Yukawa β function to leading order,

βf ¼ af

�
af
2π

ðND þ 2NfÞ −
2αD
π

N2
D − 1

2ND

�
: ð50Þ

The function βf differs from Eq. (64) in [12] by a simple
typo, namely, in [12] one should replace

αD
π

→
2αD
π

;

cf. our Eq. (50). This typo seems to have propagated
further in their analysis and we thereby correct the IR fixed

point found in that paper. In analogy to the electric case we
define

ϵD ¼ 3ND − Nf

Nf
≪ 1; ð51Þ

for the dual magnetic theory to find the fixed point for the β
functions given in (50) with βf approximated as above.
Assuming an ansatz of the form αD; af ∝ ϵD we find the
following two solutions:

ND

2π
ðαD; afÞ� ¼ ϵD

� ð1; 0Þ af ¼ 0

ð7; 2Þ af ≠ 0
: ð52Þ

The first fixed point with no Yukawa is of the Banks-Zaks
type whereas the second one with the Yukawa coupling
switched on is less well-known. The Banks-Zaks fixed
point is unstable as the RG flow tends to the other fixed
point for af ≠ 0 (cf. Fig. 1 and [12]).
In order to obtain the slope we need the eigenvalues of

the B� matrix (29), for which we find

λ− ¼ 21ϵ2D; λþ ¼ 14ϵD; ð53Þ

such that λ− < λþ for ϵD ≪ 1. Since the slope of the β
function is determined by the minimal eigenvalue we
finally get the slope in terms of ϵD

6

β0�jel ¼ β0�jmag ¼ 21ϵ2D: ð54Þ

It is also interesting to consider the eigenvectors is
this approximation. We find the following nonorthogonal
eigenvectors:

ðv⃗−ÞT ¼
�
1;
63

2
ϵD

�
; ðv⃗þÞT ¼ 1ffiffiffiffiffi

53
p ð2;−7Þ; ð55Þ

corresponding to the eigenvalues given above. We infer
that for small ϵD the gluonic operator dominates over the
Yukawa term.

VII. CONCLUSIONS

In this paper we have shown that the slopes of the β
function at the IR fixed point, are equal to each other (3) in
the electric and the magnetic theories of the Seiberg duality.
This result was derived some time ago using the Konishi
currents and the Kutasov construction [9]. We found a
simpler way to obtain this result by matching the two-point
function of the trace of the energy-momentum tensor in the
electric and magnetic theory. By the very assumption of the

5In the Wess-Zumino model with superpotentialWðΦÞ ¼ Y
6
Φ3,

the Z-factor of the superfield Φ, as given in Eq. (2.7) in [17]
for example, is related to Zq ¼ ZΦjY2→2f2Nf

. Moreover, ZM ¼
ZqjNf→ND;gD→0. Our explicit computation passes this cross-check.

6The result in (54) can be compared to the one in [9]
where they obtained β0�jmag ¼ 21

4
ϵ2D, upon using the conversion

σ ≡ 3
2
− Nf

Nc
¼ 3

4
ϵD, which differs by a factor of 4.
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Seiberg duality such a geometric quantity has to match and
since its scaling is governed by β0� the result follows.
In passing we obtained a new relation between between

γ0Q� and β0� given in Eq. (44). The RG flow near the edge of
the conformal window previously discussed is [12] is
corrected. We obtain in addition the corresponding eigen-
values and eigenvectors of the flow in the magnetic theory.
These results might be useful in that β0� and γ0Q� are the
quantities that describe perturbations around a fixed point
in a gauge theory with matter.
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APPENDIX A: THE TRACE
OF THE ENERGY-MOMENTUM TENSOR

In superfields, the anomalies in the TEMT and in the
divergence of the R current are given by a unified formula
for the hypercurrent J αα̇ (see the second reference in [2],
Sec. X.27.4) which for our choice of the superpotential (6)
takes on the form

∂
αα̇J αα̇ ¼ −

i
3
D2

��
−
�
γM
2

þ γq

�
W
�

−
1

16π2
½3ND − Nf þ Nfγq�TrW2

�
þ H:c:;

ðA1Þ
where D is the spinorial derivative which singles out the θ2

component on the right-hand side. Equation (A1) refers to the
magnetic theory. In the electric theoryW ¼ 0, so the first line
disappears, ND → Nc and γq → γQ. Equation (A1) implies

θρρ ¼ CGβðαD; afÞOG þ CWβfðαD; afÞOW ; ðA2Þ
where

CG ¼ ð16πα2Þ−1; CW ¼
ffiffiffiffiffiffi
4π

af

s
; ðA3Þ

and

OG ¼ −2Re½WαaWa
α�θ2mag

¼ ½Ga
μνGμνa − 2D2 − 4iλ̄aα̇D

α̇αλaα�mag; ðA4Þ
OW ¼ −2Re½Mi

jqiq̃
j�
θ2
¼ −2Re½qFMq̃þ ψψ̃M þ perm�:

ðA5Þ

Here D is the D-term of the gauge superfield and F is the
F-term of the chiral superfields.

APPENDIX B: THE R CURRENT
AND KONISHI CURRENT CORRELATORS

Continuing from Sec. III we can find the scaling
dimension of the R and Konishi current in the electric
theory without much further effort. The (unimproved) R
current, enters the same supermultiplets as the energy-
momentum tensor,

Rμ ¼ −
1

g2
λaσμλ̄

a þ 1

3

X
f

ðψfσμψ̄f − 2iϕfD
↔

μϕ̄fÞ: ðB1Þ

This (unimproved) current is not conserved because of the
chiral anomaly. The R symmetry is anomalous,

∂μRμ ¼ ½ð−24πα2Þ−1βðαÞðGG̃þ � � �Þ�μ; ðB2Þ
where GG̃≡ Ga

μνG̃
μνa with the dual tensor G̃μνa ¼

1
2
εμναβGαβa and

Ga
μνG̃

μνa þ � � � ∝ ImW2;

cf. (A4). Taking into account the fact that the anomalous
dimension of ImW2 is the same as that of ReW2 we can
readily calculate the two-point function

h∂μRμðxÞ∂νRνð0Þi ∝ ½ð−24πα2Þ−1βðαÞjμ�2
1

ðx2Λ2Þβ0� ; ðB3Þ

from the anomaly in the hypercurrent which includes both
operators Rμ and θμν [2].
The result is the same as in (18), with the replacement

G2 → GG̃. Then, we can drop the derivatives in (B3) to
obtain

hRμðxÞRνð0Þi ∝
1

ðx2Þ3
1

ðx2Λ2Þβ0� : ðB4Þ

This x scaling law differs from that in (20) by the
engineering dimension of Rμ, namely dR ¼ 3 vs dθ ¼ 4.
The anomalous dimensions are exactly the same as they
have to be since they belong in the same supermultiplet.
Finally, let us consider the two-point function of the

Konishi current. There is a small nuance here which
deserves to be discussed. The Konishi current is defined as

Kμ ¼
X
ψf;ψ̃f

ð−ψfσμψ̄
f − ϕfiD

↔

μϕ̄
fÞ: ðB5Þ

By the same token, the flavor-singlet Konishi current is not
conserved due to the anomaly,7

7In the superfield language D̄2J K ¼ Nf

2π2
TrW2. The relation

between Kμ in (B5) and J K is as follows: Kμ is the θθ̄ component
of J K .
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∂
μKμ ¼

1

48π2
NfGG̃: ðB6Þ

Next, we note that the operator GG̃ on the right-hand side
resides in the same superfield W2 as G2. Therefore, the
anomalous dimension of GG̃ is the same as that of G2,

ðγGG̃Þ� ¼ ðγG2Þ�; ðB7Þ

where the latter has already been given in (17). Is there a
difference compared to the cases of TEMT and Rμ?
The answer is positive. Indeed, θρρ has the zero-anomalous

dimension. This is the reason why Eq. (20) has no sliding

scale μ. The cancellation of μ is achieved thanks to the
prefactor defined above Eq. (19). At the same time,Kμ has a
nonvanishing anomalous dimension. Hence, as a result, the
sliding scale μ is present in the correlation function

hKμðxÞKνð0Þi ∝
1

ðx2Þ3
1

ðx2μ2Þβ0� : ðB8Þ

If we compare this with Eq. (B4) we will see the sliding μ2

instead of fixed Λ2—this is the only difference. The IR
scaling law (B8) for the Konishi current was first derived
in [9].
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