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We propose a new numerical method for 3þ 1-dimensional glasma simulation using Milne coordinates.
We formulate the classical Yang-Mills field and three-dimensional classical color current on a lattice at the
initial proper time, specified as a moment just before the collision of the two nuclei. By solving the
evolution equations, we extract observables of the three-dimensional glasma at later times. We demonstrate
the efficiency of our method in terms of numerical cost and apply it to the central collisions of Au-Au. We
also discuss possible further improvements of our method.
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I. INTRODUCTION

The experiment of relativistic heavy-ion collisions pro-
vides us the unique way to create deconfined QCDmatter of
extraordinarily high temperature and density. Over the past
few decades, many experimental results have indicated the
emergence of a new state of matter, referred to as the quark-
gluon plasma (QGP), in heavy-ion collisions, where quarks
and gluons behave as a hydrodynamic fluid. The analysis of
a relativistic heavy-ion collision requires different kinds of
descriptions of the spacetime evolution of the system since
the matter produced in the collision experiences varied
stages in its evolution. The classical Yang-Mills (CYM)
theory offers one of such descriptions. It can describe well
the nonequilibrium evolution of the highly occupied gluonic
system, called glasma, that appears immediately after the
collision [1–18]. The glasma simulation with the CYM field
plays an important role in understanding the nonequilibrium
stage between the moment of the collision and the onset of
the hydrodynamic evolution of the QGP. In fact, the glasma
simulation is widely used to establish the initial conditions
for subsequent hydrodynamic evolution in the analysis of
experimental data [19].

The theoretical background for why the CYM theory is
a good description of the initial gluonic matter is based on
the color glass condensate (CGC) picture, which stands as
a valid description of the high-energy nucleus [1,2]. In
such a high-energy nucleus, the dominant degrees of
freedom are soft gluons emitted from hard partons. The
McLerran-Venugopalan (MV) model in the CGC effective
theory describes the soft gluons as the CYM fields and the
hard partons as their color sources. Consequently, the
glasma generated in the collision of such high-energy
nuclei can also be described well by the CYM field.
However, such a success of the glasma simulation has

been largely limited by the boost invariance assumption,
which shows good agreement with experimental data only
around the midrapidity region. Recently, much attention
has been paid to the 3þ 1-dimensional (3þ 1D) glasma
simulation beyond the boost invariance assumption that
is necessary to understand observables across a broader
region of rapidity [20–27]. Different approaches for
incorporating the rapidity dependence and their imple-
mentations have been considered. In Refs. [20,21,27], the
authors consider the rapidity-dependent distribution of the
classical color charges inside a single nucleus by numeri-
cally solving the JIMWLK equation [28–34], while
assuming that the color sources are static in time. In
Refs [22–25], the authors propose numerical simulation
methods that focus on the recoil effect of the nuclei and
track the dynamical evolution of the CYM field with the
dynamical three-dimensional (3D) color current. The
analytic analysis for the 3þ 1D glasma with the dynamical
color current is also performed, employing the weak-field
approximation [26].
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The purpose of this study is to propose a new numerical
simulation method for the 3þ 1D glasma with the incor-
poration of the recoil effect, in which the classical color
current is treated as a 3D dynamical object. The initial
conditions for the CYM field and classical color current
are provided on a lattice before the collision occurs,
and their discretized evolution equations are subsequently
solved to determine their values at later times. Numerical
simulations are performed in Milne coordinates, albeit
with a difference from the usual Milne coordinates.
Usually, the proper time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is introduced such

that the collision of the two nuclei occurs at τ ¼ 0. In
contrast, we employ modified Milne coordinates,
ðτ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t̃2 − z2

p
; x; y; η̃ ¼ ð1=2Þ ln½ðt̃þ zÞ=ðt̃ − zÞ�Þ, where t̃

is shifted from t by a positive constant as t̃ ¼ tþ
positive constant. Consequently, the two nuclei are still
apart at the initial proper time τ̃ini, which is taken as a
sufficiently small number. We evaluate the physical quan-
tities in the modified Milne coordinates and then transform
the results to the usual Milne coordinates via a general
coordinate transformation. The above strategy of giving
initial conditions on a lattice, evolving them in time, and
transforming the results into the usual Milne coordinates is
analogous with that in Ref. [25], in which the simulations
are performed in Minkowski coordinates and the results
are then transformed into the usual Milne coordinates. The
advantage of using the Milne coordinates is the following.
The numerical simulations on a finite lattice in Milne
coordinates correspond to a longitudinally expanding
system in terms of Minkowski coordinates due to the
relation z ¼ τ̃ sinh η̃. As a result, numerical simulations in
the Milne coordinates do not require a large lattice size in
the η̃ direction, while numerical simulations in Minkowski
coordinates require a system size in the z direction large
enough to include the outgoing nuclei within the lattice.
Therefore, our new method is expected to cost fewer
numerical resources, which is important in actual appli-
cations since tracking the dynamical evolution of the 3D
glasma requires a lot of numerical resources.
We also show the numerical results of the evolution of

pressure and energy density using our method. Thus, we
should mention previous studies on their evolution in the
CYM simulations. According to previous two-dimen-
sional (2D) and 3D glasma simulations [6,16,27], it is
found that the pressure does not become isotropic in the
beginning time of hydrodynamics, which is suggested by
experiments; rather, the longitudinal pressure becomes
very small relative to the transverse pressure, indicating
that the CYM field follows a longitudinal expansion of a
free-streaming system. Thus, in the classical approxima-
tion, the Yang-Mills field interaction may not be strong
enough to overcome the rarefaction of the system due to
the expansion and lead to pressure isotropy at hydro-
dynamization time. It should be noted, however, that
the early evolution of the pressure in classical field

simulations depends on the violation of the boost invari-
ance of the initial condition [7,12–15], in contrast to the
fact that the system eventually exhibits the free-streaming
evolution due to the rarefaction, independent of an initial
condition. It is interesting to study how the early evolution
of the pressure behaves in our 3D glasma simulation.
In Sec. II, we present the formulation of the 3þ 1D

glasma on the lattice. In Sec. III, we present the numerical
results. This section is divided into two parts. In the first
part, we test the effectiveness of our numerical method. We
check whether the continuity equations are violated under
the evolution of the glasma and check the consistency with
the method proposed in Ref. [25] by comparing our results
for the transverse pressure and the energy density in the
local rest frame with theirs. In the second part, we simulate
the dynamical evolution of the 3þ 1D glasma using the
setup that mimics the central collisions of Au-Au atffiffiffi
s

p ¼ 200 GeV. We show the dynamical evolution of the
energy density and address discussions about the obtained
results. In Sec. IV, we summarize our main results.

II. METHOD

We develop the numerical method for the 3þ 1D glasma
simulation in Milne coordinates in this section. This method
is an extension of the description of the 2þ 1-dimensional
(2þ 1D) glasma using the MV model in the CGC effective
theory. This section is organized as follows. In Sec. II A, we
give a brief review of the description of the boost-invariant
(2þ 1D) glasma using the MV model. In Sec. II B, we
explain how to extend the 2þ 1D glasma description to the
3þ 1D glasma with the dynamical classical color current in
continuous spacetime. In Sec. II C, we show the formulation
of the 3þ 1D glasma on a discretized space and continuous
proper time. In Sec. II D, we define the energy-momentum
tensor on a lattice.

A. 2 + 1D glasma in continuous spacetime

Here, we briefly review how the 2þ 1D glasma is
described using the MV model in the CGC effective theory.
According to the CGC picture, the dominant degrees of
freedom inside a relativistic nucleus are the soft gluons that
are emitted from partons with large momenta. In the MV
model, the soft and hard partons are separately treated in
the classical approximation [1,2]: the soft partons are
described by the CYM field Aμ, and the hard partons
are described by the classical color current Jμ, the source of
the soft partons. Here, the classical color current Jμ moving
toward the positive z direction is given by the density of the
sum of the color charges carried by hard partons located
around x,

JμðxÞ ¼ 1

g
δμ;þρðx−; x⊥Þ; ð1Þ
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where x∓ ¼ ðt ∓ zÞ= ffiffiffi
2

p
are the light-cone coordinates and

ρ is the classical color charge density, randomly given
according to a probability density P½ρ� for each event. This
color charge density ρ is also assumed to be static, namely,
independent of xþ, which is reflected by the fact that the
lifetime of the hard partons is much longer than that of the
soft partons due to the time dilation. The soft CYM field
emitted from the static sources is given by the solution to
the classical equations of motion ½Dμ; Fμν� ¼ Jν, and under
the gauge condition A− ¼ 0, it has the form [1]

A� ¼ 0; Ai ¼
i
g
V∂iV†; ð2Þ

where Ai is the transverse gauge field and V† is the Wilson
line, formally given by

V†ðx−;x⊥Þ ¼Px− exp

�
−i
Z

x−

−∞
dx0−∂−2⊥ ρcovðx0−;x⊥Þ

�
: ð3Þ

Here, ρcov is the color charge density in the covariant gauge
condition and is related to the color charge density in the
A− ¼ 0 gauge condition through the gauge transformation,

ρcov ¼ V†ρðA−¼0ÞV: ð4Þ

As shown in Eqs. (2) and (3), the solution to the equation of
motion is a functional of ρ, and thus the event average of a
given observable O is obtained as the ensemble average
over P½ρ�,

hOieve ¼
Z

DρO½ρ�P½ρ�: ð5Þ

Fortunately, in the high-energy limit, P½ρ� can be well
approximated by the normal distribution function, no
matter what gauge condition is chosen,

P½ρðx−; x⊥Þ� ∝ exp

�
−

Tr½ρðx−; x⊥Þ�2
2½g2μðx−; x⊥Þ�2

�
: ð6Þ

where ½g2μðx−; x⊥Þ�2 is the squared color charge density per
unit volume dx−dxdy. Therefore, in the high-energy limit,
the event average in Eq. (5) can be estimated numerically
using the Gaussian random number ρcov that satisfies the
following event average,

hρacovðx−; x⊥Þρbcovðx0−; x0⊥Þieve
¼ δa;bðg2μðx−; x⊥ÞÞ2δðx− − x0−Þδ2ðx⊥ − x0⊥Þ: ð7Þ

It should be mentioned that solving the JIMWLK
equation [28–34], the evolution equation for momentum
rapidity, yields the Wilson line at the energy of interest
beyond the high-energy limit approximation.

Using the MV model with the high-energy limit
approximation, the glasma created in the collision of
two nuclei can be obtained as a boost-invariant CYM
field. In this approximation, hard partons are assumed to be
recoilless, and thus the total classical color current is given
by the incoherent sum of the two static color currents,

JμðxÞ ¼ 1

g
δμþδðx−Þρð1Þðx⊥Þ þ

1

g
δμ−δðxþÞρð2Þðx⊥Þ; ð8Þ

where the color charge density from each nucleus is
assumed to be distributed on an infinitely thin sheet due
to the Lorentz contraction, ρð1=2Þðx∓; x⊥Þ ∝ δðx∓Þ. Then,
solving the classical equation of motion ½Dμ; Fμν� ¼ Jν

with the Fock-Schwinger (FS) gauge condition Aτ ¼ 0
yields the initial condition of the glasma at τ ¼ 0þ as a
regular solution,

Ai ¼ Að1Þ
i þ Að2Þ

i ; Aη ¼ 0; ð9Þ

Ei ¼ 0; Eη ¼ ig½Að1Þ
i ; Að2Þ

i �; ð10Þ

where the transverse and longitudinal electric fields are
defined as Ei ¼ τ∂τAi and Eη ¼ ∂τAη=τ, respectively, and

Að1=2Þ
i is the transverse gauge field emitted from the single

nucleus 1 or 2, respectively,

Að1=2Þ
i ¼ i

g
Vð1=2Þ
2D ∂iV

ð1=2Þ†
2D : ð11Þ

In this paper, the index i denotes the transverse directions,

1 and 2, unless otherwise stated. The Wilson line Vð1=2Þ†
2D is

independent of x∓ and is given by

Vð1=2Þ†
2D ðx⊥Þ ¼ Px∓ exp

�
−i
Z

∞

−∞
dx0∓∂−2⊥ ρð1=2Þcov ðx0∓; x⊥Þ

�
:

ð12Þ

Here, since two classical color charges are only located on
the light cone, ρð1=2Þ ∝ δðx∓Þ, the upper limit of the
integration in Eq. (12) can be taken as infinity. Therefore,
the solutions shown in Eqs. (9) and (10) are boost invariant.
To study the boost-invariant glasma at a late time, we have to
evolve the CYM field starting from the boost-invariant initial
condition by solving the classical equation of motion inside
the light cone (J ¼ 0), ½Dμ; Fμν� ¼ 0.

B. 3 + 1D glasma in continuous spacetime

We explain how to extend the 2þ 1D glasma descrip-
tion to the 3þ 1D glasma description with the dynamical
3D classical color current that represents two colliding
nuclei with finite longitudinal thickness. As an example,
we consider the situation where the two colliding nuclei
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have the same radius R and Lorentz gamma factor γ. The
generalization to the collisions of two nuclei with different
radiuses and gamma factors can be carried out straight-
forwardly. Let us first revisit the total classical color
current to get the initial condition for the 3þ 1D glasma.
Our 3þ 1D glasma method considers the setup where the
two nuclei are still far apart at the initial proper time τ̃ ¼
τ̃ini in the Milne coordinate defined as ðτ̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x−xþ

p
; η̃ ¼

ð1=2Þ lnðxþ=x−ÞÞ. It should be noted that we distinguish
the Milne coordinates defined here from the usual Milne
coordinates ðτ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx− − xcÞðxþ − xcÞ
p

; η ¼ ð1=2Þ ln
ð½xþ − xc�=½x− − xc�ÞÞ in which central positions of the
two nuclei coincide at τ ¼ 0. The center positions of the
nuclei (1) and (2) in the Milne coordinates are initially taken
as a sufficiently large negative and positive value,−jη̃inij and
jη̃inij. The corresponding center positions in the light-cone
coordinates are given by x∓ ¼ xc ¼ τ̃iniejη̃inij=

ffiffiffi
2

p
, and thus

the nuclei (1) and (2) exist within x−¼½xc−R=ðγ ffiffiffi
2

p Þ;xcþ
R=ðγ ffiffiffi

2
p Þ� and xþ ¼ ½xc − R=ðγ ffiffiffi

2
p Þ; xc þ R=ðγ ffiffiffi

2
p Þ�, resp-

ectively, as shown in Fig. 1. The initial proper time τini is set
so small that the two nuclei do not overlap at τ̃ ¼ τ̃ini, which
requires the relation, x∓jη̃¼0;τ̃¼τ̃ini

¼ τini=
ffiffiffi
2

p
< xc − R=

ðγ ffiffiffi
2

p Þ. Then, the classical color current at τ̃ini can be
assumed to be the incoherent sum of the two classical color
currents,

JμðxÞ ¼ 1

g
δμþρð1Þðx−; x⊥Þ þ

1

g
δμ−ρð2Þðxþ; x⊥Þ: ð13Þ

The transverse gauge field and electric field at τ̃ ¼ τ̃ini are
also assumed to be the incoherent sum of those from each
nucleus,

AiðxÞ ¼ Að1Þ
i ðxÞ þ Að2Þ

i ðxÞ; ð14Þ

EiðxÞ ¼ Eð1ÞiðxÞ þ Eð2ÞiðxÞ
¼ x−∂−A

ð1Þ
i ðxÞ þ xþ∂þA

ð2Þ
i ðxÞ; ð15Þ

where the transverse gauge field from a single nucleus,

Að1=2Þ
i ðxÞ, is given by the Wilson line as given in Eq. (3)

and the electric gauge field, Eð1=2Þi ¼ x∓∂∓A
ð1=2Þ
i , is

obtained by using the relation τ∂τ ¼ x−∂− þ xþ∂þ. The
initial conditions assumed as Eqs. (13)–(15), where the
initial field before the collision is given as the incoherent
sum of the solutions of the evolution equations for each of
nuclei 1 and 2, should be an exact solution if the two nuclei
are uncorrelated from the infinite past to the initial time.
However, in our setting, where the Gaussian-shaped color
charge density extends to infinity, Eqs. (13)–(15) are not
exact solutions because the two nuclei overlap even in the
infinite past. This assumption should be justified at the
initial time when the overlap of the tails of the Gaussian-
shaped color charge density is negligible. The longitudinal
components of the gauge field and electric field are given
in the same form as those shown in Eqs. (9) and (10),

Aη̃ ¼ 0; Eη̃ ¼ ig½Að1Þ
i ; Að2Þ

i �: ð16Þ

We have used the modified FS gauge condition Aτ̃ ¼ 0,
and then this set of initial conditions satisfies Gauss’s law.
It should be noted that Eη̃ is negligibly small, and thus only
Eqs. (13)–(15) almost satisfy the Gauss’s law, which
supports the validity of our assumption.
In the actual calculation, we present the initial condition

given above on a lattice and evolve them by solving their
evolution equations numerically. The evolution equation
for the CYM field is the classical equation of motion
½Dμ; Fμν� ¼ Jν, and the evolution equation for the classical
current is the continuity equation ½Dμ; Jμ� ¼ 0. Since Jμ has
2 degrees of freedom as Jμ ¼ δμþJð1Þ þ δμ−Jð2Þ, an addi-
tional assumption is required so that ½Dμ; Fμν� ¼ Jν and
½Dμ; Jμ� ¼ 0 form a closed system of equations. In this
study, we assume that Jð1=2Þ obeys the continuity equation
for each nucleus, ½D�; Jð1=2Þ� ¼ 0. This assumption is valid
if at least two nuclei do not overlap, e.g., before the
collision or after the two nuclei have passed. To more
accurately track the evolution of the color current beyond
this assumption, it is necessary to solve the equations of
motion for the microscopic degrees of freedom that carry
the color charge. For convenience, we introduce the current
defined as J̃ð1=2Þ ≡ x∓Jð1=2Þ and rewrite the continuity
equation in the Milne coordinates as

ðτ̃∂τ̃ �Dη̃ÞJ̃ð1=2Þ ¼ 0: ð17Þ

The classical equation of motion and Gauss’s law in the
Milne coordinates are written as

∂τ̃E1 ¼ −τ̃½D2; B3� þ 1

τ̃
½D3; B2�; ð18Þ

FIG. 1. Spacetime picture of a collision of relativistic nuclei
with the finite longitudinal extension R=γ. At initial proper time
τ̃ini, the two nuclei are still apart from each other.
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∂τ̃E2 ¼ τ̃½D1; B3� − 1

τ̃
½D3; B1�; ð19Þ

∂τ̃Eη̃ ¼ −
1

τ̃
ϵη̃jk½Dj; Bk� − 1

τ̃
½J̃ð1Þ − J̃ð2Þ�; ð20Þ

½Di; Ei� ¼ J̃ð1Þ þ J̃ð2Þ; ð21Þ

where ϵη̃jk is Levi-Civita symbol and the magnetic field B is
defined as Bi ¼ ϵijkFjk=2 ði ¼ 1; 2; η̃Þ.

C. 3 + 1D glasma in discretized space
and continuous proper time

For numerical calculations, we discretize the CYM
field and classical current on the L2⊥ × Lη̃ lattice, whose
grid positions are labeled by a set of integers ðix¼0;1;…;
L⊥−1;iy¼0;1;…;L⊥−1;iη̃¼0;1;…;Lη̃−1Þ. These inte-
gers are related to spatial coordinates as x ¼ a⊥ðix−
ðL⊥ − 1Þ=2Þ, y ¼ a⊥ðiy − ðL⊥ − 1Þ=2Þ, and η̃ ¼ aη̃ðiη̃ −
Lη̃=2Þ with the lattice spacings, a⊥ and aη̃. All the
quantities shown in this and later sections are made
dimensionless normalizing with the transverse spatial
lattice spacing a⊥, and the η̃ component of the
gauge field Aη̃ is normalized by the longitudinal lattice
spacing aη̃.
We first consider the initial condition, the equation of

motion, and Gauss’s law for the discretized CYM field. The
gauge field and longitudinal electric field at the initial
proper time, shown in Eqs. (15) and (16), are discretized in
a way that has been done in many papers (first in Ref. [3]),

Ui;x ¼ ðUð1Þ
i;x þUð2Þ

i;x ÞðUð1Þ†
i;x þUð2Þ†

i;x Þ−1; Uη̃;x ¼ I; ð22Þ

and

Eη̃
x ¼ i

4g

X
i

h�
Ui;xþ ˆ̃η=2 − I

��
Uð2Þ†

i;xþ ˆ̃η=2
−Uð1Þ†

i;xþ ˆ̃η=2

�

þ
�
U†

i;xþ ˆ̃η=2−î − I
��

Uð2Þ
i;xþ ˆ̃η=2−î −Uð1Þ

i;xþ ˆ̃η=2−î

�
−H:c:

i
;

ð23Þ

whereUð1=2Þ
i;x ¼ Vð1=2Þ

x Vð1=2Þ†
xþî

is the link variable for nucleus
1=2, respectively, and the way of evaluating the Wilson line
on the lattice is given in Appendix A. The initial transverse
electric field on the lattice is given by

Ei
x ¼

aη̃x−

g
Vð1Þ
x

h
∂
F
i ∂

−2⊥ ρð1Þcovðx−; x⊥Þ
i
Vð1Þ†
x

þ aη̃xþ

g
Vð2Þ
x

h
∂
F
i ∂

−2⊥ ρð2Þcovðxþ; x⊥Þ
i
Vð2Þ†
x ; ð24Þ

where ∂
F is a forward difference and ∂

−2⊥ ρð1=2Þcov is obtained
through discretized Fourier transformation in the transverse
directions,

∂
−2⊥ ρð1=2Þcov ðx∓; x⊥Þ ¼

1

L2⊥

XL⊥

k1;k2¼0

ρ̃ð1=2Þcov ðx∓; k⊥Þ
k2lat;⊥

eix⊥·k⊥ ; ð25Þ

where k⊥ ¼ ðk1; k2Þ ¼ 2π=Lðn1; n2Þ ðn1; n2 ¼ 0; 1;…;

L⊥ − 1Þ is a wave number on the lattice, klat;⊥ ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 k1

2
þ sin2 k2

2

q
is the transverse momentum on

the lattice, and ρ̃ð1=2Þcov is the discrete Fourier transform

of ρð1=2Þcov in the transverse direction, ρ̃ð1=2Þcov ðx∓; k⊥Þ ¼P
x1;x2 ρ

ð1=2Þ
cov ðx∓; x⊥Þe−ix⊥·k⊥ . As will be explained in the

later sections, we introduce the infrared regulator in ρ, and
as a result, the classical color charge vanishes at klat;⊥ ¼ 0.
To obtain the equation of motion and Gauss’s law for
the discretized CYM field with the dynamical current,
we begin with the case in the absence of the dynamical
current [3],

∂τ̃Ui;x ¼ ig
giiEi

x

aη̃τ̃
Ui;x; ð26Þ

∂τ̃Ei
x ¼ −

iaη̃τ̃

2g

X
j≠i

giigjj
h
Wij;x −U†

j;x−ĵWij;x−ĵUj;x−ĵ

i
; ð27Þ

X
i¼1;2;η̃

�
Ei
x −U†

i;x−îE
i
x−îUi;x−î

�
¼ 0; ð28Þ

where the index i runs over 1,2 and η̃; gμν ¼
diagð1;−1;−1;−ðaη̃τ̃Þ−2Þ is the metric of the Milne coor-

dinates on the lattice; and Wij;x ≡ Uij;x −U†
ij;x is the

difference of the plaquette, Uij;x ¼ Ui;xUj;xþîU
†
i;xþĵ

U†
j;x,

and its Hermite conjugate.
Next, referring to the continuous equation of motion and

Gauss’s law with the classical current, given in Eqs. (20)
and (21), we add the discretized currents to the discretized
equation of motion and Gauss’s law without the classical
current, given in Eqs. (27) and (28). In the Hamiltonian
formulation of the lattice gauge theory [35], there are two
ways to define electric fields: the left electric field EL and
the right electric fieldER. They are defined as the generation
of gauge transformations of the link variable and coincide
with the electric field in the continuous limit. They are
related to each other as Ei

R;x ¼ −U†
i;x−îE

i
L;x−îUi;x−î, and the

evolution of the classical lattice Yang-Mills theory can be
described equivalently using either definition. The classical
equations of motion shown in Eqs. (26) and (27) are indeed
formulations with the left electric field, and if one wants to
clarify the left-right definition of the electric field, the
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electric field in these equations should be written as EL.
Therefore, the current to be added to the equation of motion
given in Eq. (27) should be regarded as the left current, J̃L,

∂τ̃E
η̃
x ¼ −

i
2gaη̃τ̃

X
j≠η̃

h
Wη̃j;x −U†

j;x−ĵW η̃j;x−ĵUj;x−ĵ

i

−
1

τ̃
½J̃ð1ÞL;x − J̃ð2ÞL;x�; ð29Þ

where J̃ð1=2ÞL;x is located on xþ ˆ̃η=2 as well as the left electric

field Eη̃
x. On the other hand, Gauss’s law, which is shown in

Eq. (28), is independent of the choice of the electric field on
the lattice since the left-hand side of Eq. (28) is nothing but
the sum of the left and right electric fields,

X
i¼1;2;η̃

ðEi
x −U†

i;x−îE
i
x−îUi;x−îÞ ¼

X
i¼1;2;η̃

ðEi
L;x þ Ei

R;xÞ: ð30Þ

Therefore, we add the current J̃ð1=2Þ, which is independent
of the left/right choice, to Gauss’s law as shown in Eq. (21),

X
i¼1;2;η̃

ðEi
x −U†

i;x−îE
i
x−îUi;x−îÞ ¼ aη̃ðJ̃ð1Þx þ J̃ð2Þx Þ: ð31Þ

Next, we consider the initial condition for the discre-
tized currents J̃ð1=2Þx and J̃ð1=2ÞL;x and the continuity equations
for them. The initial condition for J̃ð1=2Þ in the modified
Fock-Schwinger gauge condition, shown in Eq. (13), is
discretized as

J̃ð1=2Þx ¼ x∓
g
Vð1=2Þ
x ρð1=2Þcov;xV

ð1=2Þ†
x : ð32Þ

Here, we employ the gauge transformations for the color
charge density shown in Eq. (4). The initial condition for
the left current is assumed to have the same expression as

that for J̃ð1=2Þx ,

J̃ð1=2ÞL;x ¼ x∓
g
Vð1=2Þ
xþ ˆ̃η

2

ρð1=2Þ
cov;xþ ˆ̃η

2

Vð1=2Þ†
xþ ˆ̃η

2

: ð33Þ

Since Uη̃ ¼ I at τ̃ini, the longitudinal electric field Eη̃ is

initially independent of the left/right choice, Eη̃
L ¼ −Eη̃

R.
Thus, it is reasonable to assume that the color current is
also independent of the left/right choice at the initial proper
time. Then, to get the continuity equations, we perform τ̃
derivative on the left and right hands of Gauss’s law given
in Eq. (31),

aη̃∂τ̃ðJ̃ð1Þx þ J̃ð2Þx Þ ¼−
1

τ̃

h
J̃ð1ÞL;x− J̃ð2ÞL;x

i
þ 1

τ̃
U†

η̃;x− ˆ̃η

h
J̃ð1Þ
L;x− ˆ̃η− J̃ð2Þ

L;x− ˆ̃η

i
Uη̃;x− ˆ̃η: ð34Þ

In accordance with the discussions in the continuum limit
[see the discussions above Eq. (17)], we assume that the
color currents, J̃ð1Þ and J̃ð2Þ, evolve according to

τ̃∂τ̃J̃
ð1=2Þ
x ¼∓ 1

aη̃

h
J̃ð1=2ÞL;x −U†

η̃;x− ˆ̃ηJ̃
ð1=2Þ
L;x− ˆ̃ηUη̃;x− ˆ̃η

i
: ð35Þ

In addition, following Ref. [25], we assume that the
evolution equation for the left current is given as

τ̃∂τ̃J̃
ð1=2Þ
L;x ¼∓ 1

aη̃

h
Uη̃;xJ̃

ð1=2Þ
xþ ˆ̃η

U†
η̃;x − J̃ð1=2Þx

i
: ð36Þ

The discretized continuity equations, given in Eqs. (35)
and (36), agree with Eq. (17) in the continuum limit. Note
that in the actual calculation it must be checked that the
continuous limit is taken correctly.

D. Energy-momentum tensor in discretized space

We define the energy-momentum (EM) tensor of the
CYM field on the lattice. In principle, the EM tensor on
discrete spacetime cannot be defined as Noether current
due to translational symmetry breaking by the lattice. To
define an appropriate “EM tensor” on the grid point for the
real-time lattice simulation, we translate the expression of
the EM tensor in continuous spacetime onto the lattice,

Tμν
x ¼ −gκσFðgridÞμκ;xFðgridÞνσ;x

þ 1

4
gμνgαβgγωFðgridÞαγ;xFðgridÞβω;x; ð37Þ

where the field strength on the grid point can be written
with the electric and magnetic field on the grid point,

Fiτ̃
ðgridÞx ¼

Ei
ðgridÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det gμν
p ; ð38Þ

Fij
ðgridÞx ¼ ϵijkBk

ðgridÞx: ð39Þ

The electric field on the grid point is defined as the distance
between the left and right electric field,

Ei
ðgridÞx ≡

1

2
½Ei

L;x − Ei
R;xþî

� ¼ 1

2
½Ei

x þ U†
î;x
Ei
xUi;x�: ð40Þ

This definition has the advantage that it does not depend on
the left/right choice of electric field. The magnetic field on
the grid point is defined using the four plaquettes in the
neighborhood of the grid point,
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Bi
ðgridÞx ≡

1

8
½ðUi;xUj;xþîU

†
i;xþĵ

U†
j;x

þU†
j;x−ĵUi;x−ĵUj;xþî−ĵU

†
i;x

þU†
i;x−îU

†
j;x−î−ĵUi;x−î−ĵUj;x−ĵ

þUj;xU
†
i;x−îþĵ

U†
j;x−îUi;x−îÞ − ðH:c:Þ�: ð41Þ

This discretized EM tensor should agree with the continu-
ous one in the continuum limit. To confirm that the 3þ 1D
glasma simulation performed on the lattice works without
problems, in the following section, we check the two
continuity equations. After that, we will apply our method
the central Au-Au collisions.

III. NUMERICAL RESULTS

We show the numerical results of the 3þ 1D glasma
simulations using the SU(2) CYM field in the Milne
coordinates. Our numerical simulations are performed on
the L2⊥ × Lη̃ lattice. The discretized evolution equations on
the lattice are given in Appendix B and solved with the
leapfrog method. The boundary condition in the transverse
directions is periodic, and the CYM field and classical color
current are imposed to vanish on the boundary of the η̃
direction. This section is organized as follows. In Sec. III A,
we test two relations that should hold in continuous
spacetime and check the consistency with calculations
performed in Ref. [25]. In Sec. III B, we show the evolution
of some observables using the setup that corresponds to the
central collisions of Au-Au at

ffiffiffi
s

p ¼ 200 GeV.

A. Check of our calculations

We first confirm that our simulations do not violate two
relations derived from the continuity equation. Then, we
calculate the transverse pressure and energy density in
the local rest frame and check their consistency with
those calculated in Ref. [25]. The paper [25] simulates the
3þ 1D glasma evolution on a lattice using the Minkowski
coordinates.
The initial color charge density considered here is

assumed to be the multiplication of the one-dimensional
normal distribution function N1D with the variance
R=ðγ ffiffiffi

2
p Þ, which represents the longitudinal shape of the

nucleus, and the random number Γð1=2Þ

ρð1=2Þðx∓; x⊥Þ ¼ N1D

�
x∓ − xc;

R

γ
ffiffiffi
2

p
�
Γð1=2Þðx⊥Þ; ð42Þ

where xc is the center position of the nuclei in the x∓
direction and R and γ are the radius and the gamma factor
of the nuclei. The random number Γð1=2Þ satisfies the event
average,

hΓð1=2Þaðx⊥ÞΓð1=2Þbðx0⊥Þieve ¼ δa;b
Q2

s

2
N2Dðx⊥ − x0⊥; σ⊥Þ;

ð43Þ

where Qs is the saturation scale. To introduce an ultraviolet
cutoff for the transverse momentum of ρ, we use the two-
dimensional normal distribution function with the variance
σ⊥, N2Dðx⊥ − x0⊥; σ⊥Þ, in Eq. (43) instead of the delta
function shown in Eq. (7). The transverse ultraviolet cutoff
is necessary to regulate divergence in the local operator of
the gauge fields [36,37]. In addition, we also introduce an
infrared cutoffm by multiplying the regulation factor by the
color charge density in the transverse momentum space,

ρ̃ð1=2Þðx∓; k⊥Þ →
k2lat;⊥

m2 þ k2lat;⊥
ρ̃ð1=2Þðx∓; k⊥Þ; ð44Þ

which means that the contribution of scale less than m is
suppressed.
In the calculations in this section, the parameters shown

in Table I are used, which is consistent with the previous
calculations in Ref. [25]. The system size in the longi-
tudinal direction, aη̃ × Lη̃, is taken such that both nuclei are
included in the lattice. The lattice spacing in the longi-
tudinal direction, aη̃, is small enough not to affect the
results. The center position of the nuclei in the light-cone
coordinates, x∓ ¼ xc, is taken such that the overlap of the
two incoming nuclei is negligibly small at the initial proper
time, τ̃ini.
Here, we consider the continuity equations in the Milne

coordinates,

½Dμ; Tμτ̃� ¼ −Eη̃Jη̃; ð45Þ

½Dμ; Tμη̃� ¼ 0; ð46Þ

or expanded explicitly as

1

τ̃
f∂τ̃½τ̃T τ̃ τ̃� þ τ̃2T η̃ η̃g þ ∂1T1τ̃ þ ∂2T2τ̃ þ ∂η̃T η̃ τ̃ ¼ −Eη̃Jη̃;

ð47Þ

TABLE I. Parameters used in Sec. III A.

L⊥ 128
Lη̃ 224,448,896
a⊥ 1=ð8QsÞ
aη̃ 10=Lη̃

m Qs
σ⊥

ffiffiffi
2

p
=ð10QsÞ

R=γ 1=ð2QsÞ; 1=ð4QsÞ; 1=ð8QsÞ; 1=ð16QsÞ
τ̃ini 0.1a⊥
xc τ̃ini=

ffiffiffi
2

p þ 3R=γ
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�
∂τ̃T η̃ τ̃ þ 3T η̃ τ̃

τ̃

�
þ ∂1T1η̃ þ ∂2T2η̃ þ ∂η̃T η̃ η̃ ¼ 0: ð48Þ

By integrating the left-hand and right-hand sides of
these equations over space and dropping the surface terms,
we obtain

τ̃∂τ̃τ
τ̃ τ̃ ¼ −ðττ̃ τ̃ þ τ̃2τη̃ η̃ þ κÞ; ð49Þ

τ̃∂τ̃ðτ̃3τη̃ τ̃Þ ¼ 0; ð50Þ

where τμν ≡ R dxdydη̃Tμν=V and κ ≡ R dxdydη̃ τ̃Eη̃Jη̃=V.
To measure the violation of these relations in actual
simulations, we use the quantities

C1 ≡ −
2aθðττ̃ τ̃ þ τ̃2τη̃ η̃ þ κÞjθ¼θiniþnaθ

ττ̃ τ̃jθ¼θiniþðnþ1Þaθ − ττ̃ τ̃jθ¼θiniþðn−1Þaθ
; ð51Þ

C2 ≡ τ̃3τη̃ τ̃jθ¼θiniþnaθ

τ̃3τη̃ τ̃jθ¼θini¼ln τini

; ð52Þ

where θ ¼ ln τ̃ is the time variable used for solving the
evolution equations numerically by the difference method,
θini ¼ ln τ̃ini is θ at the initial proper time, n is the time step,
and aθ is the step size (see Appendix B for details.). Both
quantities are normalized in such a way that they approach
1 when the violations of the continuity equations are
smaller. In the upper and lower panels of Fig. 2, we show
the evolution of C1 − 1 and C2 − 1, respectively, calculated
with Lη̃ ¼ 224, 448, and 896 using the common random
number Γð1=2Þ from the same seed. The deviations ofC1 − 1
and C2 − 1 from 0 are found to be small and stable in
changes of Lη̃. Thus, the effect of the discretization on the
dynamics is considered tiny in our calculations with large
Lη̃ and small aη̃. Decreasing the lattice spacing results in
smaller violations of Gauss’s law and the continuity
equation. Indeed, for the fixed time step, the magnitude
of the violations is found to converge to a certain value as
the lattice spacings decrease, as shown in Fig. 2, whereas
the violations seem to become smaller endlessly as the time
step decreases.
Next, we calculate the transverse pressure and energy

density in the local rest frame on a L2⊥ × Lη̃ ¼ 1282 × 448
lattice. To focus only on the EM tensor that the glasma has,
we define the subtracted EM tensor as

Tμν
sub ≡ Tμν − Tμν

ð1Þ − Tμν
ð2Þ; ð53Þ

where Tμν is the total EM tensor and Tμν
ð1=2Þ is the EM tensor

of the nucleus (1=2), respectively. To evaluate Tμν
ð1=2Þ, we

run two additional simulations in parallel, considering only

one nucleus. If the color charge densities change little with
collision, the subtracted EM tensor Tμν

sub can be considered
as the EM tensor of the glasma. This subtraction method
has been used in Ref. [25] as well. To check the consistency
of our method with theirs, we calculate the subtracted
transverse pressure and subtracted energy density in the
local rest frame, averaged over the transverse plane, which
are also calculated in Ref. [25],

P⊥ ≡
R
d2x⊥½T11

sub þ T22
sub�

2V⊥
; ð54Þ

εLRF≡
R
d2x⊥

�
T11
subþT22

subþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT τ̃ τ̃

subþT η̃ η̃
subÞ2− 4ðT η̃ τ̃

subÞ2
q �
2V⊥

;

ð55Þ

where V⊥ ¼ R d2x⊥. In Ref. [25], these quantities are
calculated using Minkovski coordinates, and thus the
expression of the energy density in the local rest frame
is different,
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FIG. 2. Test of the violation of relations (49) and (50), which
should hold in the continuum limit as a result of the continuity
equations for the EM tensor. The upper and lower panels show the
quantities defined in Eqs. (51) and (52) that are introduced to
measure the violations of Eqs. (49) and (50), respectively.
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εLRF≡
R
d2x⊥

�
T11
subþT22

subþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT00

subþT33
subÞ2− 4ðT30

subÞ2
q �
2V⊥

:

ð56Þ

The consistency between Eqs. (55) and (56) can be checked
using a general coordinate transformation.
Figure 3 shows the η dependence of the transverse

pressures normalized by the proper time and the saturation
scale, τP⊥=Q3

s , for different thicknesses, QsR=γ ¼ 1=2; 1=
4; 1=8, and 1=16. These results are event averages of 50
independent simulations, each given a different random

number Γð1=2Þ. The magnitude of the error is estimated
as the unbiased variance divided by the square root of
the number of events, which is guaranteed by the central
limit theorem to match the variance of the mean value,
in the limit of an infinite number of events. Here,
τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðxþ − xcÞðx− − xcÞ
p

, and η ¼ 1
2
ln xþ−xc

x−−xc
is the usual

Milne coordinates, in which central positions of the two
nuclei coincide at τ ¼ 0. Since the two Milne coordinates
are in one-to-one correspondence as ðτ ¼ τðτ̃; η̃Þ;
η ¼ ηðτ̃; η̃ÞÞ, numerical simulations with discrete ðτ̃; η̃Þ
can only provide observations at a large number of
discrete points spread across the ðτ; ηÞ plane. Therefore,
the result at a fixed proper time τ shown in Fig. 3 (and the
following figures) is actually sampled from results within
½0.99τ; 1.01τ�. The upper panel of Fig. 3 shows that
τP⊥=Q3

s for QsR=γ ¼ 1=16 at Qsτ ¼ 1.5, 3.0, 4.5, and
6.0 agree within the margin of error, which indicates that
P⊥ decreases as τ−1 at 1.5 ≤ Qsτ ≤ 6.0. While this scaling
behavior is imposed as the assumption in the paper [25],
we clarify that this scaling is established as time elapses
since the collision. We present a discussion about the
scaling behavior in Appendix D. The lower panel of Fig. 3
shows results for different thicknesses at the late time, in
which P⊥ falls as τ−1. It is found that the transverse
pressures at different thicknesses have a similar peak
around η ¼ 0 regardless of the thickness of the nucleus.
This peak around η ¼ 0 becomes milder as the nucleus
becomes thinner. This behavior is understandable since
the glasma becomes boost invariant when a nucleus is
infinitely thin, as explained in Sec. II A. These results
reproduce Fig. 8 in Ref. [25] well. The most important
point to note is that we can reproduce the these results
using about a 4.5 times smaller number of grids in the
longitudinal direction. The number of grids in the z
direction in the calculation in Ref. [25] is 2048, while
the number of grids in the η̃ direction in our calculation
is 448.
Figure 4 shows the η dependence of the energy density in

the local rest frame normalized by the proper time and the
saturation scale, τεLRF=Q3

s . The upper and lower panels of
Fig. 4 are obtained from the same simulations as shown in
the upper and lower panels of Fig. 3, respectively. The
upper panel of Fig. 4 shows that, in the late-time region
when P⊥ decreases as τ−1, εLRF also decreases as τ−1. The
lower panel of Fig. 4 shows that εLRF is about two times P⊥
at the late time, which means that the transverse pressure
P⊥ is much larger than the longitudinal pressure in the local
rest frame, defined as PLRF;L ≡ εLRF − 2P⊥. This definition
of PL is obtained by reference to the traceless of the EM
tensor, Tμ

μ ¼ 0, which is a consequence of the conformal
symmetry. It must be mentioned here that the lower panel of
Fig. 4 is inconsistent with the lower figure of Fig. 9 in
Ref. [25] and the discrepancy of εLRF between our and their
results becomes larger as QsR=γ becomes smaller. Given
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FIG. 3. The η dependence of the transverse pressure normalized
by the proper time and the saturation scale, τP⊥=Q3

s . All results
shown here are event averages of 50 independent simulations.
The upper panel shows τP⊥=Q3

s forQsR=γ ¼ 1=16 atQsτ ¼ 1.5,
3.0, 4.5, and 6.0. The lower panel shows τP⊥=Q3

s for
QsR=γ ¼ 1=16; 1=8; 1=4, and 1=2, which are calculated at
Qsτ ¼ 1.5, 3.0, 4.5, and 6.0, respectively.
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that our and their calculations for the transverse pressure
completely agree, this discrepancy in local energy density
is not understood, and we leave the investigation of the
cause of the discrepancy to a future task. Since the
continuity equations are not violated in our simulations,
and our calculations are stable for varying lattice sizes and
spacings, we believe that there is no fatal problem in our
method, at least with respect to the initial condition and the
dynamical evolution of the 3þ 1D glasma.

B. Central collisions of Au-Au

We show the numerical results using the initial con-
ditions that describe the central Au-Au collisions atffiffiffi
s

p ¼ 200 GeV. The color charge density at the initial
proper time τ̃ini is given as the incoherent sum of the color

charge density of each nucleon. The color charge density of
ith nucleon with a radius Rn is assumed to have the
Gaussian shape whose center position is ðb1i ; b2i ; b∓i Þ,

ρð1=2Þi ðx∓;x⊥Þ¼N1D

�
x∓−b∓i ;

Rnffiffiffi
6

p
γ

�
N2D

�
x⊥−b⊥;i;

Rnffiffiffi
3

p
�

×Γð1=2Þ
i ðx∓;x⊥Þ: ð57Þ

The random number Γð1=2Þ
i satisfies the event average

hΓð1=2Þa
i ðx∓; x⊥ÞΓð1=2Þb

i ðx0∓; x0⊥Þieve

¼ δa;b2π

�
2R2

n

3
þ σ2⊥

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

�
R2
n

3γ2
þ σ2∓

�s
ðg2μ̄Þ2

× N1Dðx∓ − x0∓; σ∓ÞN2Dðx⊥ − x0⊥; σ⊥Þ; ð58Þ

where σ⊥ and σ∓ are the correlation lengths of Γð1=2Þ in the
transverse and longitudinal direction, respectively, and g2μ̄
is the parameter controlling the strength of the color charge
density. Then, we can obtain the relation (detailed deriva-
tion is presented in Appendix E)

hρð1=2Þai ðx∓;x⊥Þρð1=2Þbi ðx0∓;x0⊥Þieve
¼ δa;bðg2μ̄Þ2N1D

�
x∓þx0∓

2
−b∓i ;

Rnffiffiffi
3

p
γ

�
N1Dðx∓−x0∓; l∓Þ

×N2D

 
x⊥þx0⊥

2
−b⊥;i;

ffiffiffi
2

3

r
Rn

!
N2Dðx⊥−x0⊥; l⊥Þ; ð59Þ

where l⊥ and l∓ are the correlation lengths of ρð1=2Þ, which
are related to σ⊥ and σ∓ by

l−2⊥ ¼ σ−2⊥ þ
 ffiffiffi

2

3

r
Rn

!−2

; ð60Þ

l−2∓ ¼ σ−2∓ þ
�

Rnffiffiffi
3

p
γ

�
−2
: ð61Þ

We can define the squared color charge density of the
nucleon per unit volume dx−dxdy as

ðg2μðx∓;x⊥ÞÞ2≡ðg2μ̄Þ2N1D

 
x∓; Rnffiffiffi

3
p

γ

!
N2D

 
x⊥;

ffiffiffi
2

3

r
Rn

!
;

ð62Þ

and its integration over x∓ at x⊥ ¼ 0 is assumed to be
proportional to the squared nucleon saturation scale,
ðg2μ2D;cÞ2 ¼

R
dx∓ðg2μðx∓; 0ÞÞ2 ∝ Q2

n;s. The center posi-
tion of ith nucleon, ðb⊥;i; b−i Þ, is sampled according to the
Woods-Saxon distribution,
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FIG. 4. The η dependence of the energy density in the local rest
frame normalized by the proper time and the saturation scale,
τεLRF=Q3

s . The upper and lower panels of Fig. 4 are obtained from
the same simulations as shown in the upper and lower panels of
Fig. 3, respectively.
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fwsðx∓; x⊥Þ ∝
1

1þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−bimp=2Þ2þy2þ2ðx∓−xcÞ2=γ2

p
−R

a

ð63Þ

with a nucleus radius R, a thinness of a nucleus surface a,
and an impact parameter bimp. Then, the color charge
density of a nucleus with an atomic number A has the
following event average:

hρð1=2Þaðx∓; x⊥Þρð1=2Þbðx0∓; x0⊥Þieve

¼ δa;b
XA
i¼1

�
g2μ
�
x∓ þ x0∓

2
− b∓i ;

x⊥ þ x0⊥
2

− b⊥;i

��
2

× N2Dðx⊥ − x0⊥; l⊥ÞN1Dðx∓ − x0∓; l∓Þ: ð64Þ

In the limit where Rn is infinitely small and A is infinitely
large, Eq. (64) becomes

hρð1=2Þaðx∓; x⊥Þρð1=2Þbð0x∓; x0⊥Þieve
¼ δa;bAfwsðx⊥; x0∓Þðg2μ̄Þ2δðx∓ − x0∓Þδðx⊥ − x0⊥Þ: ð65Þ

This way of determining the color charge density for each
nucleon is simple and does not take into account fluctua-
tions of ρ using the knowledge of high-energy QCD. There
are more sophisticated ways that can give more realistic
determination of the color charge density. The IP-glasma
model is the most famous way [19]: the color charge
density for each nucleon is determined by the saturation
scale based on the IP-sat model [38,39]. Aside from this,
there is another way in which the color charge density of
each nucleon is determined from the transverse momen-
tum-dependent gluon distribution parametrized by the
GBW model [25].
We use the set of parameters listed in Table. II chosen to

describe the Au-Au collisions at
ffiffiffi
s

p ¼ 200 GeV. To
simulate a central collision, we choose the impact parameter
to be zero, bimp ¼ 0. The parameter g2μ̄ is taken such that
ðg2μ2D;cÞ2 ¼ 10Q2

n;s. The infrared cutoff m is introduced in
the samemanner as done in the previous section and is taken
as 0.2 GeV as the QCD scale. In this setup, the energy
density of the glasma generated in the central collision at
τ ¼ 1 fm=c, and η ¼ 0 in the x ∼ y ∼ 0 region is found to
be about 800 GeV=fm3. The longitudinal correlation length
l∓ is taken to be the maximal value Rn=

ffiffiffi
3

p
γ, which means

that the longitudinal correlation only comes from the
longitudinal shape of a nucleon. This paper focuses on
studying the recoil effect of the dynamical current on the
glasma, and we leave a detailed study of the effect of the
longitudinal correlation on the 3þ 1D glasma evolution for
future works.
Note that the subtraction method used in the previous

section is not used in this section. In contrast to the
calculations in the previous section, the change of the

CYM field of the nucleus before and after the collision
of this section is not negligibly small. As a result, the
subtracted EM tensor defined in Eq. (53) cannot be regarded
as the EM tensor consisting of only glasma contribution.
We show the dynamical evolution of the energy density

in the central collision. Here, the energy density in the
Milne coordinates is given by the energy-momentum tensor
Tττ, and it is obtained from T τ̃ τ̃; T η̃ η̃, and T τ̃ η̃ using the
general coordinates transformation,

Tττ ¼ 1

τ̃2 − 2τ̃x̄c cosh η̃þ x̄2c

h
ðτ̃ − x̄c cosh η̃Þ2T τ̃ τ̃

þ ðx̄c sinh η̃Þ2τ̃2T η̃ η̃ − x̄c sinh η̃ðτ̃ − x̄c cosh η̃Þτ̃T τ̃ η̃
i
:

ð66Þ

In Fig. 5, we show the η dependence of the energy density
averaged over the transverse plane,

ε≡
R
dxdyTττ

V⊥
; ð67Þ

at different proper times in the central collisions. The
results shown in Fig. 5 are averaged over ten events, and
they are normalized by the proper time and the saturation
scale of the nucleon. It is found that the normalized energy
density τε=Q4

n;s rises in the large η region. This increase is
attributed to seeing the change in the energy density around
the skin of the outgoing nuclei. In fact, the positions R=γ
away from the centers of the outgoing nuclei are located in
the region, jηj ¼ 1.9–2.8, which is close to jηj ¼ 2. On the
other hand, τε=Q4

n;s is found to be nearly a constant
function of η in the rapidity region where two colliding
nuclei have already passed, which indicates that the glasma

TABLE II. Parameters used in Sec. III B.

L⊥ 674
Lη̃ 1792
a⊥ 134=R
aη̃ 8=Lη̃

γ 108
A 197
R 6.38 ðfm=cÞ
a 0.535 ðfm=cÞ
Rn 1.01 ðfm=cÞ
Qn;s 0.5 (GeV)
ðg2μ2D;cÞ2 10Q2

n;s

l⊥ 2.5=Qn;s

l∓ Rn=ð
ffiffiffi
3

p
γÞ

m 0.2 (GeV)
bimp 0; R
τ̃ini 0.1a⊥
xc τ̃init=

ffiffiffi
2

p þ 1.8R=γ
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created in this simulation is nearly boost invariant. It should
be noted that, compared to the calculations in the previous
section, establishing the scaling law ε ∝ τ−1 is uncertain.

IV. SUMMARY

We have proposed a new numerical method for 3þ 1D
glasma simulation in Milne coordinates. In this method, the
initial condition of the classical Yang-Mills field and 3D
classical color current is prepared at the time before the
collision of the two nuclei occurs. Then, the dynamical
evolution of the CYM field and classical color current is
tracked during the process in which the two nuclei collide
and pass through each other by solving the discretized
evolution equations. Our numerical calculation is per-
formed in the Milne coordinates (τ̃; η̃) where the collision
has not yet occurred at τ̃ ¼ τ̃ini. Thus, the Milne coordinates
we use differ from the usual Milne coordinates (τ, η) where
the center positions of two nuclei coincide at τ ¼ 0.
However, the physical quantities presented in the usual
Milne coordinates, such as Tττ, can be obtained from that in
our modified Milne coordinates by a general coordinate
transformation.
Our method is a new simulation method of the

3þ 1D glasma evolution with the dynamical color cur-
rent. The difference between our method and previous
methods [22–26] is that our glasma simulation is done in
the modified Milne coordinates as mentioned above, while
the previous simulations are done in the Minkowski
coordinates. Since the numerical simulations on a finite
lattice in Milne coordinates correspond to a longitudinally
expanding system in terms of the Minkowski coordinates
because z ¼ τ sinh η, numerical simulations with our
Milne coordinates need much fewer numerical resources

than the simulations in Minkowski coordinates. Reduction
of the numerical resource is important in the actual
application since tracking the dynamical evolution of
the 3D glasma requires huge numerical resources.
In Sec. III A, we first confirmed that two relations derived

from the continuity equation of the EM tensor are not
violated in the actual simulations, which indicates that the
discretization effect on the dynamics is tiny and is well
under control. Then, we checked the consistency of our
results and the results shown in Ref. [25], using the same
setup as Ref. [25]. As a result, the transverse pressure P⊥
calculated in our method completely agrees with the
authors’ result. The most important thing to note is that
we can reproduce the their result using about 4.5 smaller
number of grids in the longitudinal direction. The number of
grids in the z direction in their calculation is 2048, while the
number of grids in the η̃ direction in our calculation is 448.
In addition, we have explicitly shown that the transverse
pressure decrease as P⊥ ∝ τ−1, which is treated as the
assumption in Ref. [25]. On the other hand, the energy
density in the local rest frame εLRF calculated in our method
does not fully agree with the results shown in Ref. [25]. Our
calculation has shown that it is about two times the
transverse pressure, which means that the transverse pres-
sure P⊥ is much larger than the longitudinal pressure in the
local rest frame, PLRF;L ¼ εLRF − 2P⊥.
In Sec. III B, we show the numerical results using the

initial conditions that describe the central Au-Au collisions
at

ffiffiffi
s

p ¼ 200 GeV. The energy density of the glasma is
found to be almost boost invariant near the midrapidity
region. It should be noted that, compared to the calculations
with the setup consistent with the Ref. [25], establishing the
scaling behavior, ε ∝ τ−1, is uncertain.
Our model of the 3D glasma considers the finite spatial

distribution of hard partons, which allows us to simulate
the dynamical production of glasma during the finite
collision time, while in the 2D glasma model, the
collisions between nuclei are instantaneous. It should
be noted, however, that some simplifications are still used
for practicality. The classical color current, a collection of
hard partons, is assumed to move at the speed of light and
to have no transverse component, which is suppressed in
the limit of the large hadron momentum. This assumption
restricts the change in the hard parton’s momentum to the
beam axis orientation; thus, the recoil effect cannot be
fully incorporated. Also, the simplification that nuclei
evolve individually according to each continuity equation
still is held. Since the MV model focuses on collisions at
energies much higher than the nuclear stopping power, the
baryon number is not deposited in the collisional region.
Therefore, within the MV model, the classical color
current of each nucleus, consisting of valence quarks
and their emitted hard partons, should evolve separately, at
least after the collision and of course before the collision.
On the other hand, this assumption may not be accurate

 6
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FIG. 5. The transverse-plane averaged energy density ε, nor-
malized by the proper time and the saturation scale of the
nucleon, at τðfm=cÞ ¼ 0.4, 0.6, 0.8, and 1.0. The results are
averaged over ten independent simulations.
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during the collision. We acknowledge the limitations of
the current model and recognize the challenges of building
a more comprehensive model as a future work.
As explained above, we have shown that our method

costs much fewer numerical resources, and thus it can be
used for practical event-by-event simulations within rea-
sonable simulation time. The natural future directions are
then to investigate other observables such as angular
momentum, topological charges; to study the thermalization
of the glasma; and to provide the initial conditions for
hydrodynamic simulations for the comparison of the
obtained results with experimental results. Aside from these,
another possible direction is to make the initial condition
more realistic using the phenomenological model based on
the high-energy QCD, such as the IP-sat model [38,39].
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APPENDIX A: WILSON LINE ON A LATTICE

To obtain the initial condition of the CYM field and the
classical color current on the lattice, shown in Sec. II C, we
have to evaluate the Wilson line at (τ̃ini; η̃) numerically,

Vð1=2Þ†
x ¼Px∓ exp

�
−i
Z

x∓

−∞
dx0∓∂−2⊥ ρð1=2Þcov ðx0∓;x⊥Þ

�
: ðA1Þ

In our setup, the color charge density ρð1=2Þcov does not exist at
the sufficiently small x∓, and thus we can replace the lower

bound of the integral in Eq. (A1) with a small value xlow
such that ρð1=2Þjx∓¼xlow ∼ 0. Then, for the numerical evalu-
ation of Eq. (A1), we divide the exponential function in
Eq. (A1) into many small parts,

Vð1=2Þ†
x ¼ Wð1=2Þ

x jxη̃¼η̃�1
2
Δη̃W

ð1=2Þ
x jxη̃¼η̃�3

2
Δη

� � �Wð1=2Þ
x j

xη̃¼∓ln
ffiffi
2

p
xlow
τ̃ini

; ðA2Þ

where Wð1=2Þ is spaced with interval Δη̃ in η̃ coordinates
and is given in the following expression:

Wð1=2Þ
x ¼ exp½−ijx∓jxη̃¼η̃þ1

2
Δη̃ − x∓jxη̃¼η̃−1

2
Δη̃j∂−2⊥ ρð1=2Þcov jxη̃¼η̃�:

ðA3Þ

Here, ∂−2⊥ ρð1=2Þcov is obtained by the discrete Fourier transform
as shown in Eq. (25). The interval Δη̃ should be small
enough to converge the evaluated Wilson line.

APPENDIX B: DISCRETIZATION OF TIME
DIRECTION

We show here how to solve the evolution equations
shown in Sec. II C by the difference method. In the actual
calculations, we use the time variable θ ¼ ln τ̃ instead of
τ̃. Because of the relation ∂θ ¼ τ̃∂τ̃, we can solve
the evolution equations efficiently in the small τ region
where the numerical calculation is more severe. The
discretized classical equation of motion with the step size
aθ is given by

Ui;xjθ¼θiniþðnþ2Þaθ ¼ e
giaθgiiE

i

aη̃ jθ¼θiniþðnþ1ÞaθUi;xjθ¼θiniþnaθ ;

ðB1Þ

Ei
xjθ¼θiniþðnþ2Þaθ ¼Ei

xjθ¼θiniþnaθ −aθaη̃

	
iτ̃
2g

X
i

giigjj
h
Wij;x−U†

j;x−ĵWij;x−ĵUj;x−ĵ

i
þ δiη̃

h
J̃ð1ÞL;x− J̃ð2ÞL;x

i
����
θ¼θiniþðnþ1Þaθ

; ðB2Þ

where θini ¼ ln τ̃ini is θ at the initial proper time and n is the time step. The continuity equations are discretized as

J̃ð1=2Þx

���
θ¼θiniþðnþ2Þaθ

¼ J̃ð1=2Þx

���
τ¼naθ

∓ aθ
aη̃

h
J̃ð1=2ÞL;x −U†

η̃;x− ˆ̃ηJ̃
ð1=2Þ
L;x− ˆ̃ηUη̃;x− ˆ̃η

i���
θ¼θiniþðnþ1Þaθ

; ðB3Þ

J̃ð1=2ÞL;x

���
θ¼θiniþðnþ2Þaθ

¼ J̃ð1=2ÞL;x

���
θ¼θiniþnaθ

∓ aθ
aη̃

h
Uη̃;xJ̃

ð1=2Þ
xþ ˆ̃η

U†
η̃;x − J̃ð1=2Þx

i���
θ¼θiniþðnþ1Þaθ

: ðB4Þ
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In the actual calculations, we solve these discretized
evolution equations by the leapfrog method, which is
convenient for describing the Hamilton dynamics.

APPENDIX C: LONGITUDINAL PRESSURE IN
SETUP FOR SEC. III A

In this appendix, we show the longitudinal pressure is
negligibly small, compared to the transverse pressure
shown in Fig. 3, which means that the whole system
expands like a rarefied gas in the longitudinal direction.
The longitudinal pressure is defined as

PL ≡
R
d2x⊥τ2Tηη

sub

2V⊥
: ðC1Þ

Here, the energy-momentum tensor Tηη
sub is calculated via

the general coordinates transformation,

τ2Tηη
sub ¼

1

τ̃2 − 2τ̃x̄c cosh η̃þ x̄2c

h
ðx̄c sinh η̃Þ2T τ̃ τ̃

sub

þ ðτ̃ − x̄c cosh η̃Þ2τ̃2T η̃ η̃
sub

− x̄c sinh η̃ðτ̃ − x̄c cosh η̃Þτ̃T τ̃ η̃
sub

i
: ðC2Þ

Figure 6 shows the η dependence of PL normalized by the
proper time and the saturation scale, τPL=Q3

s , for different
thicknesses,QsR=γ ¼ 1=2; 1=4; 1=8, and 1=16. Comparing
Figs. 3 and 6, it is found that the longitudinal pressure is
much smaller than the transverse pressure in the wide
rapidity range, −2 < η < 2.

APPENDIX D: SCALING BEHAVIOR

In this Appendix, we discuss the scaling behavior
obtained in Fig. 3, P⊥ ∝ τ−1. First, let us see the continuity
equation for Tττ without the dynamical current,

1

τ
f∂τ½τTττ� þ τ2Tηηg þ ∂1T1τ þ ∂2T2τ þ ∂ηTητ ¼ 0: ðD1Þ

The current term is neglected here since the nuclei have
already passed through in the time region shown in Figs. 3
and 4. By the integration over the transverse plane, the
continuity equation leads to the evolution equation of the
sum of the transverse and longitudinal pressure,

∂τ½τðP⊥ þ PLÞ� ¼ −PL − τ∂ητ
ητ; ðD2Þ

where τητ ≡ R dxdyTητ=V⊥, and the longitudinal pressure
is defined as PL ¼ R dxdyτ2Tηη=V⊥, To obtain Eq. (D2),
we use the relation Tττ ¼ T11 þ T22 þ Tηη resulting from
the conformal symmetry of the CYM theory. Since the
longitudinal pressure is quite smaller than the transverse
pressure, as shown in Appendix C, we can drop PL and
obtain the evolution equation of the transverse pressure as

∂τ½τP⊥� ¼ −τ∂ητητ: ðD3Þ

Therefore, the realization of the scaling behavior indicates
that the derivative term τ∂ητ

ητ in Eq. (D3) is negligible as
well as PL.

APPENDIX E: DERIVATION OF TWO-POINT
CORRELATION FUNCTION OF COLOR

CHARGE DENSITY OF A SINGLE NUCLEON

In this Appendix, we show the detailed calculation
process to obtain Eq. (59). First, let us substitute
Eq. (58) into Eq. (57),

hρð1=2Þai ðx∓; x⊥Þρð1=2Þbi ðx0∓; x0⊥Þieve

¼ δa;bðg2μ̄Þ22π
�
2R2

n

3
þ σ2∓

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

�
R2
n

3γ2
þ σ2⊥

�s

× N1D

�
x∓ − b∓i ;

Rnffiffiffi
6

p
γ

�
N2D

�
x⊥ − b⊥;i;

Rnffiffiffi
3

p
�

× N1D

�
x0∓ − b∓i ;

Rnffiffiffi
6

p
γ

�
N2D

�
x0⊥ − b⊥;i;

Rnffiffiffi
3

p
�

× N1Dðx∓ − x0∓; σ∓ÞN2Dðx⊥ − x0⊥; σ⊥Þ: ðE1Þ

The product of Gussian functions of x∓ and x0∓ in the right-
hand of Eq. (E1) can be transformed into the product of
Gussian functions of x∓ þ x0∓ and x∓ − x0∓ as
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FIG. 6. The η dependence of the longitudinal pressure normal-
ized by the proper time and the saturation scale, τPL=Q3

s . All
results shown here are calculated from the same simulations as
shown in Figs. 3 and 4.
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hρð1=2Þai ðx∓; x⊥Þρð1=2Þbi ðx0∓; x0⊥Þieve

¼ δa;bðg2μ̄Þ22π
�
2R2

n

3
þ σ2⊥

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

�
R2
n

3γ2
þ σ2∓

�s

× N1D

�
x∓ þ x0∓

2
− b∓i ;

Rn

2
ffiffiffi
3

p
γ

�
N1D

�
x∓ − x0∓; Rnffiffiffi

3
p

γ

�

× N2D

�
x⊥ þ x0⊥

2
− b⊥;i;

Rnffiffiffi
6

p
�
N2D

 
x⊥ − x0⊥;

ffiffiffi
2

3

r
Rn

!

× N1Dðx∓ − x0∓; σ∓ÞN2Dðx⊥ − x0⊥; σ⊥Þ: ðE2Þ

Here, we use the following relations:

N1D

�
x∓ − b∓i ;

Rnffiffiffi
6

p
γ

�
N1D

�
x0∓ − b∓i ;

Rnffiffiffi
6

p
γ

�

¼ N1D

�
x∓ þ x0∓

2
− b∓i ;

Rn

2
ffiffiffi
3

p
γ

�
N1D

�
x∓ − x0∓; Rnffiffiffi

3
p

γ

�

× N2D

�
x⊥ − b⊥;i;

Rnffiffiffi
3

p
�
N2D

�
x0⊥ − b⊥;i;

Rnffiffiffi
3

p
�

¼ N2D

�
x⊥ þ x0⊥

2
− b⊥;i;

Rnffiffiffi
6

p
�
N2D

 
x⊥ − x0⊥;

ffiffiffi
2

3

r
Rn

!
:

ðE3Þ

A number of Gaussian functions in the right-hand of
Eq. (E2) can be reduced by using the relation

N1D

�
x∓ − x0∓; Rnffiffiffi

3
p

γ

�
N1Dðx∓ − x0∓; σ∓Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðR2

n=ð3γ2Þ þ σ2∓Þ
q N1Dðx∓ − x0∓; l∓Þ

× N2D

 
x⊥ − x0⊥;

ffiffiffi
2

3

r
Rn

!
N2Dðx⊥ − x0⊥; σ⊥Þ

¼ 1

2πð2R2
n=3þ σ2⊥Þ

N2Dðx⊥ − x0⊥; l⊥Þ; ðE4Þ

where the correlation lengths l∓ and l⊥ are defined in
Eqs. (61) and (60), respectively. Then, Eq. (E2) is found to
be the same as Eq. (59),

hρð1=2Þai ðx∓;x⊥Þρð1=2Þbi ðx0∓;x0⊥Þieve
¼ δa;bðg2μ̄Þ2N1D

�
x∓ þ x0∓

2
− b∓i ;

Rnffiffiffi
3

p
γ

�
N1Dðx∓ − x0∓; l∓Þ

×N2D

 
x⊥ þ x0⊥

2
− b⊥;i;

ffiffiffi
2

3

r
Rn

!
N2Dðx⊥ − x0⊥; l⊥Þ:

ðE5Þ

[1] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233
(1994); 49, 3352 (1994); 50, 2225 (1994).

[2] A. Kovner, L. D. McLerran, and H. Weigert, Phys. Rev. D
52, 3809 (1995); ’52, 6231 (1995).

[3] A. Krasnitz and R. Venugopalan, Nucl. Phys. B557, 237
(1999); Phys. Rev. Lett. 84, 4309 (2000).

[4] A. Krasnitz, Y. Nara, and Raju Venugopalan, Phys. Rev.
Lett. 87, 192302 (2001); Nucl. Phys. A717, 268 (2003);
A727, 427 (2003).

[5] T. Lappi, Phys. Rev. C 67, 054903 (2003).
[6] T. Lappi and L. McLerran, Nucl. Phys. A772, 200 (2006).
[7] P. Romatschke and R. Venugopalan, Phys. Rev. Lett. 96,

062302 (2006); Eur. Phys. J. A 29, 71 (2006); Phys. Rev. D
74, 045011 (2006).

[8] J. Berges, S. Scheffler, and D. Sexty, Phys. Rev. D 77,
034504 (2008).

[9] J. Berges, D. Gelfand, S. Scheffler, and D. Sexty, Phys. Lett.
B 677, 210 (2009).

[10] K. Fukushima and F. Gelis, Nucl. Phys. A874, 108 (2012).
[11] J. Berges, S. Scheffler, S. Schlichting, and D. Sexty, Phys.

Rev. D 85, 034507 (2012).

[12] J. Berges and S. Schlichting, Phys. Rev. D 87, 014026
(2013).

[13] T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301
(2013).

[14] J. Berges, K. Boguslavski, S. Schlichting, and R.
Venugopalan, Phys. Rev. D 89, 074011 (2014).

[15] J. Berges, K. Boguslavski, S. Schlichting, and R.
Venugopalan, Phys. Rev. D 89, 114007 (2014).

[16] O. Philipsen, B. Wagenbach, and S. Zafeiropoulos, Eur.
Phys. J. C 79, 286 (2019).

[17] H. Tsukiji, T. Kunihiro, A. Ohnishi, and T. T. Takahashi,
Prog. Theor. Exp. Phys. 2018, 013D02 (2018).

[18] H. Matsuda, T. Kunihiro, A. Ohnishi, and T. T. Takahashi,
Prog. Theor. Exp. Phys. 2022, 073D02 (2022).

[19] B. Schenke, P. Tribedy, and R. Venugopalan, Phys.
Rev. Lett. 108, 252301 (2012); Phys. Rev. C 86, 034908
(2012).

[20] B. Schenke and S. Schlichting, Phys. Rev. C 94, 044907
(2016).

[21] S. McDonald, S. Jeon, and C. Gale, Nucl. Phys. A982
(2019); A1005, 121771 (2021).

SIMULATION OF A ð3þ 1ÞD GLASMA IN MILNE … PHYS. REV. D 108, 114008 (2023)

114008-15

https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.2233
https://doi.org/10.1103/PhysRevD.49.3352
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1103/PhysRevD.52.3809
https://doi.org/10.1103/PhysRevD.52.3809
https://doi.org/10.1103/PhysRevD.52.6231
https://doi.org/10.1016/S0550-3213(99)00366-1
https://doi.org/10.1016/S0550-3213(99)00366-1
https://doi.org/10.1103/PhysRevLett.84.4309
https://doi.org/10.1103/PhysRevLett.87.192302
https://doi.org/10.1103/PhysRevLett.87.192302
https://doi.org/10.1016/S0375-9474(03)00636-5
https://doi.org/10.1016/j.nuclphysa.2003.08.004
https://doi.org/10.1103/PhysRevC.67.054903
https://doi.org/10.1016/j.nuclphysa.2006.04.001
https://doi.org/10.1103/PhysRevLett.96.062302
https://doi.org/10.1103/PhysRevLett.96.062302
https://doi.org/10.1140/epja/i2005-10304-y
https://doi.org/10.1103/PhysRevD.74.045011
https://doi.org/10.1103/PhysRevD.74.045011
https://doi.org/10.1103/PhysRevD.77.034504
https://doi.org/10.1103/PhysRevD.77.034504
https://doi.org/10.1016/j.physletb.2009.05.008
https://doi.org/10.1016/j.physletb.2009.05.008
https://doi.org/10.1016/j.nuclphysa.2011.11.003
https://doi.org/10.1103/PhysRevD.85.034507
https://doi.org/10.1103/PhysRevD.85.034507
https://doi.org/10.1103/PhysRevD.87.014026
https://doi.org/10.1103/PhysRevD.87.014026
https://doi.org/10.1103/PhysRevLett.111.232301
https://doi.org/10.1103/PhysRevLett.111.232301
https://doi.org/10.1103/PhysRevD.89.074011
https://doi.org/10.1103/PhysRevD.89.114007
https://doi.org/10.1140/epjc/s10052-019-6790-8
https://doi.org/10.1140/epjc/s10052-019-6790-8
https://doi.org/10.1093/ptep/ptx186
https://doi.org/10.1093/ptep/ptac086
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevLett.108.252301
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.86.034908
https://doi.org/10.1103/PhysRevC.94.044907
https://doi.org/10.1103/PhysRevC.94.044907
https://doi.org/10.1016/j.nuclphysa.2018.08.014
https://doi.org/10.1016/j.nuclphysa.2018.08.014
https://doi.org/10.1016/j.nuclphysa.2020.121771


[22] A. Ipp and D. I. Muller, Phys. Lett. B 771 (2017); Eur. Phys.
J. A 56, 243 (2020).

[23] D. Gelfand, A. Ipp, and D. Muller, Phys. Rev. D 94, 014020
(2016).

[24] D. Avramescu, V. Baran, V. Greco, A. Ipp, and, D. I. Muller,
and M. Ruggieri, Phys. Rev. D 107, 114021 (2023).

[25] S. Schlichting and P. Singh, Phys. Rev. D 103, 014003
(2021).

[26] A. Ipp, D. I. Muller, S. Schlichting, and P. Singh, Phys. Rev.
D 104, 114040 (2021).

[27] S. McDonald, S. Jeon, and C. Gale, arXiv:2306.04896.
[28] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert,

Nucl. Phys. B504, 415 (1997); Phys. Rev. D 59, 014014
(1998); 59, 034007 (1999); 59, 099903(E) (1999).

[29] J. Jalilian-Marian, A. Kovner, and H. Weigert, Phys. Rev. D
59, 014015 (1998).

[30] E. Iancu, A. Leonidov, and L. D. McLerran, Nucl. Phys.
A692, 583 (2001).

[31] E. Ferreiro, E. Iancu, A. Leonidov, and L. D. McLerran,
Nucl. Phys. A703, 489 (2002).

[32] E. Iancu, A. Leonidov, and L. D. McLerran, Phys. Lett. B
510, 133 (2001).

[33] E. Iancu and L. D. McLerran, Phys. Lett. B 510, 145 (2001).
[34] T. Lappi and H. Mantysaari, Eur. Phys. J. C 73, 2307 (2013).
[35] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[36] J. Jalilian-Marian, A. Kovner, L. D. McLerran, and H.

Weigert, Phys. Rev. D 55, 5414 (1997).
[37] K. Fukushima and Y. Hidaka, J. High Energy Phys. 06

(2007) 040.
[38] J. Bartels, K. Golec-Biernat, and H. Kowalski, Phys. Rev. D

66, 014001 (2002).
[39] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003).

HIDEFUMI MATSUDA and XU-GUANG HUANG PHYS. REV. D 108, 114008 (2023)

114008-16

https://doi.org/10.1016/j.physletb.2017.05.032
https://doi.org/10.1140/epja/s10050-020-00241-6
https://doi.org/10.1140/epja/s10050-020-00241-6
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1103/PhysRevD.107.114021
https://doi.org/10.1103/PhysRevD.103.014003
https://doi.org/10.1103/PhysRevD.103.014003
https://doi.org/10.1103/PhysRevD.104.114040
https://doi.org/10.1103/PhysRevD.104.114040
https://arXiv.org/abs/2306.04896
https://doi.org/10.1016/S0550-3213(97)00440-9
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.034007
https://doi.org/10.1103/PhysRevD.59.099903
https://doi.org/10.1103/PhysRevD.59.014015
https://doi.org/10.1103/PhysRevD.59.014015
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)01329-X
https://doi.org/10.1016/S0370-2693(01)00524-X
https://doi.org/10.1016/S0370-2693(01)00524-X
https://doi.org/10.1016/S0370-2693(01)00526-3
https://doi.org/10.1140/epjc/s10052-013-2307-z
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.55.5414
https://doi.org/10.1088/1126-6708/2007/06/040
https://doi.org/10.1088/1126-6708/2007/06/040
https://doi.org/10.1103/PhysRevD.66.014001
https://doi.org/10.1103/PhysRevD.66.014001
https://doi.org/10.1103/PhysRevD.68.114005

