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We analyze the world polarized deep-inelastic scattering (DIS) and semi-inclusive DIS (SIDIS) data
at low values of x < 0.1, using small-x evolution equations for the flavor singlet and nonsinglet
helicity parton distribution functions (hPDFs), which resum all powers of both αs ln2ð1=xÞ and
αs lnð1=xÞ lnðQ2=Q2

0Þ, with αs being the strong coupling constant. The hPDFs for quarks, antiquarks,
and gluons are extracted and evolved to lower values of x to make predictions for the future Electron-Ion
Collider (EIC). We improve on our earlier work by employing the more realistic large-Nc & Nf limit of the
revised small-x helicity evolution, and by incorporating running coupling corrections along with SIDIS
data into the fit. We find an anticorrelation between the signs of the gluon and C-even quark hPDFs, as well
as the g1 structure function. While the existing low-x polarized DIS and SIDIS data are insufficient to
constrain the initial conditions for the polarized dipole amplitudes in the helicity evolution equations, future
EIC data will allow more precise predictions for hPDFs and the g1 structure function for x values beyond
those probed at the EIC. Using the obtained hPDFs, we discuss the contributions to the proton spin from
quark and gluon spins at small x.

DOI: 10.1103/PhysRevD.108.114007

I. INTRODUCTION

A. General motivation

The proton spin puzzle has been one of the most
intriguing and profound mysteries in our understanding
of the proton structure for over three decades (for reviews,
see Refs. [1–9]). The main challenge is to determine, both
qualitatively and quantitatively, how the proton spin is
distributed among the spins and orbital angular momenta
(OAM) of its quark and gluon constituents. The question is
usually formulated in terms of spin sum rules, such as the

Jaffe-Manohar sum rule [10] (see also the Ji sum rule [11]),
that decompose the proton spin of 1=2 (in units of ℏ) into
the sum of the quark (Sq) and gluon (SG) spins and the
OAM carried by the quarks (Lq) and gluons (LG):

Sq þ Lq þ SG þ LG ¼ 1

2
: ð1Þ

Each of the contributions in Eq. (1) can, in turn, be written
as the integral of a partonic function over the longitudinal
momentum fraction x carried by the parton. For example,

SqðQ2Þ ¼ 1

2

Z
1

0

dxΔΣðx;Q2Þ; ð2aÞ

SGðQ2Þ ¼
Z

1

0

dxΔGðx;Q2Þ; ð2bÞ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 114007 (2023)

2470-0010=2023=108(11)=114007(39) 114007-1 Published by the American Physical Society

https://orcid.org/0000-0001-5556-4952
https://orcid.org/0000-0001-6990-9173
https://orcid.org/0000-0002-9521-5973
https://orcid.org/0000-0003-2190-3666
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.114007&domain=pdf&date_stamp=2023-12-11
https://doi.org/10.1103/PhysRevD.108.114007
https://doi.org/10.1103/PhysRevD.108.114007
https://doi.org/10.1103/PhysRevD.108.114007
https://doi.org/10.1103/PhysRevD.108.114007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


with similar expressions for the OAM contributions
[12–16], where ΔΣðx;Q2Þ is the flavor singlet combination
of the quark helicity parton distribution functions (hPDFs)
Δqðx;Q2Þ (quark flavor q), and ΔGðx;Q2Þ is the gluon
hPDF [10]. The goal of current research in the field of
proton spin physics is to determine ΔΣðx;Q2Þ, ΔGðx;Q2Þ,
Lqðx;Q2Þ, and LGðx;Q2Þ across a broad range of x and Q2

in order to quantify how much of the proton spin is carried
by the partons in different kinematic regions.
The standard way to address the proton spin puzzle is by

extracting the hPDFs Δqðx;Q2Þ and ΔGðx;Q2Þ from
experimental data using collinear factorization along with
the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations [17–19] to relate
observables at different Q2 values. There have been a
number of very successful extractions of hPDFs over
the years within this approach [20–34]. Nevertheless, the
DGLAP-based methodology has a drawback: since the
DGLAP equations evolve PDFs in Q2, they cannot truly
predict the x dependence of PDFs. The x dependence is
greatly affected by the functional form of the PDF para-
metrization at the initial momentum scale Q2

0, which gives
the initial conditions for the DGLAP evolution. The param-
eters are then determined by optimizing agreement between
the theoretical calculations to the experimental measure-
ments. In this way, the experimental data, in the x range
where it is available, make up for the inability of DGLAP
evolution to predict the x dependence of PDFs. Conversely,
in thex regionwhichhas not yet beenprobedexperimentally,
DGLAP-based predictions typically acquire a broad uncer-
tainty band due to extrapolation errors. This is particularly
true in the small-x region. Since no experiment, present or
future, can perform measurements down to x ¼ 0, further
theoretical input is needed to constrain the hPDFs at low x.
The benefit of small-x helicity evolution is that it makes a
genuine prediction for the hPDFs at small x given some
initial conditions at a higher x0. Due to the integrals in
Eq. (2), precise control over the behavior of hPDFs at small x
is mandatory to resolving the proton spin puzzle.

B. Proton spin at small x

The first resummation of hPDFs at small x was per-
formed in the pioneering work by Bartels, Ermolaev, and
Ryskin (BER) [35,36], who employed the infrared evolu-
tion equations (IREE) formalism from Refs. [37–41]. The
BER IREE resummed double logarithms of x—i.e., powers
of the parameter αs ln2ð1=xÞ (with αs being the strong
coupling constant)—which is referred to as the double-
logarithmic approximation (DLA). The leading small-x
asymptotics for the flavor singlet combination of quark
hPDFs and the gluon hPDF can be written as

ΔΣðx;Q2Þ ∼ ΔGðx;Q2Þ ∼
�
1

x

�
αh
; ð3Þ

with αh being the helicity intercept. BER found αh ¼
3.66

ffiffiffiffiffiffiffiffi
αsNc
2π

q
in the pure gluon case and αh ¼ 3.45

ffiffiffiffiffiffiffiffi
αsNc
2π

q
for

Nf ¼ 4 (the numbers 3.66 and 3.45 were calculated numeri-
cally, the latter for Nc ¼ 3, withNc=Nf being the number of
quark colors/flavors). These intercepts are numerically large,
with αh > 1 for realistic coupling αs ¼ 0.2–0.3, making the
integrals (2) divergent as x → 0. One may hope that the
higher-order corrections in αs, when calculated, would lower
the intercept αh below 1, making the integrals (2) convergent.
In addition, at very small x, parton saturation corrections (see
Refs. [42–49] for reviews) are likely to significantly modify
theasymptotics (3) by slowingdown (or completely stopping)
the growth of hPDFs with decreasing x (see, e.g., [50] for the
impact of saturation effects on the unpolarized flavor non-
singlet evolution). Phenomenological applications of the
BER IREE approach were developed in Refs. [51–56].
Recently, the BER approach has been applied to the OAM
distributions as well [57].
Over the past decade, a new approach to helicity

evolution at small x has been developed [58–71] employing
the shock wave=s-channel evolution formalism originally
constructed in Refs. [72–84] for unpolarized eikonal
scattering. The main idea behind the works [58–71] is that
the subeikonal, sub-subeikonal, etc., quantities obey small-
x evolution equations similar to the eikonal ones [75–84],
resulting from an s-channel gluon (or quark) cascade. (See
Refs. [63,64,85–98] for the formalism of subeikonal and
sub-subeikonal evolution in high-energy scattering.) The
subeikonal quantities are suppressed by one power of x
compared to the eikonal ones, while sub-subeikonal quan-
tities are suppressed by two powers of x, etc.
The equations developed in Refs. [58,60,63,64,66,71]

were also derived in the DLA. Similarly to the unpolarized
evolution equations [75–84], the helicity evolution equa-
tions [58,60,63,64,71] only take on a closed form in the
large-Nc [99] and large-Nc & Nf [100] limits. In that case,
they become the evolution equations for the so-called
“polarized dipole amplitudes,” which are dipole scattering
amplitudes with an insertion of one gluon or two quark
operators at the subeikonal level into the light-cone Wilson
lines [63,64,71,92]. The earlier version of this evolution,
constructed in Refs. [58,60,63] (which we will refer to as

KPS), led to an intercept of αh ¼ 4ffiffi
3

p
ffiffiffiffiffiffiffiffi
αsNc
2π

q
≈ 2.31

ffiffiffiffiffiffiffiffi
αsNc
2π

q
in

the large-Nc limit [61,62], significantly smaller than the

intercept of αh ¼ 3.66
ffiffiffiffiffiffiffiffi
αsNc
2π

q
found by BER in the same

limit. The KPS evolution has recently been augmented [71]
by inclusion of the operators which couple what can be
interpreted as the OAM of the gluon probe (in the A− ¼ 0
light-cone gauge of the projectile) to the spin of the proton.1

1We thank Florian Cougoulic, Alex Kovner, and Feng Yuan for
suggesting this interpretation of those operators.
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The revised evolution equations, which we will refer to as
the KPS-CTT equations [58,64,71], have been solved at
large Nc both numerically [71] and analytically [101].
While the former reference found the numerical value of

the intercept to be αh ¼ 3.66
ffiffiffiffiffiffiffiffi
αsNc
2π

q
, appearing to agree with

BER, the analytic solution [101] found that the BER and
KPS-CTT intercepts at large Nc disagree in the third
decimal point. Very recently, a numerical solution of the
large-Nc & Nf version of the KPS-CTT evolution [102]
established a disagreement with BER (in the same limit) at
the 2%–3% level, with the discrepancy increasing with Nf.
While the observed differences between the two sets of
results appear to demand further theoretical investigation,
they are sufficiently small to allow one to proceed with
rigorous phenomenological applications of the KPS-CTT
evolution equations [58,60,63,64,71].
The first phenomenological application of the polarized

dipole amplitude formalism—more precisely, its KPS
version—was performed by a subset of the present authors
in Ref. [103]. In that work, a successful “proof of principle”
fit of the world polarized DIS data for x < 0.1 andQ2 > m2

c
(with mc being the charm quark mass) based solely on
small-x helicity evolution was performed. Since the analysis
of Ref. [103] was limited to DIS data, only the g1 structure
functions of the proton and neutron were extracted instead of
the individual flavor hPDFs. The impact ofDIS data from the
EIC on our ability to predict the g1 structure function at small
xwas also estimated. In addition, in order to demonstrate that
it is possible to extract the combinations Δqþðx;Q2Þ≡
Δqðx;Q2Þ þ Δqðx;Q2Þ for q ¼ u, d, s using small-x
helicity evolution, parity-violatingDISEIC pseudodatawere
utilized. We refer to Δqþðx;Q2Þ as the C-even hPDFs,
whereas the flavor nonsinglet C-odd hPDFs are similarly
defined as Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ.

C. Subject of this work

In the present paper, we perform, for the first time, a
phenomenological analysis based on the KPS-CTT version
of small-x helicity evolution with several other significant
new features beyond the work of Ref. [103]. Instead of the
large-Nc limit of evolution employed in Ref. [103], we base
our analysis on the large-Nc & Nf limit. In addition to the
polarized DIS data, we also include in our analysis polarized
SIDIS data. Since the SIDIS data are sensitive to the
individual quark and antiquark helicity PDFs, Δqðx;Q2Þ
andΔqðx;Q2Þ, it is not sufficient to just use the flavor singlet
helicity evolution from Ref. [71], which only yields the
Δqþðx;Q2Þ combination [in addition to the gluon hPDF
ΔGðx;Q2Þ]. One also needs the flavor nonsinglet quark
hPDFs Δq−ðx;Q2Þ. Those are constructed using the large-
Nc, small-x helicity evolution equation for the flavor non-
singlet case from Ref. [60]. Finally, to make the calculation
more realistic and avoid the integrals (2) diverging at x → 0,

we include runningcoupling corrections into thekernel of the
evolution equations (both flavor singlet and nonsinglet). We
make the coupling run with the daughter dipole size, which
ends up effectively reducing the interceptαh forΔqþ andΔG
below 1. (The intercept of the flavor nonsinglet hPDFs is
smaller than 1 even at fixed coupling in the realistic αs ¼
0.2–0.3 range; still, for consistency, we apply running
coupling corrections to the flavor nonsinglet helicity evolu-
tion as well.) The analysis of SIDIS data also requires input
for fragmentation functions, which are not specific to the
small-x evolution at hand; therefore, we employ the existing
JAM fragmentation functions for pions, kaons, and uniden-
tified hadrons from Ref. [34].
The paper is structured as follows: We begin in Sec. II by

outlining thepolarizeddipole amplitude formalismdeveloped
inRefs. [58,60,63,64,71] and explicitlywriting out the flavor-
singlet KPS-CTT large-Nc & Nf, DLA small-x helicity
evolution equations with running coupling corrections, along
with the flavor nonsinglet helicity evolution equation derived
in Ref. [60]. We also present the details of our numerical
methodology in solving these evolution equations. We
describe the calculation of observables (double-longitudinal
spin asymmetries) inDISandSIDIS, particularly detailing the
calculation of the polarized SIDIS cross section at small x.We
explain our analysis of the world polarized DIS and SIDIS
low-x data and describe the implementation of the KPS-CTT
evolution within the JAMBayesian Monte Carlo framework.
The results of our analysis are presented in Sec. III, which
includes plots of data versus theory, the hPDFs, and the g1
structure function, as well as an estimate of how much of the
proton spin is carried by the net spin of partons at small x. We
also conduct an EIC impact study on the aforementioned
quantities. Conclusions and an outlook are given in Sec. IV.

II. METHODOLOGY

A. Flavor singlet evolution at small x

The small-x helicity formalism in the light-cone operator
treatment (LCOT) framework along with the large-
Nc & Nf, small-x evolution equations for helicity were
revised in Ref. [71]. In the new formalism, the (DIS) g1
structure function is given by

g1ðx;Q2Þ ¼ 1

2

X
q

e2qΔqþðx;Q2Þ; ð4Þ

where eq is the quark electric charge as a fraction of the
magnitude of the electron’s charge. The C-even quark
hPDFs in the DLA take the form [64,71]

Δqþðx;Q2Þ≡ Δqðx;Q2Þ þ Δqðx;Q2Þ

¼ −
Nc

2π3

Z
1

Λ2=s

dz
z

Z
min ½1=zQ2;1=Λ2�

1=zs

dx210
x210

× ½Qqðx210; zsÞ þ 2G2ðx210; zsÞ�: ð5Þ

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-3



The gluon hPDF in the DLA is [63]

ΔGðx;Q2Þ ¼ 2Nc

αsπ
2
G2

�
x210 ¼

1

Q2
; zs ¼ Q2

x

�
: ð6Þ

Note that the quark and gluon hPDFs Δqþ and ΔG are
expressed in terms of the impact-parameter-integrated
polarized dipole amplitudes Qq and G2, whose operator
definitions can be found in Refs. [58,64,71] and Ref. [63],
respectively. The dipole amplitudes depend on the
transverse size of the dipole x10 ¼ jx1 − x0j, where the
“polarized” (subeikonally interacting) line is located at x1,
and the unpolarized (standard) Wilson line is at x0 in the
transverse plane. The amplitudes also depend on the center-
of-mass energy squared s of the projectile-proton scatter-
ing. The dimensionless longitudinal momentum fraction z
can be thought of as the momentum fraction of the softest
of the two lines in the dipole. (However, this definition is
somewhat imprecise, and it is more accurate to think of zs
as the effective energy of the dipole-proton scattering
[58,60,70].) The momentum scale Λ denotes our infrared
(IR) cutoff and is the scale characterizing the proton. No
dipole can be larger than 1=Λ—that is, the transverse
size x10 < 1=Λ.
At small x, Eq. (4) was derived in Refs. [58,60,61].

However, the contribution of G2 to Δqþ in Eq. (5) was
recognized only recently [71]. Given that G2 is closely
related to the gluon hPDF ΔG, as follows from Eq. (6),
Eqs. (4) and (5) show that in our LCOT approach, the
contribution ofΔG to g1 comes in throughΔqþ [71,102] (see
more on this below).We have also expanded the definition of
the amplitudeQq to include dependence on the quark flavor
q ¼ u, d, s, such that we have three different amplitudesQu,
Qd, andQs for the light flavors, which is necessary, since the
quark spinor field operators are flavor dependent. The
operator definition for the three flavors is the same, but
the flavor dependence can enter through the initial condition
of the dipole amplitude evolution.
While Eq. (4) appears to correspond to the leading-order

(LO) expression in the collinear factorization approach to
polarized DIS [see, e.g., Eq. (4.5) in Ref. [104] ], in the
LCOT framework, it contains more information than that.
In collinear factorization at the next-to-leading order (NLO)
and beyond, the expression for the g1 structure function
also involves the contribution of ΔG. More precisely, one
can write [18,19,105–114]

g1ðx;Q2Þ ¼ 1

2

X
q

e2q

�
Δqþðx;Q2Þ

þ
Z

1

x

dz
z

�
ΔcqðzÞΔqþ

�
x
z
;Q2

�
þ ΔcGðzÞΔG

�
x
z
;Q2

���
; ð7Þ

with the coefficient functions ΔcqðzÞ and ΔcGðzÞ calcu-
lated order by order in perturbation theory. In the MS
scheme, the small-x, large-Nc & Nf coefficient functions
are [105] (see also [114] for the three-loop contribution,
which we do not show explicitly here)

ΔcqðzÞ ¼
αsNc

4π
ln
1

z
þ 5

12

�
αsNc

4π

�
2
�
1 − 4

Nf

Nc

�
ln3

1

z

þOðα3sÞ; ð8aÞ

ΔcGðzÞ ¼ −
αs
2π

ln
1

z
−
11

2

�
αs
4π

�
2

Ncln3
1

z
þOðα3sÞ: ð8bÞ

Note that after the z integration in Eq. (7), the contribution
from the order-αs terms in Eq. (8) becomes of the order
αs ln2ð1=xÞ, while the contribution from the order-α2s terms
in Eq. (8) becomes of the order ½αs ln2ð1=xÞ�2, etc.
Consequently, in the collinear factorization power counting,
the contributions from ΔcqðzÞ and ΔcGðzÞ in Eq. (7) are
NLO and beyond, allowing one to truncate the expansion at a
given order in αs determined by the accuracy of the
calculation. In our DLA small-x power counting, the leading
small-x parts of ΔcqðzÞ and ΔcGðzÞ are already included to
all orders in the powers of αs ln2ð1=xÞ. This is precisely what
Eq. (4) accomplishes [102].While it appears to be just the LO
part of Eq. (7), the fact thatΔqþ in it is evolvedwith theDLA
small-x helicity evolution [58,60,63,64,71], resumming
powers of both αs ln2ð1=xÞ and αs lnð1=xÞ lnðQ2=Q2

0Þ,
implies that Eq. (4) contains both theDLADGLAPevolution
ofΔqþ, which mixes it with ΔG [by resumming the powers
of αs lnð1=xÞ lnðQ2=Q2

0Þ], and the leading small-x parts of
the coefficient functions ΔcqðzÞ and ΔcGðzÞ, resummed to
all orders in αs ln2ð1=xÞ, bringing the ΔG and additional
Δqþ contributions into g1, as expected from Eq. (7) (see
[102] for a more detailed discussion). The fact that all these
contributions are contained in Eq. (4), which looks much
simpler than Eq. (7), appears to suggest that we are working
in the “polarizedDIS scheme” [102] for our hPDFs (cf. [115]
for the standard DIS scheme), whereΔG does not contribute
to g1 directly, unlike the more widely used MS scheme from
Eq. (7). Other small-x calculations, such as the NLO BFKL
evolution [116,117] (in the small-x power counting), result in
the spin-independent GG anomalous dimension in the DIS
scheme [108]. This appears to be similar to our calculation
giving a polarized DIS scheme result, with the difference
between the anomalous dimensions in different schemes
being proportional to Nf [102,108].
The polarized dipole amplitudes Qq and G2, which enter

Eqs. (4)–(6), are found by solving the small-x evolution
equations. The DLA large-Nc & Nf revised evolution
equations at fixed coupling are given by Eq. (155) in
Ref. [71] (see also Refs. [58,64]). Its existing numerical
solution [102] (with fixed coupling) leads to a large
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intercept αh for the flavor singlet hPDFs and for Δqþ [see
Eq. (3) with the intercept values in the text following that
equation],making the integrals in Eq. (2) divergent as x → 0.
As we discussed above, this divergence may be regulated by
higher-order corrections and/or by the onset of saturation,
which is likely to slow down the growth of hPDFs as x → 0.
As the unpolarized small-x evolution [72–84] is single-
logarithmic, resumming powers of αs lnð1=xÞ, a consistent
inclusion of saturation effects is beyond the double-loga-
rithmic approximation employed here.While, strictly speak-
ing, phenomenology based on small-x evolution in the DLA
should work with the high intercepts found in Ref. [102], it
appears to be unphysical to perform an analysis of exper-
imental data with a formalism that would yield an infinite
amount of spin at small x. While we cannot include the
single-logarithmic [resumming powers of αs lnð1=xÞ] cor-
rections to the revised DLA evolution equations (155) from
Ref. [71], since they have not been fully calculated yet (see
Ref. [70] for the single-logarithmic corrections to the earlier
KPS evolution), we can include running-coupling correc-
tions in the DLA evolution. A similar approximation was
employed in the BER framework [53,55] and for the

spin-independent eikonal small-x evolution [118,119],
resulting in successful phenomenology.
In the DLA equations (155) from Ref. [71], the scale of

the coupling could be given by either the “parent” (x10) or
the “daughter” (x21 or x32) dipole. The running coupling
corrections to the (unrevised) KPS evolution, calculated in
Ref. [70] (along with other single-logarithmic corrections),
indicate that at DLA the coupling runs with the daughter
dipole size. For the neighbor dipole amplitudes Γ, eΓ, and
Γ2, introduced in Refs. [58,60,63,64,66,71] and also enter-
ing helicity evolution equations, the coupling runs with
the dipole size x32, which determines the next emission’s
lifetime and is integrated over in the kernel [70]. Therefore,
we proceed by running the coupling with the daughter
dipole size (or, more precisely, with the dipole size that we
integrate over in the kernel) in all the terms of the KPS-CTT
evolution. (See Refs. [120–124] for calculations and
analyses of the running coupling corrections in the unpo-
larized small-x evolution case.) The resulting running-
coupling version of the large-Nc & Nf helicity evolution
equations (155) from [71] reads

Qqðx210; zsÞ ¼ Qð0Þ
q ðx210; zsÞ þ

Nc

2π

Z
z

1=x2
10
s

dz0

z0

Z
x2
10

1=z0s

dx221
x221

αs

�
1

x221

�
½2eGðx221; z0sÞ þ 2eΓðx210; x221; z0sÞ

þQqðx221; z0sÞ − Γqðx210; x221; z0sÞ þ 2Γ2ðx210; x221; z0sÞ þ 2G2ðx221; z0sÞ�

þ Nc

4π

Z
z

Λ2=s

dz0

z0

Z
min ½x2

10
z=z0;1=Λ2�

1=z0s

dx221
x221

αs

�
1

x221

�
½Qqðx221; z0sÞ þ 2G2ðx221; z0sÞ�; ð9aÞ

Γqðx210; x221; z0sÞ ¼ Qð0Þ
q ðx210; z0sÞ þ

Nc

2π

Z
z0

1=x2
10
s

dz00

z00

Z
min½x2

10
;x2

21
z0=z00�

1=z00s

dx232
x232

αs

�
1

x232

�
½2eGðx232; z00sÞ

þ2eΓðx210; x232; z00sÞ þQqðx232; z00sÞ − Γqðx210; x232; z00sÞ þ 2Γ2ðx210; x232; z00sÞ þ 2G2ðx232; z00sÞ�

þ Nc

4π

Z
z0

Λ2=s

dz00

z00

Z
min ½x2

21
z0=z00;1=Λ2�

1=z00s

dx232
x232

αs

�
1

x232

�
½Qqðx232; z00sÞ þ 2G2ðx232; z00sÞ�; ð9bÞ

eGðx210; zsÞ ¼ eGð0Þðx210; zsÞ þ
Nc

2π

Z
z

1=x2
10
s

dz0

z0

Z
x2
10

1=z0s

dx221
x221

αs

�
1

x221

��
3eGðx221; z0sÞ þ eΓðx210; x221; z0sÞ

þ2G2ðx221; z0sÞ þ
�
2 −

Nf

2Nc

�
Γ2ðx210; x221; z0sÞ −

1

4Nc

X
q

Γqðx210; x221; z0sÞ
�

−
1

8π

Z
z

Λ2=s

dz0

z0

Z
min ½x2

10
z=z0;1=Λ2�

max½x2
10
;1=z0s�

dx221
x221

αs

�
1

x221

��X
q

Qqðx221; z0sÞ þ 2NfG2ðx221; z0sÞ
�
; ð9cÞ

eΓðx210; x221; z0sÞ ¼ eGð0Þðx210; z0sÞ þ
Nc

2π

Z
z0

1=x2
10
s

dz00

z00

Z
min½x2

10
;x2

21
z0=z00�

1=z00s

dx232
x232

αs

�
1

x232

��
3eGðx232; z00sÞ

þeΓðx210; x232; z00sÞ þ 2G2ðx232; z00sÞ þ
�
2 −

Nf

2Nc

�
Γ2ðx210; x232; z00sÞ −

1

4Nc

X
q

Γqðx210; x232; z00sÞ
�

−
1

8π

Z
z0x2

21
=x2

10

Λ2=s

dz00

z00

Z
min ½x2

21
z0=z00;1=Λ2�

max½x2
10
;1=z00s�

dx232
x232

αs

�
1

x232

��X
q

Qqðx232; z00sÞ þ 2NfG2ðx232; z00sÞ
�
; ð9dÞ
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G2ðx210; zsÞ ¼ Gð0Þ
2 ðx210; zsÞ þ

Nc

π

Z
z

Λ2=s

dz0

z0

Z
min ½ z

z0x
2
10
; 1
Λ2
�

max ½x2
10
; 1
z0s�

dx221
x221

αs

�
1

x221

�
½eGðx221; z0sÞ þ 2G2ðx221; z0sÞ�; ð9eÞ

Γ2ðx210; x221; z0sÞ ¼ Gð0Þ
2 ðx210; z0sÞ þ

Nc

π

Z
z0
x2
21

x2
10

Λ2=s

dz00

z00

Z
min ½ z0

z00x
2
21
; 1
Λ2
�

max ½x2
10
; 1

z00s�

dx232
x232

αs

�
1

x232

�
½eGðx232; z00sÞ þ 2G2ðx232; z00sÞ�: ð9fÞ

The running coupling in Eq. (9) is given by the standard
one-loop expression,

αsðQ2Þ ¼ 12π

11Nc − 2Nf

1

lnðQ2=Λ2
QCDÞ

; ð10Þ

with ΛQCD being the QCD confinement scale. We have also
modified Eq. (9) compared to Eq. (155) in Ref. [71] in two
additional ways: first, we are now treating the momentum
scale Λ as the infrared cutoff (assuming that Λ > ΛQCD);
second, since the amplitude Qq is now flavor dependent,
we have replaced the Nf factors from Ref. [71] with flavor
sums ðPqÞ. Equation (9) also includes the dipole ampli-

tude eG, which is defined in Ref. [71]: as one can see from
Eqs. (4)–(6), the g1 structure function and hPDFs do not
depend on this dipole amplitude: this will affect our
analysis below. Following Refs. [58,60,63,64,66,71], we
have introduced the impact-parameter integrated “neighbor
dipole amplitudes” Γqðx210; x232; zsÞ, eΓðx210; x232; zsÞ, and

Γ2ðx210; x232; zsÞ for the amplitudes Qq, eG, and G2, respec-
tively, with physical dipole transverse size x10 and lifetime
∼x232z. This lifetime for the neighbor dipole amplitudes
depends on the transverse size of another (adjacent) dipole,
giving rise to the “neighbor” amplitude name.
The inhomogeneous terms (initial conditions) in Eq. (9)

can be calculated at the Born level for a longitudinally
polarized massless quark target instead of the proton. This
gives [58,60,63,71]

eGð0Þðx210; zsÞ ¼ Qð0Þ
q ðx210; zsÞ

¼ α2sCF

2Nc
π

�
CF ln

zs
Λ2

− 2 ln ðzsx210Þ
�
; ð11aÞ

Gð0Þ
2 ðx210; zsÞ ¼

α2sCF

Nc
π ln

1

x10Λ
; ð11bÞ

where CF ¼ ðN2
c − 1Þ=ð2NcÞ is the Casimir operator in the

fundamental representation of SU(Nc). These expressions
will motivate our choice of the initial conditions for our
phenomenological analysis. (While, strictly speaking, we
should have included running coupling corrections in the
expressions (11) as well, the fixed coupling form has a
sufficient variety of dependence on the relevant variables zs
and x10 to motivate a fairly broad class of initial conditions
we will implement below).

B. Flavor nonsinglet evolution at small x

As one can see from Eq. (4) in the previous subsection,
measurements of the g1 structure function in DIS off a
nucleon are only sensitive to a specific linear combination of
Δqþðx;Q2Þ. Such DIS measurements were the topic of our
previous study [103]. However, the polarized SIDIS process,
as we will see below, provides information on the individ-
ual flavor hPDFs Δqðx;Q2Þ—or, equivalently, on both
Δqþðx;Q2Þ and Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ.
The above evolution equations (9) only allow us to calculate
Δqþðx;Q2Þ. To perform the polarized SIDIS data analysis,
we need to supplement them with the small-x helicity
evolution in the flavor nonsinglet channel.
A closed evolution equation at small x yielding

Δq−ðx;Q2Þ in the LCOT framework can be obtained in
the large-Nc limit, which is equivalent to the large-Nc & Nf

limit for the flavor nonsinglet helicity evolution in DLA.
(In the DLA, the flavor nonsinglet evolution is Nf-
independent, since virtual quark bubbles do not contribute.
Thus, the large-Nc and large-Nc & Nf limits are identical
for flavor nonsinglet evolution.) Employing Eq. (54b)
of [60], we write in the DLA

Δq−ðx;Q2Þ≡ Δqðx;Q2Þ − Δqðx;Q2Þ

¼ Nc

2π3

Z
1

Λ2=s

dz
z

Z
min ½1=zQ2;1=Λ2�

1=zs

dx210
x210

×GNS
q ðx210; zsÞ: ð12Þ

We see that Δq−ðx;Q2Þ only depends on one (impact-
parameter integrated) polarized dipole amplitude,
GNS

q ðx210; zsÞ, for each flavor q ¼ u, d, s. The definition
of this dipole amplitude can be found in Eq. (55) of
Ref. [60]. Just as in the flavor singlet case, the nonsinglet
dipole amplitude can be determined by solving the small-x
evolution equation, which reads [60]

GNS
q ðx210; zÞ ¼GNSð0Þ

q ðx210; zÞ þ
Nc

4π

Z
z

Λ2=s

dz0

z0

×
Z

min ½x2
10
z=z0;1=Λ2�

1=z0s

dx221
x221

αs

�
1

x221

�
×GNS

q ðx221; z0Þ: ð13Þ
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To be consistent with the flavor-singlet evolution, we have
also inserted a running coupling into Eq. (13), modifying it
slightly compared to the fixed-coupling flavor nonsinglet
evolution equation derived in Ref. [60]. The inhomo-
geneous term in Eq. (13) can also be calculated at Born
level for a quark target [60]:

GNSð0Þ
q ðx210; zsÞ ¼

α2sC2
F

Nc
π ln

zs
Λ2

: ð14Þ

This expression will again motivate our choice of the flavor
nonsinglet initial conditions in phenomenology.

C. Numerical implementation of the flavor singlet
and nonsinglet evolution

Similarly to our previous works [61,67,71,102], small-x
helicity evolution equations simplify if one performs the
following change of variables:

ηðnÞ ¼
ffiffiffiffiffiffi
Nc

2π

r
ln
zðnÞs
Λ2

; sij ¼
ffiffiffiffiffiffi
Nc

2π

r
ln

1

x2ijΛ2
: ð15Þ

Here, zðnÞ ¼ z; z0; z00;…, while ηðnÞ ¼ η; η0; η00;…. Note
that this form, in contrast to the earlier works, removes
the factor

ffiffiffiffiffi
αs

p
from the definition of the variables η and sij,

so that the one-loop running of the coupling can be
implemented via [cf. Eq. (10)]

αsðs21Þ ¼
ffiffiffiffiffiffi
Nc

2π

r
12π

ð11Nc − 2NfÞ
1

ðs21 þ s0Þ
; ð16aÞ

s0 ¼
ffiffiffiffiffiffi
Nc

2π

r
ln

Λ2

Λ2
QCD

: ð16bÞ

Since we assume that Λ > ΛQCD, we have s0 > 0. As all
our dipole sizes are smaller than 1=Λ, we see that s21 > 0,
thus avoiding the Landau pole at s21 ¼ −s0 < 0 in the
coupling. (In general, having an IR cutoff for the dipole
sizes, xij < 1=Λ, implies that all sij > 0.)
Before discretizing our evolution equations, we need to

impose the starting value of x for our evolution
(cf. Ref. [103]). For z ¼ 1 and x10 ¼ 1=Q, we have the

“rapidity” variable y≡ η − s10 ¼
ffiffiffiffi
Nc
2π

q
ln 1

x. Hence, if our

evolution starts at some value of x labeled by x0, then the

x < x0 condition implies that η − s10 >
ffiffiffiffi
Nc
2π

q
ln 1

x0
≡ y0.

Regarding the value of x0, it was observed in
Ref. [103], using the older (KPS) version of our helicity
evolution, that good χ2 fits of the polarized DIS data can be
obtained with x0 ¼ 0.1 (and even for slightly higher values
of x0). This is in contrast to the x0 ¼ 0.01 starting point of
the evolution [75–84] for phenomenological analyses of the
unpolarized observables (see, e.g., Refs. [118,119]). As
discussed in Sec. III A below, it was speculated in
Ref. [103] that such a discrepancy could be attributed to
the helicity evolution resumming the double-logarithmic
parameter αs ln2ð1=xÞ while the unpolarized evolution
[77–84,125,126] resums single logarithms αs lnð1=xÞ.
This way, the resummation parameter for helicity evolution
is larger at small x, making the helicity evolution start at
larger x values. We thus put x0 ¼ 0.1 in all our analyses
below.2

The full process of discretizing our flavor singlet and
nonsinglet evolution equations with running coupling is
detailed in Appendix A. In the end, the discretized
version of Eq. (9) written in terms of the variables in
(15) reads

Qq½i; j� ¼ Qq½i; j− 1� þQð0Þ
q ½i; j�−Qð0Þ

q ½i; j− 1�

þΔ2
Xj−2−y0
i0¼i

αs½i0�
�
3

2
Qq½i0; j− 1� þ 2eG½i0; j− 1� þ 2eΓ½i; i0; j− 1�− Γq½i; i0; j− 1� þ 3G2½i0; j− 1� þ 2Γ2½i; i0; j− 1�

�

þ 1

2
Δ2

Xj−2
j0¼j−1−i

αs½iþ j0 − jþ 1�½Qq½iþ j0 − jþ 1; j0� þ 2G2½iþ j0 − jþ 1; j0��; ð17aÞ

Γq½i; k; j� ¼ Γq½i; k − 1; j − 1� þQð0Þ
q ½i; j� −Qð0Þ

q ½i; j − 1�

þ Δ2
Xj−2−y0
i0¼k−1

αs½i0�
�
3

2
Qq½i0; j − 1� þ 2eG½i0; j − 1� þ 2eΓ½i; i0; j − 1� − Γq½i; i0; j − 1�

þ 3G2½i0; j − 1� þ 2Γ2½i; i0; j − 1�
�
; ð17bÞ

2Note that the x < x0 condition is applied only to our small-x helicity evolution equations. The expressions for the g1 structure
function (4) and the quark (5) and gluon (6) hPDFs remain as shown above: for x > x0 they are driven by the initial conditions/
inhomogeneous terms for our evolution (cf. Ref. [103]). The coupling in Eq. (6) runs with Q2.
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eG½i; j� ¼ eG½i; j− 1� þ eGð0Þ½i; j�− eGð0Þ½i; j− 1�

þΔ2
Xj−2−y0
i0¼i

αs½i0�
�
3eG½i0; j− 1� þ eΓ½i; i0; j− 1� þ 2G2½i0; j− 1� þ

�
2−

Nf

2Nc

�
Γ2½i; i0; j− 1�− 1

4Nc

X
q

Γq½i; i0; j− 1�
�

−Δ2
1

4Nc

Xj−2
j0¼j−1−i

αs½iþ j0 − jþ 1�
�X

q

Qq½iþ j0 − jþ 1; j0� þ 2NfG2½iþ j0 − jþ 1; j0�
�
; ð17cÞ

eΓ½i;k; j� ¼ eΓ½i;k− 1; j− 1� þ eGð0Þ½i; j�− eGð0Þ½i; j− 1�

þΔ2
Xj−2−y0
i0¼k−1

αs½i0�
�
3eG½i0; j− 1� þ eΓ½i; i0; j−1� þ 2G2½i0; j−1� þ

�
2−

Nf

2Nc

�
Γ2½i; i0; j− 1�

−
1

4Nc

X
q

Γq½i; i0; j− 1�
�
; ð17dÞ

G2½i; j� ¼ G2½i; j − 1� þGð0Þ
2 ½i; j� −Gð0Þ

2 ½i; j − 1�

þ 2Δ2
Xj−2

j0¼j−1−i

αs½iþ j0 − jþ 1�½eG½iþ j0 − jþ 1; j0� þ 2G2½iþ j0 − jþ 1; j0��; ð17eÞ

Γ2½i; k; j� ¼ Γ2½i; k − 1; j − 1� þGð0Þ
2 ½i; j� −Gð0Þ

2 ½i; j − 1�; ð17fÞ

where the numerical step sizes are chosen such that
Δη ¼ Δs10 ¼ Δs21 ≡ Δ, and the indices are defined by
fη; s10; s21g → fj; i; kg · Δ. Equation (17) allows us to
compute the numerical solution for the flavor singlet
evolution equations (9). Note that it is only necessary to
loop over the ranges dictated by our physical assumptions,
0 ≤ i ≤ k ≤ j ≤ jmax and i < j. Furthermore, it is useful to
notice that the neighbor dipole amplitudes reduce to their
dipole-amplitude counterparts when k ¼ i—that is,

Γq½i; k ¼ i; j� ¼ Qq½i; j�; ð18aÞ
eΓ½i; k ¼ i; j� ¼ eG½i; j�; ð18bÞ
Γ2½i; k ¼ i; j� ¼ G2½i; j�: ð18cÞ

We can continue this convention and write the quark and
gluon hPDFs from Eqs. (5) and (6) in the new variables,

Δqþðx;Q2Þ ¼ −
1

π2

Z ffiffiffiffi
Nc
2π

p
lnQ2

xΛ2

0

dη
Z

η

max ½0;η−
ffiffiffiffi
Nc
2π

p
ln1x�

ds10

× ½Qqðs10; ηÞ þ 2G2ðs10; ηÞ�; ð19Þ

and

ΔGðx;Q2Þ ¼ 2Nc

αsðQ2Þπ2 G2

�
s10 ¼

ffiffiffiffiffiffi
Nc

2π

r
ln
Q2

Λ2
;

η ¼
ffiffiffiffiffiffi
Nc

2π

r
ln

Q2

xΛ2

�
; ð20Þ

where the only difference compared to ΔG from Eq. (6) is
the running coupling.
The last pieces to consider are the inhomogeneous terms.

According to the Born-level initial conditions (11), they can
be rewritten using our new logarithmic variables as

Qð0Þ
q ðs10; ηÞ ¼ eGð0Þðs10; ηÞ

¼ α2sCFπ

2Nc

ffiffiffiffiffiffi
2π

Nc

s
½ðCF − 2Þηþ 2s10�; ð21aÞ

Gð0Þ
2 ðs10; ηÞ ¼

α2sCFπ

2Nc

ffiffiffiffiffiffi
2π

Nc

s
s10: ð21bÞ

Since the equations (21) are linear in η and s10, we follow
Ref. [103] and employ the linear expansion ansatz—i.e.,

Qð0Þ
q ðs10; ηÞ ¼ aqηþ bqs10 þ cq; ð22aÞ

eGð0Þðs10; ηÞ ¼ eaηþ ebs10 þ ec; ð22bÞ

Gð0Þ
2 ðs10; ηÞ ¼ a2ηþ b2s10 þ c2: ð22cÞ

Thus, for the three light flavors we consider, q ¼ u, d, s,
the full set of initial conditions for the flavor singlet
evolution depends on 15 parameters au; bu; cu; ad;…; c2,
which we will fit to the data. Moreover, because the
evolution equations we are solving are linear, their solution
can be written as a linear combination of 15 “basis” dipole
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amplitudes, each of which is constructed by performing the
iterative calculation outlined above while setting one
parameter (from all the a’s, b’s, and c’s) in Eq. (22) to
be 1 and all the other parameters to 0. Furthermore, since all
hPDFs and the g1 structure function depend linearly on the
polarized dipole amplitudes, they are linear combinations
of their corresponding basis functions as well.
For example, ΔuþðxÞ can be expressed as a linear

combination of the 15 “basis hPDFs” shown in Fig. 1.
Since ΔuþðxÞ depends directly on the linear combination
Qu þ 2G2 [see Eq. (5)], onemay expect thatQu andG2 have

the largest contributions to ΔuþðxÞ at moderate x. This is
indeed the case, with the top and bottom panels in Fig. 1
having the largest-magnitude contributions toΔuþðxÞ. Some
of the other amplitudes contributemore significantly at lower
x’s, as theirmagnitudes begin to influence those ofQu and/or
G2 through evolution.At the smallest values ofx in Fig. 1, the
largest contributor is G2, followed by eG, while the contri-
butions from Qd and Qs remain small for all values of x.
A consequence of this observation, which we will return

to later, is that the sign of the g1 structure function is
influenced mainly by the sign of G2 (or, equivalently, the

FIG. 1. The u-quark hPDF, xΔuþðxÞ, constructed solely out of each basis function in the range x∈ ½10−5; 1�. The legend in each panel
shows which basis function was used for which curve. For example, the blue curve in the top panel corresponds to xΔuþðxÞ constructed
from the initial conditions Qð0Þ

u ¼ η and Qð0Þ
q ¼ eGð0Þ ¼ Gð0Þ

2 ¼ 0 for q∈ fd; sg. The evolution begins at x0 ¼ 0.1, and the coupling
constant runs with the daughter-dipole prescription specified in Eq. (A1).
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sign of ΔG) and the sign of eG. A challenge for phenom-
enology presents itself: eG is slow to grow and hence less
sensitive to available data near x ¼ x0, but it has a potentially
large effect on the small-x asymptotics. Unless we have
sufficient data from an observable that is directly sensitive toeG, constraining that amplitude will be difficult.
Similarly to the singlet evolution, the discretization of

the nonsinglet evolution equation (13) reads (again, see
Appendix A for details)

GNS½i;j� ¼GNS½i;j−1�þGNSð0Þ½i;j�−GNSð0Þ½i;j−1�

þ1

2
Δ2

� Xj−2−y0
i0¼i

αs½i0�GNS½i0;j−1�

þ
Xj−2

j0¼j−1−i

αs½i− jþ1þ j0�

×GNS½i− jþ1þ j0;j0�
�
: ð23Þ

The corresponding flavor nonsinglet quark hPDF is given by

Δq−ðx;Q2Þ ¼ −
1

π2

Z ffiffiffiffi
Nc
2π

p
lnQ2

xΛ2

0

dη

×
Z

η

max ½0;η−
ffiffiffiffi
Nc
2π

p
ln1x�

ds10GNSðs10; ηÞ; ð24Þ

with the integrals also discretized and evaluated numerically.
Interested readers are directed toAppendixC for a discussion
about convergence testing the numerical solutions of the
flavor (non-)singlet evolution equations and the discretized
versions of the hPDFs.
The Born-level approximation (14) is linear in the

logarithmic variables (15), so we make a linear expansion
ansatz for the inhomogeneous term in the flavor nonsinglet
evolution,

GNSð0Þ
q ¼ aNSq ηþ bNSq s10 þ cNSq ; ð25Þ

for each of the three light flavors,q ¼ u,d, s. Thismeans that
flavor nonsinglet hPDFs can be reconstructed as a linear
combination of 9 flavor nonsinglet basis functions, generated
by setting one of the 9 parameters (aNSu ; bNSu ;…; cNSs ) to 1,
while setting all others equal to 0. Combining thiswith the 15
parameters from Eq. (22) describing the inhomogeneous
terms for the flavor singlet dipole amplitudes, we have 24
parameters (and associated basis functions) for the eight
amplitudes (Qu,Qd,Qs, eG,G2,GNS

u ,GNS
d , andGNS

s ), which
we will fit to describe the world polarized DIS and SIDIS
experimental data at low x.

D. SIDIS cross section at small x

We will now derive a formula for the SIDIS structure
function gh1ðx; zÞ at small x. Using the notation of Ref. [71],
we start with the DIS structure function g1ðxÞ and write it as

g1ðx;Q2Þ ¼ −
Q2

16π2αemx

X
λ¼�

λσγ⃗
�þp⃗→Xðλ;þÞ; ð26Þ

where σγ⃗
�þp⃗→Xðλ;ΣÞ is the total virtual-photon–proton

cross section for the proton with helicity Σ and for the
transversely polarized virtual photon with polarization λ,
and αem is the fine structure constant. The virtual-photon–
proton cross section is always inelastic at this order in αem,
as the virtual photon has to decay into a quark-antiquark
pair, with the quark and antiquark fragmenting into hadrons
in the final state.
Consider producing a hadron with a fixed value of

z≡ P · Ph=P · q, where P and q are the four-momenta
of the proton and virtual photon, respectively, while Ph is
the momentum of the detected hadron, as shown in Fig. 2.
At high energy/small x, we can work in the frame where the
proton has a large Pþ momentum component, while the
virtual photon has a large q− momentum component. Then
z ≈ P−

h =q
− is the fraction of the virtual photon’s minus

momentum carried by the produced hadron. All other
components of the hadron’s momentum are integrated over.
We then write, by analogy to Eq. (26), in the collinear

approximation [127–129]

gh1ðx;z;Q2Þ¼−
Q2

16π2αemx

X
λ¼�

λ

Z
d2k⊥d2Ph⊥δð2Þðzk⊥−Ph⊥Þ

×
X
q;q

dσγ⃗
�þp⃗→qþX

d2k⊥
ðλ;þÞDh=q

1 ðz;Q2Þ; ð27Þ

where k⊥ and Ph⊥ are the transverse momentum vectors
for the quark and produced hadron in Fig. 2, while
Dh=q

1 ðz;Q2Þ is the collinear fragmentation function. The
sum

P
q;q goes over the produced quarks and antiquarks.

While only quark fragmentation is depicted in Fig. 2, an

FIG. 2. The SIDIS process at small x. An incoming virtual
photon with momentum q decays into a quark-antiquark pair,
which interacts with the target proton carrying momentum P. The
quark and antiquark then fragment into hadrons, and one of these
hadrons is detected with momentum Ph.
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antiquark could instead fragment there, by reverting the
particle number flow direction on the quark line in the
diagram.
In arriving at Eq. (27), we have employed the aligned jet

configuration, dominant in DLA [58,71], in which k− ≈ q−,
such that the produced hadron carries the fraction P−

h =k
− ≈

P−
h =q

− ¼ z of the quark’s momentum. Consequently, we
assume that z is not very small, such that the hadron is
produced in the forward (virtual photon) direction/current
fragmentation region and arises from the fragmentation of
the forward-moving quark with four-momentum k in Fig. 2,
and not from the fragmentation of the antiquark, which is
separated from the quark by a large rapidity interval. This is
similar to the hybrid factorization approach to particle
production [130–132]. (The fragmentation of the antiquark
in Fig. 2 would contribute to small-z hadron production and
is neglected here, since we are interested in order-1 values
of z.) In addition, the scale in the argument of the
fragmentation function could be chosen to be k2⊥.
However, in our small-x kinematics, the typical value of
k2⊥ is not too far from Q2, allowing us to use Q2 in the

argument of Dh=q
1 ðz;Q2Þ.

Integrating Eq. (27) over k⊥ and Ph⊥, we obtain

gh1ðx; z; Q2Þ ¼ −
Q2

16π2αemx

X
λ¼�

λ
X
q;q

σγ⃗
�þp⃗→qþXðλ;þÞ

×Dh=q
1 ðz;Q2Þ: ð28Þ

Comparing this to Eqs. (26) and (4), we arrive at

gh1ðx; z; Q2Þ ¼ 1

2

X
q;q

e2qΔqðx;Q2ÞDh=q
1 ðz;Q2Þ; ð29Þ

reproducing the result in Eq. (2) of Ref. [30] (see also
Refs. [127,133,134]), derived in the collinear factorization
framework. [As we mentioned above, since quarks and
antiquarks have different fragmentation functions, the
right-hand side of Eq. (29) cannot be expressed solely in
terms of the Δqþ linear combinations of hPDFs, and the
Δq− functions will enter as well.] We conclude that the
expression (29) for the polarized SIDIS structure function
is the same in the collinear and small-x formalisms for large
z. However, we emphasize that a similar discussion to that
surrounding Eqs. (4) and (7) applies to Eq. (29) regarding
its interpretation in the LCOT framework as implicitly
including higher-order αs corrections.

3

E. Global analysis

Our goal is to describe the world data on the longitudinal
double-spin asymmetries in DIS and SIDIS at low x using
small-x helicity evolution. We start with the longitudinal
DIS asymmetry, Ak (see, e.g., Refs. [29,135]),

Ak ¼
σ↓⇑ − σ↑⇑

σ↓⇑ þ σ↑⇑
¼ DðA1 þ ηA2Þ; ð30Þ

where the arrow ↑ð↓Þ denotes the lepton spin along
(opposite to) the beam direction, and the arrow ⇑ denotes
the target polarization along the beam axis. The kinematic
variables are given by

D ¼ yð2 − yÞð2þ γ2yÞ
2ð1þ γ2Þy2 þ ð4ð1 − yÞ − γ2y2Þð1þ RÞ ; ð31aÞ

η ¼ γ
4ð1 − yÞ − γ2y2

ð2 − yÞð2þ γ2yÞ ; ð31bÞ

where y ¼ ν=E is fractional energy transfer of the lepton in
the target rest frame, γ2 ¼ 4M2x2=Q2, and R ¼ σL=σT is
the ratio of the longitudinal to transverse virtual photo-
production cross sections. When 4M2x2 ≪ Q2ðγ2 ≪ 1Þ,
we have η ≪ 1, and the virtual-photon–target asymme-
tries are

A1 ¼
g1 − γ2g2

F1

≈
g1
F1

; A2 ¼ γ
g1 þ g2
F1

≪ 1; ð32Þ

implying

Ak ≈DA1: ð33Þ
Similarly, in polarized SIDIS for the production of a hadron
h, the asymmetry Ah

1 can be expressed as (see, e.g.,
Refs. [23,30])

Ah
1 ¼

gh1 − γ2gh2
Fh
1

≈
gh1
Fh
1

: ð34Þ

In principle, there is another observable in the DIS/SIDIS
family that could help constrain hPDFs: parity-violating
DIS. This process is sensitive to the gγZ1 structure function,
which is approximately proportional to ΔΣ [136,137].
Unfortunately, there is little to no data for gγZ1 in the
small-x (x < 0.1) region (see, e.g., Ref. [138]), not
allowing us to employ this observable in our analysis.
Between the two scattering processes, we have ten

unique observables: two in DIS (proton or deuteron=3He
target) and eight in SIDIS (proton or deuteron=3He target
with charged pion or kaon final states) from which in
principle we can constrain the eight polarized dipole
amplitudes [five associated with the C-even and flavor
singlet hPDFs (Qu, Qd, Qs, eG, G2), and three associated
with the flavor nonsinglet hPDFs (GNS

u , GNS
d , and GNS

s )].

3Strictly speaking, for consistency, the fragmentation functions
Dh=q

1 ðz;Q2Þ should also be taken in the polarized DIS scheme,
but since the only presently available fragmentation functions are
given in the MS scheme, we make use of the existing extractions.
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In our formalism, the g1 and gh1 structure functions are
calculated in terms of hPDFs using Eqs. (4) and (29),
respectively. [Note that Δq ¼ ðΔqþ þ Δq−Þ=2 and
Δq ¼ ðΔqþ − Δq−Þ=2.] This is the bridge connecting
small-x helicity evolution to the experimental data.
Fitting the hPDFs to Ak, A1, and Ah

1 at moderate x≲ 0.1
allows us to determine the initial conditions of the polarized
dipole amplitudes (22), (25). We then evolve the polarized
dipole amplitudes toward lower values of x using Eqs. (9)
and (13) to obtain hPDFs in that region, and compare with
existing data, as well as make predictions at smaller x. We
mention that the structure functions F1 and Fh

1 involve the
unpolarized PDF qðx;Q2Þ and, for the latter, the unpolar-
ized fragmentation function (FF) Dh=q

1 ðz;Q2Þ. We compute
F1 and Fh

1 up to next-to-leading order using collinear
factorization and DGLAP evolution, based on the JAM
analysis in Ref. [34]. (To be consistent, strictly speaking
one should include small-x evolution also for F1 and Fh

1 .
However, for us the results of Ref. [34] serve as a faithful
proxy of the experimental data for these structure functions.
A more comprehensive analysis that also utilizes small-x
evolution for F1 and Fh

1 is left for future work.)
Let us present a short discussion about our ability to

constrain G2 and eG, which are two important polarized
dipole amplitudes driving the small-x evolution of the
hPDFs. The polarized dipole amplitude G2 is directly
related to the gluon hPDF, per Eq. (20). However, the
observables we consider here do not directly couple to the
gluon hPDF. Instead, as we saw above, they couple only to
quark hPDFs. The dipole amplitude G2 enters the quark
hPDFsΔqþ along with the dipole amplitudeQq. Moreover,
they always enter in the same linear combination, Qq þ
2G2 for q ¼ u, d, s [see Eq. (19)]. We see that whileG2 and
Qq couple directly to the spin-dependent structure func-
tions for DIS and SIDIS, we do not have an observable (or a
linear combination of observables) in this analysis which
separately couples only to G2 or only to Qq.
What may help us to separate G2 and Qq is the fact that

these dipole amplitudes have a different preasymptotic
form. While it is established numerically that at asymp-
totically small x, both polarized dipole amplitudes G2 and
Qq are proportional to the same power of x with the same
intercept [102] and are, therefore, probably hard to dis-
tinguish, in the preasymptotic region where the asymptotic
form has not yet been reached, their contributions to the
quark hPDFs may be quite different. This can be studied by
comparing theQu andG2 basis functions for Δuþ in Fig. 1,
shown in the top and bottom panels of that figure,
respectively. If these functions were identical, they could
be freely interchanged against each other while still
producing the same structure functions: in such a case, it
would be impossible to separate G2 and Qu from the data.
Since the contributions of different amplitudes to quark
hPDFs differ from each other, as follows from Fig. 1, these

basis contributions cannot be adjusted at one value of x
while maintaining the same value for the observables at all
other x. Therefore, we may be able to separate G2 and Qu
using the polarized DIS and SIDIS data. However, since the
Qu andG2 basis functions have similar shapes, per Fig. 1, it
might be the case that the uncertainties in the resulting
extractions of Qu and G2 will be large.
The polarized dipole amplitude eG, on the other hand, does

not couple to any of the polarized DIS or SIDIS observables
we consider here. Rather, itmixeswith other polarized dipole
amplitudes only through evolution [see Eq. (9)]. This is why
the eG basis function ofΔuþ (second from the bottompanel in
Fig. 1) appears to be vanishingly small above x > x0. The
consequence of this is that in the region of x where the
polarized DIS and SIDIS data exist, 5 × 10−3 < x < 0.1,
the eG amplitude is very small, and is therefore much less
constrained by the data than the Qq and G2 dipole ampli-

tudes. At small x, however, the eG amplitude is quite large,
second only to G2 (see Fig. 1). As we will see below, eG,
unconstrained by the existing polarized DIS and SIDIS data,
will dominate over the other polarized dipole amplitudes at
small x, adversely affecting our ability to make precise
predictions at even smaller x. Nevertheless, it is possible thateGmight be constrained with slightly more leverage in x. We
will discuss this in Sec. III D when we explore the impact of
the future EIC data on our uncertainties.
In our global analysis, we use the JAM Bayesian

MonteCarlo framework (see, e.g., [29,139,140]) to randomly
sample (roughly 500 times) the space of 24 parametersa, b, c
fromEqs. (22) and (25)—namely, au; bu; cu; ad;…; cNSs . For
each combination of these parameters, we solve our evolution
equations (9) and (13) to determine the polarized dipole
amplitudes Qu, Qd, Qs, eG, G2, GNS

u , GNS
d , and GNS

s . (The
actual numerical solution is facilitated by the basis functions
introduced above.) Next, using Eqs. (19) and (24), we
calculate the quark hPDFs at small x, which, via Eqs. (4)
and (29), can be used to determine the structure functions g1
and gh1 that enter the numerator of the asymmetries Ak; A1

[Eqs. (32), (33)] and Ah
1 [Eq. (34)], respectively. The χ2

minimization procedure allows us to construct the posterior
distributions of the parameters, and the corresponding sol-
utions of our evolution equations then allow us to infer the
quark and gluon hPDFs [the latter via Eq. (20)]. We confirm
that the posterior distributions of the parameters are distrib-
uted more narrowly than the initial flat sampling and are
approximately Gaussian, indicating a convergence in their
values. These extracted quark and gluon hPDFs, and the
quantities that can be computed from them, are the main
results of our work, which we present below.

III. RESULTS

In this section, we present the results of our numerical
analysis. We will concentrate on the proton g1 structure
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function, and the quark and gluon hPDFs (along with
quantities, such as net spin, that can be computed
from them).

A. Data versus theory

Our analysis (JAMsmallx) of theworld polarizedDIS and
SIDIS data at low x utilizes measurements from SLAC
[141–145], EMC [146], SMC [147–149], COMPASS
[150–152], and HERMES [153,154] for DIS; and from
SMC [155], COMPASS [156,157], and HERMES
[158,159] for SIDIS. The data of interest fall in the
Bjorken-x range of 5 × 10−3 < x < 0.1≡ x0, and the Q2

range is 1.69 GeV2 < Q2 < 10.4 GeV2. Since x ≈Q2=s,
the minimum cut onQ2 determines the minimum accessible
x in the dataset (for a given experimental center-of-mass
energy), and conversely the maximum cut on x determines
the maximumQ2. The upper limit on x (denoted by x0) was
chosen based on our previous (DIS-only) work [103], as
(almost) the highest value of xwhich gave a good χ2 fit. This
x0 is the point where we start the small-x helicity evolution.
The fact that our small-x approach was able to describe data
up to such a high value of x could be due to the fact that,
unlike the unpolarized Balitsky-Fadin-Kuraev-Lipatov
(BFKL) [125,126], Balitsky-Kovchegov (BK) [75–78],
and Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) [79–84] small-x evolutions, which
resum powers of αs lnð1=xÞ at the leading order, our helicity
evolution has a different (larger) resummation parameter,
αs ln2ð1=xÞ. For αs ≈ 0.25, our resumation parameter
becomes of order 1 for x ≈ 0.1, potentially justifying our
use of x0 ¼ 0.1 as the starting point for our evolution. Note
that the value of our resummation parameter αs ln2ð1=xÞ at
x ¼ x0 ¼ 0.1 is comparable to (and even slightly larger
than) the value of the resummation parameter αs lnð1=xÞ for
the unpolarized small-x evolution at x ¼ 0.01, which is
where the latter evolution is usually initiated in phenom-
enological analyses [118,119]. The lower limit of Q2 is set
by the charm quark mass,m2

c ¼ 1.69 GeV2. This is also the
cut placed by the JAM FF set we use [34], which has
independent functions for πþ,Kþ, hþ (π−,K−, h− are found
through charge conjugation) that we evolve through the
DGLAP equations. By analogy to [103], we choose our IR
cutoff to be Λ ¼ 1 GeV. Also, in the Q2 range specified
above, the strong coupling in Eq. (16) is taken with Nf ¼ 3

(and Nc ¼ 3).
The range of the outgoing hadron momentum fraction z

in polarized SIDIS is 0.2 < z < 1.0, and we do not place
any explicit cut on this variable. In practice, the data (after
all the appropriate cuts) generally have values of
0.4 < z < 0.6; some datasets integrate z∈ ½0.2; 1�, while
others cover z∈ ½0.2; 0.85�. After all the cuts, we are left
with 122 polarized DIS data points and 104 polarized
SIDIS data points, for a total Npts ¼ 226. The overall
χ2=Npts of our fit, based on the central theory curves, is

1.03. (We have also performed fits with cutoffs of x0 ¼
0.08 and x0 ¼ 0.05, which produced no significant change
in χ2=Npts.) The breakdown of the data by experiment,
along with our χ2=Npts for those individual datasets, is
shown in Table I for DIS and in Table II for SIDIS. The
plots of the experimental data versus our JAMsmallx theory
are shown in Fig. 3 for polarized DIS and in Fig. 4 for
polarized SIDIS. Overall, our results demonstrate very
good agreement with the existing world data.

B. Proton g1 structure function

We now examine our result for the g1 structure function
of the proton to analyze the predictive capability of our
formalism. Our calculation of gp1 for all replicas is given in
Fig. 5. This is the result of 500 individual fits of the
experimental data where the (quark and gluon) hPDFs were
extracted and then (the quark ones) were used to compute
gp1 . We color code each replica by its asymptotic sign at
small x in order to clarify the structure of the plot, as well as
to help establish correlations with the hPDFs below. While
gp1 is well constrained in the region where there are
experimental data (5 × 10−3 < x < 10−1), it is largely
unconstrained at smaller x. The major difficulty in

TABLE I. Summary of polarized DIS data included in the fit,
separated into A1 (left) and Ak (right), along with the χ2=Npts for
each dataset.

Dataset (A1) Target Npts χ2=Npts

SLAC (E142) [141] 3He 1 0.60
EMC [146] p 5 0.20

SMC [147,149] p 6 1.29
p 6 0.53
d 6 0.67
d 6 2.26

COMPASS [150] p 5 1.02
COMPASS [151] p 17 0.74
COMPASS [152] d 5 0.88
HERMES [153] n 2 0.73

Total 59 0.91

Dataset (Ak) Target Npts χ2=Npts

SLAC (E155) [144] p 16 1.28
d 16 1.62

SLAC (E143) [143] p 9 0.56
d 9 0.92

SLAC (E154) [142] 3He 5 1.09

HERMES [154] p 4 1.54
d 4 0.98

Total 63 1.19
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constraining gp1 is caused by the insensitivity of the data to
the G2 and eG amplitudes described above.
That being said, the asymptotic solution of the large-

Nc & Nf evolution equations [102] guarantees that the
small-x behavior of gp1 must be exponential in lnð1=xÞ. This
implies that it has to pick a sign (positive or negative) when
x → 0. Our results indicate (see Fig. 7) that, given the
existing experimental data constraining our formalism, the
asymptotic sign is likely to be picked by x ¼ 3.5 × 10−4

with 10% uncertainty, with the uncertainty decreasing to
5% at approximately x ¼ 2.5 × 10−5. Currently, 70% of the
replicas are asymptotically positive, and 30% are asymp-
totically negative. These percentages are stable as the
number of replicas increases. The primary source of
uncertainty is how low in x one must go to determine
the sign, as some replicas that appear positive may undergo
a sign change at smaller x. Interestingly, our observation of
a preference for gp1 to be positive at small x agrees with the
recent papers analyzing (unpolarized and polarized) DIS
structure functions using the anti–de Sitter space/conformal
field theory (AdS=CFT) correspondence [160–162] that

make an even stronger statement that gp1 clearly grows
positive at small x. This behavior also has implications for
the net parton spin expected at small x, as we discuss in
Sec. III C.

1. Sign of gp1 and quantifying numerical ambiguity

From Fig. 5 alone, one can make the qualitative
observation that indeed each replica of gp1 grows exponen-
tially with lnð1=xÞ, as we suggested earlier, and the color
indicates the asymptotic sign of gp1 for that given replica.
We mentioned in the previous section that the exponential
behavior of helicity functions in our theory makes it
difficult for a given replica to maintain a near-zero value,
and thus it must eventually choose to (rapidly) increase in
magnitude toward positive or negative values. Given the
numerical nature of our global analysis, we cannot compute
each fitted replica down to x ¼ 0 (corresponding to
ln x → −∞), so the color-coding and sign assignment is
determined by the slope of a replica at the lowest-computed
value of x: if the slope increases (decreases) as x goes to
zero, then it is considered “asymptotically” positive (neg-
ative). To balance our time and computational resources,
the results discussed in this section use replica data
computed down to xasymp ¼ 10−7.5. One may realize
potential issues with this system: a given replica may have
multiple different “asymptotic” signs depending on the
lowest computed value of x.
Any given replica is defined by its specific combination

of basis functions, and since our Bayesian analysis
samples parameters [Eq. (21)] that may be either positive
or negative, competition between basis functions can
result in nodes. Replicas with two nodes in gp1 ðxÞ, such
as the one illustrated in Fig. 6, can occur for linear
combinations of similar basis functions with opposite
signs, as in the top/bottom panels of Fig. 1. These changes
in sign can occur at various values of x depending on the
initial conditions, making the prediction of the asymptotic
sign dependent on what x value is used to make the
prediction.
Careful readers may have already noticed this from

Fig. 5, where there are a few red-coded replicas that appear
to be growing negative (and a blue-coded replica that
appears to be growing positive) at x ¼ 10−5. This is due to
each of these replicas having a delayed critical point

(dg
p
1
ðxÞ

dx ¼ 0) that occurs at x < 10−5, where a different basis
function takes over the growth and the replica changes the
sign of its slope. These critical points also are connected to
the issue of ambiguity, where at a specific value of x we
may be able to measure that a replica is growing positive (or
negative) but has a magnitude that is actively negative (or
positive), leaving its asymptotic sign unconfirmed. Luckily,
investigations of these incidents show that they occur in a
statistically small portion of replicas from the perspective
of our considerably small xasymp.

TABLE II. Summary of the polarized SIDIS data on Ah
1

included in the fit, along with the χ2=Npts for each dataset.

Dataset (Ah
1) Target Tagged hadron Npts χ2=Npts

SMC [148] p hþ 7 1.03
p h− 7 1.45
d hþ 7 0.82
d h− 7 1.49

HERMES [158] p πþ 2 2.39
p π− 2 0.01
p hþ 2 0.79
p h− 2 0.05
d πþ 2 0.47
d π− 2 1.40
d hþ 2 2.84
d h− 2 1.22
d Kþ 2 1.81
d K− 2 0.27
d Kþ þ K− 2 0.97

HERMES [159] 3He hþ 2 0.49
3He h− 2 0.29

COMPASS [156] p πþ 5 1.88
p π− 5 1.10
p Kþ 5 0.42
p K− 5 0.31

COMPASS [157] d πþ 5 0.50
d π− 5 0.78
d hþ 5 0.90
d h− 5 0.86
d Kþ 5 1.50
d K− 5 0.78

Total 104 1.01
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FIG. 4. Comparison of experimental data and fit based on our small-x theory for the double-spin asymmetry Ah
1 in polarized SIDIS on

a proton (red), deuteron (blue), and 3He (green) target for charged pion, kaon, and unidentified hadron final states.

FIG. 3. Comparison of the experimental data and the fit based on our small-x theory for the double-spin asymmetries A1 and Ak in
polarized DIS on a proton (red), deuteron (blue), and 3He (green) target.
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Since our goal is predictability at small x, we decided to
quantify the amount of ambiguity by its probability density
in x. That is, for each replica we count the smallest-x
instance of ambiguity and take note of where in x it
occurred. For example, Fig. 6 shows a replica that begins
positive (true for all replicas), and evolution drives it more
positive until it reaches a critical point, after which the
replica then grows negative. After the critical point (in the
gray region), the replica will be considered ambiguous until
it crosses gp1 ðx1Þ ¼ 0, and then it is considered asymptoti-
cally negative (in the blue region). Only when the sign of gp1
and the sign of its first derivative (as x decreases) agree can
the replica be considered asymptotically positive or neg-
ative. If we wanted to predict the asymptotic sign of the

replica based on an observation at x ¼ xpred that resides in
this (blue) region, then we would predict that this replica is
“asymptotically negative” as x → 0. However, this same
replica has a small-x critical point (around x ¼ 10−4) that
causes the sign of its slope to change; the replica observed
in the (gray) region (on the left) between the critical point
and gp1 ðx2Þ ¼ 0 would be considered ambiguous again.
After crossing zero a second time, a prediction made at
xpred < x2 would therefore designate the replica to be
“asymptotically positive.” The smallest-x instance of ambi-
guity is thus counted in a bin at x2. In this way, each replica
is counted exactly once, and replicas that oscillate multiple
times about the gp1 ¼ 0 axis only have their most delayed
ambiguity counted. We can define the number of replicas
that have their smallest-x instance of ambiguity in a
particular bin of x as CAðxÞ (the counts of ambiguities)
and make a histogram. The ambiguity count CAðxÞ is
normalized such that it sums to the total number of replicas
Nambig containing at least one ambiguity:

Xx0
x¼xasymp

CAðxÞ ¼ Nambig ≤ Ntot: ð35Þ

Because some replicas are always unambiguous across the
entire range of x, the ambiguity count is less than the total
number of replicas: Nambig ≤ Ntot.
Now, suppose we want to predict the asymptotic behav-

ior of gp1 at small x based on the behavior of the function at
some value xpred. Knowledge of the ambiguity count CAðxÞ
allows us to estimate the accuracy of this prediction by
estimating the probability that an unobserved ambiguity
remains at xasymp < x < xpred. This probability is given
by a summation as in Eq. (35), but over the truncated range
in x:

AðxpredÞ ¼
1

Nrep

Xxpred
x¼xasymp

CAðxÞ: ð36Þ

From the normalization condition (35), we see that
Eq. (36) implies that the truncated moment is normalized
at xpred ¼ x0 to the total fraction of replicas containing at
least one ambiguity:

Aðx0Þ ¼
Nambig

Nrep
: ð37Þ

From the left panel of Fig. 7, we see that the number of
smallest-x ambiguities decreases greatly as x approaches
zero. The right panel shows that we must go down to
approximately x ¼ 3.5 × 10−4, 2.5 × 10−5, and 6 × 10−7 to
capture the asymptotic sign with 10%, 5%, and 1%
uncertainty, respectively. This is strong justification that
xasymp ¼ 10−7.5 is reasonably low enough to capture the

FIG. 5. The small-x calculation of the g1 structure function of
the proton. The black curve is the mean of all the replicas, with
the green band giving the 1σ uncertainty. Red (blue) curves are
solutions that are asymptotically positive (negative).

FIG. 6. An example replica of gp1 ðx;Q2 ¼ 10 GeV2Þ that
demonstrates how the asymptotic sign is dependent on xpred. If
xpred resides in the red (blue) region, then the replica will be
considered asymptotically positive (negative) according to the
sign of the first derivative (for decreasing x) and its agreement
with the sign of the magnitude. If xpred resides in either gray
region, then the asymptotic sign is ambiguous due to a contra-
diction between the sign of the slope and the sign of the
magnitude.
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asymptotic sign of our replicas with low uncertainty. Due to
Eq. (37), we also know how many replicas are completely
unambiguous; since we impose our evolution to begin at
x0 ¼ 0.1, the running integral at that point quantifies the
total ratio of replicas that have at least one ambiguity.
According to the right panel of Fig. 7, approximately 50%
of replicas choose their asymptotic sign immediately as
evolution begins. Note that the data constrain the initial
condition for gp1 to be positive, so all completely unam-
biguous replicas are asymptotically positive.
Furthermore, splitting the replicas by their asymptotic

sign (not shown in Fig. 7) allows us to also investigate how
early (or late) the different solutions are chosen relative to
each other. We gather that ambiguously negative replicas
tend to choose their sign earlier than their positive counter-
parts, with the caveat that the majority of asymptotically
positive replicas do not have any ambiguities at all.
Approximately 75% of asymptotically positive replicas
are completely unambiguous, and the remaining 25% are
determined by x ≈ 2 × 10−5 with 5% uncertainty. Though
fewer in number, a still significant portion of replicas are
asymptotically negative, 95% of which are confirmed by
x ≈ 4.3 × 10−4. This suggests that using a lower xpred will
affect the positive-identified and negative-identified solu-
tions differently. In particular, a lower xpred is likely to
identify a greater number of asymptotically positive sol-
utions by correcting replicas that would have been mis-
identified as asymptotically negative at a higher xpred. This
asymmetric impact on positive-identified versus negative-
identified solutions can be traced back to constraints from
the data at large x, which strongly prefer gp1 > 0. The fact
that this positive preference persists down to small x
suggests that the polarized dipole(s) which dominate the
small-x asymptotics are partially (but not fully) constrained
by the large-x data. This will be discussed in detail in
Sec. III B 3.
We performed a similar analysis of the smallest-x

critical points of each replica (rather than the ambiguities).
On average, the smallest-x critical point occurs 4% earlier

in lnð1=xÞ than its smallest-x zero. Since the ambiguous
region of a replica is precisely the region in x between
its critical point and zero, this small 4% difference
indicates that any remaining ambiguities are quickly
resolved at small x. Thus, we conclude that, from the
perspective of Fig. 7, if we had data down to x ≈ 10−5, we
could determine the asymptotic sign of gp1 with high
certainty (>95%).

2. Asymptotic behavior of gp1
Collectively utilizing the information in Figs. 5 and 7

paints a curious picture: there are many more gp1 replicas
that adopt their asymptotic forms early than there are
replicas that change their signs at small x. This results in
some clustering behavior—e.g., in the left panel of Fig. 7
there is a cluster of replicas around x¼5×10−3—implying
that these replicas share similar critical points and rates of
growth. As mentioned previously, the majority of replicas
have no ambiguities and adopt their asymptotic growth
rather quickly, effectively clustering their critical points at
x ¼ x0 ≡ 0.1 (not explicitly shown). This behavior sup-
ports the idea that early adoption of asymptotic growth is
preferred, whereas replicas with late critical points are
fewer in nature. Consequently, we expect that there should
be a form of bimodality in gp1 between the rapidly growing
positive solutions versus the rapidly growing negative
solutions. This is a novel result, which we quantitatively
analyze below.
While Fig. 5 may appear to show the anticipated

bimodality (red versus blue curves), upon closer inspection
the values of gp1 are normally distributed, both at small x
(x ¼ 10−3) and very small x (x ¼ 10−7.45), as depicted in
Fig. 8. To uncover the bimodal behavior, it is necessary to
construct a new observable related to the curvature of gp1
which is sensitive to how quickly our evolution equations
drive the gp1 replicas toward the asymptotic limit. The
emphasis, therefore, is not so much on gp1 as on the
exponent of its power-law behavior at small x—i.e.,
gp1 ðxÞ ∼ x−αh . The generalized x-dependent exponent

FIG. 7. Left: histogram that counts the number of replicas with a smallest-x ambiguity at a given value of x. Right: the running sum of
the ambiguity histogram, telling us what percentage of replicas have an ambiguity below a given value of x.
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αhðxÞ can be extracted through the logarithmic derivative
of gp1 :

lim
x→0

gp1 ðxÞ≡gpð0Þ1 x−αhðxÞ ∴ αhðxÞ≡ 1

gp1 ðxÞ
dgp1 ðxÞ
dlnð1=xÞ ; ð38Þ

where gpð0Þ1 ¼ const. Examining the distribution of αhðxÞ
across replicas can provide complementary information to
the distribution of gp1 ðxÞ itself. Notably, the exponent
provides a meaningful way to scale the solutions: if they
have the same αhðxÞ, they have the same curvature,
whether the magnitude of gp1 ðxÞ is large or small. To
further capture the signed behavior of gp1 ðxÞ and distinguish
between solutions trending positive or negative at small x,
we can generalize the logarithmic derivative (38) to reflect
the sign of gp1 itself:

αhðxÞ ¼
1

gp1 ðxÞ
dgp1 ðxÞ
d lnð1=xÞ ⇒

Sign½gp1 ðxÞ�αhðxÞ ¼
1

jgp1 ðxÞj
dgp1 ðxÞ
d lnð1=xÞ : ð39Þ

Both the effective exponent αhðxÞ (38) and its signed
generalization (39) are shown in Fig. 9 at varying values
of x (from the same global fit that produced Fig. 5).

[We remark that if a gp1 replica has a delayed critical point, it
will result in a delayed zero that may cause an artificially
large ratio if gp01 ðxÞ ≫ gp1 ðxÞ ≈ 0. In order to avoid these
statistical outliers, any replica with a ratio value outside of
5σ from the average are omitted from the results in Fig. 9.]
The distribution in the right panel at x ¼ 10−2 (blue
histogram) is skew-normal, which is expected since we
are definitively outside of the asymptotic regime. However,
at x ¼ 10−3 (yellow histogram), we already see the for-
mation of two separated peaks, one positive and one
negative. As x continues to decrease down to x ¼ 10−5

(green histogram), the two peaks become more refined as
the evolution equations predict specific curvature related to
the intercept αh [see Eq. (39)]. Without the sign depend-
ence, as displayed in the left panel of Fig. 9, as x → xasymp,
a single peak emerges that approaches the expected
asymptotic value for αh. The decreasing uncertainties are
a consequence of our small-x evolution, where the pre-
dictive power constrains the value of αhðxÞ.
From the perspective of the right panel of Fig. 9, it

appears that data sensitive to this curvature at x as large as
x ¼ 10−3 may be enough to identify which bimodal peak
gp1 belongs to. Unambiguously identifying this curvature
will provide us the asymptotic sign of gp1 as well as the

FIG. 8. Histograms counting all values of gp1 at x ¼ 10−3 (left) and 10−7.45 (right), displaying normal distributions centered slightly
above zero.

FIG. 9. Left: histograms utilizing Eq. (38) showing that as x decreases, the intercept αhðxÞ becomes more constrained as a
consequence of the small-x evolution equations. Right: keeping information on the sign dependence by using Eq. (39) produces bimodal
peaks at �αhðxÞ. At large x, there is no asymptotic behavior, and for smaller values of x, two refined peaks emerge.
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asymptotic sign of all the (flavor singlet and C-even)
hPDFs, as will be discussed below. The fact that such a
conclusion could be made at x ≈ 10−3 by analyzing the
curvature of gp1 ðxÞ, compared to x ≈ 10−5 by studying
gp1 ðxÞ itself (see the discussion around Fig. 7), makes the
idea of curvature a useful quantity to consider once future
low-x data are available from the EIC.

3. Origins of asymptotic behavior

To understand what differentiates the positively and
negatively growing solutions for gp1 displayed in Fig. 5,
we examine the polarized dipole amplitude parameters
themselves, defined in Eq. (22). We note that the exper-
imental data are only sensitive to the polarized dipole
amplitudes as a whole, and not to any specific basis
function. For example, combining Eqs. (4), (5), and (32)
shows that A1 is constructed from the dipole amplitudesQq

and G2, and any combination of parameters that recon-
structs the experimental data with good χ2 is equally valid.
An appropriate change of variables can reorganize the basis
hPDFs to increase the sensitivity to their overall sign. We
can then classify which of these parameters are most
correlated with the asymptotic sign of gp1 . We find enhanced
sensitivity to the asymptotic sign of gp1 from the linear
combinations a0 ≡ ðaþ bÞ=2 and b0 ≡ ða − bÞ=2. Then,
the dipole initial condition Gð0Þ ¼ aηþ bs10 þ c can be
written as

Gð0Þ ¼ a0ðηþ s10Þ þ b0ðη − s10Þ þ c: ð40Þ

These new basis functions are displayed in Fig. 10.
Compared to Fig. 1, the alternative parameters a0; b0 change
the shapes of the basis hPDFs. In particular, we note that this

greatly increases the separation between the a02 ¼ 1 and
b02 ¼ 1 basis functions at large x, where the data provide
constraints. When we bin the replicas into asymptotically
positive/negative gp1 at small x, we find that the parameter
with the largest difference between the solutions is ea0. The
asymptotically positive solutions preferred a negative param-
eter ea0 ¼ −1.56� 2.32, while the asymptotically negative
solutions preferred the positive ea0 ¼ 1.42� 2.34. No other
systematic differences in parameters were observed.
We can understand from the basis hPDFs shown in

Fig. 10 why asymptotically positive/negative gp1 correlates,
respectively, with negative/positive values of ea0, and why ea0
shows the greatest discrimination power. First, we note that
the basis hPDFs themselves are negative-definite functions
of x for positive values of the initial parameters a0, b0, c,
which is simply a consequence of the explicit minus sign in
Eq. (5). Second, we note that the hPDFs arising from

both the eGð0Þ (with parameters ea0, eb0, ec) and Gð0Þ
2 (with

parameters a02, b
0
2, c2) initial conditions are comparably

large at small x; the a02 ¼ 1 basis function also being
sizeable at large x, whereas the ea0 basis function only
contributes meaningfully at small x. The large-x behavior
means that the parameter a02, while important for determin-
ing the small-x asymptotics, is constrained by higher-x
experimental data, and it specifically prefers negative
values: a02 ¼ −0.98� 1.00. The origin of the different
asymptotic behaviors seen in Fig. 5 therefore appears to
be due to the dipole eG, which makes no contribution to the
basis hPDFs at larger x, and thus, the sign of ea0 evades
experimental constraints.
To test this hypothesis, we ran fits where all of the eG

initial condition parameters (ea, eb, ec) were restricted to be
either negative-definite or positive-definite, with all other

FIG. 10. Basis functions analagous to those in Fig. 1, where instead of plotting the η, s10, and 1 contributions (displayed as the curves
in Fig. 1 labeled a ¼ 1, b ¼ 1, c ¼ 1, respectively), we instead show the contributions of ηþ s10, η − s10, and 1 displayed as the curves
labeled a0 ¼ 1, b0 ¼ 1, and c0 ¼ c ¼ 1. Here, only the eG and G2 dipole amplitudes are shown.
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parameters unchanged. All gp1 replicas in the negative-
definite eG fit were asymptotically positive. The positive-
definite eG fit was slightly less selective but still generated a
73% majority preferring asymptotically negative gp1 repli-
cas (recall that the original fit in Fig. 5 had a 70% positive
preference). The results, shown in the top row of Fig. 11,
clearly demonstrate that the sign of the eG dipole amplitude
determines the small-x asymptotics of gp1 , as anticipated by
the basis functions in Figs. 1 and 10.
The reason eG leads to a gp1 that is poorly constrained at

small x can be seen directly from Eqs. (4)–(6), (9) and
Eqs. (12), (13), (29): eG does not contribute directly to any
hPDF. Whereas all the other (non-neighbor) polarized dipole
amplitudes directly enter a DIS/SIDIS observable, the effects
of eG are only felt indirectly through its impact on the
evolution of the other amplitudes. As a result, hPDFs
mediated by eG only become large at very small x (see the
top panel of Fig. 10),where there are no constraints fromdata.
While eG is the driving factor in determining the small-x

asymptotics of gp1 , G2 also plays a role. In fact, if eG were
removed, G2 would be the most important amplitude in

controlling the small-x asymptotics of gp1 . We see this
explicitly when setting the initial conditions for eG all to
zero (ea ¼ eb ¼ ec ¼ 0) and repeating the previous analysis
of now restricting the G2 initial condition parameters to be
always positive or always negative. The result, shown in the
bottom panel of Fig. 11, confirms that, although con-
strained by large-x data, G2 plays the second most
important role after eG in determining the small-x asymp-
totics of gp1 . The negative-definite G2 fit was 100%
selective of asymptotically positive gp1 replicas, while the
positive-definiteG2 fit was 96% selective of asymptotically
negative gp1 replicas.
Figure 11 then compactly summarizes the origin of the

asymptotic behavior seen in Fig. 5. The origin of the huge
uncertainty band at small x is due to the inability to
constrain the sign of eG from large-x data, and the overall
preference of the central curve in Fig. 5 favoring positive
solutions is due to the fact that there is an experimental
constraint which prefers G2 < 0, leading to gp1 > 0.
Knowing now that the dipole amplitude eG controls the

small-x asymptotics of gp1 gives us powerful insight into the

FIG. 11. Comparing the effects eG and G2 have on the overall sign of gp1 ðxÞ at small x. Top row: the priors are restricted so that (left)eG ≤ 0 and (right) eG ≥ 0. Bottom row: the priors are restricted so that (left) G2 < eG ¼ 0 and (right) G2 > eG ¼ 0. All other parameters
initially are randomly sampled just as they were in the fit shown in Fig. 5. We see that controlling the sign of eG strongly influences the
sign of gp1 , and that the sign of G2 will also influence the sign of gp1 .

DANIEL ADAMIAK et al. PHYS. REV. D 108, 114007 (2023)

114007-20



hPDF correlations which characterize the fits. Comparing
Eqs. (4), (5), and (6), we can draw the conclusion that at
asymptotically small x, these quantities are simply related by

gp1 ðxÞ ∝ ΔqþðxÞ ∼ −ðQq þ 2G2Þ → −eG; ð41aÞ

ΔGðxÞ ∼G2 → eG; ð41bÞ

where the last step in each line represents the fact that the
evolution ofQq andG2 is driven by eG [see Eq. (9)]. At small
x, the two hPDFs Δqþ and ΔG are both driven by the same
polarized dipole amplitude eG, but they have opposite signs.
Since gp1 is proportional to Δqþ (weighted by quark electric
charge squared and summed over flavors), it follows that if
the quark hPDFs for all flavors have the same sign, then at
small x, gp1 will have the same sign as the quark hPDFs and
the opposite sign to the gluon hPDF. These anticipated (anti)
correlations among the hPDFs are shown in Fig. 12, where
we plot only Δuþ and ΔG for brevity. Note that the color
coding used for the replicas in Fig. 12 indicates the ultimate
asymptotic sign of gp1 , not the hPDF itself. That is, an hPDF
replica is colored red (blue) if the corresponding gp1 replica is
asymptotically positive (negative). The fact that the asymp-
totic signs of Δqþ and ΔG are, respectively, correlated and
anticorrelated to the sign of gp1 at small x is a robust, novel
prediction of the small-x helicity evolution framework.4,5

Thus, in order to better predict the asymptotic signs of gp1 ,
Δqþ and ΔG, we need to better constrain the polarized
dipole amplitude eG. One option is data from the future EIC,
discussed in Sec. III D. We also outline several additional
ways in Sec. III E.

C. Extracted helicity PDFs and calculation of net
parton spin and axial-vector charges at small x

Our results for the hPDFs are shown in Fig. 13. Since our
small-x analysis is only valid for x < x0 ¼ 0.1, we restrict
the plots to that region. As with the gp1 structure function
shown in Fig. 5, the hPDFs themselves also exhibit broad
uncertainty bands at small x.6 The uncertainty bands for all
four hPDFs span zero below x≲ 10−3, indicating that the
hPDFs in that region may be positive, negative, or con-
sistent with zero. By far the largest uncertainty is seen in
ΔG, which, unlike Δqþ, is not directly sensitive to
inclusive DIS constraints on gp1 [Eq. (4)]. As shown in
Figs. 11 and 12, the large uncertainty in ΔG is due to the
lack of sufficient constraints on the dipole amplitudes eG
and G2 that dominate both Δqþ and ΔG at small x. This
conclusion is further supported by the left panel of Fig. 13,
where Δuþ, Δdþ, and Δsþ exhibit approximately the same
error band below x ≈ 10−4. At larger x, where the hPDF
behavior is driven more by the Qq dipole amplitudes, we
can observe flavor separation between the three quarks. The
uncertainty of the Δsþ distribution then becomes much
larger than that for Δuþ and Δdþ, most likely due to the
limited SIDIS kaon data. The similar error bands at small x
for Δuþ, Δdþ, and Δsþ are in contrast to markedly distinct
error bands for Δu−, Δd−, and Δs−, shown in the right
panel of Fig. 13, which exhibit significant flavor separation
even down to small x. Recall that the flavor nonsinglet
hPDFs are driven by a different polarized dipole amplitude,

FIG. 12. Color-coding the hPDF replicas according to the asympotic sign of gp1 shows that there is a novel correlation: at small x, quark
hPDFs (left) have the same sign as gp1 (only Δuþ is shown), while the gluon hPDF (right) has the opposite sign to gp1 .

4We note that no such relationship is exhibited by the non-
singlet hPDFs. When attempting the same strategy of color-
coding the nonsinglet hPDFs (not shown) according to the
asymptotic sign of the proton SIDIS structure function gp→h

1 ,
no correlations could be identified.

5We note that in Ref. [32], a connection was found at small x
between ΔGðx;Q2Þ and the logQ2 derivative of g1ðx;Q2Þ:
ΔGðx;Q2Þ ≈ −∂g1ðx;Q2Þ=∂ lnQ2. Our result, however, demon-
strates anticorrelation of the signs of ΔGðx;Q2Þ and gp1 ðx;Q2Þ
[and not of the logQ2 derivative of gp1 ðx;Q2Þ]. In addition, we note
that the calculation in Ref. [32] was in a DGLAP-based NLO
perturbative QCD framework, while our calculation involves the
all-order DLA-resummed coefficient functions [see the discussion
around Eq. (7)].

6Note that in Fig. 13, we plot x mutliplied by hPDF on the
vertical axis: this explains why the error bands in Fig. 13 appear
to be smaller than those in Fig. 16, with the latter showing gp1 not
multiplied by x.
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GNS [see Eq. (12)], which is sensitive to flavor separation
through the SIDIS data. As a result of the different
evolution, the xΔq− distributions converge quickly to zero
at small x, unlike the xΔqþ distributions, due to the smaller
intercept at small x (see also Appendix B). The similarity of
the error bands forΔuþ,Δdþ, andΔsþ appears to be driven
by the error band of the polarized dipole amplitude G2,
which affects all quark flavors in the same way, per
Eq. (19). Consequently, additional input which can better
constrain eG and/or G2 may well reduce this uncertainty by
forcing the hPDFs to choose a definite sign at small x. We
discuss possible strategies to achieve this in Sec. III E.
One feature of note in our hPDFs from Fig. 13 is that

Δsþ and ΔG are much larger in magnitude than the same
hPDFs obtained in the JAM framework using the DGLAP-
based approach [30,33,34]. In particular, our extracted Δsþ
distribution is below zero at about the 1σ level at x ≈ 10−2.
This is to be compared with Fig. 6 of Ref. [33], which
exhibits a Δsþ consistent with zero across the entire
considered range 5 × 10−3 ≤ x ≤ 0.9. Note that the global
analyses conducted in Refs. [30,33,34] are quite different
from the one we present here—e.g., they use DGLAP
evolution within collinear factorization, include data across
the full range of x, and in some cases impose SU(2) and
SU(3) flavor symmetries. Nevertheless, it is a valuable
cross-check to see whether zero strangeness polarization is
consistent with our results as well. To that end, we have
separately refit the data, setting the strangeness polarization
identically to zero: Δsþðx;Q2Þ ¼ Δs−ðx;Q2Þ ¼ 0. The
overall quality χ2=Npts ¼ 1.04 of the zero-strangeness fit
is slightly worse than the quality χ2=Npts ¼ 1.03 of the
default fit, with the asymmetries Ah

1 from tagged kaon
SIDIS being the most affected by the change. For that
subset of the data, the quality of fit degraded from
χ2=Npts ¼ 0.81 in the default fit to χ2=Npts ¼ 1.05 in the
zero-strangeness fit. This marginal degradation of the fit
quality is consistent with the 1σ departure ofΔsþ from zero
preferred by the default fit in Fig. 13, with the tagged kaon
data only accounting for 26=226 data points in total.

Therefore, we conclude that small Δsþ is indeed consistent
with our formalism, and that there is a real (but weak)
preference from the data for nonzero Δsþ at x ∼ 0.01
within our small-x framework.
Next, we address the contribution to the proton spin and

axial-vector charges from small x. The flavor singlet quark
helicity distribution is given by

ΔΣðx;Q2Þ≡ Δuþðx;Q2Þ þ Δdþðx;Q2Þ
þ Δsþðx;Q2Þ ð42Þ

for the light flavors considered in this work. Using the
hPDFs in Fig. 13, we show xΔΣðx;Q2Þ in Fig. 14. Again,
the uncertainty band at small x based on current exper-
imental data is rather wide, spanning zero so that the sign of
ΔΣ is uncertain.
From ΔΣðx;Q2Þ and ΔGðx;Q2Þ, we can determine how

much net parton spin [see Eq. (2)] resides at small x by
computing truncated moments of the distributions. We can
similarly determine the small-x contributions to the triplet
gA and octet a8 axial-vector charges from truncated
moments of the appropriate linear combinations of quark

FIG. 13. Left: C-even hPDFs xΔuþ (red), xΔdþ (blue), xΔsþ (orange), and xΔG (green) extracted from existing low-x experimental
data. Right: same as left panel, but for the flavor nonsinglet C-odd hPDFs xΔu− (red), xΔd− (blue), and xΔs− (orange).

FIG. 14. Quark flavor singlet helicity distribution xΔΣðx;Q2Þ
calculated from hPDFs extracted from existing low-x experi-
mental data.
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hPDFs. Focusing on the x region 10−5 ≤ x ≤ 10−1 of our
analysis, we consider the following truncated moments:�
1

2
ΔΣþ ΔG

�
½xmaxðminÞ�

≡
Z

x2

x1

dx

�
1

2
ΔΣþ ΔG

�
ðx;Q2Þ;

ð43aÞ

gA½xmaxðminÞ� ≡
Z

x2

x1

dx gAðx;Q2Þ

≡
Z

x2

x1

dx½Δuþðx;Q2Þ − Δdþðx;Q2Þ�; ð43bÞ

a8½xmaxðminÞ� ≡
Z

x2

x1

dx a8ðx;Q2Þ

≡
Z

x2

x1

dx½Δuþðx;Q2Þ þ Δdþðx;Q2Þ

− 2Δsþðx;Q2Þ�: ð43cÞ

Here we consider two representations of the truncated
moments: either as a function of the upper limit xmax with
fixed lower limit 10−5, or as a function of the lower limit
xmin with fixed upper limit 0.1. That is, in the notation of
Eq. (43), we have ðx1; x2Þ ¼ ð10−5; xmaxÞ for ½xmax� and
ðx1; x2Þ ¼ ðxmin; 0.1Þ for ½xmin�. We have also dropped the
Q2 dependence of the truncated moments on the left-hand
side of Eq. (43) for brevity.
Both ½xmax� and ½xmin� representations of the truncated

moments are plotted in Fig. 15. From the truncated moment
of the total parton helicity ð1

2
ΔΣþ ΔGÞ½xmaxðminÞ�, we con-

clude that, despite the sizable uncertainties, the amount of
the proton spin coming from the net spin of small-x partons
could be quite large. The outer bounds of these truncated
moments also allow for the possibility that the net quark
and gluon spin contained within the small-x region may be
even more significant than what has been computed at
large x. We observe that, despite the wide error bands in

FIG. 15. Truncated moments of ð1
2
ΔΣþ ΔGÞðx;Q2Þ, gAðx;Q2Þ, and a8ðx;Q2Þ, defined in Eq. (43), versus xmax (left) and xmin (right)

at Q2 ¼ 10 GeV2.
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ΔGðx;Q2Þ and ΔΣðx;Q2Þ separately, the error in the
truncated moment ð1

2
ΔΣþ ΔGÞ is narrower than if the

two were uncorrelated. Because of the replica-by-replica
anticorrelation betweenΔqþðx;Q2Þ and ΔGðx;Q2Þ seen in
Fig. 12, there is a systematic cancellation between them,
resulting in a truncated moment ð1

2
ΔΣþ ΔGÞ which skews

net negative and is more tightly constrained than either
ΔΣðx;Q2Þ or ΔGðx;Q2Þ alone. In addition, the nonzero
slope of ð1

2
ΔΣþ ΔGÞ½xmax� as one approaches xmax ¼ 10−5

indicates that this truncated moment has not fully saturated
at that point in x. In contrast, the small-x contribution to gA
and a8 appears to saturate around x ¼ 10−4, giving a finite,
non-negligible contribution from small-x partons.
Taken at face value, our formalism strikingly predicts a

negative contribution to the proton spin from the net spin of
small-x partons even when accounting for the 1σ error band.
In this scenario favored by our default fit, a significant
positive contribution from orbital angular momentumwould
be needed to satisfy the Jaffe-Manohar sum rule (1).
Interestingly, similar observations have been made in using
AdS=CFT to analyze gp1 [160–163]. We also predict that
approximately 15%–21% of the known value of gA and
12%–77% of the known value of a8 are generated from
partons with 10−5 ≤ x ≤ 10−1, where the values of the
moments over the full range x∈ ½0; 1� are known from
neutron and hyperon β decays [24]: gA ¼ 1.269ð3Þ and
a8 ¼ 0.586ð31Þ.
However, we caution the reader that our small-x analysis

is strongly dependent on the large-x initial conditions to our
evolution, and that the error bands shown throughout this
work are strictly statistical in nature. These are an accurate
representation of the uncertainty coming from the exper-
imental data and from the Monte Carlo sampling pro-
cedure, but in particular they do not reflect the systematic
bias that comes from omitting large-x data that cannot be
captured in this formalism. Combining our small-x evolu-
tion equations with external input from large x can there-
fore possibly result in large, systematic changes to the
extracted hPDFs beyond the 1σ statistical error bands. This
suggests that an appropriate matching procedure onto
hPDFs extracted from a large-x, DGLAP-based analysis
like JAM [30,33,34] will be crucial to determining the
proton spin budget. Moreover, since JAM found both
viable positive ΔGðx;Q2Þ and negative ΔGðx;Q2Þ solu-
tions [33,34], the predictions for the small-x truncated
moments may even depend on which large-x solution is
chosen for the matching. Indeed, as we show in Fig. 18
below, matching to the positive gluon hPDF solution could
lead to a substantially different outcome for ΔGðx;Q2Þ,
deviating beyond the 1σ error band over a significant range
of x. Clearly a rigorous implementation of such a matching
will be an important aspect of future analyses; a first
attempt is detailed in Sec. III E below. Having emphasized
this vital caveat, we summarize our results for the small-x

truncated moments of ð1
2
ΔΣþ ΔGÞðx;Q2Þ, gAðx;Q2Þ, and

a8ðx;Q2Þ over the small-x window x∈ ½10−5; 0.1� for
Q2 ¼ 10 GeV2:Z

0.1

10−5
dx

�
1

2
ΔΣþ ΔG

�
ðxÞ ¼ −0.64� 0.60; ð44aÞ

Z
0.1

10−5
dx gAðxÞ ¼ 0.23� 0.04; ð44bÞ

Z
0.1

10−5
dx a8ðxÞ ¼ 0.26� 0.19: ð44cÞ

D. Impact of EIC data on gp1
In order to study the impact of lower x measurements on

our ability to predict the behavior of gp1 and the hPDFs at even
smaller x, we utilized EIC pseudodata for the kinematic
region of 10−4<x< 10−1 and 1.69GeV2<Q2<50GeV2.
The EIC will be capable of going lower in x by reaching
higher Q2, but we do not expect our formalism to be
applicable for arbitrarily large Q2 (DGLAP resummation
is needed to fully describe the Q2 dependence). For DIS on
the proton, the pseudodata were at center-of-mass energiesffiffiffi
s

p ¼ f29; 45; 63; 141g GeV with an integrated luminosity
of 100 fb−1, while for the deuteron and 3He beams the
pseudodata spanned

ffiffiffi
s

p ¼ f29; 66; 89g GeV with 10 fb−1

integrated luminosity. These are consistent with the EIC
detector design of the Yellow Report, including 2% point-to-
point uncorrelated systematic uncertainties [9]. For SIDIS on
a proton, the pseudodata were at

ffiffiffi
s

p ¼ 141 GeV, alsowith a
2% systematic uncertainty [164]. In our earlier work [103],
we had relied on parity-violating DIS pseudodata in order to
disentangle the three light quark C-even hPDFs Δqþ. With
the inclusion of SIDIS data, that is no longer necessary. The
EIC could provide such data [9], and it would serve as an
additional constraint in the future, but we do not consider its
impact in the present analysis.
Our current extrapolation of gp1 covers a wide range of

possibilities at small x, so we generate the pseudodata
based on three scenarios for gp1 that are consistent with
present data: (1) the mean of the asymptotically positive
replicas (“high g1”), (2) the mean of the asymptotically
negative replicas (“low g1”), and (3) the mean of a fit where
gp1 was constrained to have jgp1 j < 100 at x ¼ 10−4 (“mid
g1”). These three options have qualitatively distinct behav-
iors, and comparing them should inform us if the impact of
the EIC is dependent on the precise small-x asymptotics of
gp1 . The results are shown in Fig. 16. We find a dramatic
decrease in uncertainties for all three scenarios, even in the
extrapolated region of x < 10−4. In Fig. 17, we plot the
relative uncertainty of gp1 compared to that of a JAM
DGLAP-based extraction in Ref. [165] using EIC pseudo-
data. The results confirm the observation above that, when
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using the genuine predictability of the small-x helicity
evolution, control over uncertainties is maintained as we
extrapolate to smaller x. In contrast, since the DGLAP-
based fit must use an ad hoc parametrization of the x
dependence, it cannot maintain control over the uncertain-
ties into the extrapolation region.

E. Imposing additional constraints

While future data from the EIC is a promising way to
resolve the issue of sizeable uncertainties in our extracted
hPDFs at small x, it is worth considering other options that
might be more immediately accessible. Ideally, these
constraints would enter in the form of existing data or as
theoretical constraints on the initial conditions.

The hPDF with the largest uncertainty that we have
extracted is ΔGðx;Q2Þ, as demonstrated in Fig. 13, so we
explored a few options to constrain it. The first such
constraint is positivity, which is the statement that the
number densities for positive- and negative-helicity partons
are positive. In particular, for gluons this leads to

jΔGðx;Q2Þj < Gðx;Q2Þ; ð45Þ

where Gðx;Q2Þ is the unpolarized gluon PDF. (We will set
aside issues as to whether Eq. (45) is strictly satisfied under
(MS) renormalization [166–168].) We impose this con-
straint by checking the value of ΔGðx;Q2Þ in the region
x < x0 ¼ 0.1 and punishing the χ2 of the fit if the positivity
constraint is violated. Unfortunately, by the time our
evolution begins, our baseline fit for ΔGðx;Q2Þ and the
JAM DGLAP-based Gðx;Q2Þ [33,34] are of comparable
size. The latter grows much faster at small x than our
extraction for ΔGðx;Q2Þ, causing the positivity constraint
to have a negligible effect. This is perhaps not surprising,
given that at small x the unpolarized gluon distribution
Gðx;Q2Þ is eikonal, while ΔGðx;Q2Þ is subeikonal, and
hence, suppressed by a power of x.
Another constraint on ΔGðx;Q2Þ that we explored was a

preliminary matching onto the (large-x) JAM DGLAP-
based extraction of ΔGðx;Q2Þ in Refs. [33,34]—in par-
ticular, the SU(3)+positivity scenario. The result is shown
in Fig. 18; the red box is bounded by 10−1.3 < x < 10−1

and 0.05 < ΔGðx;Q2Þ < 0.2. The motivation is that any
complete description of ΔGðx;Q2Þ should agree with
DGLAP extractions in this region. The matching is
performed in a simple way, by choosing an intermediate
region in x and forcing our fit of ΔGðx;Q2Þ to qualitatively
agree with the JAM DGLAP-based extraction. This is done
in a similar way to the positivity constraint described
above, whereby we punish the χ2 whenever ΔGðx;Q2Þ

FIG. 16. Extraction of gp1 from the current low-x experimental
data (green, same as Fig. 5) and with EIC pseudodata generated
from the mean of the asymptotically positive gp1 replicas (red), the
mean of the asymptotically negative gp1 replicas (blue), and the
mean of replicas restricted such that jgp1 j < 100 at x ¼ 10−4

(magenta).

FIG. 17. Relative uncertainty for both this work (red) and a
JAM DGLAP-based extraction [165] (blue) for EIC impact
studies using the high-gp1 scenario. Dotted lines denote extrapo-
lating beyond the lowest x for which pseudodata were generated.
For this work, pseudodata were generated down to x ¼ 10−4. For
the JAM DGLAP-based fit, pseudodata were generated down to
x ¼ 2 × 10−4 [165].

FIG. 18. The result of matching onto theΔGðxÞ extraction from
DGLAP [33,34] at intermediate x. The green band is our baseline
fit. The blue band is the result of matching. The light red square is
the region where we enforce matching.
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strays outside of the matching region (red rectangle in
Fig. 18). This constraint causes our extracted ΔGðx;Q2Þ to
take on mostly positive values at small x, seemingly
changing sign from our original extraction. However, note
that while the baseline extraction uncertainty band grew
negative for large x, there were still a significant number of
replicas (with good χ2) that grew positive at large x and
overlapped with the red region. Forcing ΔGðx;Q2Þ to pass
through that area then preferentially selects those replicas.
Consequently, the whole uncertainty band for ΔGðx;Q2Þ
remains shifted upward even in the small-x region. Given
that gp1 ðx;Q2Þ ∝ −ΔGðx;Q2Þ [see Eq. (41)], the matching
constraint leads to a quantitative change to the distribution
of gp1 replicas: they are now 40% positive and 60%
negative. As we emphasized previously, input on hPDFs
from large x can have a significant effect on predictions
made at small x, motivating future work into a more
rigorous matching to DGLAP-based hPDF fits.
Furthermore, the issue with constraining eG could be

alleviated by a more rigorous way of handling the starting
point of evolution x0. In this work, we chose x0 ¼ 0.1 and
then used experimental data to fit initial conditions for the
polarized dipole amplitudes in order to obtain the correct
starting values for all of the extracted hPDFs. Only after
these starting values have been determined do we then
evolve the distributions in a region dominated by our double-
logarithmic resummation. In reality, evolution in x begins at
x ¼ 1, but it is subleading, with the dominant contribution at
large x given by DGLAP-driven large-x dynamics. The
method of matched asymptotic expansions [169,170] sug-
gests that we start the evolution at x0 ¼ 1, include the
DGLAP contributions, but subtract the double-counting of
logarithms that are present in both resummations. By
starting evolution earlier, eG might become more sensitive
to the data. As discussed at the end of Sec. II E, the challenge
in constraining eG stems from the fact that it has a small
magnitude in the region where there are measurements (see
Fig. 1). The magnitude of the eG contribution to Δuþ is so
small at larger x partly because eG enters only through
evolution, and evolution is delayed until x0 ¼ 0.1. If x0 ¼ 1,eG will start growing sooner, and it might then have a large
enough contribution to be sensitive to the experimental data.
Moreover, perhaps the most direct way to constrainΔG is

to include in the analysis an observable directly sensitive to it.
(Recall that in the polarized DIS and SIDIS processes
considered here, the contribution from the gluon hPDF is
suppressed by a factor of αs.) Two possibilities, which have
been used in DGLAP-based extractions [23,26,27,33,34],
are jet and hadron production in polarized proton-proton
collisions. The numerator of the double-longitudinal spin
asymmetryALL in p⃗þ p⃗ collisions takes the following form:

σ↓⇑ − σ↑⇑ ¼
X
a;b

Δfa=A ⊗ fb=B ⊗ σab; ð46Þ

whereΔf is the parton hPDF for either the quarks or gluon,
aðbÞ is the parton coming from proton AðBÞ, and σab is the
partonic cross section of parton a interacting with parton b.
For hadron production, Eq. (46) needs also to be con-
voluted with the D1 FF. More work is needed to derive
an analogue of Eq. (46) in the KPS-CTT small-x evolution
framework, and initial developments can be found in
Ref. [98].
Lastly, in the future, it will also be interesting to attempt

to constrain the large-x behavior of the hPDFs by direct
matching onto nonperturbative calculations from lattice
QCD. Such matching in the vicinity of x ∼ 0.1 is actually
feasible for the double-logarithmic helicity evolution,
unlike for the case of single-logarithmic unpolarized
small-x evolution, which would require reliable lattice data
down to much smaller x. In addition, recently a new
approach to determining the initial conditions for small-x
evolution by starting at the level of the proton wave
function has been developed in Ref. [171]. While that
work was done in the context of unpolarized small-x
evolution, it is possible that it could be extended to the
polarized case, helping us constrain the initial conditions
for helicity evolution at hand.

IV. CONCLUSIONS

In this paper, we have presented the first phenomeno-
logical implementation of the KPS-CTT theoretical frame-
work [58,64,71] for the evolution of hPDFs. This work
represents a significant improvement over our previous
study [103] by utilizing the revised evolution equations
instead of the original KPS equations. On top of that, we
have adopted the large-Nc & Nf limit, which enables a
more realistic description of the physics, now including
quarks in addition to gluons. Another key advancement of
this research is an expansion of our analysis beyond just
polarized DIS data by also incorporating polarized semi-
inclusive DIS measurements. This allowed us to extract
both the C-even and C-odd quark hPDFs Δqþ and Δq−,
along with the gluon hPDF ΔG. To extract Δq− we had to,
for the first time, implement the numeric solution for the
KPS evolution of the nonsinglet hPDFs. Moreover, we
have included running coupling corrections in the evolution
of Δqþ, Δq−, and ΔG, which is another feature of the
analysis that makes our approach more rigorous.
Through the application of the JAM Bayesian

Monte Carlo framework, we have successfully described
all available polarized DIS and SIDIS data below the
threshold x0 ¼ 0.1, achieving a very good fit with
χ2=Npts ¼ 1.03. However, when attempting to extend our
predictions to lower values of x, the uncertainty associated
with our results was found to be substantial. This large
uncertainty arises from the inherent insensitivity of the data
to the polarized dipole amplitudes G2 and eG. To address
this challenge, we discussed several potential future
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improvements, among which investigating jet or hadron
production in longitudinally polarized proton-proton colli-
sions emerges as a promising medium-term solution.
However, more theoretical developments are desirable in
the short term, where one must identify the observables
which can be expressed in terms of the polarized dipole
amplitudes G2 and eG.
Another issue which needs to be clarified in the medium

term is the impact of the axial anomaly on the g1 structure
function and hPDFs at small x. The role of the axial
anomaly in the polarized structure functions, originally
pointed out in Refs. [10,172,173], has been recently
revisited in Refs. [174–177]. The effect appears to be
distinct from the DLA of BER and KPS-CTT evolution.
Developing the corresponding phenomenology is left for
future work.
Based on current experimental data, we find that there

could be significant negative net spin, as well as non-
negligible contributions to the triplet and octet axial-vector
charges, coming from small-x partons. However, there are
large uncertainties in our estimates, including unaccounted-
for systematics in matching onto large-x DGLAP-based
fits, which will be important to implement in future work.
Nevertheless, in such a scenario (negative net parton spin),
significant OAM would be needed to satisfy the (Jaffe-
Manohar) spin sum rule. The inclusion of EIC data in the
long term would greatly enhance our understanding of
hPDFs, as our impact study showed, and enable more
precise statements about the distribution of (spin and
orbital) angular momentum within the proton.
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APPENDIX A: DISCRETIZATION OF THE
FLAVOR SINGLET AND NONSINGLET

EVOLUTION EQUATIONS

In this appendix, we present the process of discretizing
Eqs. (9) and (13) in order to perform the computation to
obtain their numerical solutions. In addition, we implement
the constraints corresponding to the fact that the starting
point of our evolution is at x ¼ x0 < 1. See the discussion
above Eq. (17) for more detail.
We start with the flavor singlet case. Imposing the

η − s10 > y0, η0 − s21 > y0, η00 − s32 > y0 constraints with

y0 ¼
ffiffiffiffi
Nc
2π

q
ln 1

x0
, we rewrite Eq. (9) in terms of the variables

(15) as

Qqðs10; ηÞ ¼ Qð0Þ
q ðs10; ηÞ þ

Z
η

s10þy0

dη0
Z

η0−y0

s10

ds21αsðs21Þ½Qqðs21; η0Þ þ 2eGðs21; η0Þ þ 2eΓðs10; s21; η0Þ
− Γqðs10; s21; η0Þ þ 2G2ðs21; η0Þ þ 2Γ2ðs10; s21; η0Þ�

þ 1

2

Z
η

y0

dη0
Z

η0−y0

max½0;s10þη0−η�
ds21αsðs21Þ½Qqðs21; η0Þ þ 2G2ðs21; η0Þ�; ðA1aÞ

Γqðs10; s21; η0Þ ¼ Qð0Þ
q ðs10; η0Þ þ

Z
η0

s10þy0

dη00
Z

η00−y0

max½s10;s21−η0þη00�
ds32αsðs32Þ½Qqðs32; η00Þ þ 2eGðs32; η00Þ

þ 2eΓðs10; s32; η00Þ − Γqðs10; s32; η00Þ þ 2G2ðs32; η00Þ þ 2Γ2ðs10; s32; η00Þ�

þ 1

2

Z
η0

y0

dη00
Z

η00−y0

max½0;s21þη00−η0�
ds32αsðs32Þ½Qqðs32; η00Þ þ 2G2ðs32; η00Þ�; ðA1bÞ
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eGðs10; ηÞ ¼ eGð0Þðs10; ηÞ þ
Z

η

s10þy0

dη0
Z

η0−y0

s10

ds21αsðs21Þ
�
3eGðs21; η0Þ þ eΓðs10; s21; η0Þ

þ 2G2ðs21; η0Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s21; η0Þ −

1

4Nc

X
q

Γqðs10; s21; η0Þ
�

−
1

4Nc

Z
η

y0

dη0
Z

min½s10;η0−y0�

max½0;s10þη0−η�
ds21αsðs21Þ

�X
q

Qqðs21; η0Þ þ 2NfG2ðs21; η0Þ
�
; ðA1cÞ

eΓðs10; s21; η0Þ ¼ eGð0Þðs10; η0Þ þ
Z

η0

s10þy0

dη00
Z

η00−y0

max½s10;s21−η0þη00�
ds32αsðs32Þ

�
3eGðs32; η00Þ þ eΓðs10; s32; η00Þ

þ 2G2ðs32; η00Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s32; η00Þ −

1

4Nc

X
q

Γqðs10; s32; η00Þ
�

−
1

4Nc

Z
η0þs10−s21

y0

dη00
Z

min½s10;η00−y0�

max½0;s21þη00−η0�
ds32αsðs32Þ

�X
q

Qqðs32; η00Þ þ 2NfG2ðs32; η00Þ
�
; ðA1dÞ

G2ðs10; ηÞ ¼ Gð0Þ
2 ðs10; ηÞ þ 2

Z
η

y0

dη0
Z

min½s10;η0−y0�

max½0;s10þη0−η�
ds21αsðs21Þ½eGðs21; η0Þ þ 2G2ðs21; η0Þ�; ðA1eÞ

Γ2ðs10; s21; η0Þ ¼ Gð0Þ
2 ðs10; η0Þ þ 2

Z
η0þs10−s21

y0

dη00
Z

min½s10;η00−y0�

max½0;s21þη00−η0�
ds32αsðs32Þ½eGðs32; η00Þ þ 2G2ðs32; η00Þ�: ðA1fÞ

Following Refs. [67,71,102], the evolution equations (A1) can be iterated more optimally by considering the recursive form
of their Riemann sums. To do so, we begin by writing Eqs. (A1a), (A1c), and (A1e) as the first-order Taylor expansions
in η—e.g.,

Qqðs10; ηþ ΔÞ ¼ Qqðs10; ηÞ þ Δ
∂

∂η
Qqðs10; ηÞ þOðΔ2Þ; ðA2Þ

and Eqs. (A1b), (A1d), and (A1f) as the first-order Taylor expansions in η0 and s21—e.g.,

Γqðs10; s21 þ Δ; η0 þ ΔÞ ¼ Γqðs10; s21; η0Þ þ Δ
∂

∂η0
Γqðs10; s21; η0Þ þ Δ

∂

∂s21
Γqðs10; s21; η0Þ þOðΔ2Þ: ðA3Þ

The expansions for other (neighbor) dipole amplitudes are similar. Note that the transverse sizes in neighbor dipoles are
always ordered such that x32 < x21 < x10, which implies that s32 > s21 > s10. Neglecting order-Δ2 terms for small step
sizes Δ ≪ 1, Eq. (A1) can be written as

Qqðs10; ηþ ΔÞ ¼ Qqðs10; ηÞ þQð0Þ
q ðs10; ηþ ΔÞ −Qð0Þ

q ðs10; ηÞ

þ Δ
Z

η−y0

s10

ds21αsðs21Þ
�
3

2
Qqðs21; ηÞ þ 2eGðs21; ηÞ þ 2eΓðs10; s21; ηÞ

− Γqðs10; s21; ηÞ þ 3G2ðs21; ηÞ þ 2Γ2ðs10; s21; ηÞ
�

þ 1

2
Δ
Z

η

η−s10
dη0αsðs10 þ η0 − ηÞ½Qqðs10 þ η0 − η; η0Þ þ 2G2ðs10 þ η0 − η; η0Þ�; ðA4aÞ

Γqðs10; s21 þ Δ; η0 þ ΔÞ ¼ Qqðs10; ηÞ þQð0Þ
q ðs10; ηþ ΔÞ −Qð0Þ

q ðs10; ηÞ

þ Δ
Z

η0−y0

s21

ds32αsðs32Þ
�
3

2
Qqðs32; η0Þ þ 2eGðs32; η0Þ

þ 2eΓðs10; s32; η0Þ − Γqðs10; s32; η0Þ þ 3G2ðs32; η0Þ þ 2Γ2ðs10; s32; η0Þ
�
; ðA4bÞ
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eGðs10;ηþΔÞ ¼ eGðs10;ηÞþ eGð0Þðs10;ηþΔÞ− G̃ð0Þðs10;ηÞ

þΔ
Z

η−y0

s10

ds21αsðs21Þ
�
3eG½i0; j− 1� þ eΓðs10; s21;ηÞ

þ 2G2ðs21;ηÞþ
�
2−

Nf

2Nc

�
Γ2ðs10; s21;ηÞ−

1

4Nc

X
q

Γqðs10; s21;ηÞ
�

−Δ
1

4Nc

Z
η

η−s10
dη0αsðs10þ η0 − ηÞ

�X
q

Qqðs10þ η0 − η;η0Þþ 2NfG2ðs10þ η0− η;η0Þ
�
; ðA4cÞ

eΓðs10; s21 þ Δ; η0 þ ΔÞ ¼ eΓðs10; s21; η0Þ þ eGð0Þðs10; η0 þ ΔÞ − eGð0Þðs10; η0Þ

þ Δ
Z

η0−y0

s21

ds32αsðs32Þ
�
3eGðs32; η0Þ þ eΓðs10; s32; η0Þ

þ 2G2ðs32; η0Þ þ
�
2 −

Nf

2Nc

�
Γ2ðs10; s32; η0Þ −

1

4Nc

X
q

Γqðs10; s32; η0Þ
�
; ðA4dÞ

G2ðs10; ηþ ΔÞ ¼ G2ðs10; ηÞ þ Gð0Þ
2 ðs10; ηþ ΔÞ −Gð0Þ

2 ðs10; ηÞ

þ 2Δ
Z

η

η−s10
dη0αsðs10 þ η0 − ηÞ½eGðs10 þ η0 − η; η0Þ þ 2G2ðs10 þ η0 − η; η0Þ�; ðA4eÞ

Γ2ðs10; s21 þ Δ; η0 þ ΔÞ ¼ Γ2ðs10; s21; η0Þ þ Gð0Þ
2 ðs10; η0 þ ΔÞ − Gð0Þ

2 ðs10; η0Þ: ðA4fÞ

Next, we discretize the remaining integrals via a left-hand
Riemann sum in order to be able to iteratively compute the
amplitudes at higher rapidities η, which are required for the
calculation of hPDFs and the g1 structure function at small
x. This step is most conveniently performed once we make
the change of variables fη; s10; s21g → fj; i; kg · Δ. At the
end, Eq. (A4) reduces to the discretized Eq. (17) in the
main text.
The numerical implementation of the flavor nonsinglet

evolution equation (13) parallels that of the flavor singlet
evolution considered above. We use the variable change
from Eq. (15) and also require that the flavor nonsinglet

evolution start at x ¼ x0, such that η − s10 ≈
ffiffiffiffi
Nc
2π

q
ln 1

x >ffiffiffiffi
Nc
2π

q
ln 1

x0
≡ y0. Implementing these modifications in

Eq. (13) gives us the following evolution for GNS:

GNSðs10;ηÞ¼GNSð0Þðs10;ηÞþ
1

2

Z
η

y0

dη0

×
Z

η0−y0

max½0;s10−ηþη0�
ds21αsðs21ÞGNSðs21;η0Þ: ðA5Þ

The process of discretizing the nonsinglet evolution is
mostly similar to that of the singlet evolution. First, we
produce a recursion relation using the first-order Taylor
expansion, simplify it, and discretize it using the left-
handed Riemann sum. Differentiating Eq. (A5) yields

∂

∂η
GNSðs10; ηÞ ¼

∂

∂η
GNSð0Þðs10; ηÞ

þ 1

2

Z
η−y0

s10

ds21αsðs21ÞGNSðs21; ηÞ

þ 1

2

Z
η

η−s10
dη0αsðs10 − ηþ η0Þ

×GNSðs10 − ηþ η0; η0Þ; ðA6Þ
where we have also employed the s10 > 0, η − s10 > y0
conditions. Using the Taylor expansion in η, cf. Eq. (A2), we
obtain a recursive form of our flavor nonsinglet evolution:

GNSðs10; ηÞ ¼ GNSðs10; η − ΔηÞ þ GNSð0Þðs10; ηÞ
−GNSð0Þðs10; η − ΔηÞ

þ 1

2
Δη

Z
η−y0

s10

ds21αsðs21ÞGNSðs21; ηÞ

þ 1

2
Δη

Z
η

η−s10
dη0αsðs10 − ηþ η0Þ

×GNSðs10 − ηþ η0; η0Þ: ðA7Þ

In order to have a numerical solution consistent with the
flavor singlet numerical evolution, we again define Δη ¼
Δs≡ Δ. We also index our numerics in the same way as in
the flavor singlet case, fη; η0; s10; s21g → fj; j0; i; i0g · Δ.
Ultimately, Eq. (A7) yields the discretized Eq. (23) in the
main text.
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APPENDIX B: ANALYTIC CROSS-CHECK
OF THE NUMERICAL SOLUTION FOR THE

FLAVOR NONSINGLET EVOLUTION

Finding an analytic solution for the large-Nc flavor
nonsinglet evolution equation that enforces all of our
physical assumptions and includes running coupling is,
unfortunately, outside the scope of this paper. However, an
analytic solution does exist for the large-Nc evolution
equations with fixed coupling [60], which ignores the
1=Λ IR cutoff on the transverse size of the dipoles. We
can perform a limited cross-check by modifying our
numerical solution to use a fixed coupling αs ¼ 0.3, and
expand our domain of s10 by removing the IR dipole size
cutoff, x21 < 1=Λ, employed in Eq. (13). Since the dipole
size constraint is enforced by the relation s10 > 0, we refer to
the analytic cross-check regime as the all-s10 (�s) regime.
The revised evolution equation becomes [cf. Eq. (A5)]

GNS
�sðs10;ηÞ¼GNSð0Þ

�s ðs10;ηÞ

þαs
2

Z
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Z
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where relaxing the sij > 0 constraint has extended the
lower limits of the η0 and s21 integrals. As expected,
changing the phase space of the evolution equation had
an effect on our numerical solution, with the discretized
flavor nonsinglet equation now being
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where the notable modifications compared to Eq. (23)
are the factoring out of the fixed coupling αs in front of
the sum and the different starting point j0 ¼ 0 of the
summation.
We can solve the all-s10 evolution equation analytically

using Laplace-Mellin transforms (cf. Ref. [60]). To enforce
the small-x assumption on our conjugate variables, we
define the forward and inverse transforms
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In Mellin space, the solution presents itself just as it did in
Ref. [60],
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This is convenient, since we only have three distinct initial

conditions: GNSð0Þ
�s ¼ η; s10; 1. First, we will evaluate the

nonsinglet evolution beginning with the constant contri-

bution, GNSð0Þ
�s ðη; s10Þ ¼ 1.
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Plugging this into the evolution equation leads to another
contour integral with a pole at λ ¼ α=ð2ωÞ, which is
evaluated via the residue theorem to give
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Now we can Taylor-expand the singular (∼1=ω) part of the
exponential, use the residue theorem, and simplify the
result, obtaining
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This infinite sum is equivalent to the modified Bessel
function of the first kind, ImðzÞ at m ¼ 0,
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This process is repeated for the η initial condition,

GNSð0Þ
�s ðη; s10Þ ¼ η, giving
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This contour integral has the same pole at λ ¼ αs=ð2ωÞ,
resulting in a similar integral,
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We use the same Taylor expansion and the above expres-
sion for the ω contour integral to obtain
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This, too, is proportional to a modified Bessel function
of the first kind, now for m ¼ 1. The solution is then
rewritten as
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Lastly, we must solve for the initial condition term
GNS

�sðη;s10Þ¼s10. Noting that s10¼η−ðη−s10−y0Þ−y0,
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In this case, we have two poles: λ ¼ 0, αs=ð2ωÞ.
Conveniently, there are no poles in ω at λ ¼ 0, so that
particular integral vanishes.Moving forward with the other λ
pole, we write
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This equation is a linear combination of the two other
contributions we derived, plus a new term. This new term
can be evaluated in the same way as the previous two. We
obtain the following result for the s10 contribution:
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In the end, we arrive at an analytic solution for the flavor nonsinglet evolution equation in the all-s10 regime,
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The first place to start our comparisons would be the
dipole amplitudes themselves. There are three properties of
the flavor nonsinglet dipole amplitudes that we can use to
cross-check the numerical solution: the general shape of the
amplitudes, a sign change in the s10 contributions due to
the positive starting point and negative growth, and the
asymptotic behavior at small x. The last property is also
useful for checking the implementation of our hPDF

calculation, since the dipole amplitudes and hPDFs should
have the same asymptotics.
We show in Fig. 19 high-resolution (small step size)

numerical solutions of the polarized dipole amplitudes, as
functions of η for a fixed s10, compared to their analytic
counterparts. The general shape and growth of the flavor
nonsinglet amplitudes (see the left panels in Fig. 19)
shows a good agreement between the numerical and
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analytic solutions with a reasonably small step size of
Δη ¼ Δs10 ¼ Δ ¼ 0.03. One can see that the analytic
solution grows in magnitude slightly faster than the
numeric solution. The logarithm of the absolute value of
the dipole amplitudes, plotted in the right panels of Fig. 19,
reveals further quantitative agreement, where we see that
the numerical intercept αh converges to within 1.4% of the
analytic solution. The logarithmic scale also allows us to
compare the two solutions’ large-x (low-η) behaviors using
the location of the sign change (the cusp) in the bNS
contribution (the middle-right panel of Fig. 19). The lower
the fixed s10 value, the lower the sign change. We see in
Fig. 19 that when s10 ¼ const ¼ 0.3, the sign changes
coincide just above η ¼ 2.5, implying that our numerical
solution is equally valid as x → x0. Furthermore, we can
delay the sign change by increasing s10 for these plots, and

that will allow us to to determine the necessary resolution
for retaining agreement as x becomes small. This test is given
by the left-hand panel of Fig. 20, which informs us that a
resolution of Δη ¼ Δs10 ¼ Δ < 0.06 will retain analytic
agreement at the dipole amplitude level. We routinely use
Δ ≤ 0.025 for our numerics and global analysis.
The polarized dipole amplitude-level agreement gives us

confidence to compare how each solution impacts our
observables Δq−. We employ the plots on the right-hand
panel of Fig. 20 to extract the intercept of the ln jΔu−j basis
functions and confirm that the hPDFs asymptotics given by
the analytic and numerical dipole amplitudes match within
1% and are consistent with the intercept that was computed
at the dipole amplitude level. This completes the cross-
check of our numerical solution for the flavor nonsinglet
evolution equations.

FIG. 19. GNSðs10; ηÞ (left) and log jGNSðs10; ηÞj (right) plotted as functions of η for a fixed value of s10 ¼ 0.3. The large-η behavior
corresponds to the small-x behavior, and this allows us to see how and when our numerical solution deviates from the analytic. The
absolute value of the logarithm allows us to investigate the sign change (the cusp), and the slope of the logarithmic plot will give us a
dipole amplitude-level intercept.
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APPENDIX C: CONVERGENCE TESTING
OF NUMERICAL SOLUTIONS

The discretization defined in Appendix A is very useful
for solving complicated integral equations which are very
difficult if not impossible to solve analytically. The
numerical solution is rather straightforward to derive, but
it has the same faults as any discrete function—namely, the
fact that the accuracy of a numerical solution is dependent
on the resolution—i.e., the step size. In our case, we have
two different variables to work with (η, s10), which results
in a two-dimensional grid (G½i; j�) for our numerical
solution to compute. To simplify the discretization, we
defined the step sizes for η and s10 to be the same,
Δη ¼ Δs10 ≡ Δ. The requirement we impose on our
numerical solution to confirm its validity is that as the

step size decreases, the computed values should converge
to a single output.
We have tested each of our flavor singlet basis functions

(Fig. 1) as well as the flavor nonsinglet basis functions
(not shown). However, the results can be summarized
by their subsequent implementation in calculating the
hPDFs ΔqþðxÞ and Δq−ðxÞ. The left-hand panel of
Fig. 21 shows xΔuþðxÞ for a “test state” of initial
conditions. We define a test state simply as any replica
that has been confirmed to fit data with χ2=Npts ≈ 1. This
hPDF was plotted multiple times for varying step sizes, and
it is clear that as the step size decreases, the solutions
converge to a single output.
The same convergence test was conducted on xΔq−ðxÞ

and is displayed in the right panel of Fig. 21. In this

FIG. 20. Left: a plot of (the logarithm of) the s10 contribution to GNS
u (parametrized by bNSu ) as a function of η. Each color represents a

different fixed value of s10. The location of the sign change in the amplitude, indicated by the cusp, appears to vary with s10. Smaller step
sizes lead to convergence of the sign change between the analytic and numeric solutions, and Δη ¼ Δs10 ¼ Δ < 0.06 retains small-x
agreement. Right: a plot of (the logarithm of) each Δu− basis function (parametrized by aNSu , bNSu , and cNSu ) as a function of logðxÞ. Each
plot depicts the asymptotic agreement between the numeric and analytic solutions, as well as a measure of the intercept αh.
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case, there is also an analytic solution, as discussed in
Appendix B. We find not only a convergence of the
numerical solution to a single output as Δ becomes smaller,
but also that the converged output is exactly that of

the analytic solution. We note here that Fig. 21 is a
demonstration of the convergence. The results discussed
in Sec. III were computed using much higher resolu-
tions, Δ ≈ 0.02.
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[3] E. Leader and C. Lorcé, The angular momentum con-
troversy: What’s it all about and does it matter?, Phys. Rep.
541, 163 (2014).

[4] E. C. Aschenauer et al., The RHIC spin program: Achieve-
ments and future opportunities, arXiv:1304.0079.

FIG. 21. Left: a numerical computation of xΔqþðxÞ for a test state of initial conditions. The graph shows the same numerical solution
for various choices of step size,Δ ¼ Δη ¼ Δs10. As the step sizeΔ decreases, our numerical solution converges to a single result. Right:
a numerical computation of xΔq−ðxÞ that shows the convergence to a single output as Δ decreases. For both xΔqþðxÞ and xΔq−ðxÞ, the
single output is described by the analytic solution (B16).

DANIEL ADAMIAK et al. PHYS. REV. D 108, 114007 (2023)

114007-34

https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
https://arXiv.org/abs/1304.0079


[5] E.-C. Aschenauer et al., The RHIC SPIN program:Achieve-
ments and future opportunities, arXiv:1501.01220.

[6] D. Boer et al., Gluons and the quark sea at high energies:
Distributions, polarization, tomography, arXiv:1108.1713.

[7] Proceedings, Probing Nucleons and Nuclei in High En-
ergy Collisions: Dedicated to the Physics of the Electron
Ion Collider: Seattle (WA), United States, 2018, edited by
A. Prokudin, Y. Hatta, Y. Kovchegov, and C. Marquet
(World Scientific Press, Singapore, 2020).

[8] X. Ji, F. Yuan, and Y. Zhao, What we know and what we
don’t know about the proton spin after 30 years, Nat. Rev.
Phys. 3, 27 (2021).

[9] R. Abdul Khalek et al., Science requirements and detector
concepts for the electron-ion collider: EIC Yellow Report,
Nucl. Phys. A1026, 122447 (2022).

[10] R. L. Jaffe and A. Manohar, The G(1) problem: Fact and
fantasy on the spin of the proton, Nucl. Phys. B337, 509
(1990).

[11] X. Ji, Gauge-invariant decomposition of nucleon spin,
Phys. Rev. Lett. 78, 610 (1997).

[12] S. Bashinsky and R. L. Jaffe, Quark and gluon orbital
angular momentum and spin in hard processes, Nucl. Phys.
B536, 303 (1998).

[13] P. Hagler and A. Schafer, Evolution equations for higher
moments of angular momentum distributions, Phys. Lett.
B 430, 179 (1998).

[14] A. Harindranath and R. Kundu, On orbital angular
momentum in deep inelastic scattering, Phys. Rev. D
59, 116013 (1999).

[15] Y. Hatta and S. Yoshida, Twist analysis of the nucleon spin
in QCD, J. High Energy Phys. 10 (2012) 080.

[16] X. Ji, X. Xiong, and F. Yuan, Probing parton orbital
angular momentum in longitudinally polarized nucleon,
Phys. Rev. D 88, 014041 (2013).

[17] V. N. Gribov and L. N. Lipatov, Deep inelastic e p
scattering in perturbation theory, Yad. Fiz. 15, 781
(1972) [Sov. J. Nucl. Phys. 15, 438 (1972)].

[18] G. Altarelli and G. Parisi, Asymptotic freedom in parton
language, Nucl. Phys. B126, 298 (1977).

[19] Y. L. Dokshitzer, Calculation of the structure functions for
deep inelastic scattering and eþe− annihilation by pertur-
bation theory in quantum chromodynamics, Zh. Eksp. Teor.
Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].

[20] M. Gluck, E. Reya, M. Stratmann, and W. Vogelsang,
Models for the polarized parton distributions of the
nucleon, Phys. Rev. D 63, 094005 (2001).

[21] E. Leader, A. V. Sidorov, and D. B. Stamenov, Longi-
tudinal polarized parton densities updated, Phys. Rev. D
73, 034023 (2006).

[22] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Extraction of spin-dependent parton densities and their
uncertainties, Phys. Rev. D 80, 034030 (2009).

[23] E. Leader, A. V. Sidorov, and D. B. Stamenov, Determi-
nation of polarized PDFs from a QCD analysis of inclusive
and semi-inclusive deep inelastic scattering data, Phys.
Rev. D 82, 114018 (2010).

[24] P. Jimenez-Delgado, A. Accardi, and W. Melnitchouk,
Impact of hadronic and nuclear corrections on global
analysis of spin-dependent parton distributions, Phys.
Rev. D 89, 034025 (2014).

[25] R. D. Ball, S. Forte, A. Guffanti, E. R. Nocera, G. Ridolfi,
and J. Rojo (NNPDF Collaboration), Unbiased determi-
nation of polarized parton distributions and their uncer-
tainties, Nucl. Phys. B874, 36 (2013).

[26] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo
(NNPDF Collaboration), A first unbiased global determi-
nation of polarized PDFs and their uncertainties, Nucl.
Phys. B887, 276 (2014).

[27] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Evidence for polarization of gluons in the proton, Phys.
Rev. Lett. 113, 012001 (2014).

[28] E. Leader, A. V. Sidorov, and D. B. Stamenov, New
analysis concerning the strange quark polarization puzzle,
Phys. Rev. D 91, 054017 (2015).

[29] N. Sato, W. Melnitchouk, S. Kuhn, J. Ethier, and A.
Accardi (JAM Collaboration), Iterative Monte Carlo analy-
sis of spin-dependent parton distributions, Phys. Rev. D 93,
074005 (2016).

[30] J. J. Ethier, N. Sato, and W. Melnitchouk, First simulta-
neous extraction of spin-dependent parton distributions
and fragmentation functions from a global QCD analysis,
Phys. Rev. Lett. 119, 132001 (2017).

[31] D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and
W. Vogelsang, Monte Carlo sampling variant of the
DSSV14 set of helicity parton densities, Phys. Rev. D
100, 114027 (2019).

[32] I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and A. S.
Nunes, Revisiting helicity parton distributions at a future
electron-ion collider, Phys. Rev. D 102, 094018 (2020).

[33] Y. Zhou, N. Sato, and W. Melnitchouk (JAM Collabora-
tion), How well do we know the gluon polarization in the
proton?, Phys. Rev. D 105, 074022 (2022).

[34] C. Cocuzza, W. Melnitchouk, A. Metz, and N. Sato (JAM
Collaboration), Polarized antimatter in the proton from a
global QCD analysis, Phys. Rev. D 106, L031502 (2022).

[35] J. Bartels, B. I. Ermolaev, and M. G. Ryskin, Nonsinglet
contributions to the structure function g1 at small x, Z.
Phys. C 70, 273 (1996).

[36] J. Bartels, B. Ermolaev, and M. Ryskin, Flavor singlet
contribution to the structure function G(1) at small x,
Z. Phys. C 72, 627 (1996).

[37] V. G. Gorshkov, V. N. Gribov, L. N. Lipatov, and G. V.
Frolov, Doubly logarithmic asymptotic behavior in quan-
tum electrodynamics, Yad. Fiz. 6, 129 (1967) [Sov. J. Nucl.
Phys. 6, 95 (1968)].

[38] R. Kirschner and L. Lipatov, Double logarithmic asymp-
totics and Regge singularities of quark amplitudes with
flavor exchange, Nucl. Phys. B213, 122 (1983).

[39] R. Kirschner, Reggeon interactions in perturbative QCD,
Z. Phys. C 65, 505 (1995).

[40] R. Kirschner, Regge asymptotics of scattering with flavor
exchange in QCD, Z. Phys. C 67, 459 (1995).

[41] S. Griffiths and D. A. Ross, Studying the perturbative
Reggeon, Eur. Phys. J. C 12, 277 (2000).

[42] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Semihard
processes in QCD, Phys. Rep. 100, 1 (1983).

[43] E. Iancu and R. Venugopalan, The color glass condensate
and high-energy scattering in QCD, in Quark-Gluon
Plasma 4, edited by R. C. Hwa and X.-N. Wang (World
Scientific, Singapore, 2003).

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-35

https://arXiv.org/abs/1501.01220
https://arXiv.org/abs/1108.1713
https://doi.org/10.1038/s42254-020-00248-4
https://doi.org/10.1038/s42254-020-00248-4
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1016/S0550-3213(98)00559-8
https://doi.org/10.1016/S0550-3213(98)00559-8
https://doi.org/10.1016/S0370-2693(98)00414-6
https://doi.org/10.1016/S0370-2693(98)00414-6
https://doi.org/10.1103/PhysRevD.59.116013
https://doi.org/10.1103/PhysRevD.59.116013
https://doi.org/10.1007/JHEP10(2012)080
https://doi.org/10.1103/PhysRevD.88.014041
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1103/PhysRevD.63.094005
https://doi.org/10.1103/PhysRevD.73.034023
https://doi.org/10.1103/PhysRevD.73.034023
https://doi.org/10.1103/PhysRevD.80.034030
https://doi.org/10.1103/PhysRevD.82.114018
https://doi.org/10.1103/PhysRevD.82.114018
https://doi.org/10.1103/PhysRevD.89.034025
https://doi.org/10.1103/PhysRevD.89.034025
https://doi.org/10.1016/j.nuclphysb.2013.05.007
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1103/PhysRevLett.113.012001
https://doi.org/10.1103/PhysRevLett.113.012001
https://doi.org/10.1103/PhysRevD.91.054017
https://doi.org/10.1103/PhysRevD.93.074005
https://doi.org/10.1103/PhysRevD.93.074005
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevD.100.114027
https://doi.org/10.1103/PhysRevD.100.114027
https://doi.org/10.1103/PhysRevD.102.094018
https://doi.org/10.1103/PhysRevD.105.074022
https://doi.org/10.1103/PhysRevD.106.L031502
https://doi.org/10.1007/s002880050285
https://doi.org/10.1016/0550-3213(83)90178-5
https://doi.org/10.1007/BF01556138
https://doi.org/10.1007/BF01624588
https://doi.org/10.1007/s100529900240
https://doi.org/10.1016/0370-1573(83)90022-4


[44] H. Weigert, Evolution at small xbj: The color glass
condensate, Prog. Part. Nucl. Phys. 55, 461 (2005).

[45] J. Jalilian-Marian and Y. V. Kovchegov, Saturation physics
and deuteron-gold collisions at RHIC, Prog. Part. Nucl.
Phys. 56, 104 (2006).

[46] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
The color glass condensate, Annu. Rev. Nucl. Part. Sci. 60,
463 (2010).

[47] J. L. Albacete and C. Marquet, Gluon saturation and initial
conditions for relativistic heavy ion collisions, Prog. Part.
Nucl. Phys. 76, 1 (2014).

[48] Y. V. Kovchegov and E. Levin,Quantum Chromodynamics
at High Energy (Cambridge University Press, Cambridge,
England, 2012), Vol. 33.

[49] A. Morreale and F. Salazar, Mining for gluon saturation at
colliders, Universe 7, 312 (2021).

[50] K. Itakura, Y. V. Kovchegov, L. McLerran, and D. Teaney,
Baryon stopping and valence quark distribution at small x,
Nucl. Phys. A730, 160 (2004).

[51] J. Blumlein and A. Vogt, On the behavior of nonsinglet
structure functions at small x, Phys. Lett. B 370, 149
(1996).

[52] J. Blümlein and A. Vogt, The singlet contribution to the
structure function g1ðx;Q2Þ at small x, Phys. Lett. B 386,
350 (1996).

[53] B. I. Ermolaev, M. Greco, and S. I. Troian, QCD running
coupling effects for the nonsinglet structure function at
small x, Nucl. Phys. B571, 137 (2000).

[54] B. I. Ermolaev, M. Greco, and S. I. Troyan, Intercepts of
the nonsinglet structure functions, Nucl. Phys. B594, 71
(2001).

[55] B. I. Ermolaev, M. Greco, and S. I. Troyan, Running
coupling effects for the singlet structure function g1 at
small x, Phys. Lett. B 579, 321 (2004).

[56] B. I. Ermolaev, M. Greco, and S. I. Troyan, Overview of
the spin structure function g1 at arbitrary x and Q2, Riv.
Nuovo Cimento 33, 57 (2010).

[57] R. Boussarie, Y. Hatta, and F. Yuan, Proton spin structure
at small-x, Phys. Lett. B 797, 134817 (2019).

[58] Y. V. Kovchegov, D. Pitonyak, and M. D. Sievert, Helicity
evolution at small-x, J. High Energy Phys. 01 (2016) 072;
10 (2016) 148(E).

[59] Y. Hatta, Y. Nakagawa, F. Yuan, Y. Zhao, and B. Xiao,
Gluon orbital angular momentum at small-x, Phys. Rev. D
95, 114032 (2017).

[60] Y. V. Kovchegov, D. Pitonyak, and M. D. Sievert, Helicity
evolution at small x: Flavor singlet and non-singlet
observables, Phys. Rev. D 95, 014033 (2017).

[61] Y. V. Kovchegov, D. Pitonyak, and M. D. Sievert, Small-x
asymptotics of the quark helicity distribution, Phys. Rev.
Lett. 118, 052001 (2017).

[62] Y. V. Kovchegov, D. Pitonyak, and M. D. Sievert, Small-x
asymptotics of the quark helicity distribution: Analytic
results, Phys. Lett. B 772, 136 (2017).

[63] Y. V. Kovchegov, D. Pitonyak, and M. D. Sievert, Small-x
asymptotics of the gluon helicity distribution, J. High
Energy Phys. 10 (2017) 198.

[64] Y. V. Kovchegov and M. D. Sievert, Small-x helicity
evolution: An operator treatment, Phys. Rev. D 99,
054032 (2019).

[65] Y. V. Kovchegov, Orbital angular momentum at small x,
J. High Energy Phys. 03 (2019) 174.

[66] F. Cougoulic and Y. V. Kovchegov, Helicity-dependent
generalization of the JIMWLK evolution, Phys. Rev. D
100, 114020 (2019).

[67] Y. V. Kovchegov and Y. Tawabutr, Helicity at small x:
Oscillations generated by bringing back the quarks, J. High
Energy Phys. 08 (2020) 014.

[68] F. Cougoulic and Y. V. Kovchegov, Helicity-dependent
extension of the McLerran-Venugopalan model, Nucl.
Phys. A1004, 122051 (2020).

[69] G. A. Chirilli, High-energy operator product expansion
at sub-eikonal level, J. High Energy Phys. 06 (2021)
096.

[70] Y. V. Kovchegov, A. Tarasov, and Y. Tawabutr, Helicity
evolution at small x: The single-logarithmic contribution,
J. High Energy Phys. 03 (2022) 184.

[71] F. Cougoulic, Y. V. Kovchegov, A. Tarasov, and Y.
Tawabutr, Quark and gluon helicity evolution at small x:
Revised and updated, J. High Energy Phys. 07 (2022)
095.

[72] A. H. Mueller, Soft gluons in the infinite momentum wave
function and the BFKL Pomeron, Nucl. Phys. B415, 373
(1994).

[73] A. H. Mueller and B. Patel, Single and double BFKL
Pomeron exchange and a dipole picture of high-energy
hard processes, Nucl. Phys. B425, 471 (1994).

[74] A. H. Mueller, Unitarity and the BFKL Pomeron, Nucl.
Phys. B437, 107 (1995).

[75] I. Balitsky, Operator expansion for high-energy scattering,
Nucl. Phys. B463, 99 (1996).

[76] I. Balitsky, Factorization and high-energy effective action,
Phys. Rev. D 60, 014020 (1999).

[77] Y. V. Kovchegov, Small x F(2) structure function of a
nucleus including multiple Pomeron exchanges, Phys.
Rev. D 60, 034008 (1999).

[78] Y. V. Kovchegov, Unitarization of the BFKL Pomeron on a
nucleus, Phys. Rev. D 61, 074018 (2000).

[79] J. Jalilian-Marian, A. Kovner, and H. Weigert, The Wilson
renormalization group for low x physics: Gluon evolution
at finite parton density, Phys. Rev. D 59, 014015 (1998).

[80] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H.
Weigert, The Wilson renormalization group for low x
physics: Towards the high density regime, Phys. Rev. D 59,
014014 (1998).

[81] H. Weigert, Unitarity at small Bjorken x, Nucl. Phys.
A703, 823 (2002).

[82] E. Iancu, A. Leonidov, and L. D. McLerran, The renorm-
alization group equation for the color glass condensate,
Phys. Lett. B 510, 133 (2001).

[83] E. Iancu, A. Leonidov, and L. D. McLerran, Nonlinear
gluon evolution in the color glass condensate: 1, Nucl.
Phys. A692, 583 (2001).

[84] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran,
Nonlinear gluon evolution in the color glass condensate: 2,
Nucl. Phys. A703, 489 (2002).

[85] T. Altinoluk, N. Armesto, G. Beuf, M. Martinez, and C. A.
Salgado, Next-to-eikonal corrections in the CGC: Gluon
production and spin asymmetries in pA collisions, J. High
Energy Phys. 07 (2014) 068.

DANIEL ADAMIAK et al. PHYS. REV. D 108, 114007 (2023)

114007-36

https://doi.org/10.1016/j.ppnp.2005.01.029
https://doi.org/10.1016/j.ppnp.2005.07.002
https://doi.org/10.1016/j.ppnp.2005.07.002
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1016/j.ppnp.2014.01.004
https://doi.org/10.1016/j.ppnp.2014.01.004
https://doi.org/10.3390/universe7080312
https://doi.org/10.1016/j.nuclphysa.2003.10.016
https://doi.org/10.1016/0370-2693(95)01568-X
https://doi.org/10.1016/0370-2693(95)01568-X
https://doi.org/10.1016/0370-2693(96)00958-6
https://doi.org/10.1016/0370-2693(96)00958-6
https://doi.org/10.1016/S0550-3213(99)00812-3
https://doi.org/10.1016/S0550-3213(00)00647-7
https://doi.org/10.1016/S0550-3213(00)00647-7
https://doi.org/10.1016/j.physletb.2003.11.016
https://doi.org/10.1393/ncr/i2010-10052-3
https://doi.org/10.1393/ncr/i2010-10052-3
https://doi.org/10.1016/j.physletb.2019.134817
https://doi.org/10.1007/JHEP01(2016)072
https://doi.org/10.1007/JHEP10(2016)148
https://doi.org/10.1103/PhysRevD.95.114032
https://doi.org/10.1103/PhysRevD.95.114032
https://doi.org/10.1103/PhysRevD.95.014033
https://doi.org/10.1103/PhysRevLett.118.052001
https://doi.org/10.1103/PhysRevLett.118.052001
https://doi.org/10.1016/j.physletb.2017.06.032
https://doi.org/10.1007/JHEP10(2017)198
https://doi.org/10.1007/JHEP10(2017)198
https://doi.org/10.1103/PhysRevD.99.054032
https://doi.org/10.1103/PhysRevD.99.054032
https://doi.org/10.1007/JHEP03(2019)174
https://doi.org/10.1103/PhysRevD.100.114020
https://doi.org/10.1103/PhysRevD.100.114020
https://doi.org/10.1007/JHEP08(2020)014
https://doi.org/10.1007/JHEP08(2020)014
https://doi.org/10.1016/j.nuclphysa.2020.122051
https://doi.org/10.1016/j.nuclphysa.2020.122051
https://doi.org/10.1007/JHEP06(2021)096
https://doi.org/10.1007/JHEP06(2021)096
https://doi.org/10.1007/JHEP03(2022)184
https://doi.org/10.1007/JHEP07(2022)095
https://doi.org/10.1007/JHEP07(2022)095
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1016/0550-3213(94)90116-3
https://doi.org/10.1016/0550-3213(94)90284-4
https://doi.org/10.1016/0550-3213(94)00480-3
https://doi.org/10.1016/0550-3213(94)00480-3
https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1103/PhysRevD.60.014020
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1103/PhysRevD.60.034008
https://doi.org/10.1103/PhysRevD.61.074018
https://doi.org/10.1103/PhysRevD.59.014015
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1103/PhysRevD.59.014014
https://doi.org/10.1016/S0375-9474(01)01668-2
https://doi.org/10.1016/S0375-9474(01)01668-2
https://doi.org/10.1016/S0370-2693(01)00524-X
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)00642-X
https://doi.org/10.1016/S0375-9474(01)01329-X
https://doi.org/10.1007/JHEP07(2014)068
https://doi.org/10.1007/JHEP07(2014)068


[86] I. Balitsky and A. Tarasov, Rapidity evolution of gluon
TMD from low to moderate x, J. High Energy Phys. 10
(2015) 017.

[87] I. Balitsky and A. Tarasov, Gluon TMD in particle
production from low to moderate x, J. High Energy Phys.
06 (2016) 164.

[88] G. A. Chirilli, Sub-eikonal corrections to scattering am-
plitudes at high energy, J. High Energy Phys. 01 (2018)
118.

[89] J. Jalilian-Marian, Quark jets scattering from a gluon field:
From saturation to high pt, Phys. Rev. D 99, 014043
(2019).

[90] J. Jalilian-Marian, Rapidity loss, spin, and angular asym-
metries in the scattering of a quark from the color field of a
proton or nucleus, Phys. Rev. D 102, 014008 (2020).

[91] T. Altinoluk, G. Beuf, A. Czajka, and A. Tymowska,
Quarks at next-to-eikonal accuracy in the CGC: Forward
quark-nucleus scattering, Phys. Rev. D 104, 014019
(2021).

[92] Y. V. Kovchegov and M. G. Santiago, Quark Sivers
function at small x: Spin-dependent odderon and the
sub-eikonal evolution, J. High Energy Phys. 11 (2021)
200.

[93] T. Altinoluk and G. Beuf, Quark and scalar propagators at
next-to-eikonal accuracy in the CGC through a dynamical
background gluon field, Phys. Rev. D 105, 074026 (2022).

[94] Y. V. Kovchegov and M. G. Santiago, T-odd leading-twist
quark TMDs at small x, J. High Energy Phys. 11 (2022)
098.

[95] T. Altinoluk, G. Beuf, A. Czajka, and A. Tymowska, DIS
dijet production at next-to-eikonal accuracy in the CGC,
Phys. Rev. D 107, 074016 (2023).

[96] T. Altinoluk, N. Armesto, and G. Beuf, Probing quark
transverse momentum distributions in the color glass
condensate: Quark-gluon dijets in deep inelastic scattering
at next-to-eikonal accuracy, arXiv:2303.12691.

[97] T. Altinoluk, G. Beuf, and J. Jalilian-Marian, Renormal-
ization of the gluon distribution function in the background
field formalism, arXiv:2305.11079.

[98] M. Li, Small x physics beyond eikonal approximation: An
effective Hamiltonian approach, J. High Energy Phys. 07
(2023) 158.

[99] G. ’t Hooft, A planar diagram theory for strong inter-
actions, Nucl. Phys. B72, 461 (1974).

[100] G. Veneziano, Some aspects of a unified approach to
gauge, dual and Gribov theories, Nucl. Phys. B117, 519
(1976).

[101] J. Borden and Y. V. Kovchegov, Analytic solution for the
revised helicity evolution at small x and large Nc: New
resummed gluon-gluon polarized anomalous dimension
and intercept, Phys. Rev. D 108, 014001 (2023).

[102] D. Adamiak, Y. V. Kovchegov, and Y. Tawabutr, Helicity
evolution at small x: Revised asymptotic results at large
Nc & Nf , Phys. Rev. D 108, 054005 (2023).

[103] D. Adamiak, Y. V. Kovchegov, W. Melnitchouk, D.
Pitonyak, N. Sato, and M. D. Sievert (JAM Collaboration),
First analysis of world polarized DIS data with small-x
helicity evolution, Phys. Rev. D 104, L031501 (2021).

[104] B. Lampe and E. Reya, Spin physics and polarized
structure functions, Phys. Rep. 332, 1 (2000).

[105] E. B. Zijlstra and W. L. van Neerven, Order-α2s corrections
to the polarized structure function g1ðx;Q2Þ, Nucl. Phys.
B417, 61 (1994); B426, 245(E) (1994); B773, 105(E)
(2007); B501, 599(E) (1997).

[106] R. Mertig and W. L. van Neerven, The calculation of the
two loop spin splitting functions Pð1Þ

ij ðxÞ, Z. Phys. C 70,
637 (1996).

[107] S. Moch and J. A. M. Vermaseren, Deep inelastic structure
functions at two loops, Nucl. Phys. B573, 853 (2000).

[108] W. L. van Neerven and A. Vogt, NNLO evolution of deep
inelastic structure functions: The singlet case, Nucl. Phys.
B588, 345 (2000).

[109] J. A. M. Vermaseren, A. Vogt, and S. Moch, The third-
order QCD corrections to deep-inelastic scattering by
photon exchange, Nucl. Phys. B724, 3 (2005).

[110] S. Moch, J. A. M. Vermaseren, and A. Vogt, The three-loop
splitting functions in QCD: The helicity-dependent case,
Nucl. Phys. B889, 351 (2014).

[111] J. Blümlein, P. Marquard, C. Schneider, and K.
Schönwald, The three-loop polarized singlet anomalous
dimensions from off-shell operator matrix elements,
J. High Energy Phys. 01 (2022) 193.

[112] J. Blümlein and M. Saragnese, The N3LO scheme-invari-
ant QCD evolution of the non-singlet structure functions
FNS
2 ðx;Q2Þ and gNS1 ðx;Q2Þ, Phys. Lett. B 820, 136589

(2021).
[113] J. Davies, C. H. Kom, S. Moch, and A. Vogt, Resummation

of small-x double logarithms in QCD: Inclusive deep-
inelastic scattering, J. High Energy Phys. 08 (2022) 135.

[114] J. Blümlein, P. Marquard, C. Schneider, and K.
Schönwald, The massless three-loop Wilson coefficients
for the deep-inelastic structure functions F2, FL, xF3 and
g1, J. High Energy Phys. 11 (2022) 156.

[115] G. Altarelli, R. K. Ellis, and G. Martinelli, Large pertur-
bative corrections to the Drell-Yan process in QCD, Nucl.
Phys. B157, 461 (1979).

[116] V. S. Fadin and L. N. Lipatov, BFKL Pomeron in the next-
to-leading approximation, Phys. Lett. B 429, 127 (1998).

[117] M. Ciafaloni and G. Camici, Energy scale(s) and next-to-
leading BFKL equation, Phys. Lett. B 430, 349 (1998).

[118] J. L. Albacete, N. Armesto, J. G. Milhano, and C. A.
Salgado, Non-linear QCD meets data: A global analysis
of lepton-proton scattering with running coupling BK
evolution, Phys. Rev. D 80, 034031 (2009).

[119] J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-
Arias, and C. A. Salgado, AAMQS: A non-linear QCD
analysis of new HERA data at small-x including heavy
quarks, Eur. Phys. J. C 71, 1705 (2011).

[120] I. Balitsky, Quark contribution to the small-x evolution of
color dipole, Phys. Rev. D 75, 014001 (2007).

[121] E. Gardi, J. Kuokkanen, K. Rummukainen, and H.
Weigert, Running coupling and power corrections in
nonlinear evolution at the high-energy limit, Nucl. Phys.
A784, 282 (2007).

[122] Y. V. Kovchegov and H. Weigert, Triumvirate of running
couplings in small-x evolution, Nucl. Phys. A784, 188
(2007).

[123] Y. V. Kovchegov and H. Weigert, Quark loop contribution
to BFKL evolution: Running coupling and leading-Nf
NLO intercept, Nucl. Phys. A789, 260 (2007).

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-37

https://doi.org/10.1007/JHEP10(2015)017
https://doi.org/10.1007/JHEP10(2015)017
https://doi.org/10.1007/JHEP06(2016)164
https://doi.org/10.1007/JHEP06(2016)164
https://doi.org/10.1007/JHEP01(2019)118
https://doi.org/10.1007/JHEP01(2019)118
https://doi.org/10.1103/PhysRevD.99.014043
https://doi.org/10.1103/PhysRevD.99.014043
https://doi.org/10.1103/PhysRevD.102.014008
https://doi.org/10.1103/PhysRevD.104.014019
https://doi.org/10.1103/PhysRevD.104.014019
https://doi.org/10.1007/JHEP11(2021)200
https://doi.org/10.1007/JHEP11(2021)200
https://doi.org/10.1103/PhysRevD.105.074026
https://doi.org/10.1007/JHEP11(2022)098
https://doi.org/10.1007/JHEP11(2022)098
https://doi.org/10.1103/PhysRevD.107.074016
https://arXiv.org/abs/2303.12691
https://arXiv.org/abs/2305.11079
https://doi.org/10.1007/JHEP07(2023)158
https://doi.org/10.1007/JHEP07(2023)158
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(76)90412-0
https://doi.org/10.1016/0550-3213(76)90412-0
https://doi.org/10.1103/PhysRevD.108.014001
https://doi.org/10.1103/PhysRevD.108.054005
https://doi.org/10.1103/PhysRevD.104.L031501
https://doi.org/10.1016/S0370-1573(99)00100-3
https://doi.org/10.1016/0550-3213(94)90538-X
https://doi.org/10.1016/0550-3213(94)90538-X
https://doi.org/10.1016/0550-3213(94)90135-X
https://doi.org/10.1016/j.nuclphysb.2007.03.002
https://doi.org/10.1016/j.nuclphysb.2007.03.002
https://doi.org/10.1016/S0550-3213(97)00389-1
https://doi.org/10.1007/s002880050138
https://doi.org/10.1007/s002880050138
https://doi.org/10.1016/S0550-3213(00)00045-6
https://doi.org/10.1016/S0550-3213(00)00480-6
https://doi.org/10.1016/S0550-3213(00)00480-6
https://doi.org/10.1016/j.nuclphysb.2005.06.020
https://doi.org/10.1016/j.nuclphysb.2014.10.016
https://doi.org/10.1007/JHEP01(2022)193
https://doi.org/10.1016/j.physletb.2021.136589
https://doi.org/10.1016/j.physletb.2021.136589
https://doi.org/10.1007/JHEP08(2022)135
https://doi.org/10.1007/JHEP11(2022)156
https://doi.org/10.1016/0550-3213(79)90116-0
https://doi.org/10.1016/0550-3213(79)90116-0
https://doi.org/10.1016/S0370-2693(98)00473-0
https://doi.org/10.1016/S0370-2693(98)00551-6
https://doi.org/10.1103/PhysRevD.80.034031
https://doi.org/10.1140/epjc/s10052-011-1705-3
https://doi.org/10.1103/PhysRevD.75.014001
https://doi.org/10.1016/j.nuclphysa.2006.12.004
https://doi.org/10.1016/j.nuclphysa.2006.12.004
https://doi.org/10.1016/j.nuclphysa.2006.10.075
https://doi.org/10.1016/j.nuclphysa.2006.10.075
https://doi.org/10.1016/j.nuclphysa.2007.03.008


[124] J. L. Albacete and Y. V. Kovchegov, Solving high energy
evolution equation including running coupling corrections,
Phys. Rev. D 75, 125021 (2007).

[125] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, The Pomer-
anchuk singularity in non-Abelian gauge theories, Zh.
Eksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199
(1977)].

[126] I. I. Balitsky and L. N. Lipatov, The Pomeranchuk singu-
larity in quantum chromodynamics, Yad. Fiz. 28, 1597
(1978) [Sov. J. Nucl. Phys. 28, 822 (1978)].

[127] D. de Florian, C. A. Garcia Canal, and R. Sassot, Factori-
zation in semiinclusive polarized deep inelastic scattering,
Nucl. Phys. B470, 195 (1996).

[128] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders,
and M. Schlegel, Semi-inclusive deep inelastic scattering
at small transverse momentum, J. High Energy Phys. 02
(2006) 093.

[129] A. Signori, A. Bacchetta, M. Radici, and G. Schnell,
Investigations into the flavor dependence of partonic
transverse momentum, J. High Energy Phys. 11 (2013)
194.

[130] A. Dumitru, A. Hayashigaki, and J. Jalilian-Marian, The
color glass condensate and hadron production in the
forward region, Nucl. Phys. A765, 464 (2006).

[131] G. A. Chirilli, B.-W. Xiao, and F. Yuan, One-loop factori-
zation for inclusive hadron production in pA collisions in
the saturation formalism, Phys. Rev. Lett. 108, 122301
(2012).

[132] G. A. Chirilli, B.-W. Xiao, and F. Yuan, Inclusive hadron
productions in pA collisions, Phys. Rev. D 86, 054005
(2012).

[133] L. L. Frankfurt, M. I. Strikman, L. Mankiewicz, A.
Schafer, E. Rondio, A. Sandacz, and V. Papavassiliou,
The valence and strange sea quark spin distributions in the
nucleon from semi-inclusive deep inelastic lepton scatter-
ing, Phys. Lett. B 230, 141 (1989).

[134] D. de Florian, L. N. Epele, H. Fanchiotti, C. A. Garcia
Canal, S. Joffily, and R. Sassot, Next-to-leading order
semi-inclusive spin asymmetries, Phys. Lett. B 389, 358
(1996).

[135] E. S. Ageev et al. (COMPASS Collaboration), Spin asym-
metry Ad

1 and the spin-dependent structure function gd1 of
the deuteron at low values of x and Q2, Phys. Lett. B 647,
330 (2007).

[136] T. Hobbs and W. Melnitchouk, Finite-Q2 corrections to
parity-violating DIS, Phys. Rev. D 77, 114023 (2008).

[137] Y. Zhao, A. Deshpande, J. Huang, K. Kumar, and S.
Riordan, Neutral-current weak interactions at an EIC, Eur.
Phys. J. A 53, 55 (2017).

[138] D. Wang, Measurement of the parity-violating asymmetry
in deep inelastic scattering at JLab 6 GeV, Ph.D. thesis,
Virginia U., 2013.

[139] N. Sato, C. Andres, J. J. Ethier, and W. Melnitchouk (JAM
Collaboration), Strange quark suppression from a simulta-
neous Monte Carlo analysis of parton distributions and
fragmentation functions, Phys. Rev. D 101, 074020 (2020).

[140] E. Moffat, W. Melnitchouk, T. C. Rogers, and N. Sato
(JAM Collaboration), Simultaneous Monte Carlo analysis
of parton densities and fragmentation functions, Phys.
Rev. D 104, 016015 (2021).

[141] P. L. Anthony et al. (E142 Collaboration), Deep inelastic
scattering of polarized electrons by polarized He-3 and the
study of the neutron spin structure, Phys. Rev. D 54, 6620
(1996).

[142] K. Abe et al. (E154 Collaboration), Precision determina-
tion of the neutron spin structure function gn1 , Phys. Rev.
Lett. 79, 26 (1997).

[143] K. Abe et al. (E143 Collaboration), Measurements of the
proton and deuteron spin structure functions g1 and g2,
Phys. Rev. D 58, 112003 (1998).

[144] P. L. Anthony et al. (E155 Collaboration), Measurement
of the deuteron spin structure function gd1ðxÞ for
1 ðGeV=cÞ2 < Q2 < 40 ðGeV=cÞ2, Phys. Lett. B 463,
339 (1999).

[145] P. L. Anthony et al. (E155 Collaboration), Measurements
of the Q2 dependence of the proton and neutron spin
structure functions gp1 and g

n
1 , Phys. Lett. B 493, 19 (2000).

[146] J. Ashman et al. (European Muon Collaboration), An
investigation of the spin structure of the proton in deep
inelastic scattering of polarized muons on polarized pro-
tons, Nucl. Phys. B328, 1 (1989).

[147] B. Adeva et al. (Spin Muon Collaboration), Spin asym-
metries A(1) and structure functions g1 of the proton and
the deuteron from polarized high-energy muon scattering,
Phys. Rev. D 58, 112001 (1998).

[148] B. Adeva et al. (Spin Muon Collaboration), Spin asym-
metries A(1) and structure functions g1 of the proton and
the deuteron from polarized high-energy muon scattering,
Phys. Rev. D 58, 112001 (1998).

[149] B. Adeva et al. (Spin Muon Collaboration), Spin asym-
metries A(1) of the proton and the deuteron in the low x
and low Q2 region from polarized high-energy muon
scattering, Phys. Rev. D 60, 072004 (1999); 62, 079902
(E) (2000).

[150] M. G. Alekseev et al. (COMPASS Collaboration), The
spin-dependent structure function of the proton gp1 and
a test of the Bjorken sum rule, Phys. Lett. B 690, 466
(2010).

[151] C. Adolph et al. (COMPASS Collaboration), The spin
structure function gp1 of the proton and a test of the Bjorken
sum rule, Phys. Lett. B 753, 18 (2016).

[152] C. Adolph et al. (COMPASS Collaboration), Final COM-
PASS results on the deuteron spin-dependent structure
function gd1 and the Bjorken sum rule, Phys. Lett. B 769, 34
(2017).

[153] K. Ackerstaff et al. (HERMES Collaboration), Measure-
ment of the neutron spin structure function gn1 with a
polarized He-3 internal target, Phys. Lett. B 404, 383
(1997).

[154] A. Airapetian et al. (HERMES Collaboration), Precise
determination of the spin structure function g1 of the
proton, deuteron and neutron, Phys. Rev. D 75, 012007
(2007).

[155] B. Adeva et al. (Spin Muon Collaboration), Polarized
quark distributions in the nucleon from semi-inclusive spin
asymmetries, Phys. Lett. B 420, 180 (1998).

[156] M. G. Alekseev et al. (COMPASS Collaboration), Quark
helicity distributions from longitudinal spin asymmetries
in muon-proton and muon-deuteron scattering, Phys.
Lett. B 693, 227 (2010).

DANIEL ADAMIAK et al. PHYS. REV. D 108, 114007 (2023)

114007-38

https://doi.org/10.1103/PhysRevD.75.125021
https://doi.org/10.1016/0550-3213(96)00159-9
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1007/JHEP11(2013)194
https://doi.org/10.1007/JHEP11(2013)194
https://doi.org/10.1016/j.nuclphysa.2005.11.014
https://doi.org/10.1103/PhysRevLett.108.122301
https://doi.org/10.1103/PhysRevLett.108.122301
https://doi.org/10.1103/PhysRevD.86.054005
https://doi.org/10.1103/PhysRevD.86.054005
https://doi.org/10.1016/0370-2693(89)91668-7
https://doi.org/10.1016/S0370-2693(96)01257-9
https://doi.org/10.1016/S0370-2693(96)01257-9
https://doi.org/10.1016/j.physletb.2007.02.034
https://doi.org/10.1016/j.physletb.2007.02.034
https://doi.org/10.1103/PhysRevD.77.114023
https://doi.org/10.1140/epja/i2017-12245-2
https://doi.org/10.1140/epja/i2017-12245-2
https://doi.org/10.1103/PhysRevD.101.074020
https://doi.org/10.1103/PhysRevD.104.016015
https://doi.org/10.1103/PhysRevD.104.016015
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1103/PhysRevD.58.112003
https://doi.org/10.1016/S0370-2693(99)00940-5
https://doi.org/10.1016/S0370-2693(99)00940-5
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1016/0550-3213(89)90089-8
https://doi.org/10.1103/PhysRevD.58.112001
https://doi.org/10.1103/PhysRevD.58.112001
https://doi.org/10.1103/PhysRevD.60.072004
https://doi.org/10.1103/PhysRevD.62.079902
https://doi.org/10.1103/PhysRevD.62.079902
https://doi.org/10.1016/j.physletb.2010.05.069
https://doi.org/10.1016/j.physletb.2010.05.069
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1016/j.physletb.2017.03.018
https://doi.org/10.1016/j.physletb.2017.03.018
https://doi.org/10.1016/S0370-2693(97)00611-4
https://doi.org/10.1016/S0370-2693(97)00611-4
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1016/S0370-2693(97)01546-3
https://doi.org/10.1016/j.physletb.2010.08.034
https://doi.org/10.1016/j.physletb.2010.08.034


[157] M. Alekseev et al. (COMPASS Collaboration), Flavour
separation of helicity distributions from deep inelastic
muon-deuteron scattering, Phys. Lett. B 680, 217 (2009).

[158] A. Airapetian et al. (HERMES Collaboration), Quark
helicity distributions in the nucleon for up, down, and
strange quarks from semi-inclusive deep-inelastic scatter-
ing, Phys. Rev. D 71, 012003 (2005).

[159] K. Ackerstaff et al. (HERMES Collaboration), Flavor
decomposition of the polarized quark distributions in the
nucleon from inclusive and semi-inclusive deep inelastic
scattering, Phys. Lett. B 464, 123 (1999).

[160] N. Kovensky, G. Michalski, and M. Schvellinger, Deep
inelastic scattering from polarized spin-1=2 hadrons at
low x from string theory, J. High Energy Phys. 10 (2018)
084.

[161] D. Jorrin and M. Schvellinger, Scope and limitations of a
string theory dual description of the proton structure, Phys.
Rev. D 106, 066024 (2022).

[162] I. Borsa, D. Jorrin, R. Sassot, and M. Schvellinger, Proton
helicity structure function gp1 from a holographic Pomeron,
Phys. Rev. D 108, 056024 (2023).

[163] Y. Hatta, T. Ueda, and B.-W. Xiao, Polarized DIS in N ¼ 4
SYM: Where is spin at strong coupling?, J. High Energy
Phys. 08 (2009) 007.

[164] C. Van Hulse et al., Evaluation of longitudinal double-spin
asymmetry measurements in semi-inclusive deep-inelastic
scattering from the proton for the ECCE detector design,
Nucl. Instrum. Methods Phys. Res., Sect. A 1056, 168563
(2023).

[165] Y. Zhou, C. Cocuzza, F. Delcarro, W. Melnitchouk, A.
Metz, and N. Sato (JAM Collaboration), Revisiting quark
and gluon polarization in the proton at the EIC, Phys.
Rev. D 104, 034028 (2021).

[166] A. Candido, S. Forte, and F. Hekhorn, Can MS parton
distributions be negative?, J. High Energy Phys. 11 (2020)
129.

[167] J. Collins, T. C. Rogers, and N. Sato, Positivity and
renormalization of parton densities, Phys. Rev. D 105,
076010 (2022).

[168] A. Candido, S. Forte, T. Giani, and F. Hekhorn, On the
positivity of MS parton distributions, arXiv:2308.00025.

[169] H. Müller and R. Dingle, Asymptotic expansions of
Mathieu functions and their characteristic numbers, J.
Reine Angew. Math. (Crelles Journal), 11 (1962).

[170] R. E. O’Malley and R. E. O’Malley, The method of
matched asymptotic expansions and its generalizations,
in Historical Developments in Singular Perturbations
(Springer Cham, 2014).

[171] A. Dumitru and R. Paatelainen, Sub-femtometer scale
color charge fluctuations in a proton made of three quarks
and a gluon, Phys. Rev. D 103, 034026 (2021).

[172] G. Altarelli and G. G. Ross, The anomalous gluon con-
tribution to polarized leptoproduction, Phys. Lett. B 212,
391 (1988).

[173] G. M. Shore and G. Veneziano, The U(1) Goldberger-
Treiman relation and the proton “spin”: A renormalization
group analysis, Nucl. Phys. B381, 23 (1992).

[174] A. Tarasov and R. Venugopalan, Role of the chiral
anomaly in polarized deeply inelastic scattering: Finding
the triangle graph inside the box diagram in Bjorken and
Regge asymptotics, Phys. Rev. D 102, 114022 (2020).

[175] A. Tarasov and R. Venugopalan, Role of the chiral
anomaly in polarized deeply inelastic scattering: II. Topo-
logical screening and transitions from emergent axionlike
dynamics, Phys. Rev. D 105, 014020 (2022).

[176] S. Bhattacharya, Y. Hatta, and W. Vogelsang, Chiral and
trace anomalies in deeply virtual Compton scattering,
Phys. Rev. D 107, 014026 (2023).

[177] S. Bhattacharya, Y. Hatta, and W. Vogelsang, Chiral and
trace anomalies in deeply virtual Compton scattering: II.
QCD factorization and beyond, Phys. Rev. D 108, 014029
(2023).

GLOBAL ANALYSIS OF POLARIZED DIS AND SIDIS DATA … PHYS. REV. D 108, 114007 (2023)

114007-39

https://doi.org/10.1016/j.physletb.2009.08.065
https://doi.org/10.1103/PhysRevD.71.012003
https://doi.org/10.1016/S0370-2693(99)00964-8
https://doi.org/10.1007/JHEP10(2018)084
https://doi.org/10.1007/JHEP10(2018)084
https://doi.org/10.1103/PhysRevD.106.066024
https://doi.org/10.1103/PhysRevD.106.066024
https://doi.org/10.1103/PhysRevD.108.056024
https://doi.org/10.1088/1126-6708/2009/08/007
https://doi.org/10.1088/1126-6708/2009/08/007
https://doi.org/10.1016/j.nima.2023.168563
https://doi.org/10.1016/j.nima.2023.168563
https://doi.org/10.1103/PhysRevD.104.034028
https://doi.org/10.1103/PhysRevD.104.034028
https://doi.org/10.1007/JHEP11(2020)129
https://doi.org/10.1007/JHEP11(2020)129
https://doi.org/10.1103/PhysRevD.105.076010
https://doi.org/10.1103/PhysRevD.105.076010
https://arXiv.org/abs/2308.00025
https://doi.org/10.1515/crll.1962.211.11
https://doi.org/10.1515/crll.1962.211.11
https://doi.org/10.1103/PhysRevD.103.034026
https://doi.org/10.1016/0370-2693(88)91335-4
https://doi.org/10.1016/0370-2693(88)91335-4
https://doi.org/https://doi.org/10.1016/0550-3213(92)90639-S
https://doi.org/10.1103/PhysRevD.102.114022
https://doi.org/10.1103/PhysRevD.105.014020
https://doi.org/10.1103/PhysRevD.107.014026
https://doi.org/10.1103/PhysRevD.108.014029
https://doi.org/10.1103/PhysRevD.108.014029

