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The partons’ transverse momentum can be explored with QCD lattice simulations by studying the
quasitransverse-momentum-dependent parton distribution functions (qTMDPDFs), which are factorized in
terms of physical TMDPDFs and soft factors in the limit of the large hadron’s momentum. We present the
next-to-next-to-leading order (NNLO) calculation of the coefficient function for this factorization. Together
with already known expressions for anomalous dimensions, this result allows analysis of lattice data at
NNLO perturbative accuracy.
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I. INTRODUCTION

Extraction of parton distribution and related quantities
from the lattice simulations is a rapidly growing direction
of QCD. The central tool for such extractions is the
factorization theorems derived in the large hadron’s
momentum regime. Combining various equal-time oper-
ators and hadron states, one is accessing a variety of parton
distributions [1,2]. In this work, we study the so-called
quasitransverse momentum dependent (qTMD) parton
distribution functions (PDFs) [2,3]. The corresponding
matrix element is defined as (we use the notation of
Ref. [4])

Ω̃ij
bareðyÞ
¼ hPjq̄jðyÞ½y;bþLv�½bþLv;Lv�½Lv; 0�qið0ÞjPi; ð1Þ

where jPi is the (possibly polarized) hadron state with
momentum P, q is the quark field, v and y are spacelike
vectors (with y0 ¼ v0 ¼ 0), and bμ ¼ yμ − vμðvyÞ=v2. The
expression ½a; b� represents a straight gauge link from point
a to point b. The operator represents a quark-antiquark pair
separated by y and connected by a staple-shaped Wilson
line along direction vμ and of size L.
In the regime of the large momentum hadron P and the

large length of gauge-link staple L, the qTMD matrix
element (1) can be expressed via the physical TMD dis-
tribution through the factorization theorem [see Eq. (4)],

derived using various approaches in Refs. [4–10]. A feature
of the qTMD factorization theorem is that in addition to the
physical transverse-momentum-dependent parton distribu-
tion functions (TMDPDF), it contains an extra function Ψ
that accumulates the nonperturbative interaction between
the parts of the staple gauge link (also called intrinsic soft
factor [6]). The treatment of this function is slightly different
in different approaches (compare, e.g., Refs. [7–9]), but
conceptually the factorization theorem is the same in all
cases. The main perturbative ingredient is the coefficient
function, which is currently known at next-to-leading order
(NLO) [8,11].
The operator (1) is localized in the equal-time plane, and

thus the qTMD matrix element can be simulated within
lattice QCD. The results of the simulations can be com-
bined such that the functions Ψ cancel. In this way, one
determines the nonperturbative Collins-Soper kernel (see
Refs. [11–16]). Alternatively, the Ψ function can be
determined from the auxiliary procedure [6], and then
one accesses the TMDPDF distribution [17]. The precision
of extraction crucially depends on the accuracy of the
perturbative input, which is currently limited by the knowl-
edge of the hard coefficient function. Importantly, this
coefficient function is universal and is the same for all
polarized quasi-TMDPDF of the leading power [8,9], and it
is independent of the particularities of the nonperturbative
definition of the internal soft factor.
Nowadays, the extractions of TMDPDFs from the data

are routinely performed at next-to-next-to-leading order
(NNLO) or N3LO order (see, for example, [18–20]), and
recently were pushed to N4LO order [21]. It has been
demonstrated [18,20,22] that (at least) NNLO is required
since the NLO is not sufficiently precise to describe the
data from the modern experiments. Modern lattice simu-
lations of quasi-transverse-momentum-dependent parton
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distribution functions (qTMDPDFs) have yet to reach that
order of precision. Still, nonetheless, the NNLO contribu-
tion is sizable since the typical scale of lattice simulations is
about 1–3 GeV. In this paper, we present the expression for
the hard coefficient function for the factorization of
qTMDPDF at NNLO. Other perturbative ingredients of
the factorization theorem (anomalous dimensions) are
known at NNLO and higher. Therefore, using the result
of this work, one could analyze the lattice data at com-
plete NNLO.

II. FACTORIZATION THEOREM

The factorization theorem connecting qTMDPDFs and
physical TMDPDFs is discussed in many articles [4–10],
which we refer to for detailed discussion. Different spinor
components of qTMDPDF correlator (1) obey different
kinds of factorization theorems [23]. The projection to

desired components is done by a contraction with appro-
priate Dirac matrix

Ω̃½Γ�ðyÞ ¼ 1

2
ΓjiΩ̃ijðyÞ: ð2Þ

The most interesting cases are the components projected by
Γ∈Γþ ¼ fγþ; γþγ5; iσαþγ5g, where nμ is a lightlike vector
n2 ¼ 0 defined by the decomposition of hadron’s momen-
tum Pμ ¼ n̄μPþ þ nμM2=2Pþ (P2 ¼ M2). For definite-
ness, we fix

vμ ¼ nμ − n̄μffiffiffi
2

p ; ð3Þ

with v2 ¼ −1. The components projected by Γ∈Γþ obey
the leading-power factorization theorem

Ω½Γ�ðx; b; μÞ ¼ C11ðLp; asðμÞÞΨðb; μ; ζ̄ÞΦ½Γ�
11 ðx; b; μ; ζÞ þO

�
M2

x2ðvPÞ2 ;
1

b2ðvPÞ2 ;
b
L
;
1

ML

�
; ð4Þ

where

Ω½Γ�ðx; b; μÞ ¼
Z

∞

−∞

dyv
2π

e−ixyvðvPÞΩ̃½Γ�
q=hðy; b; μÞ; ð5Þ

Φ11;bare½Γ�ðx; b; μ; ζÞ ¼
Z

∞

−∞

dλ
2π

e−ixλPþhPjq̄ðλnþ bÞ½λnþ b;bþ sn∞�Γ
2
½sn∞; 0�qð0ÞjPi; ð6Þ

Ψbareðb; μ; ζ̄Þ ¼ h0j Tr
Nc

½−n̄∞þ b; b�½b; bþ Lv�½bþ Lv;Lv�½Lv; 0�½0;−n̄∞�j0i ð7Þ

with yμ ¼ yvvμ þ bμ,

Lp ¼ lnðμ2=ð2xðvPÞÞ2Þ; ð8Þ

and as ¼ g2=ð4πÞ2. The function Φ½Γ�
11 is the physical

TMDPDF of twist-two. The direction of the Wilson lines
s is defined by the direction of the staple contour
s ¼ signðLÞ. In this way, different orientations of the staple
contour give access to Drell-Yan or semi-inclusive deep-
inelastic scattering (SIDIS) definitions of TMDPDFs,
which can be used to test their universality [24,25]. We
stress that the factorization limit is rather complicated [see
the last term of (4)]. Explicitly, it requires ðvPÞ; L → ∞ at
fixed-finite x and b. We also note that at this power
accuracy, there is no difference between v−Pþ and
ðvPÞ ¼ Pz, which is used as the hard scale.
The expression (4) is written in terms of renormalized

functions. They are related to the bare functions as

Ω½Γ�ðx; b; μÞ ¼ Z−1
W ðμÞZ−2

J ðμÞΩ½Γ�
bareðx; bÞ;

Φ½Γ�
11 ðx; b; μ; ζÞ ¼ jZU1ðμ; ζÞj−2R−1ðbÞΦ½Γ�

11;bareðx; bÞ;
Ψðb; μ; ζÞ ¼ ZΨ1ðμ; ζÞ−2Z−1

W ðμÞR−1ðbÞΨbareðbÞ: ð9Þ

Here, the factor R renormalizes rapidity divergences (in
most parts of schemes it is equal to the S−1=2 where S is the
TMD soft factor). The factor ZJ is the renormalization of
the quark field in the axial gauge. The factors ZU1 and ZΨ1
are ultraviolet (UV) renormalizations of the (leading-twist)
semicompact operators constituting the TMD distributions
[23]. Finally, the factor ZW depends on b and L and
accumulates all divergent factors associated with the staple
contour, such as power divergences of spacelike links [26],
cusps divergences at point bþ Lv and Lv, and other
contributions [27]. Importantly, the same divergences
happen in the function Ψ, and thus we do deal with them
in our computation of the coefficient function.
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The structure of divergences cancellation in the qTMD
factorization theorem is similar to those in factorization of
Drell-Yan or SIDIS. So, the rapidity divergences cancel in-
between soft factor contributions, Φ11 and Ψ. The rapidity
divergences leave no trace on the coefficient function,
but introduce the rapidity scales ζ and ζ̄ (see details on
Refs. [28–30]). The UV renormalization of TMD distri-
butions cancels the infrared (IR) poles of the coefficient
function. The cancellation happens only if

ζζ̄ ¼ ð2xμðvPÞÞ2: ð10Þ

The UV poles are renormalized by ZJ’s and result in the
overall scaling of the qTMDPDF operator.
The scaling of functions (9) follows from their renorm-

alization properties. For the Ω we have

d lnΩ½Γ�ðx; b; μÞ
d ln μ2

¼ 2γJ þ γWðb; LÞ; ð11Þ

where γJ is the anomalous dimension of the heavy-light
current, and γW is the anomalous dimension associated with
the renormalization of the staple link. The evolution of
TMD distribution is [22,31]

d lnΦ½Γ�
11 ðx; b; μ; ζÞ
d ln μ2

¼ Γcusp lnðμ
2

ζ Þ − γV

2
; ð12Þ

d lnΦ½Γ�
11 ðx; b; μ; ζÞ
d ln ζ

¼ −Dðb; μÞ; ð13Þ

where Γcusp is the anomalous dimension of the cusp of
lightlike Wilson lines and D is the Collins-Soper kernel.
The Collins-Soper kernel is a nonperturbative function,
which represents the interaction of light quarks in the QCD
vacuum environment [30]. Finally, the Ψ function also
evolves with the pair of equations

d lnΨðb; μ; ζÞ
d ln μ2

¼ Γcusp

2
ln

�
μ2

ζ

�
þ 2γΨ þ γWðb; LÞ;

d lnΨðb; μ; ζÞ
d ln ζ

¼ −Dðb; μÞ; ð14Þ

where γΨ is the anomalous dimension associated with the
finite part of the cusp anomalous dimension at the finite
angle. The anomalous dimension1 γΨ was computed at LO

in Ref.2 [8], and the NLO term was computed in this work.
We found that γΨ coincides with the anomalous dimension
associated with the heavy-quark [32] (v2 > 0). This is not
accidental, because the UV renormalization is insensitive to
the sign of v2, as it is proven in Ref. [33].
The expressions for anomalous dimensions Γcusp, γJ, γV ,

and γΨ are well known. At N2LO they can be found, e.g., in
Refs. [33–35]. For the reader’s convenience, we have col-
lected all explicit expressions in Appendix A (A2)–(A5). The
remaining anomalous dimension γW and the Collins-Soper
kernel are not important in the present work.

III. QUASI-TMD DISTRIBUTION

The qTMD distribution is an artificial construction that
reduces to the physical TMD distribution in the asymptotic
limit ðvPÞ → ∞ and L → ∞. Currently, there is no
standard construction for this function (see discussion in
Ref. [10]). Probably, the most popular way [4,5,7,9,11] is to
consider the function

F½Γ�ðx; b; μÞ ¼ Ω½Γ�ðx; b; μÞ
Ψðb; μ; μ2Þ : ð15Þ

Using the factorization theorem (4), evolution equations.
and condition (10), one finds

F½Γ�ðx; b; μÞ ¼
�ð2xðvPÞÞ2

ζ

�−DðμÞ

× C11ðLp; μÞΦ½Γ�
11 ðx; b; μ; ζÞ þ � � � ; ð16Þ

where dots indicate the power corrections explicitly given
in the last term of Eq. (4). Note that in this formulation the
scaling equation for qTMD function is

d lnF½Γ�ðx; b; μÞ
d ln μ2

¼ 2ðγJ − γΨÞ þDðb; μÞ: ð17Þ

The nonperturbative part of the subtraction factor could be
different in other constructions, and it does not affect C11.
Generally speaking, the scales μ and ζ are independent;

therefore, one can define a more general function

F½Γ�ðx; b; μ; ζÞ ¼ Ω½Γ�ðx; b; μÞ
Ψðb; μ; ζÞ ; ð18Þ

1By definition the anomalous dimension of the Ψ function is

γΨ ¼ −
d lnZΨ

d ln μ2
:

Evaluating it one should take into account that ζ ∼ μ2, because μ
is the only dimensional scale of the Ψ function. Therefore,
d lnðμ2=ζÞ=d ln μ2 ¼ 0. For the detailed discussion see Ref. [4].

2Reference [8] provides an incorrect expression for LO γΨ.
This mistake appeared due to the mismatch in definitions for the
renormalization constant with earlier paper ZJ ↔ Z−1

J . Once
corrected, the expression for γΨ coincides with the one computed
here or in Ref. [4].
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which reduces to (15) at ζ ¼ μ2. This function satisfies the
pair of equations

d lnF½Γ�ðx; b; μ; ζÞ
d ln μ2

¼ 2ðγJ − γΨÞ −
Γcusp

2
ln

�
μ2

ζ

�
; ð19Þ

d lnF½Γ�ðx; b; μ; ζÞ
d ln ζ

¼ þDðb; μÞ: ð20Þ

Note that the evolution with respect to ζ has an opposite
sign in comparison to ordinary TMD evolution (12).

IV. COEFFICIENT FUNCTION

The qTMD operator can be written as a product
J†vðyÞΓJvð0Þ, where the currents are

Jivð0Þ ¼ ½sv∞; 0�qið0Þ: ð21Þ

Structurally, the current Jv is similar to the renowned heavy-
to-light current (see, e.g., [36]), with v2 ¼ −1, and an open
spinor index. The separation between currents y2 ∼ b2 is
large in comparison to the hard scale ðvPÞ−1, and thus any
exchange of perturbative gluons between currents is power
suppressed [4,7–9]. This essentially simplifies the problem
of computation of C11 and allows us to present it as

C11 ¼ jC1j2; ð22Þ

where C1 is the coefficient function for the factorization of
a current (21) into the leading-twist semicompact operators.
Because of this structure, the coefficient function is
independent of the Γ once Γ∈Γþ. Therefore, it is universal
for all eight leading-power components of the qTMDPDF
matrix element.
Comparing the definitions (4), (9), and (22) we find that

C1ðLp; asðμÞÞ ¼ Z−1
J C1;bareZU1ZΨ1; ð23Þ

where we omit scaling arguments on the right-hand side for
brevity. Note that the renormalization constant ZU1 and
C1;bare are complex valued in such an approach [23]. The
renormalization constants ZJ, ZΨ1, and ZU1 are known at
N3LO [33,35,37]. For our NNLO computation, we took the

expressions from the appendixes and auxiliary files of
Ref. [33] (for ZJ) and Refs. [34,38] (for ZU1), and
reconstructed from known anomalous dimension [35]
(for ZΨ1).
The examples of diagrams contributing to C1;bare are

shown in Fig. 1. Note that the same diagrams contribute to
the computation of the matching coefficient of heavy-light
quark current in the heavy-quark effective theory (HQEFT)
[39]. The only difference between these computations is the
sign of v2 and that the momentum p is passing through
the “light” quark line, while in the HQEFT matching
coefficient computation, the momentum passes through
the Wilson line. The computation is done in the dimen-
sional regularization d ¼ 4 − 2ϵ. The reduction to the base
integrals is performed by the FIRE6 library [40]. The result
reads

C1bare ¼ 1þ asXϵCð1Þ
1 þ a2sX2ϵCð2Þ

1 þOða3sÞ; ð24Þ

where X ¼ v2=ð2xðvPÞ − is0Þ2,

Cð1Þ
1 ¼ 2CFΓð−ϵÞΓð2ϵÞ

1 − ϵ

1 − 2ϵ
; ð25Þ

and the expression for Cð2Þ
1 is presented in Appendix A in

Eq. (A1). Combining C1bare with the renormalization
factors (and renormalizing as), we observe the exact
cancellation of 1=ϵ poles. This provides a general check
of the computation.
Substituting the renormalized expression for C1 into

Eq. (22), we obtain the NNLO coefficient function for the
qTMD factorization theorem. It reads

C11 ¼ 1þ asCFð−L2
p − 2Lp − 4þ ζ2Þ þ a2sCF

�
CF

2
L4

p þL3
p

�
2CF −

11

9
CA þ 2

9
Nf

�

þL2
p

�
CFð6 − ζ2Þ þ CA

�
−
100

9
þ 2ζ2

�
þ 16

9
Nf

�
þLp

�
CFð4þ 26ζ2 − 24ζ3Þ

þ CA

�
−
950

27
−
22

3
ζ2 þ 22ζ3

�
þ Nf

�
304

54
þ 4

3
ζ2

��
þ CF

�
−12þ 116ζ2 − 30ζ3 −

475

4
ζ4

�

þ CA

�
−
3884

81
−
559

18
ζ2 þ

241

9
ζ3 þ

99

2
ζ4

�
þ Nf

�
656

81
þ 17

9
ζ2 þ

2

9
ζ3

��
þOða3sÞ; ð26Þ

FIG. 1. Examples of diagrams contributing to C1 at NNLO. The
momentum p enters through the quark line and exits from the
quark-Wilson line vertex, as indicated on the left diagram.
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where Lp is defined in Eq. (8), CF ¼ ðN2
c − 1Þ=2Nc,

CA ¼ Nc are eigenvalues of the Casimir operator of
SUðNcÞ algebra, Nf is the number of active quarks, and
ζn is the Riemann ζ function. This expression is the main
result of this paper. The NLO parts of the coefficient
function and anomalous dimension γΨ coincide with the
known results [8,11].
The logarithm part of the coefficient function can be

derived from the evolution equations defined above. It
satisfies

d lnC11

d ln μ2
¼ 2ðγJ − γΨÞ þ

γV
2
−
Γcusp

2
Lp: ð27Þ

Using explicit expressions for anomalous dimensions
(A2)–(A5) we confirm this. Note that using this equation
and (26) one is able to compute the logarithm part of the
N3LO coefficient function. We present it in Eq. (A6).

V. CONCLUSION

In this work, we have computed the coefficient function
for the factorization of the qTMD matrix at NNLO. We
have checked the cancellation of poles between renormal-
ization factors and coefficient functions, which provides a
check of the factorization theorem for the qTMD operator
up to NNLO. These results also allow us to obtain the
logarithm part of the N3LO coefficient function. The
intermediate and final expressions are also attached to
the publication in the Mathematica format.

In Fig. 2 we present the comparison of NLO, NNLO, and
N3�LO coefficient functions at ðvPÞ ¼ μ ¼ 2 GeV (i.e.,
Lp ¼ −2 ln x), where 3* indicates that this coefficient
function does not have the nonlogarithm term. At these
energies, the coefficient function demonstrates a reasonable
convergence for x > 0.2 (the NNLO term provides ∼5%
correction at most). Below x < 0.2 the convergence drops
rapidly; e.g., at x ¼ 0.1 the NNLO correction is ∼20%, and
N3�LO is ∼40% (both in comparison to NLO). This shows
the natural boundary x≳ 0.2 for this approach. To access
lower values of x one should find a way to improve the
structure of the factorization theorem, either by resumming
problematic logarithms (see discussion on a similar prob-
lem for the pseudo-PDF case [41]) or by matching with a
different type of factorization theorem). The coefficient
function is just multiplicative, and thus it is straightforward
to update the existing procedures including the NNLO
correction. It is also important that the coefficient function
is independent of the polarization quantum numbers.
Therefore, all eight leading-power TMD distributions
can be considered at the same NNLO precision.

Note added.— In Ref. [42] the authors derived the same
coefficient function at NNLO by studying the threshold
logarithms and related functions. Their results agree
with ours.
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APPENDIX A: EXPLICIT NNLO
AND N3LO EXPRESSIONS

1. Bare coefficient function

The bare coefficient function is defined in Eq. (24). Its
NLO term is given in Eq. (25) in the closed form. The
NNLO term for the bare coefficient function Cð2Þ

1bare has a
complicated form involving hypergeometric functions.
Here, we present the expression expanded in ϵ. It reads

FIG. 2. Comparison of NLO, NNLO, and N3�LO coefficient
functions C11 as the function of x. The solid, dashed, and
dotted lines represent the coefficient functions at NNLO,
NLO, and N3�LO, correspondingly. The comparison is done
for the value of ðvPÞ ¼ μ ¼ 2 GeV, which is the typical setup for
lattice computations.
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Cð2Þ
1 ¼ CFe−2ϵγE

�
CF

2ϵ4
þ 1

ϵ3

�
CF −

11

12
CA þ Nf

6

�
þ 1

ϵ2

�
CF

5

2
ð1þ ζ2Þ þ CA

�
−
133

36
þ ζ2

2

�
þ 11

18
Nf

�

þ 1

ϵ

�
CF

�
5þ 12ζ2 −

25

3
ζ3

�
þ CA

�
−
673

54
−
143

12
ζ2 þ

11

2
ζ3

�
þ Nf

�
56

27
þ 13

6
ζ2

��

þ CF

�
4þ 145

2
ζ2 −

59

3
ζ3 −

321

8
ζ4

�
þ CA

�
−
3130

81
−
2089

36
ζ2 þ

395

18
ζ3 þ

159

4
ζ4

�

þ Nf

�
544

81
þ 143

18
ζ2 −

13

9
ζ3

�
þOðϵÞ

�
; ðA1Þ

where we extracted explicitly the MS factor.

2. Anomalous dimensions at NNLO

There are four anomalous dimensions appearing in this problem. Their NNLO expressions are

Γcusp ¼ 4asCF þ 4a2sCF

�
CA

�
67

9
− 2ζ2

�
−
10

9
Nf

�

þ 4a3sCF

�
C2
A

�
245

6
−
268

9
ζ2 þ

22

3
ζ3 þ 22ζ4

�
þ CFNf

�
−
55

6
þ 8ζ3

�

þ CANf

�
−
209

27
þ 40

9
ζ2 −

28

3
ζ3

�
−

4

27
N2

f

�
þOða4sÞ; ðA2Þ

γV ¼ −6asCF þ a2sCF

�
CFð−3þ 24ζ2 − 48ζ3Þ þ CA

�
−
961

27
− 22ζ2 þ 52ζ3

�
þ Nf

�
130

27
þ 4ζ2

��

þ a3sCF

�
C2
Fð−36ζ2 − 136ζ3 − 288ζ4 þ 64ζ2ζ3 þ 480ζ5 − 29Þ

þ CFCA

�
820

3
ζ2 −

1688

3
ζ3 þ

988

3
ζ4 − 32ζ2ζ3 − 240ζ5 −

151

2

�
þ CFNf

�
−
52

3
ζ2 þ

512

9
ζ3 −

280

3
ζ4 þ

2953

27

�

þ C2
A

�
−
14326

81
ζ2 þ

7052

9
ζ3 − 166ζ4 −

176

3
ζ2ζ3 − 272ζ5 −

139345

1458

�

þ CANf

�
5188

81
ζ2 −

1928

27
ζ3 þ 44ζ4 −

17318

729

�
þ N2

f

�
−
40

9
ζ2 −

16

27
ζ3 þ

4834

729

��
þOða4sÞ; ðA3Þ

γJ ¼
3

2
asCF þ a2sCF

�
CF

�
−
5

4
þ 8ζ2

�
þ CA

�
49

12
− 2ζ2

�
−
5

6
Nf

�

þ a3sCF

�
C2
F

�
37

4
− 32ζ2 þ 18ζ3 þ 40ζ4

�
þ CFCA

�
655

72
þ 592

9
ζ2 −

71

3
ζ3 þ 8ζ4

�

þ CFNf

�
−
235

18
−
112

9
ζ2 þ

44

3
ζ3

�
þ C2

A

�
−
1451

216
−
130

9
ζ2 þ

11

3
ζ3 þ 12ζ4

�

þ CANf

�
128

27
þ 28

9
ζ2 −

38

3
ζ3

�
−
35

54
N2

f

�
þOða4sÞ; ðA4Þ

γΨ ¼ asCF þ a2sCF

�
CA

�
49

9
− 2ζ2 þ 2ζ3

�
−
10

9
Nf

�

þ a3sCF

�
C2
A

�
343

18
−
304

9
ζ2 þ

370

9
ζ3 þ 22ζ4 þ 4ζ2ζ3 − 18ζ5

�
þ CFNf

�
−
55

6
þ 8ζ3

�

þ CANf

�
−
89

27
þ 40

9
ζ2 −

124

9
ζ3

�
−

4

27
N2

f

�
þOða4sÞ: ðA5Þ

ÓSCAR DEL RÍO and ALEXEY VLADIMIROV PHYS. REV. D 108, 114009 (2023)

114009-6



Here, the expressions for Γcusp and γV are taken from Ref. [43], the expression for γJ is taken from Ref. [44], and the
expression for γΨ is taken from Ref. [35].
Using these expressions and Eq. (26), together with Eq. (27), we are able to determine the logarithmic part of the N3LO

coefficient function

Cð3Þ
11 ¼ CF

�
−
C2
F

6
L6

p þL5
p

�
−C2

F þ
11

9
CFCA −

2

9
CFNf

�

þL4
p

�
C2
F

�
−4þ ζ2

2

�
þCFCA

�
122

9
− 2ζ2

�
−
20

9
CFNf −

121

54
C2
A þ

22

27
CANf −

2

27
N2

f

�

þL3
p

�
C2
F

�
−
16

3
− 26ζ2 þ 24ζ3

�
þCFCA

�
1682

27
þ 19

9
ζ2 − 22ζ3

�

þCFNf

�
−
254

27
−
10

9
ζ2

�
þC2

A

�
−
2506

81
þ 44

9
ζ2

�
þCANf

�
842

81
−
8

9
ζ2

�
−
64

81
N2

f

�

þL2
p

�
C2
F

�
12− 170ζ2 þ 78ζ3 þ

475

4
ζ4

�
þCFCA

�
11996

81
þ 2327

18
ζ2 −

1429

9
ζ3 −

89

2
ζ4

�

þCFNf

�
−
2047

162
−
193

9
ζ2 þ

70

9
ζ3

�
þC2

A

�
−
29351

162
þ 26

9
ζ2 þ

220

3
ζ3 − 22ζ4

�

þCANf

�
4469

81
þ 16

3
ζ2 −

16

3
ζ3

�
þN2

f

�
−
292

81
−
8

9
ζ2

��

þLp

�
C2
F

�
44− 430ζ2 þ 124ζ3 þ

487

2
ζ4 þ 8ζ2ζ3 þ 240ζ5

�

þCFCA

�
5704

81
þ 32521

27
ζ2 −

6212

9
ζ3 −

2450

3
ζ4 þ 6ζ2ζ3 − 120ζ5

�

þCFNf

�
6943

162
−
5374

27
ζ2 þ

244

3
ζ3 þ

350

3
ζ4

�
þC2

A

�
−
723611

1458
−
21560

81
ζ2 þ

13858

27
ζ3 þ 260ζ4 −

112

3
ζ2ζ3 − 100ζ5

�

þCANf

�
102683

729
þ 6584

81
ζ2 −

608

9
ζ3 − 44ζ4

�
þN2

f

�
−
6184

729
−
128

27
ζ2 −

16

27
ζ3

��
þ c3

�
; ðA6Þ

where c3 is the unknown finite part.

APPENDIX B: EVALUATION OF DIAGRAMS

In this appendix, we provide extra notes about the
computation of diagrams for the coefficient function at
NNLO. The examples of diagrams are shown in Fig. 1. In
total, there are 10 diagrams (including self-energy graphs).
The momentum enters the diagram via the quark line and

goes out in the vertex. There is no momentum incoming
into the Wilson line. For example, the second diagram
shown in Fig. 1 reads

I ¼ −g4CF

�
CF −

CA

2

�Z
ddk
ð2πÞd

ddl
ð2πÞd

×
ðPþ =kÞ=vðPþ =lÞ=vuðPÞ

½ðPþ kÞ2 þ i0�½l2 þ i0�½ðPþ lÞ2 þ i0�
×

1

½ðk − lÞ2 þ i0�½k · vþ i0�½ðk − lÞ · vþ i0� ; ðB1Þ

where d ¼ 4 − 2ϵ is the parameter of dimensional regu-
larization. It is important to keep track of þi0 prescriptions
because incorrect prescriptions could lead to an improper
sign of the resulting integral.
For the leading-power computation, it is sufficient to

consider p2 ¼ 0. Then the only dimensional parameter is
ω ¼ 2ðPvÞ. Also, only the good component (with respect
to P) of the quark field contributes to the leading-power
term. To project the corresponding component we do

IT ¼ 1

4
Tr½Iγ−γþ�; ðB2Þ

where I is the diagram without a spinor multiplier. After
projecting, the diagram decomposes into a sum of simpler
scalar integrals, which have the general form
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Fða; b; c; d; e; f; g; hÞ

¼
Z

ddk
ð2πÞd

ddl
ð2πÞd

1

½k2�a½ðPþ kÞ2�b½l2�c½ðPþ lÞ2�d

×
1

½ðk − lÞ2�e½k · v�f½l · v�g½ðk − lÞ · v�h ; ðB3Þ

where all propagators have theþi0 pole prescription. Next,
the integrals are reduced to the set of base integrals by the
integration-by-parts relations (see Refs. [39,44] for a
similar example). Specifically, we have used the FIRE6
library [40]. Most parts of the base integrals are evaluated
using successively one-loop integrals and are expressed
with products of gamma functions. We found only two
integrals with nontrivial topology. These integrals can be
computed in the terms of higher-order hypergeometric
functions or as an ϵ series [45] (for instance, we have
used the Mellin-Barnes method). The results are

Fð0;1;0;1;1;1;0;1Þ

¼ ½v2− i0�−1þ2ϵ

½ω− i0�4ϵ e−2γEϵ
�
−
ζ2
ϵ
−2ζ2−2ζ3þ�� �

�
; ðB4Þ

Fð0;1;1;0;1;1;1;0Þ

¼ ½v2− i0�−1þ2ϵ

½ω− i0�4ϵ e−2γEϵ
�
−
ζ2
ϵ
−6ζ2þ3ζ3þ���

�
; ðB5Þ

where γE is the Euler-Mascheroni constant and dots
represent higher powers of ϵ series.
Finally, by collecting the expressions together and

expanding gamma functions in ϵ we obtain the bare
expressions for each diagram. For example, the diagram
(B1) produces the following expansion:

I ¼ a2sX2ϵe−2ϵγECF

�
CF −

CA

2

��
1

12ϵ4
þ 1

3ϵ3

þ 1

ϵ2

�
5

3
−
3

4
ζ2

�
þ 1

ϵ

�
2ζ2 −

92

9
ζ3 þ

47

6

�

þ 22ζ2 −
215

9
ζ3 −

1031

16
ζ4 þ

211

6
þ � � �

�
; ðB6Þ

where as ¼ g2=ð4πÞd=2 and X ¼ v2=ðω − i0Þ2.
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