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Motivated by the anisotropic momentum distribution of particles in heavy-ion collisions, we study the
angular dependence of quark average momentum and quark distribution function in the Polyakov-Nambu-
Jona-Lasinio quark model. We also investigate the phase transitions and net baryon number fluctuations in
anisotropic quark matter. The numerical results suggest that the QCD phase structure and isentropic
trajectories are sensitive to the anisotropic parameter at finite density, in particular, in the area near the
critical region and the first-order phase transition. Compared with the isotropic quark matter, the values
of baryon number kurtosis and skewness at lower collision energies are possibly enhanced with
the anisotropic momentum distribution squeezed along the direction of nucleus-nucleus collision in
experiments.

DOI: 10.1103/PhysRevD.108.114012

I. INTRODUCTION

Exploring the phase structure of quantum chromody-
namics (QCD) is an important topic in both theoretical and
experimental nuclear physics. The calculation from lattice
QCD indicates that the transformation from quark-gluon
plasma (QGP) to hadrons is a smooth crossover [1–8] at
vanishing and small baryon chemical potentials. Many
QCD inspired models/approaches further predict that there
exists a first-order phase transition with a critical end point
(CEP) connecting with a crossover transformation at finite
temperature and chemical potential (e.g., [9–23]). The
QCD phase structure can be probed due to the energy-
dependent behavior of the ratios of net-baryon number
fluctuations at chemical freeze-out [24]. The cumulants of
net proton (proxy for baryon) have been measured in the
Beam Energy Scan experiments at RHIC STAR, and the
nonmonotonic energy dependence of the net-proton num-
ber fluctuations have been discovered [25–27]. The exper-
imental data has aroused a wide discussion about whether
the QCD critical region has been reached.
The isotropic momentum distribution is usually assumed

to explore the phase structure in lattice QCD simulations
and QCD inspired models. However, deviations from
perfect isotropy are expected for a real quark-gluon plasma.

A large momentum-space anisotropy can arise due to the
rapid longitudinal expansion of the matter created in
relativistic heavy ion collisions and the anisotropy possibly
survive during the entire evolution of the medium [28]. A
similar result exists in hydrodynamic simulations. The ideal
relativistic hydrodynamics predict that the QGP would
tends to be isotropic on a timescale τ ∼ 0.5 fm=c [29,30]. In
practice, however, with the inclusion of viscous correction
sizable differences between the transverse and longitudinal
pressure can still be observed at times τ ≲ 2 fm=c [31–38].
Recently, the anisotropic hydrodynamics has also been
developed to account for large deviations from isotropy in
momentum space, which provides a more accurate descrip-
tion of nonequilibrium dynamics than usual relativistic
hydrodynamic models [39–43].
A natural question aroused is how the anisotropic momen-

tum distribution affects the QCD phase transition and final
observables in experiments. To answer this question, it is
necessary to explore various properties of anisotropic QGP.
The anisotropic distribution of particles in momentum space
can be phenomenologically described by introducing a
spheroidally anisotropic distribution function by stretching
or squeezing the isotropic distribution along one of the
directions. In Ref. [44], a popular one-particle distribution
function in anisotropic momentum space was first proposed
in the pioneer work by Romatschke and Strickland,
fanisoðpÞ ¼ ½exp½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2 þm2

p
− μÞ=T� � 1�−1,

where ξ is a parameter indicating the strength and type of
momentum-space anisotropy and n is the anisotropy direc-
tion. Such a parametrization is interesting in heavy-ion
collisions with the parton distribution to be squeezed along
the beam direction. By far, the anisotropic distribution in
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momentumspace has been considered to studyvarious issues,
such as, collective modes [45], quarkonium states [46,47],
photon and dilepton production [48,49], as well as transport
coefficients [50,51].
In this work, we focus on exploring the phase transition

in anisotropic QCD medium. Since the fluctuations of
conserved charges are closely related to QCD phase
transitions [22,52,53] and are also the sensitive probes
to diagnose the QCD phase structure in HIC experi-
ments [24–27], we further explore the correlation of
baryon number fluctuations with the phase transitions in
anisotropic QCD matter. The potential impact on exper-
imental data analysis of baryon number fluctuations are also
discussed. The 2þ 1 flavor PNJL quark model is taken in
the calculation, which describe well both the chiral phase
transition and (de)confinement phase transition of QCD.

II. FORMULAS FOR QUARK MATTER WITH AN
ANISOTROPIC MOMENTUM DISTRIBUTION

We first simply introduce the thermodynamic formulas
for isotropic quark matter, and then extend the relevant
formulas to the case of anisotropy in momentum space. The
Lagrangian density in the 2þ 1 flavor PNJL model is given
by [22,54]

L¼ q̄ðiγμDμþ γ0μ̂− m̂0ÞqþG
X8
k¼0

½ðq̄λkqÞ2þðq̄iγ5λkqÞ2�

−K½detfðq̄ð1þ γ5ÞqÞþdetfðq̄ð1− γ5ÞqÞ�
−UðΦ½A�;Φ̄½A�;TÞ; ð1Þ

where q denotes the quark fields with three flavors, u, d,
and s; m̂0 ¼ diagðmu;md;msÞ in flavor space; G and K
are the four-point and six-point interacting constants,
respectively. The μ̂ ¼ diagðμu; μd; μsÞ are the quark chemi-
cal potentials.
The covariant derivative in the Lagrangian is defined as

Dμ ¼ ∂μ − iAμ. The gluon background field Aμ ¼ δ0μA0 is
supposed to be homogeneous and static, with A0 ¼ gAα

0
λα

2
,

where λα

2
is SUð3Þ color generators. The effective potential

UðΦ½A�; Φ̄½A�; TÞ is expressed with the traced Polyakov
loop Φ ¼ ðTrcLÞ=NC and its conjugate Φ̄ ¼ ðTrcL†Þ=NC.
The Polyakov loop L is a matrix in color space

Lðx⃗Þ ¼ P exp

�
i
Z

β

0

dτA4ðx⃗; τÞ
�
; ð2Þ

where β ¼ 1=T is the inverse of temperature and A4 ¼ iA0.
In the mean field approximation, the constituent quark

mass can be derived as

Mi ¼ mi − 4Gϕi þ 2Kϕjϕk ði ≠ j ≠ kÞ; ð3Þ

where ϕi stands for quark condensate of the flavor i. The
thermodynamical potential of bulk quark matter is derived
as [55–60]

Ω ¼ UðΦ̄;Φ; TÞ þ 2Gðϕu
2 þ ϕd

2 þ ϕs
2Þ − 4Kϕuϕdϕs

− 2

Z
Λ

d3p
ð2πÞ3 3ðEu þ Ed þ EsÞ

− 2T
X

i¼u;d;s

Z
d3p
ð2πÞ3 ðlnA1 þ lnA2Þ; ð4Þ

where A1¼1þ3Φe−ðEi−μiÞ=Tþ3Φ̄e−2ðEi−μiÞ=Tþe−3ðEi−μiÞ=T ,
A2¼1þ3Φ̄e−ðEiþμiÞ=Tþ3Φe−2ðEiþμiÞ=Tþe−3ðEiþμiÞ=T , and
μi is the quark chemical potential. Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
is

the dispersion relation of quark in isotropic QCD medium.
The Polyakov-loop effective potential [59] taken in this

study is

UðΦ; Φ̄; TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2�; ð5Þ

where

aðTÞ¼ a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

and bðTÞ¼ b3

�
T0

T

�
3

:

ð6Þ

The logarithmic effective potential in Eq. (5) effectively
includes the Vandermonde term from the Jacobian of
transformation from Wilson line to Polyakov loop, and it
rectifies the anomaly of traced Polyakov loop withΦ > 1 at
high temperature for a simple polynomial form of
UðΦ; Φ̄; TÞ [10].
The parameters ai, bi listed in Table I are fitted according

to the lattice simulation of QCD thermodynamics in pure
gauge sector, and T0 ¼ 210 MeV is implemented in the
calculation. In the numerical calculation, a cutoff Λ is
implemented in three-momentum space for divergent inte-
grations. We take the model parameters obtained in [61]:
Λ¼ 602.3MeV, GΛ2 ¼ 1.835, KΛ5 ¼ 12.36, mu;d ¼
5.5, and ms ¼ 140.7 MeV, determined by fitting
fπ ¼ 92.4 MeV, Mπ ¼ 135.0 MeV, mK ¼ 497.7 MeV,
and mη ¼ 957.8 MeV.

TABLE I. Parameters in the Polyakov-loop potential [59].

a0 a1 a2 b3

3.51 −2.47 15.2 −1.75
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By minimizing the thermodynamical potential,

∂Ω
∂ϕu

¼ ∂Ω
∂ϕd

¼ ∂Ω
∂ϕs

¼ ∂Ω
∂Φ

¼ ∂Ω
∂Φ̄

¼ 0; ð7Þ

we can derive the equations of motion in medium as

ϕi ¼−2Nc

Z
d3p
ð2πÞ3

Mi

Ei
ð1−fiðpÞ− f̄iðpÞÞ ði¼ u;d;sÞ;

ð8Þ

∂U
∂Φ

−6T
X
i¼uds

Z
d3p
ð2πÞ3

�
1

A1

e−
Ei−μi

T þ 1

A2

e−2
Eiþμi

T

�
¼ 0; ð9Þ

and

∂U
∂Φ̄

−6T
X
i¼uds

Z
d3p
ð2πÞ3

�
1

A1

e−2
Ei−μi

T þ 1

A2

e−
Eiþμi

T

�
¼ 0: ð10Þ

In Eq. (8),

fiðpÞ ¼
Φe−ðEi−μiÞ=T þ 2Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T

1þ 3Φe−ðEi−μiÞ=T þ 3Φ̄e−2ðEi−μiÞ=T þ e−3ðEi−μiÞ=T

ð11Þ

and

f̄iðpÞ ¼
Φ̄e−ðEiþμiÞ=T þ 2Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T

1þ 3Φ̄e−ðEiþμiÞ=T þ 3Φe−2ðEiþμiÞ=T þ e−3ðEiþμiÞ=T

ð12Þ

are modified Fermion distribution functions of quark and
antiquark, respectively. For a given temperature and
chemical potential, the values of order parameters, ϕu,
ϕd, ϕs, Φ, and Φ̄ can be derived by solving Eqs. (8)–(10).
For anisotropic quark matter, the dispersion relation of

quasiparticles needs to be modified according to the
anisotropic momentum distribution. In this study we take
the Romatschke and Strickland scheme [44] in which the
nontrivial dispersion relation for a particle with mass m is
described by

Eaniso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2 þm2

q
: ð13Þ

Correspondingly, the distribution function of bosons and
fermions at temperature T and chemical potential μ is

fanisoðpÞ ¼ 1

½exp ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2 þm2

p
− μÞ=T� � 1

;

ð14Þ

where n is the unit vector along the anisotropy direction.
The anisotropic parameter ξ is defined as

ξ ¼ hp2⊥i
2hp2

ki
− 1; ð15Þ

where pk ¼ p · n is the momentum component parallel to
the direction n, and p⊥ ¼ jp − ðp · nÞ · nj is the compo-
nent perpendicular to n. The range of ξ is −1 < 0 < ∞,
which indicates the strength and type of momentum-space
anisotropy. The momentum distribution is isotropic for
ξ ¼ 0. For ξ > 0, the momentum distribution is squeezed
along n direction. For −1 < ξ < 0, it corresponds to a
stretched momentum distribution along the direction n.
Such a parametrization is interesting in heavy-ion

collisions with the momentum distribution to be squeezed
or stretched along one direction. Combined with the heavy-
ion collision experiments, it is reasonable and convenient to
choose n along the direction of nucleon-nucleon collision.
With this parametrization the dispersion relation for quarks
and antiquarks becomes

Eaniso
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξp2 cos θ2 þM2

i

q
: ð16Þ

The dispersion relation Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
in isotropic matter

in Eqs. (3)–(12) will be replaced with the new one to
explore the properties of anisotropic quark matter. At the
same time, all the relevant three-dimensional integrations
will be performed with the consideration of anisotropic
momentum distribution. We assume that the gluon field is a
background field, so the anisotropic distribution of quark
momentum does not affect the form of UðΦ; Φ̄; TÞ. The
modeling of anisotropic medium primarily relies on a
quasiparticle description where the medium effects are
encoded in the effective distribution functions.

III. NUMERICAL RESULTS AND DISCUSSIONS

To understand the anisotropic distribution of momentum
under different parameter ξ with a dynamical quark mass,
we first plot in Fig. 1 the angular dependence of the average
momentum of uðdÞ quark for ξ ¼ −0.4, 0, 0.4, respectively.
The mean value of momentum at the angle θ is defined as

p̄ðθ; ξÞ ¼
R
∞
0 pfðp; θ; ξÞdpR
∞
0 fðp; θ; ξÞdp ; ð17Þ

where the quark distribution function fðp; θ; ξÞ is given in
Eq. (11) with the modified dispersion relation in Eq. (16).
The function fðp; θ; ξÞ also depends on the order param-
eters (ϕi;Φ; Φ̄), which are determined for a given T and μB
by solving Eqs. (8)–(10). As an example, the average of
angular dependent momentum shown in Fig. 1 is calculated
at T ¼ 180 MeV and μB ¼ 0.
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In the case of ξ ¼ 0, Fig. 1 shows that p̄ðθ; ξÞ is
independent of angle θ, which is just the feature of
momentum isotropy. In the case of ξ ¼ −0.4, the average
of momentum is anisotropic with a maximum value at
θ ¼ 0 (i.e., along the anisotropic direction n) and a
minimum value at 90°, perpendicular to the anisotropic
direction n. The opposite happens in the case of ξ ¼ 0.4.
With the assumption of θ ¼ 0 being the anisotropic
direction n, Fig. 1 clearly demonstrates that the anisotropic
momentum is stretched along the anisotropic direction n
for ξ < 0 and squeezed for ξ > 0.
In Fig. 2, we further present the angular dependence of

quark distribution function fðp; θ; ξÞ for different ξ with
several fixed momentums, p ¼ 0.5, 1, 1.5, 2 fm−1. This
figure shows that fðp; θ; ξÞjp descends (increases) as θ
increases from 0° to 90° for ξ ¼ −0.4 (ξ ¼ 0.4). It also
indicates that, at a fixed angle, the anisotropy of fðp; θ; ξÞ
changes for different ξ at the same momentum p. This
possibly provides a potential method to test the anisotropic

parameter ξ if the angular and momentum dependence of
particle distribution in HIC experiments is available. A
further study will be carried on this issue.
Now we investigate the QCD phase transition at vanish-

ing chemical potential with different anisotropic parameter
ξ. We plot in Fig. 3 the pseudocritical critical temperatures
of both the chiral and deconfinement transformation
derived at μB ¼ 0 as functions of anisotropic parameter
ξ. For each value of ξ, the pseudocritical temperature of
chiral phase transition (Tχ) is derived at the location where
ð∂ϕu=∂TÞμB¼0 takes the maximum. Similarly, the pseudoc-
ritical temperature of deconfinement transformation (TD) is
derived with the condition of ð∂Φ=∂TÞμB ¼ 0 taking the
maximum. Figure 3 shows that the pseudocritical temper-
ature of color deconfinement increases monotonically with
the increase of ξ. However, the pseudocritical temperature
of chiral crossover changes nonmonotonically with the
variation of ξ. The maximum value of Tχ appear at
ξ ¼ −0.16. Note also that TχðξÞ is not simply symmetrical
on both sides of ξ ¼ 0.
Note that in this version of PNJL model the locations of

chiral and deconfinement transitions do not coincide at
vanishing chemical potential. Some extensions, such as
considering the entanglement interaction between the chiral
condensate and the Polyakov loop or the eight-quark
interaction, can reduce the difference between them to
some extent. In this study we temporarily ignore these
factor, and focus on the different effect of anisotropic
momentum distribution on the pseudocritical temperatures
of the two phase transitions with different ξ in this model.
The full QCD phase diagrams are plotted in Fig. 4(b) for

the isotropic quark matter (ξ ¼ 0) and in Fig. 4(a) and (c)
for the anisotropic quark matter with ξ ¼ �0.4. Figure 4
indicates that there is a close relationship between the phase
structure and the anisotropic parameter ξ, in particular, in
the area near the critical region and the first-order phase

FIG. 2. Angular dependence of quark distribution function
fðp; θ; ξÞ for ξ ¼ −0.4, 0, 0.4 with several fixed momentums,
p ¼ 0.5, 1, 1.5, 2 fm−1 at T ¼ 180 MeV and μB ¼ 0. θ ¼ 0 is
the anisotropic direction.

FIG. 3. Pseudocritical critical temperatures of the chiral and
(de)confinement transformation as functions of anisotropic
parameter ξ.

FIG. 1. Angular dependence of average momentum of uðdÞ
quark for ξ ¼ −0.4, 0, 0.4 at T ¼ 180 MeV and μB ¼ 0.
Assuming θ ¼ 0 is the anisotropic direction n.
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transition. In the case of ξ ¼ −0.4 with a stretched
momentum distribution along the anisotropic direction,
the CEP of chiral phase transition moves to a higher
temperature and smaller chemical potential, compared with

the isotropic quark matter with ξ ¼ 0. The associated
spinodal region of the first-order phase transition is
correspondingly enlarged, which means that the metastable
and unstable phases exist in more wider range. Figure 4(a)
also shows that at lower temperatures the first-order phase
transition has a larger chemical potential than that of ξ ¼ 0.
Compared with the result of ξ ¼ −0.4, in the case
of ξ ¼ 0.4 with a squeezed momentum distribution along
the anisotropic direction, the opposite trend appears, and
the range of first-order phase transition as well as the
associated spinodal structure shrink in the phase diagram.
Additionally, with the inclusion of entanglement interaction
or eight-quark interaction, the numerical results indicate
that the QCD phase structure shows a similar trend at low
temperature as shown in Fig. 4.
The isentropic trajectories are also plotted in Fig. 4 for

different anisotropic parameter ξ. It can be seen that the
relation between the isentropic trajectories for s=ρB < 20
and the phase structure at high density highly depends on
the type of anisotropy (stretched or squeezed in the
momentum space). For example, the trajectory of s=ρB ¼
6 in the phase diagram with ξ ¼ 0.4 in Fig. 4(c) passes
through the chiral crossover transformation line, but the
isentropic trajectory with the same s=ρB for ξ ¼ −0.4 in
Fig. 4(a) passes through the first-order phase transition.
Since the entropy per baryon is connected to the collision
energy in HIC experiments, the estimate of the initial
entropy density and entropy density per baryon can be
extracted for different center-of-mass energies [62].
Because the fluctuations of conserved charges are

sensitive to the QCD phase structure, they are naturally
relevant to the anisotropy of momentum distribution in HIC
experiments. We plot in Figs. 5 and 6 the net baryon
number kurtosis and skewness as functions of temperature
and chemical potential for different anisotropic parameter ξ.
Combined with the phase diagram in Figs. 4, 5(a), and 6(a)
show that, at higher temperatures closed to the chiral

FIG. 4. QCD phase diagrams for different anisotropic param-
eter. (a) ξ ¼ −0.4 with a stretched momentum distribution along
the anisotropic direction, (b) ξ ¼ 0 with a isotropic momentum
distribution, (c) ξ ¼ 0.4 with a squeezed momentum distribution
along the anisotropic direction. The isentropic trajectories with
s=ρB ¼ 100, 50, 20, 10, 6, 4 are also plotted in the three cases.

FIG. 5. Baryon number kurtosis (a) near the crossover phase transition, (b) near the critical region, (c) near the first-order region.
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crossover, the kurtosis and skewness in the case of
ξ ¼ −0.4 with a stretched momentum distribution along
the anisotropic direction are stronger than the squeezed
(ξ ¼ 0.4) and isotropic (ξ ¼ 0) ones. However, Figs. 5(b)
and 6(b) indicate that with the decrease of temperature the
values of kurtosis and skewness for ξ ¼ 0.4 are larger than
those for isotropic (ξ ¼ 0) and stretched momentum
distribution (ξ < 0) at temperatures near the critical
region. Figures 5(c) and 6(c) also indicate the similar
result in the first-order phase transition region. The
fluctuations at larger chemical potentials are induced by
the chiral phase transition of strange quark. According to
the hydrodynamic simulations and HIC experiments, the
squeezed momentum distribution along the beam direc-
tion (ξ > 0) is supported. Therefore, compared with the
isotropic quark matter, the values of net baryon kurtosis
and skewness are possibly enhanced in anisotropic
medium with the decrease of collision energies. The exact
results depend on how far the chemical freeze-out line is
away from the phase transition line as well as the
anisotropic parameter ξ.
The comparative study of net baryon number fluctua-

tions in low-energy effective models, lattice QCD, and
heavy-ion collision experiments are important in predicting
the QCD phase structure at high density. However, when
the anisotropic momentum distribution is considered, the
accomplishment of this task is beyond reach at present due
to the lack of research in lattice QCD and experimental
data. Besides, the relationship between collision centrality,
colliding energy, and the anisotropic parameter ξ are still
unknown. The release of more BES II data in the future
may provide an opportunity to investigate these aspects.
When conditions permit, a comparison of the kurtosis and
skewness of net baryon number fluctuations with the
anisotropy of quark momentum in this effective model
with those of experimental data and/or lattice QCD will be
conducted. Only some qualitative results are presented in
this preliminary investigation.

IV. SUMMARY

In this work, we studied the properties of quark matter
with the anisotropic momentum distribution in the PNJL
model. We analyzed the features of angular dependence of
average momentum and quark distribution function for
different types of momentum anisotropy in the Romatschke
and Strickland scheme. The numerical results indicate that
the squeezed (stretched) momentum distribution along the
anisotropic direction can be effectively described with the
anisotropic parameter ξ > 0 (ξ < 0). The calculation also
suggests that the QCD phase structure are closely related to
the anisotropic parameter ξ, in particular in the high density
region. In the case of stretched momentum distribution with
ξ < 0, the range of first-order phase transition are enlarged
and the CEP moves to a lower temperature and smaller
chemical potential. The opposite situation occurs in the
case of squeezed momentum distribution with ξ > 0.
We further calculated the kurtosis and skewness of net

baryon number fluctuations for different anisotropic param-
eter. Since the squeezed momentum distribution along the
beam direction is supported by experimental data and
hydrodynamic simulations, ξ > 0 is required to describe
the HIC experiments. In this case, the numerical results
show that the kurtosis and skewness of net baryon number
distribution at lower collision energies are possibly larger
than those of isotropic quark matter. The accuracy depends
on the locations of QCD phase transition and the chemical
freeze-out line as well as the real anisotropic parameter ξ in
experiments. A comparative study of fluctuations and
correlations of conserved charges in quark models with
experimental data and lattice QCD will be performed when
conditions permit in the future.
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FIG. 6. Baryon number skewness (a) near the crossover phase transition, (b) near the critical region, (c) near the first-order region.
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