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Applying the developed Bethe-Salpeter theory for dealing with resonance, we investigate the time
evolution of molecular state composed of two vector mesons as determined by the total Hamiltonian. Then

exotic meson resonance y.o(3915) is considered as a mixed state of two unstable molecular states D*? D*0
and D**D*~, and the mass and width for physical resonance y.((3915) are calculated in the framework of
relativistic quantum field theory. In this actual calculation, we minutely show how to obtain the correction
for energy level of resonance and to exhibit the key features of dispersion relation in an extended Feynman
diagram. The numerical results are consistent with the experimental values.
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I. INTRODUCTION

The hadronic molecule structure has been proposed to
interpret the internal structure of exotic meson resonance
for many years [1,2]. In previous works [1-6], molecular
states were considered as meson-meson bound states
and the homogeneous Bethe-Salpeter (BS) equation was
frequently used to investigate molecular states. Solving
homogeneous BS equations for meson-meson bound states,
the authors of these works obtained the masses and BS
wave functions. The mass of meson-meson bound state was
regarded as the mass of exotic meson resonance. However,
all decay channels of resonance should contribute to its
physical mass and the correction for the energy level of
the molecular state due to decay channels has seldom
been considered [1-9]. Fortunately, recent fundamental
research [10] noted that hadron resonance should be
regarded as an unstable two-body system, and developed
BS theory for dealing with the dynamics of coupled
channels in the framework of relativistic quantum field
theory. Though Ref. [10] illuminated the physical meaning
of the developed Bethe-Salpeter theory for dealing with
resonance, many details in the computational process were
not presented. In this paper, we will comprehensively and
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systematically show the theoretical approach about unsta-
ble molecular state composed of two heavy vector mesons,
and this approach is applied to investigate exotic meson
resonance y.o(3915) [11], once named X(3915), which is
considered as a mixed state of two unstable molecular states
D*°D*" and D**D*".

Since resonance is an unstable state which decays
spontaneously into other particles, the molecular state
composed of two heavy-vector mesons should not be a
stationary vector-vector bound state. To investigate this
unstable two-body system, we suppose that at some given
time this unstable state has been prepared to decay and then
study the time evolution of this system as determined by the
total Hamiltonian. This prepared state can be described by
the ground-state BS wave function for the vector-vector
bound state at the times #; = 0 and #, = 0. In our previous
works [5,9], the most general form of BS wave functions
for the bound states created by two vector fields with
arbitrary spin and definite parity has been given. According
to the effective theory at low-energy QCD, we have
investigated the light-meson interaction with light quarks
in heavy-vector mesons and obtained the interaction kernel
between two light quarks in two heavy-vector mesons
derived from one light-meson (o, @, p, ¢) exchange [5,12].
Solving the BS equation with this interaction kernel, we
have obtained the mass and BS wave function for the bound
state composed of two vector mesons [5,13]. In this paper,
we also consider the interaction kernel between two heavy
quarks in two heavy mesons derived from one heavy-
meson exchange. After providing the description for the
prepared state, we study the time evolution of the prepared
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state and obtain the pole corresponding to resonance
through the scattering-matrix element.

The crucial point of our resonance theory is that the
scattering-matrix element between bound states is calcu-
lated in the framework of relativistic quantum field theory.
According to the dispersion relation, the total matrix
element between a final state and an initial bound state
should be calculated with respect to an arbitrary value of
the final-state energy [10]. It is necessary to note that the
total energy of the final state extends over the real interval
while the initial-state energy is specified. For the initial
bound state composed of two heavy-vector mesons, we
have given the generalized Bethe-Salpeter (GBS) amplitude
for four-quark state describing this meson-meson struc-
ture [8,9], which should be specified. Because the value of
the final-state energy is an arbitrary real number over the
real interval, we may obtain several closed channels derived
from the interaction Lagrangian and all open and closed
channels should contribute to the mass of the physical
resonance. For the exotic resonance y.((3915), we consider
three open-decay channels J/ww®, D*D~, and D°D° and
one closed channel D*D* from the effective interaction
Lagrangian at low-energy QCD. Mandelstam’s approach is
applied to calculate the matrix element between bound
states with respect to an arbitrary value of the final-state
energy, which are exhibited by extended Feynman dia-
grams. Finally, we obtain the correction for the energy
level of resonance y.0(3915) and the physical mass is
used to calculate the decay width of the physical reso-
nance y.(3915).

The structure of this article is as follows. In Sec. I we
give the revised general form of GBS wave functions for

|

meson-meson bound states as four-quark states. The mass
and GBS wave function for the mixed state of two bound
states D*D*® and D**D*~ is obtained in instantaneous
approximation. Section III gives the traditional technique to
calculate the matrix element with the mass of the meson-
meson bound state, which is applied to investigate the
decay modes y.(3915) - J/ww, x.(3915) - D*D~
and y.0(3915) = D°DC. Section IV gives the developed
Bethe-Salpeter theory. In Sec. V we emphatically introduce
the matrix element between bound states with respect to an
arbitrary value of the final-state energy. Three open-decay
channels J/ww, DT™D~, DD, and one closed channel
D*D* are considered. In Sec. VI we obtain the physical
mass and width for the unstable molecular state. Our
numerical results are presented in Sec. VII and we make
some concluding remarks in Sec. VIII.

II. GBS WAVE FUNCTION OF THE
MESON-MESON BOUND STATE AS A
FOUR-QUARK STATE

According to the effective theory at low-energy QCD,
nonvanishing vacuum condensate causes the spontaneous
breaking of chiral symmetry, which leads to the appearance
of Goldstone bosons [14]. At low-energy QCD, the
effective interaction Lagrangian can be regarded as
Lagrangian for the interaction of light mesons with quarks.
In this paper, we investigate the light-meson interaction
with the light quarks in heavy mesons and the interaction
Lagrangian for the coupling of light-quark fields to light-
meson fields is [8]

ﬂo—l—\%n V2t V2K* U
E?ff:igo(ﬁ d E)ys V27~ —ﬂ0+%77 V2K°
Vi R -3 \s
p0+a) \/§p+ \/§K*+ u
vigy(a @ 5)n| VI -+ VIKO | | d | +g.(a ZI)(Z)O’. (1)
Vik- ViR vap ) \s

From this effective-interaction Lagrangian at low-energy
QCD, we have to consider that the heavy meson is a bound
state composed of a quark and an antiquark and investigate
the interaction of the light meson with quarks in the heavy
meson. The quark current J,, coupling with a light-vector
meson, the quark pseudoscalar density J~ coupling with
light-pseudoscalar meson and the quark scalar density J
coupling with 6 meson can be obtained. In this section, our
attention is only focused on the bound state composed of
two vector mesons and some errors in previous works
are revised.

M

A. BS wave function for bound state
composed of two vector mesons

If a bound state with spin j and parity #p is created by
two Heisenberg vector fields with masses M; and M,,
respectively, its BS wave function is defined as

Lhiey (5. 65) = (O|TA ()AL (x)) P, j)
1 1

- WT(P) eiP‘X)f;’(h) X, (2)
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where P is the momentum of the bound state, E(p) =
V p2+m2’ xll = (Xllsitl)» .X/z = (X,QaiIZ)s X:nlxll+
mxy, X' =xy —xy, and 05 = M,/ (M, + M,). Making
the Fourier transformation, we obtain the BS wave function in
the momentum representation

are the momenta carried by two vector fields, respectively.
The polarization tensor of the bound state 7, py; CAN

be separated,

X5(P.p) = nﬂlﬂz‘”ﬂ_/xﬂlﬂzmﬂji‘f<P’p)’ (4)

; 1
2P Ph) s = EREE where the subscripts 4 and 7 are derived from these two vector
ields. The polarization tensor 7, , ., describes the spin
(27) fields. The polarizati o, describes the spi
« 1 (27z)4 5(4)( p_ P’l + p’2 ))(/11 (P, p), of the bound state, which is totally symmetric, transverse,
2E(P) ‘ and traceless,
3) |
My = Mpopey - Py My = 0, My~ = 0. (5)
where p is the relative momentum of two vector fields and we
have P = p| — ps, p =mnp| +mph. where p| and p5,  From Lorentz covariance, we have
|
Z}ll'"ﬂj/ﬁ' = Pu, 'pﬂj[g/l‘rfl + (Plp‘r + P‘rp/l)fQ + (P/lp‘r - P‘rp/l)fS + P/IPT 4+ pﬂpffS]
+ (p{ﬂz o pujgﬂl}lp‘r + Plu, 'pﬂjgﬂ]}rpl)f6
+ (p{ﬂz e pujg/ll}/lp‘r — Pl 'pﬂjg,u]}rpl)f7
+ (p{yz T pngﬂl}/lPr + Piu, py,-gm}fP/l)fS
+ (P, - P GuiyaPe = Py, - pﬂ,-gﬂl}fpﬂ)f9
T P PuCinecPePef 10+ Pl Py €uyisePel 1+ Py Puy€yanePef 12
(Pl Puy€uyaecPePele + Py -+ Prj€uyeeePePepi) 1
T (Pl Puy€uaecPePePe = Py~ Puy€uyyesc PePepi) f1a
(Pl Puy€uyaecPePcPr + Py -+ Py yeee PePePi) f1s
+ (Pl Pu€u)aec PePePe = Py -+ Py yeee PePcPi) fr
TPy Py a9y 17 Py Pu€uaec PePc€yee o Pe P fis
+ (P PG €y yeec PePe + Py "'pﬂjgulreuz}ﬁéépépé)fw
+ (p{ﬂz e pﬂjgﬂl/leﬂz}ffgppr TPl pﬂjgﬂlfeﬂz}ﬁfgpfpf)fm’ (6)
I
where {4, ..., ;} represents symmetrization of the indices j _ b { 5
His .- pj. In fact, the relative momenta p,, , ..., Pus Pas Pe 25:(P.p) = N (I [Py Py; (T5:®@1 + 75,9)
represent the orbital angular momenta. There should be 20 4+ 73 O, + T4 D,
; 2\(; : R HypAT
scalar functions f;(P - p, p*)(i = 1,...,20) in Eq. (6). In S .
Ref. [9], three tensor structures are omitted. In this paper, + TM1~-~,4j/11(D5 + Tﬂ]-~-yfzrq)6}’ (8)
these missing terms are added as the last three terms in
Eq. (6). Using the transversality condition [5,12] .
for np = (~1)7*1,
PP, p) = Poi(P.p) =0 () |
23z (PoP) = 5z, (Puy =~ Py €anc PP P
and considering the properties of BS wave function under 7 / 3 , 9 )
space reflection, we obtain the revised general form of BS + Tﬂl"'ﬂfﬁfq)z + Tﬂl'“l‘fﬁfq)3 * Tﬂl“'ﬂth)“
wave functions for the bound states created by two massive 4710 oL+ 7l o+ T2 @)
. . . A . HypAT S My piAT 6 HyepAT =10
vector fields with arbitrary spin and definite parity (see
details in [5]), for p = (—1)/, )
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where N/ is normalization, the independent tensor struc-
tures 7" _are given in the Appendix, and ®;(P - p, p*) and
®@!(P - p, p?) are independent scalar functions. The scalar

functions f; in Eq. (6) are the linear combinations of ®;
and ).

B. Kernel between two heavy-vector mesons

In experiments [15,16], the narrow state y.4(3915), once
named Y(3940) and X(3915), was discovered and its
structure does not fit the conventional c¢¢ charmonium
interpretation. Then interpretation of the y.0(3915) as a
mixed state of two bound states D**D*® and D**D*~ was
proposed in Refs. [3,4,7], and these theoretical works
calculated the binding energy and the strong and radiative
decay widths. In the following experiments [17,18], the
X0(3915) resonance, decaying to the J/ww final state, was
observed in two-photon collisions, and the product of the
two-photon decay width and the branching fraction to
J/ww was measured. The value of the product of two
partial decay widths T'(y.0(3915) = y7)['(y.0(3915) -
J/ww) is unexpectedly large compared to other excited
cc states, and this value is roughly compatible with the
prediction in Ref. [7] assuming the D*D* bound-state
model (see Refs. [17,18]). However, in experiments exotic
particle y.(3915) is resonance, so this exotic particle is an
unstable state which should not be completely treated as a
stationary two-body bound state and it is more reasonable
to regard this exotic resonance as an unstable two-body
system. In this paper, we assume that the isoscalar
Zc0(3915) is a mixed state of two unstable molecular states
D*D* and D**D*~ with spin-parity quantum numbers
0. There are two steps to deal with this unstable system in
our theoretical frame. As the first step, we investigate the
mixed state of two stable-bound states, D*°D*C and
D*TD*~. As the second step, we study the time evolution
of unstable system determined by the total Hamiltonian and
obtain the correction for energy level of resonance due to
decay channels.

In this section, we only investigate the mixed state of two
stable-bound states D**D*® and D** D*~, and the BS wave
function for this system is a linear combination of two
components as

D*OD*O

1 l DH»D*— .
P9 + P? 9

\/EZM

22PH(P, p) =
(10)

where
DD (p Y — (P p) 11 D*°®1 1\ 2"
Xie P) =X\, P R ) s

e . 1 I\\2" |1 1\P~

D*"D*",j o - 7
X (P’p)xﬁ,(P,p)< ‘2,2>> ®‘2, 2> :
(11)

and P becomes the total momentum for the mixed state of

two meson-meson bound states, )(ﬁr (P, p) is the component
wave function in the momentum representation;
(=13.-2) ®13.3) and (=|5.3) ® |3.—3) are the iso-
spin wave functions of pure bound states D**D** and
D** D*~, respectively. )(goD*o’j and )(ADTHD ~/ represent the
BS wave functions for the bound states of two-vector
mesons, which are the eigenstates of the Hamiltonian
without considering the coupled-channel terms. These
eigenstates have the same quantum numbers. The error
in Ref. [9] has been revised. As usual the momentum for the
mixed state of two bound states is set as P = (0,0, 0, iM)
in the rest frame.

Let Dj denote one of D9 and D*t, and I=u, d
represents the u or d antiquark in heavy vector meson
D*Y or D**, respectively; D} denotes the antiparticle of D;.
From Eq. (8), we can obtain the BS wave function
describing pure bound state DjDj

Xﬁr (PDD p) [T}lrrfl(PDD P p2)

N °+
+T§sz(PDD-p,p2)]- (12)
PPP represents the momentum of pure bound state in the

rest frame, whose fourth component is different from the
one of P. This BS wave function should satisfy the equation

d4 /
(27[) AF/lH(pl>V99’ K'K(P P’ PDD)

PPP. ') Aee(P5) (13)

ZﬂT(PDD p):_/
X)(g/’(

where  Vgg o, is the interaction kernel, PPP =

(0,0,0, iMDD)’ p'l = p+PDD/2, p/2 — p_PDD/z,
App(p)) and Ap (ph) are the propagators for the spin-1

fields, App(p)) = (5w+p“ 1o Ape(ph) =
(b + 52 s M :MDr and M, =Mp,. We

emphasize that the kernel V is defined in two-body channel
so V is not the complete interaction. The kernel in the
homogeneous BS equation (13) plays a central role for making
the two-body system to be a stable bound state, and the
solution of the homogeneous BS equation (13) should only
describe a bound state. In our approach, the BS equation for
the meson-meson bound state is treated in the ladder approxi-
mation. This approximation consists of replacing the inter-
action kernel by its lowest-order value corresponding to the
simple one-meson exchange. Though the interaction kernel
Vo «« in Eq. (13) only contains the contribution from the
irreducible graph, Eq. (13) contains the contribution from
irreducible and reducible graphs [19], shown as Fig. 1. Hence,
the solution of the BS equation, i.e., mass and BS wave

=i
) pR+M3—ie?

114005-4
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+ eee

FIG. 1. Ladder approximation for the two-body propagator.

function of the bound state, contains the contribution from
irreducible and reducible graphs.

Different from the previous works about hadronic
molecules, in our approach the heavy mesons in a molecu-
lar state are considered as bound states composed of a
heavy quark and a light quark. From the interaction
Lagrangian for the coupling of light-quark fields to
light-meson fields expressed as Eq. (1), we can obtain
the interaction kernel between two light quarks in two
heavy mesons from one light-meson exchange. Moreover,
we should consider the interaction kernel between two
heavy quarks in two heavy mesons from one heavy-meson
exchange. In our theoretical frame, the interaction kernel
between two heavy mesons is derived from the one meson
exchange between two quarks in these two heavy mesons.
To construct the interaction kernel between D and Dj, we
consider the one light-meson (2%, , o, p° V, and Vy)
exchange [5,12,13] and one heavy-meson (J/y) exchange.

The flavor-SU(3) singlet V| and octet Vg states of vector
mesons mix to form the physical @ and ¢ mesons as

¢ =—-VgcosO+ V sinb, @ = Vgsind+ V,cosb,

(14)

1

(VMe(p)II=(0)[VMP(q))) =

(VM"Y (=ph)|J=(0)| VM (=g3)) =

h(p) (Wz)egg’ga’p/ q, 86)(p
/ 9 ld

FIG. 2. Light-meson exchange between two light quarks in two
heavy-vector mesons. The solid lines denote quark propagators,
the filled circles represent the vertex functions for light meson
and light quark, and the unfilled ellipses represent Bethe-Salpeter
amplitudes.

where the mixing angle 6 = 38.58° was obtained by
KLOE [20]. Then the exchanged mesons should be the
octet Vg and singlet V; states, and the relation of the octet-
quark coupling constant gg and the singlet-quark coupling
constant g; has the form

9 = gg siné@ + g; cos 6,
(15)

where the meson-quark coupling constants g2, = 2.42/2
and gé = 13.0 were determined by QCD sum rules

9p = —9gs cos @ + g, sin 6,

approach [21]. The light meson exchange between two
light quarks in two heavy vector mesons is shown in Fig. 2.
The filled circle of Fig. 2 represents the vertex function for
light meson and light quark in heavy meson. From the
Lorentz-structure, the matrix elements of quark pseudo-
scalar density J~, quark scalar density J and quark current
J, can be expressed as

(VMe(py)I(0)[VMP(q))) =

Del(dh). (162)
AP (W)€ o Doy @y €6 (= D5 )€Y (—h ). (16b)
x{[e%m & (q))H (w?) hé”(w%Mi%[e@(pa) 411 (d) ,,]}, (160)
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— ) 9 1
(VM (=ph)l7(0)[ VM (~})
2\/ED* Pz Q2)
: _ , 1., .
{ ) <—qg>]h?> 02) =R 0 3ale? (-1 (a3 e (=a8)- (- .
2
(16d)
1
(VM(p})|1,(0)| VMO (g))) = —
2,/Ep;(P1)Ep;(4})
x{[s@m) e (@I W) (P + d)a = 1S W) {[e2(ph) - a1l (ah)
0 v 1 0 0
+[e%(q) - phled(ph)} — hd )(WZ)W[&(M) g\ )le’(q1) - PLI(P + qll)a}’ (16e)
1
-, — 1
(VM (=ph)|75(0)[VM” (~g})) = , ,
2\/Ep; (~P5)Ep;(~43)
/ / =(1
{11 e ah Y ) =1t = )y
— 13" (W) {[e? (—p}) - (—gb)el (—gb) + [¥ (—b) - (—p)lef (—ph)}
T (lv 1 {)/ ‘/
= 15 (0%) (e (=ph) - (=ah))le” (=) - (=ph))(=ph = qg>ﬁ}, (16)
2
whete pi = (p.iplo): Py = (P ipi): 41 = <p,quo> g5 = (0,idh), W = 4} = p} = g5 = p} is the momentum of the
exchanged meson andw p’ — p; h(w?) and h(w?) are scalar functions, the four-vector &(p) is the polarization vector of

heavy vector meson with momentum p, and Ep(p) =, /pz—l—MzI*. Taking away the external lines including

normalizations and polarization vectors £5(p}), €5(q}). e (- Ph), €% (—¢5), we obtain the interaction kernel from one
light-meson (z°, 1, o, p°, V;, and V) exchange [5,12]

) )
—ig —ig, -
Vé‘Q’,K’K(p p PDD)*h ( )ggf;/aalplgqld< 2+;T,n2 W2+:12>h(p>(w2)€ww'lc’lcp/2mq/2m/
z n
) - 2
()0, 2y i —ig, —ig; —ig} (V) 270V (2
0 0) I O+ (L ) O 00 0

v T
X (P} + ) - (=Ph = 42)8ar S — B (W)RSY (WD) 3gg [~ (P + @)@ — P (P + 1),

Iv 7 (v (Iv) 7 (v
= 0 )R D)o (=Ps = dh)or + (=P = ah)opi)bee + 15" (W)RY (2) (= B
+ 41900 (=Pe) = Sow Py o + S0P (—Po0)]} (17)
where g represents the corresponding meson-quark coupling constant, g, = B(;VI 299 [22,23], gp = 2.42 [21], and these

terms containing M , are neglected because the masses of heavy mesons are large. Usmg the method above, we can obtain
the interaction kernels from one-p* exchange [13].

In this work, we consider the interaction kernel between two heavy quarks in two heavy mesons from one-J/y exchange
and the heavy vector meson J /iy is considered as a bound state of ¢¢. Diagrammatically, the heavy meson J/y exchange
between two heavy quarks in two heavy vector mesons is represented by the graph of Fig. 3. In Fig. 3, the BS amplitude
[, (w,w') of the heavy-vector meson J/y is also represented by the unfilled ellipse, where w’ is the relative momentum
between two heavy quarks. The explicit form of BS amplitude I',(w, w’) for heavy vector meson J/y will be given in
Sec. IIC 1. Then, the interaction kernel from one heavy meson (J/y) exchange becomes

114005-6
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D _i hv 7 (hv hv hv
Vi oe(p. 0" PPP) = ——— (0™ ) B™ W) (9} + 4)) - (=P = a5)8a0 S + 1™ (W) RS (W2) 844
w +MJ/1//
hv 7 (hv
< [(Ph 4+ d) et + Pou (P + @) + 15 W)R™ (W2)[d0(Ph + d5)g + (Ph + d5)o P60

hv = (hv
— B 2R (W) (G080 o + @hoB0cPlys + G0 Py @ + SocP' g P ]} (18)

We obtain the total interaction kernel between D; and D}‘ derived from one light-meson (z°, 5, 6, p°, V;, and V) exchange
and one heavy-meson (J/y) exchange

VQF}/,K/K = Véé‘/,lc/x + ng)',K/K' (19)

C. Instantaneous approximation

1. Form factors of heavy meson

To calculate these heavy vector meson form factors z(w?) describing the heavy meson structure, we have to know the
wave function of heavy vector meson Dj in instantaneous approximation. For heavy vector mesons, the authors of
Refs. [24-27] obtained their BS amplitudes in Euclidean space:

I (K. k) = /\% (n +K,” >fﬂv(k2)v (20)

My
where K is the momentum of heavy meson, k denotes the relative momentum between quark and antiquark in heavy meson,
My is heavy vector meson mass, I'} (K, k) is transverse (K,;I'y (K, k) = 0), V'V is normalization, and ¢y (k?) is the scalar
function fixed by providing fits to observables. The charmed meson Dj is composed of a ¢-quark and an /-antiquark. As in
heavy-quark effective theory (HQET) [28], we consider that the heaviest quark carries all the heavy-meson momentum and
obtain the BS wave function of the D meson

—1

1 -1
v (k+K)—im, NPi (

y-k—im;’

y-K
ntK; >(P07 (k%)

e (21)
M3,

(K k) =

where K is set as the momentum of heavy meson in the rest frame, k becomes the relative momentum between c-quark and
l-antiquark, m,; are the constituent quark masses, ¢p: (k*) = @p: (k*) = exp(—k*/@},. ) and wp. = 1.50 GeV [27]. The
components of this BS wave function are 4 x 4 matrices, which can be written as [29]

ZA(K? k) = lpf + lP/‘ll,ﬂy/A + lPIﬂDGMV + T?,ZVM/S + leseYs, (22)

and the coefficient corresponding to y,, is
y 1
lP/l,y = ZTr[y/l)(ﬂ(K7 k)] (23)

Substituting Eq. (21) into (23), we can obtain the heavy vector meson wave function in instantaneous approximation

D 1 k> - k3 k?/3 + k2 +m.m
Wk) = [ dk,—- 4 4t
i () 4NDfeXp< o, ><k2+ki+m3><k2+kﬁ+m%>

In the previous works [5,12,13], we used the method introduced in Ref. [30] and obtained the form factors for the vertices
of heavy vector meson Dj coupling to pseudoscalar meson (x and #) [5]

A®) (w?) = hP)(w?) =0, (25)

to scalar meson (o)
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B (2 S (2 -
_ " (W ) S | (W ) _ Fl(W2>, hés)(w2) _ h(2~)(w2> — 0’

2E,  2FE,
[ &k 2E. (k) E/(k) +m
Fi(w) = / (27)° i <k * Ep: +Mp. W) El(kl +w) +lm1
{E,(k+w)—E,(k) +2m; k-w }‘PD7(k) (26)
E\(k +w)E(k) 2\ Ei(k +w)E (k) [E/(k) + m] ,

and to light-vector mesons (p, V{, and Vy)

v Iv 7 (lv Iv v 7 (lv
Y 02) = 1Y w2) = B w?) = B w?) = B W), Y (w?) = B (w?) =,

2,/Ep:M &Pk o 2E, (k) E (k) +m,
Fv) = Ep; +MD (27)* s < Ep: +Mp, ) Ey(k+w)+m
) {E,(k+w)+E,(k) k-w }\PD;(k) o)
2VE((k+w)E (k)  2v/Ei(k+w)E(k)[E (k) + m)] ’

where E.;(p) = /p* + mf ;and WD is the wave function of heavy-vector meson expressed as Eq. (24). Some errors in our

previous works have been revised. From Eq. (25), we can obtain that one light pseudoscalar-meson exchange has no
contribution to the interaction kernel between two heavy vector mesons for the vector-vector bound state with spin-parity
quantum numbers 0.

In this paper, we consider that BS amplitude of heavy vector meson J/y has the form expressed as Eq. (20) and obtain
scalar functions for the vertex of heavy vector meson D coupling to J/y

I w?) = B w?) = B w2) = BN () = FY(wh), s (w?) = 5 () =0,
), o 2y/Ep;Mp; d3k - 2E,(k) E.(k) + m,
Frm(w') = Ep, + My / ( ED7+MD;W> E.(k—w)+m,
x{ (k= w+E(k) k-w }
2VE = WE(®) 2E(k=w)E(R)E.(k) +m,]
1 [_(k - w/2)* - E%(k)] P0; (k),

X exp 5
NJ/W wJ/x//

(28)
where N//¥ is normalization and @ 7y = 0.826 GeV was obtained from lattice QCD (see details in Ref. [8]).

2. The extended Bethe-Salpeter equation

Substituting the BS wave function given by Eq. (12) and the kernel (19) into the BS equation (13), we find that the
integral of one term on the right-hand side of (12) has a contribution to the one of itself and the other term. Ignoring the
cross-terms, one can obtain two individual equations,

_ d*p’ _ _

Fi(PPP - p, p?) = _/ (2xz)* Arig(P1)Voo (s P's PPP)F s (PPP - p', p") Ap(Ph), (29)
_ d4 /

PP p.1?) = = [ G ra o) Var e 03 PPV (P70 - p) ). (30)

where F! (PPP.p,p?) =T. F (PPP . p,p?*) and F3.(PPP - p,p*) = T3.F,(PPP - p,p*). Comparing the tensor
structures in both sides of Egs. (29) and (30), respectively, we obtain
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- 1 1 d*p' - -
F PDD D, 2y / V0+ /;PDD F PDD . /’ 2 , 31
PP = [R5 (2 ) 31)
PEFH(PPP - p, p?) = : : /d4 P VY (p.p's PPP)q2F,(PPP - p', p) (32)
2 ’ P+ M3} —ie pi + M3 — (2r)* ’ ’

where V9" (p, p'; PPP) and VY (p, p’; PPP) are derived from the interaction kernel between D; and D}. In instantaneous
approximation, we set the momentum of exchanged meson as w = (w, 0). Then Eqs. (31) and (32) become two relativistic
Schrodinger-like equations (see details in Refs. [5,13])

M_P_z> 0t w o ot
(PI000) - 2 Y () — [ S0y (o) (o) (33)
b%(MDD)_pz> o+ dw ot o+
(P2000) - 2 Y () = [ S8 (o) (o) 34
where  W0'(p) = [dpoF((PPP - p,p?), WS (D) = [dpopFa(PPP - p.p?),  ug=E\Ey/(Ey+Ey) =

(M}, — (MT = M3)*)/ (AM3,,), D*(Mpp) = (MG, — (M + Ma)’[M7, = (My = M)?|/(AM7p), Ey = (M, — M3+
M3)/(2Mpp), and E, = (M35 — M3 + M3)/(2Mpp). The potentials between D} and Dj up to the second order of
the p/M p; expansion are

2 2 2
VO (p.w) = —F, (W2 9o p (w2 F (w2 FM) (w2 p 9N
1 (p W) I(W)W2+M§ I(W)+ 2 (W) 2 (W) w2+M/2,+w2+M§,

2 2 2
98 (hv) ¢ 2y po(hv) (o 1 4p” + 5w

— F F — -1 -], 35

+w2+M§)>+ 2 (WH)F; (W)W +MJ/1,/:|< AE,E, (35)

2 2 2
9o W Iv Iv g
V9 (o) = =) 2 o) (1= ) [P ) P o) (%

w? 4+ M 2 w? + M;
2

2
g1 Js (hv) (hv) 1
" 2+M%,+W2+Mé>+F2 (WHF (W) +MJ/}
W
2p? +2w?  2p® + 2w
) (-1 2w 22w (36)
4M3 AE\E,

Solving Eqs. (33) and (34), respectively, one can obtain the eigenvalues b?(Mpp) and b3(Mpp) and the corresponding
eigenfunctions ¥0" (p) and ¥) (p). From W) and WY, it is easy to obtain F, and F,, respectively.

Because the cross-terms are small, we can take the ground-state BS wave function to be a linear combination of the two
eigenstates F10(PPP - p, p?) and FO(PPP . p, p?) corresponding to the lowest energy in Eqgs. (29) and (30). Then in the
basis pr0V1ded by FIO(PPP . p, p?) = TLFo(PPP - p, p?) and F2O(PPP - p, p?) = T2 F1o(PPP - p, p?), the BS wave
function )(/11 is considered as

25 (PPP. p) = [CFR(PPP - p. p?) + CF (PP - p. p?)]. (37)

NO+

Substituting (37) into Eq. (13) and comparing the tensor structures in both sides, we obtain an eigenvalue equation in
instantaneous approximation [5]

h10<MDD) _ /1 H /
o 12 C
2up ( | ) _ 0, (38)
-4

b3y (Mpp) C’
H21 “2”R :
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where we have the matrix elements

d3p + % d3W v v 92) 92
Hi =t = [ SR [ S [ o) (T

% (hv) /2y po(hY) (<2
+w2+M§))+F2 (W)Fz (w?)

FIG.3. Heavy-meson J/y exchange between two heavy quarks
in two heavy-vector mesons. The unfilled ellipses represent
Bethe-Salpeter amplitudes.

and b7o(Mpp)/(2ug) and b50(Mpp)/(2pg) are the eigen-
values corresponding to the lowest energy in Egs. (33) and
(34), respectively; W9, and W9, are the corresponding
eigenfunctions. From this equation, we can obtain the
eigenvalues and eigenfunctions which contain the contri-
bution from the cross-terms. Some errors in our previous
works have been revised. Equations (33) and (34) can be
solved numerically with these form factors, and then the
eigenvalue equation (38) can be solved. The masses Mpp
and wave functions of pure-bound states D**D** and
D**D*~ with spin-parity quantum numbers 0" can be
obtained.

Considering the interaction kernels from one-p*
exchange and using the coupled-channel approach (see
details in Ref. [13]), we can calculate the mass M, of the
mixed state of two pure bound states D**D* and D**D*~
with 0T. Since the mixing of component wave functions
causes the change of energy, the fourth component of PPP
in the original BS wave function becomes the total energy
PDD

of the mixed states, and x9, (PPP, p) in Eq. (37) becomes

N 1
X5 (P, p) = o P P2)gse = PupiclC1 F1o(P - p, p?)

+ [P P% 91 + (P} - Ph) PP
— pEP, P — PPy PhICF (P - p.p?)}.

(40)

w2+ M2 w?+ M2,

9 (p. W),

1 w?
w? + M> } E\E (39)
Thwd =172

[
We emphasize that the mass M, of the meson-meson bound
state should not be the mass of physical resonance.
Substituting Eq. (40) into (10), we obtain the BS wave
function y% ” “0"(P, p) for the mixed state of two bound
states D**D* and D**D*~ with 0%,

D. GBS wave function for the four-quark state

The heavy meson is a bound state consisting of a quark
and an antiquark and the meson-meson bound state is
actually composed of four quarks. We have to give GBS
wave function of meson-meson bound state as a four-quark
state. If a bound state with spin j and parity #p is composed
of four quarks, its GBS wave function can be defined as [§]

Zi)(x17x37x4’x2)

= (0]TQ(x1) Q(x3) Q5 (x4) QP (x2)| P. j).

(41)

where P is the momentum of the four-quark bound state, Q
is the quark operator and its superscript is a flavor label.
From translational invariance, this GBS wave function can
be written as

: 1 1 . .
X{, X3, X4, X)) = ————— X (X x X)),
/’t’}"( 1 3 4 2) (277:)3/2 2E(P) Zﬂ’( )
(42)
where X = n (x| +15x3) +m(njxy +nhx), X' =

(x4 m3x3) = (Myxs + 15x2), X = X1 —x3, X' = X5 — Xy,
m+ny =113 =mea/(mc+my), 0y, =mpp/(mp+
mpg), and m 4 ¢ p are the quark masses. In the momentum
representation, the GBS wave function of four-quark bound
state becomes

4 1 1

b 9’ b = T a2 — 2” 4
)(j}"(pl P3s P4 pZ) (2”)3/2 2E(P)( )
x 8D (P —p| + p3— ps+ p2)
Xy (P, p.k,K), (43)

where p,, p3, ps4, po are the momenta carried by the fields
QC, 04, OB, QP and p, k, k' are the conjugate variables to
X', x, x', respectively, where p=1n,(p,— p3)+
m(p2 = pa), k=n5py +nips, K =njpy+nyps In the
hadronic molecule structure, p is the relative momentum
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(s 5)

pi=k+n"p/' /\
I\/VM p'=p+nP
P

py=k—m"p'
i
pi=k'-n,"p,'
/\W' p'=p-mP
Py =k'+m," py' J
(P T4.(P, p)

FIG. 4. Generalized Bethe-Salpeter wave function for the four-
quark state in the momentum representation. The solid lines
denote quark propagators, and the unfilled ellipses represent
Bethe-Salpeter amplitudes.

between two mesons in molecular state, k and k' are the
relative momenta between the quark and antiquark in these
two mesons, respectively, shown in Fig. 4. This work is
aimed at investigating the bound state composed of two
vector mesons. In Fig. 4, VM represents the vector meson

with mass M, VM’ represents the antiparticle of the vector
meson VM’ with mass M,, and M S represents the meson-
meson bound state.

In Fig. 4, there are three two-body systems; a meson-
meson bound state and two quark-antiquark bound states.
We define BS wave functions of these two-body systems as
xp(P1. Ph)s 2 (P P3)s and g (4, o), respectively. The
BS wave function for the bound state of two vector mesons

has been given by Eq. (3) and the BS wave functions of two
vector mesons are

1 1
){p'l(plvp3)/1:(27z_)3/2 2E(p/1)
x 2m)*8W (pl = p1+ pa)ra(pi k), (44)
o I
)(p'z(péh pZ)T - (271_)3/2 2E(p,2)

x (2m)*8W) (phy + py — po)re(Ph. k). (45)

where p| and p) are the momenta of two vector mesons,
respectively, pj = p+mP, py=p—mP and n,=
M,,/(M, + M,). Applying the Feynman rules and com-
paring with Eq. (43), we obtain the revised GBS wave
function for four-quark state describing the bound state
composed of two vector mesons with arbitrary spin and
definite parity [8,9]

X(P.p.kK) = 2,(p) )i} (P p)yo(Ph. k). (46)

From Eq. (21), we obtain BS wave functions of
vector mesons

-1 1
/,k -
)(/l(pl ) 7/C - py— ichV
i 2 -1
X |7, + P —)(ﬂv(k) —,
( e yA - py—imy
-1 1
2:(ph. k') =

P ps—img NV
Y- Ph n -1
x (7. + ph L P —
<7T P2, M%—/, >(pV< )}’D'Pz_imp
(47)

In this section, we consider a mixed state of two bound
states D*°D** and D**D*~ with spin-parity quantum
numbers 0F. In Fig. 4, VM and VM’ become D! and
Dj, respectively, and in Eq. (41) the flavor labels C = D
and A = B represent c-quark and I-quark, respectively.
From Egs. (10), (46), and (47), we obtain the GBS wave
function for meson-meson bound state as a four-quark state

* Y% 1 ! 0 7*0 N+
1P '°+(P,p,k7’<'):\ﬁxﬁ)o(ﬁpk)zﬁ PRON(P,p)

. [
x 1P (ph. k) +7§Zﬁ) (P k)

X x2 PO (P pP T (ph k), (48)

where
D;, -1 1 , 7P 2
k)=————— — (k
2, (P k) v pr— im NP <J’,1+P1,1M2D7 @p; (k)
-1
X—.7
Y p3—m
)(Df(p/ k/):_ilL Y _|_p/ }/'plz (p-*(k/z)
T v pa—im NPT T M3, P
1
-1
X — (49)
Y p2—im,

E. Normalization of BS wave function

1. Heavy vector meson

Here, we determine normalizations N and N'°"". The
authors of Refs. [26,27] employed the ladder approxima-
tion to solve the BS equation for the quark-antiquark state,
and the reduced normalization condition for the BS wave
function of D} meson given by Eq. (21) is
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(2;1.)4%/614@?1(1(7 k)a%o[SF(k+K)‘1]SF(I<)—1;Q(K, k)

= (2Ky)?,

(50)

where S;(p)~! is the inverse propagator for quark field and
the factor 1/3 appears because of the sum of three trans-
verse directions. Normalization N///¥ will be determined in
Sec. IITA.

2. Molecular state

The reduced normalization condition for x9 (P, p)
expressed as Eq. (40) is

—i .
W/d4l7)(r/z/(P, p)

%0 [Apap + P12 Bres(p ~ P2 V(P )
0
(51)

= (2Py)*,
where Apg,(p)~' is the inverse propagator for the

vector field with mass m, Apgy(p)~' = i(8py — P’;ﬁ’;l'z) X

(p® + m?) [8]. After determining the normalization N°",
we automatically obtain the normalized BS wave function
for the mixed state of two components D**D*? and D**D*~
given by Eq. (10). Immediately, the normalized GBS wave
function for meson-meson bound state as a four-quark state
expressed as Eq. (48) is obtained.

III. SCATTERING MATRIX ELEMENT FROM THE
FOUR-QUARK STATE TO THE FINAL STATE

In experiments two strong decay modes of y.,(3915)
have been observed; J/ww and DT D~. The narrow state
xc0(3915) was discovered in 2005 [15] by the Belle
Collaboration and for a long time a series of experiments
[16-18,31] only observed one strong-decay mode of
xc0(3915); J/ww denoted as ¢|. In 2020 the LHCb
Collaboration observed another decay channel D™D~ [32]
denoted as c5. Though the neutral channel D°D° still has
not been observed, this neutral channel should exist for the
isospin conservation, which is denoted as c}. In this
section, we present the traditional technique to calculate
decay width for these processes and revise some errors in
previous works [8,9].

A. Decay channel J/yww with respect to
the mass of the bound state

Mandelstam’s approach is a technique based on the BS
wave function for evaluating the general matrix element
between bound states [19]. Applying Mandelstam’s
approach, we have obtained the scattering matrix element
from a four-quark state to a heavy meson plus a light
meson [8] in the momentum representation, as shown

L (p'sh)

O

FV(Qaq) rr(pzl’k') F()’K(Pap)

FIG. 5. The lowest-order matrix element between bound
states in the momentum representation.

in Fig. 5. In this work, we retain only the lowest-order
term of the two-particle irreducible Green’s function. In

Fig. 5, VM and VM’ still represent D} and Dj, respectively;

HM represents J /y with momentum Q (Q* = —Mj,, ) and

LM represents @ with momentum Q' (Q? = —M2). The
momentum of the initial state is set as P = (0,0,0, iM)
in the rest frame, and M|, is the mass of the mixed state of
two pure-bound states D*°D* and D** D*~, which should
not be the physical mass of resonance. It is necessary to
emphasize that the momenta in the final state satisfy Q +
Q' = P in this section. Here, we consider that in the final
state the light-vector meson w is an elementary particle and
the heavy-vector meson J/y is a bound state of cc. From
Eq. (47), we obtain the BS wave function of heavy-vector
meson J/y as

(0.q)=—— :
A= g+ 0)2) = im NIV
7'Q 2 -1
X <}/U+QDM3/W>¢J/V/(Q )Y(Q—Q/Z)—lmc’

(52)

where ¢/, (¢%) = exp(—¢*/w3,,) and @, = 0.826 GeV
was determined in Ref. [8]. The reduced normalization
condition for the BS wave function of J/w meson
expressed as Eq. (52) is

—i 1
(27)*3

X ag [Sp(q + Q/Z)_ISF(q - Q/z)_l])(v(Qv Q)
0

- (ZQO)Z,

/d“q)?y(Q, q)

(53)

where the factor 1/3 appears for the three transverse
directions are summed. The normalization A///¥ can be
determined. These momenta in Fig. 5 become

114005-12



CALCULATION OF MASS AND WIDTH OF UNSTABLE ... PHYS. REV. D 108, 114005 (2023)

p1=0+0))2+p+k, p2=(0+0)/2-0+p+k, Py =k, ps =0 +k,
q=0Q'/2+p+k, k' = Q' +k, py=p+P/2, ph=p—P/2, 0+Q =P (54)

Using the Heisenberg picture, we obtain the total matrix element from the initial state |P in) to a final state (Q, Q' out|
~iR¢p)a(Mo) = (Q. Q' out| P in) = —i(27)*6W(Q + Q' = P)T ¢.5)a(Mo). (55)

where T (¢ b)a (M) is the T-matrix element with mass M|, for channel ¢|. According to Mandelstam’s approach, we obtain

T(c’] b)a (MO) = (56)

ig,ef (Q)¢£(0) (La™ s L)
= Mul +— M,,l s
(22)°/2\/2E,;,,(Q)\/2E,(Q") \/2E(P) ! Ve

where £2~27(Q) and £ ~"*?(Q') are the polarization vectors of J/y and o, respectively, £2(Q) - Q = £¢(Q') - Q' =0
and

ML _ / dkd*p 1 () 1 1 ep () 1 ¢p(K?)
. (2m)® NJ/V/P2+ch1+m2ND’P3+m1ND’p4+m1

X Tr((y - po + im )y, (v - pr + im )y, (y - ps + im)y,(y - pa + im)y2% (P, p)). (57)

Here )(2; (P, p) is expressed as Eq. (40). In Eq. (57) the trace of the product of 8 y-matrices contains 105 terms and the
resulting expression has been given in Appendix B of Ref. [8]. In our approach, the p integral is computed in instantaneous

. . . ' .D;D* . . . .
approximation. To calculate this tensor Mﬁ,‘, "1, we gave a simple method in Ref. [8]. It is obvious that the tensor

- D*D* oy y*
c.DpD; 1D

i only depends on Q and Q’, so in Minkowski space M:}[D can be expressed as

C’ D*Dx

Vlll’ = gl/,uUl(le Q) + QLQ#UZ(le Q) + Q:/Q/ZU:%(QI’ Q) + QI/QI/,{U4<Q/7 Q) + QI/QpUS(Q,7 Q)’ (58)

where U;(Q’, Q)(i = 1, ..., 5) are scalar functions. The above expression is multiplied by these tensor structures Guus 0, O,
0,0, 0,0,, 0,0, respectively; and a set of equations is obtained

G MPT = Ul = AU, + (0 - Q)U, + QU5 + (Q' - Q)U, + Q*Us,
0,0, Mii"" = Uy = (0~ Q)U, + Q20U + QX(Q' - Q)Us + (€' - 0)*Us + 0X(Q' - Q)Us,
0, Q,,Mif Pl Uy = 07U, + Q(Q' - Q)Us + 070U + QX(Q' - Q)Us + (Q' - 0)*Us,
0. OM" = Uy = (Q/- Q)U, + (@' - Q)2Us + Q2(Q' - Q)Us + Q*Q™U, + 0X(Q' - Q)Us,
0,0, M Pl = UL = 02U, + QX(Q'- Q)U, + (Q' - Q)2Us + 0X(Q' - Q)U, + Q*Q*Us, (59)

where U’ are numbers. Subsequently, we numerically calculate U} and solve this set of equations. The values of U; can be
obtained.
Then we can obtain the decay width with mass of meson-meson bound state for channel J/ww

3 3
Mi(Mo) = [ 04 Q2r) 690+ Q' = P) > > ()T (60)

/

J=1 o=1

where P =(0.0,0,iM,), Q= (Q(Mo).i\/Q*(Mo) +M3,,). Q' = (-Q(M,).iv/Q*(My) +M;) and Q*(M,) =
(MG — (M, + M,)?][M§ — (M, — M,)?]/(4M3). To calculate the decay width I'; (M), we use the transverse condition

e2(Q)- 0 =¢?(Q")- Q' =0 and the completeness relation. It is necessary to emphasize that the decay width I'; (M)
expressed as Eq. (60) is not the decay width of physical resonance.
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B. Decay channel D* D~ with respect to mass of bound state

Considering the lowest-order term of the two-particle irreducible Green’s function, we obtain the interaction between two
heavy-vector mesons derived from a light-meson exchange. Applying Mandelstam’s approach, we can obtain the 7-matrix
element with mass M|, for channel ¢/, which can be represented graphically by Fig. 6. In Fig. 6, PM and PM’ represent
pseudoscalar mesons D' and D™, respectively; Q; and Q, represent the momenta of final particles, Q% = _M123+’ Q% =
—M?_ and in this section Q; + Q, = P.

To simplify the computational process, we use the vertex function for the exchanged light meson, heavy pseudoscalar and
vector mesons, and then Fig. 6 can be reduced to Fig. 7. From the Lorentz-structure, we obtain the matrix elements of quark
scalar density J and quark current J, between heavy pseudoscalar and vector mesons

(PM(0)IV(0)[VM®(p)) = : (01 - & (P} (W), (61a)
2Ep+(Q1)4/2Ep: (P})

1

= 0, - " (=ph)|AY) (w?), (61b)
2\ /Ep-(02)Ep; (=ph) | P

(PM(0)|9(0)[VM™ (=ph))

(PM(0,)|J,(0)|[VM(p})) = : (B W10y - € (P)(Q) + p)a = (01 + P)) - (01 = PR (P}
2\/Ep-(Q)Ep; ()
— M WA{[01 - (PNQ1 = P))e — (1 — PR (D))} (61c)

1
2, /Ep-(02)Ep; (1))
{1 W02 - €” (=p5))(Q2 = Ph)y = [(Qs = Ph) - (Qa + Ph)lel (—ph)}
— R )10 - € (=ph)I(Qa + Ph)y = (Qs + ph)2e] (~ph)} ). (61d)

(PM'(02)75(0)[VM™” (=)

where p| = (p.iply), Ph = (P.iPh), Q1= (Qp.i01), Or = (—Qp.i0x), w=pi -0 =p)+0,=p—(0, -

0,)/2 is the momentum of light meson and w = p — Qp; Ep:(p) = /p* + M3,

Now, we introduce the vertex function for the exchanged light meson, heavy pseudoscalar and vector mesons, shown as
Fig. 8. The charmed meson D" is composed of c-quark and d-antiquark. For heavy pseudoscalar mesons, the authors of
Refs. [24-27] also gave their BS amplitudes in Euclidean space:

h(w?) and h(w?) are scalar functions.

1
(K. k) = NG iyspp(k*), (62)

where K is the momentum of heavy meson, k denotes the relative momentum between quark and antiquark in the heavy
meson, AP is normalization, and ¢p(k?) is scalar function fixed by providing fits to observables. Using the approach
introduced in Sec. II C 1, we can obtain the heavy-pseudoscalar meson wave function in instantaneous approximation

1 -1 1 -1
W0 (k) = [ dk,~T iysopr (k?) ———
(k) / 4% f{?sy_(k+K)_ichD+l}’5§0D( )y-k—imd}
—i <—k2 —kﬁ) k2 + k3 + m.my
exp (

ND w? K>+ k3 +m2) (K> + k3 + m3)’

= [ dk, (63)

where m,. ; are the constituent quark masses, @p+ (k%) = @p-(k*) = exp(—k*/w?) and wp = 1.50 GeV [27]. Then we can
apply the method given in Refs. [5,12,13] to obtain the explicit forms of these scalar functions in vertex functions for heavy
pseudoscalar meson D and vector meson Dj coupling to scalar meson (o)
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W) B (w?)

= = F,(w?),
2F, 2E, 4(w?)

B 1 Pk, E.(k) Eq(k) +my
B /M%H_M%/(zﬂlp (k+ Ep+ w> Ey(k+w) +my
" {Ed(k+w)—Ed(k)+2md_ k-w

Eq(k +w)E (k) 2\ Eq(k +w)E (K)[Ey(k) +m,]

}TD** (k), (64)
and to vector meson (p, V|, and Vy)

Iv Iv 7 (lv 7(lv
i w) = 15 0) = B (0?) = B8 0) = Fis(w),

Fo(w?) = 1 2, /ED]*ED+/ Bk @D+< Ec(k) ) E (k) 4+ m,
> o MZD* _M%)Jr ED;‘ +ED+ ED* Ed<k+W) +md
V !

{Ed(k +w) + E(k) K- w
2\ E (k+w)E (k)  2\/E(k+w)E (k)[E/(k) + m,]

}W(k» (65)

where E;(p) = 4/p° + mfi, WP and WP! are the wave functions of heavy pseudoscalar and vector mesons expressed as
Egs. (63) and (24), respectively.

Taking away the external lines including normalizations and polarization vectors & (p1), e (—p}) in Eq. (61), we obtain
the interaction from one light-meson (o, p°, V;, and V) exchange,
) —ig;

2
TR 2E,F4(wW*)01,Q:

Cary o) (BT TR Vg ) ) 000 (66)
wr My WM, WM

Vie(Q1, 02, p) = —2E  Fy(W?

w

where E; = E, = M/2 and w = (w,0). The interaction from one-p® exchange becomes

—i2g2,
V. (01, 0,.p) = —4F5(W?) ——= F5(W*)(p} - p5) 01,02, (67)
w? + M
These momenta in Fig. 7 become
w=(p-Qp(My),0), Q1 +0Q,=P, py=p+P/2, py=p-P/2 (68)

where P = (0,0,0,iM,), Q; = (Qp(My),iMy/2), O = (—Qp(My),iM,/2) and Q3 (M) = [M3 — (Mp+ + Mp-)*]/4.
For decay channel D" D~, we obtain the total matrix element

_iR(C’z;b)a(MO) = <Q17 Q2 OUt|Pin> (277")45 (Ql + Q2 ) b)a(MO)’ (69)

where T(c;;b)a(Mo> is the 7T-matrix element with mass M, for channel ¢). From Fig. 7, we obtain

=i 1 ) L rcl,
Mo = o 3Ty (012 (@:)v/2E(P) <EM ot ) 70
where
4
M= [ R0 0l (P, gn
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P2 I - ——

a3 Ps VM p'

P
w S
MS

94 Ps VM P
Bttt ol s R
PM' O, P

FIG. 6. Matrix element for decay channel D™ D~. The momenta
in the final state satisfy Q; + Q, = P. w represents the momen-
tum of the exchanged light meson.

M S
L VM '
wooo L P
‘ MS
M p
Sromoeeeeeoeoas E e e
PM' 0,
FIG. 7. Reduced matrix element for decay channel D*D~.

iw

FIG. 8. Vertex function for the exchanged light meson, heavy
pseudoscalar, and vector mesons.

, d* N
M _/—p 1(01. Q2. p)xY: (P, p).

(277:)4 At (71b)

Here 9 (P, p) is expressed as Eq. (40). The p integral is
also computed in instantaneous approximation. Then, the
decay width with the mass of the meson-meson bound state
for channel DD~ becomes

(M) = /d3Q1d3Q2(2”)45(4)(Q1 +0,—-P)
X (22)* T (¢1:0ya (Mo) ] (72)

The decay width I',(M,) also is not the width of
physical resonance.

C. Decay channel D’D® with respect to
mass of bound state

Since the y.0(3915) state is an isoscalar, there should
exist the neutral channel D°D°. In Figs. 6-8, PM and PM’
represent pseudoscalar mesons D° and D°, respectively.
Following the same procedure as for charged channel
D" D™, we can obtain the 7-matrix element 7’1 ), (M)
and the decay width I's(M) with mass M, for neutral
channel c4. The decay width I'5(M,) should not be the
width of physical resonance.

IV. THE DEVELOPED BETHE-SALPETER
THEORY

Sections II and III give the traditional technique to deal
with molecular state in present particle physics. These
masses of meson-meson bound states were regarded as
masses of resonances [1-6] and used to calculate decay
widths of resonances [8,9], which should not be impecca-
ble. To deal with resonance in the framework of relativistic
quantum field theory, we considered the time evolution of
molecular state as determined by the total Hamiltonian and
provided the developed Bethe-Salpeter theory in Ref. [10].

Because the time evolution of molecular state is deter-
mined by the total Hamiltonian, exotic meson resonance
should be considered as an unstable meson-meson molecu-
lar state. According to the developed Bethe-Salpeter theory
for dealing with resonance [10], this unstable state has been
prepared to decay at given time, and the prepared state can
be regarded as a bound state with ground-state energy.
Solving the BS equation for arbitrary meson-meson bound
state, one can obtain the mass M, and BS wave function
xp(x},x5) for this bound state with momentum
P = (P,i\/P?>+ Mj). Setting 1, =0 and 7, =0 in the
ground-state BS wave function, we obtain a description for
the prepared state (ps)

%gs :)(P<X/1,t1 =0,X’2,t2:0)
1 1

= G T e X0

(2ﬂ.)3/2
Now it is necessary to consider the total Hamiltonian
H - K] + V], (74)

where K; represents the interaction responsible for the
formation of stationary bound state and V; stands for the
interaction responsible for the decay of resonance. Then
the time evolution of this system determined by the total
Hamiltonian H has the explicit form
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1

ps
e—H%“’ (75)

. . 1 )
X (1) = e M 2T = —/ dee ™!
27i Jc,

where (e — H)~! is the Green’s function and the contour C,
runs from ic, + oo to ic, — oo in energy-plane. The positive
constant ¢, is sufficiently large that no singularity of
(e — H)™! lies above C,. The time-dependent wave function
Z (1) provides a complete description of the system for
t > 0. Since H # K, this system should not remain in the
prepared state .25, Then at arbitrary time ¢ the probability
amplitude of finding the system in the state 275" is

e—tet

1
% - gs’ 5 - ‘
o= (Za, 2 (1) 2mi /c2 d€€ — Mo = (27)T yu(€)

(76)

In field theory the operator T'(¢) is just the scattering matrix
with energy ¢, and T, (€) is the T-matrix element between
two bound states, which is defined as

(aout|ain) = (ain|ain) — i(27)*6“) (P — P)T,4(¢). (77)
Because of the analyticity of 7,,(¢), we define
Toule) = D(e) - l(e), (78)

where e approaches the real axis from above, D and I are
the real and imaginary parts, respectively. In experiments,
many exotic particles are narrow states and their decay
widths are very small compared with their energy levels,
ie., (27)°I(M,) < M,. This situation is ordinarily inter-
preted as implying that both (27)|D(e)| and (27)°I(e) are
also very small quantities, as compared to M|,. Therefore,
we can expect that [e — M — (27)3T ,,(e)]~" has a pole on
the second Riemann sheet

Cpte = My + (2 [D(My) ~ (M) = M — i)

(79)

where AM = (27)3D(M,) is the correction for the energy
level of resonance and M = M, + (27)°D(M,) is the
physical mass for resonance. This pole at €, describes
the resonance. The mass M|, of two-body bound state is
obtained by solving the homogeneous BS equation, which
should not be the mass of physical resonance. I'(M)) with
mass M, also should not be the width of physical
resonance, which should depend on its physical mass M.
We will minutely show the computational process of
T-matrix element between two bound states 7', (¢) in the
next section.

V. T-MATRIX ELEMENT T, (¢€)

When there is only one decay channel, we can use the
unitarity of 7,,(e) to obtain [33]

20(e) = Y (27)*6%) (P, — P)3(E, — €)|Tha(e) 2, (80)
b

where P, = (P, iE},) is the total energy-momentum vector
of all particles in the final state and the T-matrix element
Tq(€) is defined as (bout|ain) = —i(27)*6®) (P, — P)x
S(Ej, — €)Tp,(€). The delta function in Eq. (80) means that
the energy e in scattering matrix is equal to the total energy
E, of the final state, and ), represents summing over
momenta and spins of all particles in the final state. For
E, = e, we also denote the total energy of the final state by
¢ and I(e) becomes a function of the final state energy.
Using dispersion relation for the function 7', (¢), we obtain

() = — 2 [ 1) 4o (81)

T Je, €—¢€
where the symbol P means that this integral is a principal
value integral and the variable of integration is the total
energy ¢ of the final state. To calculate the real part, we
need calculate the function I(¢") of value of the final state
energy ¢, which is an arbitrary real number over the real
interval €, < € < co0. As usual the momentum of initial
bound state a is set as P = (0, 0,0, iM,) in the rest frame
and e, denotes the sum of all particle masses in the final
state. We suppose that the final state » may contain n
composite particles and n’ elementary particles in decay
channel ¢’. From Eq. (80), we have

]1(6/) :%/d3Q,1 : "d3an’d3Q1 : "d3Qn(2”)4
x D (Q)+---+ 0, —PS')Z|T(C';b)a(€/)

spins

2

. (82)

where Q7 ---Q', and Q; --- Q, are the momenta of final
elementary and composite particles, respectively;
P = (0,0,0, i€), T (¢':b)a (€¢') is the T-matrix element with
respect to €', and ) ;. represents summing over spins of
all particles in the final state. In Eq. (82) the energy in
scattering matrix is equal to the total energy €’ of the final
state b, which is an arbitrary real number over the real
interval ¢); < ¢’ < oo. The mass M and BS amplitude of
initial bound state a have been specified and the value of
the initial state energy in the rest frame is a specified value
M,. From Eq. (82), we have I(¢') > 0 for ¢ > ¢ and
I(¢') = 0 for € < €);, which is the reason that the integra-
tion in dispersion relation (81) ranges from ¢;, to +co.

If there are several decay channels, we should write
instead
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I(e') :%Z/aﬁgq e d3QLdPQ, &0, (2m)*

2

X 5(4>(Q11 +-+ Qn - Pe,)Z|T(c’;b)a (el)

spins

. (83)

where ). represents summing over all open and closed
channels. Because the total energy ¢’ of the final state
extends from €, to +oco0, we may obtain several closed
channels derived from the interaction Lagrangian.
Assuming that resonance y.o(3915) is a mixed state of
two components D*°D*0 and D*TD*~, we obtain one
closed channel D*D* derived from the interaction
Lagrangian (1), denoted as ¢} Since bound state lies below
the threshold, i.e., My < Mp- + M., the closed channel ¢/,
can not occur inside the physical world.

A. Channel J/w® with respect to arbitrary
value of the final-state energy

From Eq. (55), we obtain the total matrix element
between the final-state (J/y(Q), ®(Q’) out| and the speci-
fied initial four-quark state |P in)

—iR (1 p)a(€') = (Q, Q' out|P in)
= _l(2ﬂ>45(4)(Q + Ql - Pe,)T(c’] ;b)a(el)’
(84)
where the total energy ¢’ of the final state extends from
€ 10 00, 1.8, €y < ¢ < oo and €=My, +M,.

T .5)a(€’) is the bound state matrix element with respect

to ¢’ for channel ¢}, shown as Fig. 9. It is necessary to
emphasize that the energy in the two-particle irreducible

P =(0+Q0))2+p+k,
g=0'/2+p+k, K = Q' (M) +k,

Pr=(0+0)/2-0+p+k,
py=p+PJ/2,

' L, (p's k)

L(0.9) L(p,'. k") T/ (P,p)
FIG. 9. Matrix element with respect to ¢’ for channel J/yw.
The momenta in the final state satisfy Q + Q' = P¢ and the
momentum of the initial state is P. The final-state energy extends
from €, to +oo0 while the initial-state energy is specified, and the
crosses mean that the momenta of quark propagators depend on
the final-state energy ¢'.

Green’s function is equal to the final state energy ¢’ while
the mass M, and BS amplitude of initial bound state is
specified. We have introduced extended Feynman diagram
in Ref. [10] to represent arbitrary value of the final state
energy. In Fig. 9, the quark momenta in left-hand side of
crosses depend on the final-state energy and the momenta
in right-hand side depend on the initial-state energy, i.e.,
Pi—P2o—p3+ps=0+0Q =P and p|-ph=P.
When ¢’ = M, the crosses in Fig. 9 disappear and then
Fig. 9 becomes Fig. 5; T .h)a(€' = M) is the T-matrix
element with mass M|, for channel ¢/ expressed as Eq. (56).
Though the 7-matrix element 7'(.s ), (€’) has the same form

expressed as Eq. (56), these momenta should become

ps =0 +k,
0+0Q =P, (85

P3 = kv
py=p—P/2,

whete P = (0.0.0.iMy), P* = (0.0.0.i€'). 0'(My) = (~Q(My). iv/Q (M) T M2). © = (Qe). iy /@) + M2,
Q' = (-Q(¢),i\/Q*(€) + M3,), and Q*(¢') = [¢* — (M), + M,)*][€* — (M), — M,)*]/(4€”?). The initial state is

considered as a four-quark state, so the specified GBS amplitude of initial state should be

D7 + Dy
L (P k)xge (P p)T! (). ), (86)

where k' depends on P. Then we obtain the function I, (¢’) for channel J/yww

1 ) 3
(€)= [ ¢ 0Q R+ 0= P) S S Tl (87)

/=1 p=1

S
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PM_ 9 N
= qs 2 VM p,
P
w S
MS
4. Pa v P
Pt N e
PM' 0, Py

FIG. 10. Matrix element with respect to €’ for channel D*D~.
The momenta in the final state satisfy Q; + Q, = P¢ and the
momentum of the initial state is P. w represents the momentum of
the exchanged light meson. The crosses mean that the momenta
of quark propagators and the momentum w of the exchanged light
meson depend on the final-state energy €.

B. Channel D* D~ with respect to arbitrary
value of the final-state energy

The T-matrix element with respect to ¢’ for channel ¢}
can be represented graphically by Fig. 10. The total energy
¢’ of the final state extends from €cym 10 +00, ie., € m <
€ < oo and €,y = Mp+ + Mp-. In Fig. 10, the crosses

mean that the momenta of quark propagators and the
momentum w of the exchanged light meson depend on
Q1 and O, i€, py=pr=p3+tps=pi—P2—q3+
qs = Q1+ Q= P* and p} — p) = P.

We still use the vertex function to calculate the 7-matrix
element with respect to ¢ for channel ¢). However,
different from the ordinary vertex function, we should
introduce the vertex function with respect to €', which is
shown as Fig. 11. In Fig. 11, Q; depends on P¢, p/
depends on P and the crosses mean that the momenta of
quark propagators and the momentum w of the exchanged
light meson depend on the final state energy ¢’. Using the
approach introduced in Sec. III B, we can obtain the explicit
forms for the vertex functions with respect to ¢’, and then

W

q; Ps

R

P

FIG. 11. Vertex function for the exchanged light meson, heavy
pseudoscalar, and vector mesons with respect to ¢’. Q; depends
on P¢ and p) depends on P. The crosses mean that the momenta
of quark propagators and the momentum w of the exchanged light
meson depend on the final-state energy €.

PM o,
——————————————————— B e e
L VM '
wooo P
MS
R — WM P
PM' 0,

FIG. 12. Reduced matrix element with respect to ¢’ for channel
D" D~. The crosses mean that the momentum w of the exchanged
light meson depends on Q; and Q,.

Fig. 10 can be reduced to Fig. 12. In Fig. 12, we have
Q,+Q, =P, p —p, =P and the crosses lie on the
right-hand side of light meson propagator, which implies
that the momentum w of the exchanged light meson
depends on Q; and Q,.

From Eq. (69), we obtain the total matrix element
between the final state (D*(Q;),D™(Q,)out| and the
mixed state of two pure bound states D**D*° and D**D*~

_iR(C’z;b)a<€/) = (Q;, O, out|Pin)
= —i(zﬂ)45(4)(Ql +0, - PE/)T(C/Z;b)a(el)a
(85)

where T(c/z;h)a(e’ ) is the bound state matrix element with

respect to ¢ for channel ¢, shown as Fig. 12. When
€ = M,, the crosses in Figs. 10-12 disappear and then
these three extended Feynman diagrams become Figs. 68,
respectively; 7.1 )4 (¢/ = M) is the T-matrix element with
mass M, for channel ¢} expressed as Eq. (70). Though the
T-matrix element 7'(.;.),(¢’) has the same form expressed

as Eq. (70), these momenta should become

w = (p_QD(el),O), Ql +Q2:P€I,
py=p+P/2, ph=p—-P/2, (89)
Where P = (O’ O’ 0’ iMO), Pg’ _ (0’ O, 0’ iel), Ql _

(Qp(€),i€/2), 0, = (-Qp(€),ie'/2) and Q% () =
[€? — (Mp+ + Mp-)?]/4. The coefficients E; and E, in
interaction V,.(Q1, 0,,p) given by Eq. (66) should
become E,(¢') = E,(¢) = \/€'My/2. Then we obtain
the function I,(¢’) for channel D" D~

1 !
L) =5 [ ¢ 002000, + 02 - PY)

X |T(c’2;b)a (6/) ’2' (90)
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M & P
,,,,,,,,,,,,,,,,,,,, ]
q Ps VM 2
P
w R
MS

,,,,,,,, -— 4 P 7.
VM' QO P

FIG. 13. Matrix element for closed channel D;Dj. The mo-
menta in the final state satisfy Q; + Q, = P¢ and the momentum
of the initial state is P. w represents the momentum of the
exchanged light meson. The crosses mean that the momenta of
quark propagators and the momentum w of the exchanged light
meson depend on the final-state energy €.

C. Channel D’D" with respect to arbitrary
value of the final-state energy

In Figs. 10-12, PM and PM’ represent pseudoscalar
mesons D® and DO, respectively. Following the same
procedure as for charged channel D" D™, we can obtain
the T-matrix element T(cg;b)a(e/ ) with respect to ¢’ and the

function I3 (¢) for neutral channel ¢. Here, the total energy
¢’ of the final state extends from € m 10 +00, 8., €0y <

€ <ooand €y =Mp + Mpp.

D. Closed channel D*D*

The final state (D*, D* out| can be written as

- 1 _ 1
D*, D* out| = — (D*°, D** out| + —= (D*", D*~ out].
( =5 I+ 5 |
(1)
The total energy €' of the final state extends from € m 1O
too, e, €gqy <€ <oo and €4y =Mp + Mp:;.
Considering the lowest-order term of the two-particle

W

R

FIG. 14. The heavy-meson form factor with respect to €. Q,
depends on P¢ and P’ depends on P. The crosses mean that the
momenta of quark propagators and the momentum w of the
exchanged light meson depend on the final state energy €',

irreducible Green’s function, we can obtain the 7-matrix
element between the final state (D, D; out| and the initial
four-quark state, which can be represented graphically by
Fig. 13. In Fig. 13, VM and VM’ still represent D} and D},
respectively; O and Q, still represent the momenta of final

particles, but 0 = —M3,. and Q3 = —M%;; the crosses

mean that the momenta of quark propagators and the
momentum w of the exchanged light meson depend on
Q1 and Oy, ie, pi—py—p3s+pi=pi—p2—qt
s = Qi+ Q= P, and p} — py = P.

To calculate the T-matrix element with respect to ¢’ for
channel ¢}, we also introduce the form factor of heavy
meson with respect to €/, which is shown as Fig. 14. Using
the approach introduced in Sec. II C 1, we can obtain the
explicit forms for the heavy meson form factors (w?) with
respect to ¢/, and then Fig. 13 can be reduced to Fig. 15. In
Fig. 15, we have Q, + Q, = P*, p) — p5 =P, and the
crosses lie on the right-hand side of light-meson propaga-
tor, which implies that the momentum w of the exchanged
light meson depends on Q; and Q,.

Using the Heisenberg picture, we obtain the total matrix
element between the final-state (D;(Q,).D;(Q,) out|
and the mixed state of two pure-bound states D*0D*0
and D*tD*~,

_iR(c-g;h)a(e/) . <Q1, 0, out|Pin>
= —i(27)*6W(Q) + Q3 = P)T(5)a(€).
(92)

According to Mandelstam’s approach, the 7-matrix
element becomes

Iy —ief (02)e8(Q1)
2 = (2m)°2 \/ZEDI* (Ql)\/ZED7 (02)\/2E(P)

X (M + ML), (93)

270 Qe -
VM p'
T Lo
MS

I M

VM 0,

FIG. 15. Reduced matrix element for closed channel DZ*D}‘.
The crosses mean that the momentum w of the exchanged light
meson depends on Q; and Q,.
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where 85’:1’2'3(Q1) and 85/:1'2’3(Q2) become the polarization vectors of D} and Dj, respectively, and
ch d4P 0+
My = val,m(Ql’ 0>.p)x5: (P, p), (94a)
&p o
M v = WVMJ/A(QI’ 0>, p))(/lr (P’ p) (94b)

Here 30" (P, p) is expressed as Eq. (40), Virau(Q1. Q. p) and V]

11.4(Q1, O2, p) represent the interactions derived from one

light meson (o, p°, V;, and V) exchange and one-p™ exchange, respectively.
Now, we determine the interactions V,; ., (@1, Q. p) and V,, _ (Q1, Q. p). Structurally similar to Eq. (16), we obtain

the vertices of heavy vector mesons and light mesons derived from the light meson interaction with the light quark in heavy
meson

0 (I 1 £0 (o VRS (w2 a
(VM(QIIO)VM' (ph) =~ ED;<Q1>ED;<pa>{ (Q1) - € (P (w?). (95a)
(VM (@) J(O)[VM"™ (=p})) = 1 [e7(02) - & (=py)IAy (w2). (95b)
2\/En;(Q2)Ep;(~p))
Y () — 1 0 _819 ! (Iv) w2 | /
(VM(Q0)a(O)VM (1)) = ED;<Q1>ED;<pa>{[ (Q1) - (P (W)(Q1 + ph),
= 1 ) {[e(Q1) - PJed(PY) + [ (P) - Qlek(Q1)}). (95¢)

1
2\/E;(Q2)Ep; (=p))

— B W) {[e9(02) - (—ph)Jed (=ph) + [€” (=pb) - Qalel (02)}).  (95d)

(VAT ()5 (O) VM (=) = {[e7/(Qa) - e (=)l (w) (02 = )y

where w = p — (Q; — Q,)/2 is the momentum of light meson, /(w?) and A (w?) are the heavy meson form factors with
respect to €. Similarly, taking away the external lines including normalizations and polarization vectors &£(Q,), )(p}),

e},”(Qz), e (—p)), we obtain the interaction from one light meson (a, p°, V,, and V) exchange,
—ig;
w? + M2
Iv Iv
x FY (W2 EY (WL(Q1 + 1) - (@2 = PA)8uis = 6, [=(Q1 + Ph)oph, + Qac(Q1 + pY), ]
= [P1,(Q2 = Py); + (Q2 = P3), Q10w = P01 Py + P10 Qo — 6,:01P5, + 6,100}, (96)

le.m(Ql, 0,.p) = —2E(€')F (w?)

—in2 _ 2 i
2E2(€/)Fl(w2)5u}»67/4 + < lg/’ & s )

_|_
WM WM, WM

where E|(¢') = E,(¢/) = /€' M/2 and w = (w,0). The interaction from one-p* exchange becomes

) —i2g, v
V0ia(Q1.02.p) = F (WZ)W]&%Q (w?)
X {(Ql + p/l) : (QZ - p/2)6u257:;4 - 51/1[_(Q1 + p/])rpl2/4 + Q2T(Q1 + p/l)y]

= [P1,(Q2 = Py), + (Q2 = P3), Q10 = P01 Doy + P10 Qo — 8,:01P5, + 6,100} (97)
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These momenta in Fig. 15 become

w=(p-Qp(£).0), 0, + 0, =P,
pPi=p+P/2.  pr=p-P/2, (98)
where P =(0,0,0,iMy), P =(0,0,0,i¢'), Q

1 pum—

(Qp:(€).i€'/2), O = (=Qp:(€'). i€'/2), and Qj-(¢') =
€7 — (Mp; +MD7)2]/4~

Substituting Egs. (96) and (97) into (94), we obtain the

explicit forms for tensors M, and M',4. The p integral is

also computed in instantaneous approximation. /\/lf,;‘l and

! i;‘, only depend on Q; and Q,, which can be calculated
by means of the method given in Sec. III A. Applying
Eq. (82), we obtain the function I;(¢’) for the closed
channel D*D*

1

L(¢) =3 / & 0,d*Qy(27)*89 (01 + 0y — PF)

3 3
X Z Z |T(c2;b)a (€I)|2' (99)

o=1 o=1

VI. PHYSICAL MASS AND
WIDTH OF RESONANCE

For resonance y.(3915), the dispersion relation (81)
becomes

P [ Li(€) P [ L)
D(M,) = —— de' == [T 22 e
17 2"
P [ I(e 1 [ T,(e
- /3(6) de/__/ /4(6) d€/,
T ELQ_MG_MO T 5(;£‘.M€_M0

(100)

where € v = My, + M, €0 = Mpr +Mp-, €y =
Mpo + Mpo, and €M = MD; + MDT' From Eq. (79), we
obtain that the physical mass of resonance y.(3915) is
M = M, + (27)’D(M,). Replacing M, by M in Egs. (56)
and (60), we recalculate the matrix element T<C/l;b)a(M )
and obtain the width I'y for physical decay model
xc0(3915) — J/ww. Replacing M, by M in Egs. (70) and
(72), we recalculate the matrix element 7', ), (M) and obtain
the width T, for physical decay model y.(3915) — D™ D~.
For the isospin conservation, it is easy to obtain the width '3
for physical decay model y,((3915) — D°D°.

VII. NUMERICAL RESULT

Considering the isospin conservation, we employ
the constituent quark masses m, = m,; = 0.33 GeV,
the heavy quark mass m,. = 1.55 GeV [30] and the

meson masses M, =045 GeV, M, =0.782 GeV,
Mo =M, =0.775 GeV, My =1019 GeV, Mpo=
Mp+ =2.007 GeV, Mp = Mp+ =1.865 GeV, and
M, =3.097 GeV [34]. Without an adjustable parameter,
we numerically solve the eigenvalue equation (38) and
obtain the masses and wave functions of pure bound states
D*°D* and D**D*~ with spin-parity quantum numbers
0". Considering the cross terms between these two pure
bound states D*°D*0 and D**D*~ and using the coupled-
channel approach, we obtain the mass M, of the mixed
state with Ot. Then M, and GBS wave function
2P PO (P, p.k, k') given in Eq. (48) are used to evaluate
the matrix elements T'(r.),(Mo) and T (., (M) with the
mass of the meson-meson bound state, and the decay
widths T'; (M) and I'y(M,) with the mass of the meson-
meson bound state should not be the width of physical
resonance. From Egs. (56), (57), and (85), we calculate the
T-matrix element 7',/ ), (€') with respect to €’ for channel
J/ww. From Egs. (66), (67), (70), (71), and (89), we
calculate the 7-matrix element 7', ), (¢') with respect to €’
for channel D*D~. From Egs. (93), (94), (96), (97) and
(98), we calculate the T-matrix element 7' ), (¢') with

respect to € for closed channel D*D*. From Egs. (87), (90),
and (99), we calculate the functions I;(¢/) over
€ m < € < oo, L(¢') over € m <€ < oo, I;(¢') over
€sm <€ < oo, and I4(€') over €, y <€ < oo, respec-
tiVely. By doing the numerical calculation, we obtain the
mass correction AM = (27)°D (M) and the physical mass
M for resonance y.y(3915). Finally, the physical mass is
used to recalculate these strong decay widths
[ (x0(3915) = J/yw), T(x.0(3915) - D*D™), and
I5(x.0(3915) — D°D°). Some errors in Ref. [10] have
been revised. M and I should be the observed mass and full
width in experiments. Our numerical results for resonance
Xc0(3915) are in good agreement with the experimental
data, which are presented in Table I.

It is necessary to emphasize that there is not an adjustable
parameter in our approach. We require the meson-quark
coupling constants g and the parameters wy in BS
amplitudes of heavy mesons to calculate the mass and
decay width of physical resonance. The meson-quark
coupling constants can be determined by QCD sum rules
approach [21], and these parameters in BS amplitudes of

TABLE I. Mass M and full width I" for physical resonance
Xc0(3915). M, is the mass of mixed state of two bound states
D*9D*0 and D**D*~, AM is the calculated correction due to all
open and closed channels, and I; is the calculated width of ith
decay channel. (Dimensioned quantities in MeV).

Quantity MO AM M Fl Fz F3 r
This work 3952.7 -30.7 39220 21.815 1.5 24.8
PDG [34] 39217+ 1.8 18.8 £3.5
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heavy mesons are fixed by providing fits to observables
[26,27,35]. Our approach also involves the constituent
quark masses m,, my, and the heavy quark mass m,.
According to the spontaneous breaking of chiral symmetry,
the light quarks (u, d, s) obtain their constituent masses
because the vacuum condensate is not equal to zero, and the
heavy quark mass m, is irrelevant to vacuum condensate.
Normally, the value slightly greater than a third of nucleon
mass is employed as the constituent mass of light quark.
The value of heavy-quark mass m, can be determined by
the experimental mass of charmonium system J/y. Of
course, the values of these parameters, including g, @y, m,,
my, and m,., are values in respective ranges. Simultaneously
varying these parameters in respective ranges, we find that
the uncertainties of numerical results are at most 5%.
Despite the large uncertainty of meson mass M, it has been
found that the uncertainties of numerical results from
meson mass M are also very small in our previous works
[5.8,9,13] and Refs. [6,36]. Therefore, in our approach the
calculated mass and decay width are uniquely determined.

Up to now, a theoretical approach from QCD to inves-
tigate resonance which is regarded as an unstable two-body
system has been established. In this paper, we only explore
exotic meson resonance which is considered as an unstable
molecular state composed of two heavy vector mesons. The
extension of our approach to more general resonances is
straightforward, while the interaction Lagrangian may be
modified. More importantly, it is most reasonable and
fascinating to investigate resonance as far as possible from
QCD. In the framework of quantum field theory, the
nonperturbative contribution from the vacuum condensates
can be introduced into the BS wave function [13] and the

two-particle irreducible Green’s function, and then the
calculated mass and decay width of resonance will contain
more inspiration of QCD.

VIII. CONCLUSION

Exotic resonance y.y(3915) is considered as a mixed
state of two unstable molecular states D*9D*0 and D*+D*~,
and we investigate the time evolution of the meson-meson
molecular state as determined by the total Hamiltonian.
According to the developed Bethe-Salpeter theory, the total
matrix elements for all decay channels should be calculated
with respect to arbitrary value of the final state energy.
Because the total energy of the final state extends from €y,
to +oo, we consider three open decay channels J/yw,
DTD~, D°D® and one closed channel D*D* from the
effective interaction Lagrangian at low-energy QCD, which
are exhibited by extended Feynman diagrams. Using the
developed Bethe-Salpeter theory, we calculate the mass M
and full width I of physical resonance y.(3915), which
are in good agreement with the experimental data.
Obviously, our work can be extended to more general
resonances.
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APPENDIX: TENSOR STRUCTURES IN THE GENERAL FORM OF BS WAVE FUNCTIONS

The tensor structures in Eqs. (8) and (9) are given below [5,9]

1
T/l‘r

= (P2 +mP-p—mP-p—nmP?)g, — (pir: + mPepy — mPip: —mimP,P.),
T5. = (P> +2mP - p+niP?)(p> = 2mP - p + 13P?)g;,
+

(P> +mP-p—=mP-p—nmP*)(p,p. +mPip; —mP.p, — mmP,P,)
—(p* =2mP - p+mP*)(pip. + mPp. + mP.p, +niP,P,)
— (P> +2mP - p+niP>)(pip: — mPip. — mP.p, + ;P,P,).

1
T}WMzﬁmw~mwywﬂﬂmﬂp+ﬁﬁmﬁ—Mf4ﬂw?5@+mmf

—(p*+mP-p—mP-p—mmP*)(p—-mP),]
— Py, Py l(P? = 2mP - p + m3P?)(pape + mPipe +mPepy +niPyP;)
— (PP +mP-p—mP-p—mmP?)(p,p. +mPip; —mP.p; — mmP,P,)],
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+ Py, Py (PP +2mP - p + i P?)(pape — P ipe — mPepy + 15P,Py)
—(PP4+mP-p—mP-p—mmP?)(p,p: + mPip. —mP.p; —mimP;P.)),

T = %p{,,z PGy (P? = 2mP - p + 3PP [(p* +mP - p
—mP - p=mmP?)(p +mP);, = (p* +2mP- p+miP?)(p—mnP),]
T3 e = %(p2 +2mP - p+mP?) (PP =2mP - p PP Py G i e
1 2 2 p2
~Ple Pu9uye(P? = 2mP - p +mP?)(p +mP),
- ;!p{ﬂz PGy (P72 P - p i P?)(p —mP),
+ Py, Pu,(Pape + M Pipe —mPpy — mmPyPy),
T e = Pluy " Puy€uacc PePe€uyeze e P,
Ty = =P +mP-p =P p)Pl, - Puy)inePe
+ 2nimP - p+mp® = mpPP) P Py €y acePe
TP Pu€uyagc PePePe + Pl Py yesc PePePas
Tharnie = =P PPy Puy€uyasePe + PPy *** Puy€uinePe
= Pl Puu)iecPePePe + Py Puy€unyeec PePe P
T e = =P p+ P =mP?)pyy, - Py yieePe
+ P (mp = mP +20mP)P, Py yinePe
TP Puuyasc PePePe + Diyy + PuyCuyyeec PPl
T e = ~P2P iy Puy€uyisePs + (P D)P iy - Py yanePe
=Pl PuCu e PePcPe + Py o Py yeec PP P
7,14:-.-”,/11 =(p*+mP-p—mP-p— 771'721’2)17{,43 Py A€y e PePe
=Py P€uyyeec PP (P — 1aP);s
Tyt pie = (PP +mP - p=mP - p=mmP?) Py, - Py G c€u)iecPePe

=Py Pu€uny,ecPePe(p +mP).
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