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The spectrum of the charmed meson-(anti)meson system is a fundamental tool for disentangling the
nature of a few exotic hadrons, including the recently discovered Tþ

ccð3875Þ tetraquark, the Xð3960Þ, or the
Xð3872Þ, the nature of which is still not clear after almost two decades of its discovery. Here we consider
that the charmed meson-(anti)meson short-range interaction is described by the exchange of light mesons
(σ, ρ, ω). The effects of light-meson exchanges are recast into a simple contact-range theory by means of a
saturation procedure, resulting in a compact description of the two-hadron interaction. From this, if the Tþ

cc

were to be an isoscalar D�D molecule, then there should exist an isoscalar J ¼ 1 D�D� partner, as
constrained by heavy-quark spin symmetry. Yet, within our model, the most attractive two charmed meson
configurations are the isovector J ¼ 0 D�D� molecule and its sextet D�

sD� and D�
sD�

s flavor partners.
Finally, we find a tension between the molecular descriptions of the Tþ

cc and that of the Xð3872Þ and
Xð3960Þ, where most parameter choices suggest that if the Tþ

cc is purely molecular then the Xð3872Þ
overbinds [or conversely, if the Xð3872Þ is a molecule the Tþ

cc does not bind]. This might be consequential
for determining the nature of these states.

DOI: 10.1103/PhysRevD.108.114001

I. INTRODUCTION

The LHCb has recently observed a state within the
Dþ

s D−
s invariant mass distribution of the Bþ → Dþ

s D−
s Kþ

decay [1]. With a mass and width of

M ¼ 3956� 5� 10 MeV;

Γ ¼ 43� 13� 8 MeV; ð1Þ

it has been named the Xð3960Þ. Its preferred quantum
numbers are JPC ¼ 0þþ and it might be the same resonance
as the previous Xð3930Þ state observed in the DþD−

invariant mass distribution [2], which in turn could also
happen to be the same state as the χ0ð3915Þ listed in the
Review of Particle Physics (RPP) [3].1 The Xð3960Þ can be
interpreted as a charmed meson-antimeson state [6–10],

from which it is natural to consider whether it could be
related to the well-known Xð3872Þ, with JPC ¼ 1þþ and
whose mass and width are [3]

M ¼ 3871.65� 0.06 MeV;

Γ ¼ 1.19� 0.21 MeV; ð2Þ

which has been conjectured to be a D�D̄ bound state
[11–13], though no consensus exists yet on whether they
are molecular or not [14–22].
If molecular, the previous Xð3872Þ and Xð3960Þ states

would be, in principle, related to the doubly charmed
tetraquark—the Tþ

ccð3875Þ—discovered in 2021 by the
LHCb Collaboration [23,24] and suspected to be a two
charmed meson bound state [25–31], though predictions of
the Tþ

cc as a compact tetraquark predate its observation by
decades [32–35]. The Tþ

cc is extremely close to the D0�Dþ

threshold, where the mass difference δm ¼ mðTþ
ccÞ −

mðDÞ −mðD�Þ is

δmBW ¼ −273� 61� 5þ11
−14 keV; ð3Þ

if a standard Breit-Wigner (BW) shape is used to fit the
Tþ
cc [23], or

δmU ¼ −360� 40þ4
−0 keV; ð4Þ
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1Or it might not: a recent study [4] suggests that the
Xð3930Þ=χ0ð3915Þ is a JPC ¼ 2þþ state and thus not identical
to the Xð3960Þ, while Ref. [5] proposes a possible method to
differentiatewhether theXð3930Þ andXð3960Þ are the same or not.
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if it is fitted with a unitarized Breit-Wigner shape [24],
where this later determination is probably more suitable for
a state close to a threshold. This tetraquark is also relatively
narrow, with a width of

ΓBW ¼ 410� 165� 43þ18
−38 keV; ð5Þ

ΓU ¼ 48� 2þ0
−12 keV; ð6Þ

depending on the resonance profile used (where the
unitarized BW shape is usually considered the most reliable
of the two).
Here we will consider the Xð3872Þ, Xð3960Þ, and Tþ

cc
from the point of view of molecular spectroscopy and
within the particular phenomenological model we proposed
in [36]. The questions we would like to address are the
following: Is it sensible to believe they are bound states?
Can the Tþ

cc be described with the same parameters as the
Xð3872Þ and Xð3960Þ? What are their partner states?
To answer these questions, we will use a simple

saturation model in which the effect of the light-meson
exchange forces is encapsulated in the coupling constant of
a contact-range theory, modulo a proportionality constant
that can be determined from a “reference state,” i.e., an
observed state whose nature we will assume to be a specific
type of two-body bound state. The idea of a reference state
can, in turn, be used to relate different molecular candi-
dates. This is particularly relevant to the connection
between the Tþ

cc and the Xð3872=3960Þ: if these two states
can be described with the same set of parameters within a
given model, this will give credence to the idea that both of
them conform to the assumptions of said model.
However, as we will see, this is not the case in our model,

where there is a tension between a pure molecular explan-
ation of the Tþ

cc as a two charmed meson bound state and
the Xð3872=3960Þ as charmed meson-antimeson systems.
That is, while the Xð3872Þ and Xð3960Þ can be easily
explained asD�D̄ andDsD̄s bound or virtual states with the
same parameters, this will lead to insufficient attraction in
the D�D system as to guarantee binding (though there will
be remarkable attraction nonetheless). This result would be
consistent with the picture of Janc and Rosina [37], who
conjectured that the binding of a tetraquark below the D�D
threshold requires both the molecular and quark
components.

II. SATURATION OF THE CONTACT-RANGE
COUPLINGS

We will consider a generic two-hadron system H1H2,
which we will describe by means of an S-wave contact-
range theory containing a central and spin-spin term,

VC ¼ C ¼ C0 þ C1
ˆS⃗L1 ·

ˆS⃗L2; ð7Þ

where VC is the contact-range potential in p-space, C is its
strength (or coupling), which can be subdivided intoC0 and

C1, the central and spin-spin coupling constants, and
ˆS⃗Li ¼

S⃗Li=jSLij is the reduced light-spin operator for hadron
i ¼ 1, 2 (where S⃗Li is the light-spin operator and SLi the
total light-spin of hadron i ¼ 1, 2). For S-wave charmed

mesons, ˆS⃗Li ¼ σ⃗Li, with σ⃗ representing the Pauli matrices.
Here it is interesting to notice that the dependence on the

light spin (i.e., the spin of the light q ¼ u, d, s quarks
within hadrons H1 and H2) is a consequence of heavy-
quark spin symmetry (HQSS), which implies that any
dependence on the spin of heavy quarks will be suppressed
by a factor of ΛQCD=mQ, with ΛQCD ≈ 200 MeV. In
principle, there could be higher-spin operators (quadrupo-
lar, octupolar, etc.), but in practice, higher order terms will
be increasingly suppressed. In addition, for S-wave
charmed mesons, we have SL ¼ 1=2, which precludes
the appearance of the aforementioned high-spin operators.
The contact-range approximation assumes that the bind-

ing momentum of the two hadrons is not high enough to
disentangle the details of the interaction binding them. That
is, we do not have to consider the full two-hadron potential
and all its details, but only its coarse-grained properties. We
will do this by assuming that the two-hadron potential is
derived from the exchange of light mesons (σ, ρ, ω), which
will then saturate the coupling constants. Finally, pions are
long ranged and consequently do not saturate the contact-
range couplings of our model. They have also been shown
to be perturbative for systems composed of two charmed
mesons [38,39], a point that we have also explicitly
checked with concrete calculations in our saturation model
[36]. Thus, we will simply ignore their contribution, as it
can be safely neglected.
For the saturation of the couplings, we will consider the

exchange of the scalar and vector mesons separately, as
these mesons have different masses. For the scalar meson
(the σ), the potential takes the form

VSðq⃗Þ ¼ −
gS1gS2
m2

S þ q⃗2
; ð8Þ

where q⃗ is the exchanged momentum, mS is the scalar
meson mass, and gSi with i ¼ 1, 2 is the scalar coupling for
hadrons H1 and H2. This leads to the following contribu-
tion to the couplings:

CS
0ðΛ ∼mSÞ ∝ −

gS1gS2
m2

S
; ð9Þ

CS
1ðΛ ∼mSÞ ∝ 0; ð10Þ

where we remind the reader that saturation works best for a
regularization scale of the same order of magnitude as the
mass of the exchanged particle (hence,Λ ∼mS) and that we
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only expect the contact-range couplings to be proportional
to the potential at zero momentum, modulo an unknown
proportionality constant. For the vector meson, the
potential is

VVðq⃗Þ ¼
gV1gV2
m2

V þ q⃗2
þ fV1fV2

6M2

m2
V

m2
V þ q⃗2

ˆ⃗SL1 ·
ˆ⃗SL2þ…; ð11Þ

where we have momentarily ignored isospin, SU(3)-flavor,
and G-parity factors for obtaining a more compact expres-
sion; mV is the vector meson mass, gVi is the electric-type
(E0) coupling, fVi is the magnetic-type (M1) coupling, and
M is a scaling mass for the magnetic-type term, for which
we will choose the nucleon mass M ¼ mN ¼ 938.9 MeV.
The dots represent S-to-D wave terms and Dirac-δ con-
tributions that do not saturate our contact-range potential
[40]. The previous potential leads to the contributions

CV
0 ðΛ ∼mVÞ ∝

gV1gV2
m2

V
ðζ þ T12Þ; ð12Þ

CV
1 ðΛ ∼mVÞ ∝

fV1fV2
6M2

ðζ þ T12Þ; ð13Þ

where we have now included the isospin and G-parity
factors for two charmed meson systems without strange-
ness, with ζ ¼ þ1 (−1) for the meson-meson (meson-
antimeson) case and T12 ¼ τ⃗1 · τ⃗2 as the isospin factor. The
extension to systems with strangeness is straightforward, as
it only requires one to consider the appropriate SU(3)-
flavor Clebsch-Gordan coefficients.
Next, we have to combine the contributions from scalar

and vector meson exchanges, where there is the problem
that the respective renormalization scales at which satu-
ration is optimal is different for the scalar and vector
mesons. For this we will use a renormalization group
equation (RGE) to determine how the couplings evolve
when the regularization scaleΛ changes. For nonrelativistic
two-body theories, the RGE of a contact-range coupling
CðΛÞ takes the form [41]

d
dΛ

hΨjVCðΛÞjΨi ¼ 0; ð14Þ

with VCðΛÞ as the regularized contact-range potential, Λ as
the regularization scale, and Ψ as the two-body wave
function. If the wave function displays a power-law
behavior of the type ΨðrÞ ∝ rα=2 at distances r ∼ 1=Λ,
the RGE will simplify to [41]

d
dΛ

�
CðΛÞ
Λα

�
¼ 0; ð15Þ

or, equivalently,

CðΛ1Þ
Λα
1

¼ CðΛ2Þ
Λα
2

; ð16Þ

with Λ1 and Λ2 as two values of the regularization scale.
For the particular case at hand, i.e., the saturated couplings
at the scalar and vector mass scales, the previous RGE leads
to the following combination:

CðmVÞ ¼ CVðmVÞ þ
�
mV

mS

�
α

CSðmSÞ: ð17Þ

For determining the exponent α we are still required to
make assumptions about the power-law properties of the
wave function at distancesmVr ∼ 1, i.e., ΨðrÞ ∼ rα=2. From
the semiclassical approximation and the Langer correction
[42], we end up with α ¼ 1.
Putting all the pieces together, the saturated contact-

range coupling is determined modulo an unknown pro-
portionality constant and takes the following form:

CsatðΛ¼mVÞ ¼Csat
0 þCsat

1

ˆ⃗SL1 ·
ˆ⃗SL2

∝
gV1gV2
m2

V

�
ζþ T̂12

��
1þ κV1κV2

m2
V

6M2
ĈL12

�

−
�
mV

mS

�
α gS1gS2

m2
S

; ð18Þ

where T̂12 ¼ ˆI⃗1 ·
ˆI⃗2, ĈL12 ¼ ˆS⃗L1 ·

ˆS⃗L2, and κVi ¼ fVi=gVi.

III. CALIBRATION

In this section,we calibrate theRG-saturationmodel. This
requires us to specify the regularization of the contact-range
potential and the masses and couplings of the light mesons.
Yet, the most important factor to make concrete predictions
is the determination of the proportionality constant for
the saturated couplings. For this we have to choose a
reference state—a plausible molecular candidate—from
which to derive all other predictions. We will consider a
few candidates—theXð3872Þ,Xð3960Þ, Tþ

ccð3875Þ, and the
DD̄ state calculated in the lattice [43]—and argue that the
Xð3872Þ as a 1þþ D�D̄ bound state is the most suitable
choice from which to derive the molecular spectrum of the
two charmed meson systems.

A. Calculating the spectrum

For the regularization, we use a regulator function fðxÞ,

VC ¼ Csatf
�
p0

Λ

�
f
�
p
Λ

�
; ð19Þ

forwhichwewill choose aGaussian,fðxÞ ¼ e−x
2

, andwhere
Λ is the cutoff, which we take to be Λ ¼ 1 GeV as in [36].
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This potential will be plugged into the Lippmann-Schwinger
equation for a bound state,

ϕðpÞ þ 2μ

Z
d3q⃗
ð2πÞ3

hpjVCjqi
Mp −

q2

2μ −Mth

ϕðqÞ ¼ 0; ð20Þ

where ϕðpÞ refers to the vertex function, which is related

to the wave function ΨðpÞ by the relation ðMp −
p2

2μ−
MthÞΨðpÞ ¼ ϕðpÞ, and μ is the reduced mass of the system,
whileMth,Mp are themass of the threshold and of the pole of
the two-body scattering amplitude (i.e., the mass of the
bound state), respectively. In the case at hand, this equation
further simplifies to

1þ μ

4π2
CsatðΛÞIðγ2;ΛÞ ¼ 0; ð21Þ

where γ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðMth −MpÞ

p
is the wave number of the

bound state and with Iðγ2;ΛÞ given by

Iðγ2;ΛÞ ¼
ffiffiffiffiffiffi
2π

p
Λ − 2e2γ

2
2
=Λ2

πγ2 erfc

� ffiffiffi
2

p
γ2

Λ

�
; ð22Þ

where erfcðxÞ is the complementary error function.
For calibrating the CsatðΛÞ coupling and its unknown

proportionality constant in Eq. (18) we will use a reference
state. In the doubly charmed sector, the only candidate state
is the Tþ

cc tetraquark, while in the hidden-charm sector, in
addition to the experimentally observed Xð3872Þ, we may
also include the recent Xð3960Þ (for which we will use the
location of its pole in the scattering amplitude as deter-
mined, for instance, in [6]) or the DD̄ and DsD̄s poles
found in the lattice [43]. As the binding energy of the
reference state is known, we just obtainCsat

ref from the bound
state equation

1þ μref
4π2

Csat
refIðγ2;ΛÞ ¼ 0: ð23Þ

After this, if we want to predict the mass of a given
molecule, we calculate the ratio

Rmol ¼
μmolCsat

mol

μrefCsat
ref

; ð24Þ

which is independent of the proportionality constant, and
then from Rmol we simply solve the bound state equation

1þ Rmol

�
μref
4π2

Csat
ref

�
Iðγ2;ΛÞ ¼ 0; ð25Þ

to obtain the binding energies.
For the couplings of the light-meson with the charmed

mesons, we will resort to a series of well-known phenom-
enological relations. For the vector mesons (ρ, ω, K�, and

ϕ) we have simply made use of the mixing of these mesons
with the electromagnetic current (vector meson dominance
[44–46]) as a way to determine the gV and κV (E0 and M1)
couplings: we can match gV and κV to the charge and
magnetic moment of the particular hadron in which we are
interested. This results in gV ¼ 2.9 and κV ¼ 2.85, as
explained in [36]. For the scalar meson, the linear σ model
[47] predicts gSNN ¼ ffiffiffi

2
p

mN=fπ ≃ 10.2 for the nucleon,
where mN is the nucleon mass and fπ ≃ 132 MeV is the
pion weak decay constant. For the charmed meson, which
contains one light quark instead of three, we assume the
quark model relation gS ¼ gSqq ¼ gSNN=3 ¼ 3.4, i.e., that
the coupling of the σ is proportional to the number of light
quarks within the hadron.
In the strange sector, the contributions coming from the

exchange of the K� and ϕ vector mesons have a shorter
range than the ones from the ρ and ωmesons. In analogy to
Eq. (17), their contribution will be slightly suppressed in
comparison to the nonstrange vector mesons. If we take the

Dð�Þ
s Dð�Þ

s and Dð�Þ
s D̄ð�Þ

s systems as an illustrative example,
the saturated coupling will be

Csat
mol ∝

�
mV

mϕ

�
α g2V
m2

ϕ

½2ζ�
�
1þ κ2V

m2
ϕ

6M2
ĈL12

�
−
�
mV

mS

�
α g2S
m2

S
;

ð26Þ

where we follow the conventions of Eq. (17), except for the
couplings, for which we use the values mentioned in the
previous paragraph. As can be appreciated, the ϕ vector
meson contribution is suppressed by a ðmV=mϕÞα factor
with respect to the ρ and ω contributions that we use
as our baseline. For the masses of the vector mesons, we
use mV ¼ ðmρ þmωÞ=2 ¼ 775, mK� ¼ 890, and mϕ ¼
1020 MeV. The mass of the scalar meson is taken to be
mS ¼ 475 MeV, i.e., the middle value of the (400–
550) MeV range listed in the RPP [3].
We also assume that the coupling of the scalar to the s

quark is approximately the same as to the u and d quarks:
gS ¼ gSuu ¼ gSdd ¼ gSss. This assumption works well
when comparing the DD̄ and DsD̄s systems predicted in
the lattice [43]: a good prediction of theDsD̄s from theDD̄
(or vice versa) requires the coupling of the σ to be similar to
the strange and nonstrange quarks. Indeed, if we use the
location of the DD̄ bound state as input, we predict the
DsD̄s state to be located at

Mp − 2mðDsÞ ¼ ð−1.0ÞV ½0.2 − 0.5i� MeV; ð27Þ

where the first (parentheses) and second (brackets) value
correspond to a single (DsD̄s) and coupled (DD̄−
DsD̄s −D�D̄�) channel calculation. Notice that while in
the single channel case we obtain a virtual state close to the
DsD̄s threshold (which we indicate with the V superscript),
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in the coupled channel calculation the pole is located in the
(I,II) Riemann sheet of channels DD̄ and DsD̄s, respec-
tively. This is to be compared with Mp − 2mðDsÞ ¼
−0.2þ0.16

−4.9 − 0.27þ2.5
−0.15

i
2
MeV in [43], which is located in

sheets (II,I) for 70% of the bootstrap samples or in sheets
(I,II) for the rest. We note that this choice is also necessary
for reproducing the Zcsð3985Þ as a D�D̄s −DD̄�

s molecule,
as we previously discussed in Ref. [48].
It is also interesting to notice that the calculation above is

not only relevant for the choice of the scalar coupling with
the s quark, but also for the relative importance of coupled
channel effects. Indeed, the difference in the position of the
DsD̄s pole is merely on the order of 1 MeV for the single
and coupled channel cases, which suggest a minor role for
the coupled channel dynamics. This conclusion agrees with
our previous numerical results in [36]. Additionally, the
Oð1 MeVÞ estimation for the coupled channel effects
happen to be smaller than the uncertainties of our model,
which we explain in the next few lines. For the previous
reasons wewill not further consider coupled channel effects
when calculating the molecular spectrum.

B. Error estimations

For calculating the expected errors of the model, we will
consider two sources of uncertainty. The first is the light-
meson exchange potential itself, for which the parameters
are not that well known. In principle, this would include a lot
of uncertainties coming from each individual parameter, but
in practice, the single largest source of uncertainty is the
scalar meson. Its large width and the uncertainty in its mass
are both well-known issues within the light-meson exchange
picture, for which several solutions exist [49–52] (for a more
detailed explanation, we refer to Appendix B of [36]). Here,
in particular, we consider the finding that the exchange of a
widemeson can be effectively approximated by a narrow one
after a redefinition of its parameters [49,50].
For modeling the error derived from the scalar meson,

we will simply vary its mass within the range listed in the
RPP [3], i.e., 400–550 MeV, leading to

ΔMOBE ¼ MpðmS � ΔmSÞ −MpðmSÞ; ð28Þ

with mS ¼ 475� 75 MeV, where this error is asymmetric.
Numerically, this is equivalent to changing the magnitude
of Csat by up to 30%–40% depending on the specific
molecular configuration, which is, for instance, comparable
with the relative errors used for the light-meson exchange
potential within the one boson exchange (OBE) model
of [53].
The second source of uncertainty is the contact-range

approximation itself, the accuracy of which depends on the
comparison between the momentum scale of the predicted
bound state and the masses of the exchanged mesons. That
is, we will assume a relative error of size γ2=mV ,

ΔMcontact ¼ Bmol

�
γ2
mV

�
; ð29Þ

which happens to be symmetric (and in most cases smaller
than the error coming from the uncertainty in the scalar
meson mass) and where Bmol ¼ Mth −Mp refers to the
binding energy. Finally, we will sum these two errors in
quadrature.

C. Reference states

For the reference state, we have considered four possible
choices: the Xð3872Þ, the Xð3960Þ, the Tþ

ccð3875Þ, and the
0þþ DD̄ bound state found in the lattice [43]. The specific
inputs we will use are as follows:
(a) For the Xð3872Þ, we will consider it as a 1þþ D�D̄

bound state with the mass as determined in the RPP
[3], i.e., 3871.65� 0.06 MeV, which we round up to
3871.7 MeV.

(b) For the Xð3960Þ, we will refer to the recent theoretical
analysis of [6], which considers theXð3960Þ to be either
a virtual or bound 0þþ DsD̄s state. The determination of
the pole mass in Ref. [6] happens to be the same in the
virtual and bound state cases, yielding 3928� 3 MeV.
However, wewill only consider thevirtual state solution
as the input for our calculations. This is because other
input choices already predict a bound Xð3960Þ in the
same mass range of Ref. [6].

(c) For the Tþ
ccð3875Þ, we will use its mass as determined

from the unitarized Breit-Wigner shape in [24], i.e., by
the δm in Eq. (4). As we are using the isospin
symmetric limit, this will give a bound state energy
of B ¼ 1.065 MeV.

(d) For the 0þþ DD̄ bound state, we use the binding energy
calculated in the lattice [43], i.e., B ¼ 4.0þ5.0

−3.7 MeV.
We will not propagate the error in the input masses, as they
usually generate smaller uncertainties than the scalar meson
or the contact-range approximation. For choosing which one
of these four inputs to use, we will compare the predictions
derived from each of the inputs for the spectroscopy of a few
molecular candidates and for the decays of theTþ

cc tetraquark,
as we will explain in the following lines.

D. Spectroscopy comparison

First, we consider the predictions for the spectroscopy of
the charmed meson-(anti)meson molecular candidates
depending on whether the reference state is the Xð3872Þ,
the Xð3960Þ, the Tcc, or the DD̄ state found in the lattice.
We list these predictions in Table I for the molecular
configurations for which there exists a clear candidate state
(observed either in the experiment or the lattice).
The reason for comparing the predictions for different

inputs is that we want to check the internal consistency of
the molecular hypothesis for the most common candidates
in our model. What we find is that the Xð3872Þ and
Xð3960Þ can be explained with the same set of parameters
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within the uncertainties of our model, but this is not the case
for the Tcc. This indicates that if theXð3872Þ or theXð3960Þ
were to be explained in purely molecular terms, the Tcc
would require additional attraction to bind, whichmight very
well come from nonmolecular components. Alternatively,
were theTcc to be purelymolecular, then it would be difficult
to explain the mass of the Xð3872Þ and Xð3960Þ within the
molecular picture in our saturation model.
We elaborate on this argument in more detail as follows:
(1) If we use theXð3872Þ as the reference state, there are

a few predictions in Table I on which it is worth
commenting:

(a) There is a 0þþ DsD̄s virtual state at
3922þ11

−15 MeV, which might be identified with
the Xð3960Þ. Even though the Xð3960Þ has been
found at 3956 MeV, i.e., above the DsD̄s thresh-
old, this determination of its mass depends on
the assumption that the Xð3960Þ is correctly
described with a Breit-Wigner profile. As has
been discussed in the literature [57,58], this is
not necessarily true for bound and virtual states
close to threshold. In this regard, Ref. [6] re-
cently analyzed the Dþ

s D−
s invariant mass dis-

tribution of [59] and found that the Xð3960Þ can

TABLE I. Basic set of predictions for known molecular candidates observed in experiments or calculated in the lattice and their mutual
compatibility. We consider three sets of predictions depending on whether we use the Xð3872Þ, the Xð3960Þ, or the Tccð3875Þ as the
input (or reference state) for our saturation model. “Input” refers to the input state used to determine the proportionality constant in
Eq. (18), “system” indicates the particular two-meson system under consideration, IðJPðCÞÞ refers to its spin, parity, and C-parity (when
applicable), S to its strangeness, Rmol is the central value (mS ¼ 475 MeV) of the molecular ratio defined in Eq. (24), Bmol is the central
value of the binding energy,Mmol is the mass of the molecular state with uncertainties (calculated as explained in Sec. III B), “candidate”
refers to a known resonance that might correspond to the two-meson system we are considering, and Mcandidate is the mass of such a
candidate (this includes not only experimental results, but also theoretical analyses of the results and lattice data). The superscript V
above the binding energy indicates a virtual state, while a (B) attached to the upper error of the mass indicates that the state can change
from virtual to bound within the uncertainties of the model. All the binding energies and masses are in units of MeV.

Input System IðJPðCÞ) S Rmol Bmol Mmol Candidate Mcandidate

Xð3872Þ D�D 0 (1þ) 0 0.45 ð24.0ÞV 3852þ17
−24 Tcc 3875.7

DD̄ 0 (0þþ) 0 0.70 ð1.5ÞV 3733.0þ1.2
−1.9 � � � 3730.5þ3.7

−5.0 [43]
DsD̄s 0 (0þþ) 0 0.51 ð15ÞV 3922þ11

−15 Xð3960Þ 3930þ3.8
−2.0 [43], ð3928� 3ÞV=B [6]

D�D̄ 0 (1þþ) 0 1.00 4.1 Input Xð3872Þ 3871.7
D�D̄� 0 (2þþ) 0 1.04 5.5 4011.6� 0.7 � � � 4014.3� 4.0� 1.5 [54]
D�D̄ 1 (1þ) 0 0.44 ð26ÞV 3850þ19

−26 Zcð3900Þ ð3831 − 3844ÞV [55]
D�D̄s −DD̄�

s
1
2
(1þ) −1 0.45 ð24ÞV 3955þ17

−25 Zcsð3985Þ ð3971 − 3974ÞV [56]

Xð3960Þ D�D 0 (1þ) 0 0.88 ð16.2ÞV 3859.6þ4.5
−5.4 Tcc 3875

DD̄ 0 (0þþ) 0 1.38 ð0.0ÞV 3734.5þ0.0ðBÞ
−1.7

� � � 3730.5þ3.7
−5.0 [43]

DsD̄s 0 (0þþ) 0 1.00 ð8.7ÞV Input [6] Xð3960Þ 3930þ3.8
−2.0 [43], ð3928� 3ÞV=B [6]

D�D̄ 0 (1þþ) 0 1.97 9.8 3865.9þ8.5
−17.3 Xð3872Þ 3871.7

D�D̄� 0 (2þþ) 0 2.04 12 4005þ10
−19 � � � 4014.3� 4.0� 1.5 [54]

D�D̄ 1 (1þ) 0 0.88 ð17.9ÞV 3857.9þ5.5
−6.5 Zcð3900Þ ð3831 − 3844ÞV [55]

D�D̄s −DD̄�
s

1
2
(1þ) −1 0.88 ð15.8ÞV 3962.4þ4.8

−5.8 Zcsð3985Þ ð3971 − 3974ÞV [56]

Tccð3875Þ D�D 0 (1þ) 0 1.00 1.065 Input Tcc 3874.7
DD̄ 0 (0þþ) 0 1.57 32 3703þ20

−30 � � � 3730.5þ3.7
−5.0 [43]

DsD̄s 0 (0þþ) 0 1.14 5.0 3931.7þ1.8
−2.7 Xð3960Þ 3930þ3.8

−2.0 [43], ð3928� 3ÞV=B [6]
D�D̄ 0 (1þþ) 0 2.23 90 3786þ70

−86 Xð3872Þ 3871.7
D�D̄� 0 (2þþ) 0 2.31 95 3922þ72

−90 � � � 4014.3� 4.0� 1.5 [54]
D�D̄ 1 (1þ) 0 0.97 0.6 3875.2þ0.2

−0.2 Zcð3900Þ ð3831 − 3844ÞV [55]
D�D̄s −DD̄�

s
1
2
(1þ) −1 1.00 1.0 3977.1þ0.3

−0.2 Zcsð3985Þ ð3971 − 3974ÞV [56]

DD̄ (lattice) D�D 0 (1þ) 0 0.64 ð4.5ÞV 3871.3þ4.0
−9.0 Tcc 3874.7

DD̄ 0 (0þþ) 0 1.0 4.0 3730.5 � � � 3730.5þ3.7
−5.0 [43]

DsD̄s 0 (0þþ) 0 0.72 ð1.0ÞV 3935.7þ1.0ðBÞ
−3.5

Xð3960Þ 3930þ3.8
−2.0 [43], ð3928� 3ÞV=B [6]

D�D̄ 0 (1þþ) 0 1.42 30 3845� 13 Xð3872Þ 3871.7
D�D̄� 0 (2þþ) 0 1.47 34 3983� 15 � � � 4014.3� 4.0� 1.5 [54]
D�D̄ 1 (1þ) 0 0.63 ð5.4ÞV 3870.4þ4.8

−10.4 Zcð3900Þ ð3831 − 3844ÞV [55]
D�D̄s −DD̄�

s
1
2
(1þ) −1 0.64 ð4.4ÞV 3973.8þ4.1

−9.6 Zcsð3985Þ ð3971 − 3974ÞV [56]

PENG, YAN, and PAVON VALDERRAMA PHYS. REV. D 108, 114001 (2023)

114001-6



be described either as a virtual or bound state at
about 3928� 3 MeV, which is compatible with
our prediction in the virtual state case [but not if
the Xð3960Þ turns out to be a bound state].

(b) However, if we turn our attention to the Tþ
cc,

there is not enough attraction to bind the D�D
system (though it is still attractive). In this case,
the Tþ

cc will have to receive additional attraction
from its short-range quark degrees of freedom in
order to be able to bind. This scenario would be
compatible with the seminal calculation by Janc
and Rosina [37], which considered both the
quark and meson components of the Tþ

cc as
necessary for generating this state. There is a
series of predictions [33,34,60,61] that put the
mass of the Tþ

cc tetraquark above the D�D
threshold, in which case this compact compo-
nent should be able to mix with the molecular
component and provide additional attraction not
taken into account in our model.

(c) In addition to this, the mass of the 2þþ partner of
the Xð3872Þ is 4011.6� 0.8 MeV, which is
compatible with the mass and quantum numbers
of a 2þþ resonance recently observed by Belle
[54] (M ¼ 4014.3� 4.0� 1.5 MeV and J ¼ 0
or 2, though the signal has poor statistical
significance). This 2þþ partner, which was
conjectured a decade ago [38,39], is a conse-
quence of HQSS: if the Xð3872Þ is indeed a 1þþ

D�D̄ bound state, it should have a 2þþ D�D̄�

partner state. The location of this state is usually
predicted at 4012–4013 MeV when pion inter-
actions are neglected and 4015 MeV if the
effects of the one pion exchange potential are
included [39]. The width of this state has been
previously estimated to be on the order of a few
MeV [62] (from 0.9 to 14.0 MeV depending on
the assumptions), which is in line with the width
measured by Belle [54] (Γ ¼ 4� 11� 6 MeV).

(d) We also obtain a DD̄ virtual state close to
threshold, which might correspond with the
DD̄ bound state found in the lattice, and we
predict the Zc and Zcs states as D�D̄ and D�

sD̄
virtual states, where the masses are in line with
the previous theoretical analyses of Refs. [55,56].

(2) If we use the Xð3960Þ as the reference state and
assume it to be a virtual state with the mass extracted
in Ref. [6], the predictions are basically compatible
with the ones derived from the Xð3872Þ within
errors (and thus we do not comment the results in
detail). That is, provided the Xð3960Þ is a virtual
state, its molecular interpretation will be compatible
with that of the Xð3872Þ.

(3) If we use the Tþ
cc as the reference state (D�D

molecule with I ¼ 0), we find the following:

(a) The Xð3872Þ is predicted a few dozen MeV
below threshold. In this scenario, the Xð3872Þ
cannot be a pure molecular state within the
uncertainties of our model, and there should
be shorter-range components (e.g., coupling to
charmonium) that push the D�D̄ pole closer to
threshold.

(b) The Xð3960Þ is predicted a few MeV below
threshold, in particular, at M¼ 3931.6þ1.8

−2.7 MeV,
which compares well with the bound state pole
determination in [6], M ¼ 3928� 3 MeV.

From the previous inputs, it is already evident that the
molecular explanations of the Xð3872Þ and Tcc are not
compatible within our model. The situation is more
ambiguous with respect to the Xð3960Þ though, for which
the virtual and bound state interpretations are compatible
with a molecular Xð3872Þ and Tcc, respectively. The same
comment applies to the Zcð3900Þ and Zcsð3985Þ. However,
if the 2þþ state observed by Belle is eventually confirmed
and happens to be the conjectured Xð4012Þ, then this will
favor (disfavor) the interpretation of the Xð3872Þ (Tcc) as
molecular.
If we also include the lattice results in our discussion, we

find the following:
(4) Using the Xð3872Þ as input will lead to virtual states

in the DD̄ and DsD̄s systems that are close to
threshold. They are not as attractive as in the lattice
calculations, but still compatible with them within
errors.

(5) Using the Tcc as input will lead to a DD̄ that is
markedly more bound than in the lattice, though
uncertainties are too large to claim that they are
incompatible.

(6) If we use the lattice results as the input, it happens
that the location of the DD̄ and DsD̄s poles are
compatible with each other, but predict the Xð3872Þ
to be too bound by tens of MeV. The Tþ

cc will not
bind either in this scenario, but will still survive as a
virtual state close to threshold. In this case, the
importance of the quark degrees of freedom in
binding will be smaller than when the Xð3872Þ is
the reference state.

That is, this additional comparison does not provide clear-
cut answers, though it shows a weak preference for the
Xð3872Þ (instead of the Tþ

cc) to be more molecular.
Regarding the conflict between the Xð3872Þ and

Tccð3875Þ, it is important to notice the mixing between
the meson-antimeson components of the Xð3872Þ and the
possible nearby χc1 charmonium and the molecular
Tccð3875Þ and its compact quark components. This mixing
can be parametrized in terms of a potential contribution of
the type

V ¼
�

Vmol Ccomp

Ccomp 0

�
; ð30Þ
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which results in a mass shift proportional to

ΔMmol ∝ −
C2
comp

Δ
; ð31Þ

with Δ the mass difference between the (uncoupled)
compact and molecular components, Δ ¼ Mcomp −Mmol.
This will make the molecular candidate lighter or heavier
depending on the location of the nonmolecular component
(before mixing). That is, if the original predictions of the
compact component are heavier than the two-hadron
threshold, the two-hadron system will increase its attraction
with respect to the purely molecular scenario.
It happens that most predictions of the χc1ð2PÞ in pure

charmonium models are heavier [63–65] (usually in the
3.9–4.0 GeV ballpark) than the Xð3872Þ, from which the
contribution of the compact components is more likely to
be attractive than repulsive. The situation is more open for a
compact ccū d̄ tetraquark, as there is a comparable number
of predictions below [66–69], above [33,34,60,61], or
compatible with [32,70–73] the D�D threshold. This
slightly favors scenarios in which the attraction in the
D�D system is, by itself, not enough to generate a bound
state below threshold (as it happens to be probable that a
pure ccū d̄ state will provide the missing attraction), while
it disfavors the scenarios in which the D�D̄ system shows
overbinding [as it is improbable that the closest pure cc̄
state will happen to be lighter than the Xð3872Þ].

E. Tetraquark decays

A different piece of information we might take into
account is the decay of the Tcc into DDπ and DDγ. The
decay width of the Tcc is expected to come mostly from the
D�D component of its wave function [74]. If we assume a
wave function of the type

jTcci ¼ cos θCjD�Di þ sin θCjccū d̄i; ð32Þ

which contains a molecular and compact component, then
the actual decay width of the Tcc will be dominated by the
D�D components.2 In particular, a dimensional estimation
yields [74]

ΓðTccÞ ¼ cos2θC Γmol þ sin 2θC Γint þ sin2θC Γcc

¼ cos2 θC Γmol ×

�
1þO

�
tan θC

�
Q
MC

�
3=2

��
;

ð33Þ

where Γmol ¼ ΓðTccðD�DÞÞ and Γcc ¼ ΓðTccðccū d̄ÞÞ are
the decay widths of the molecular and compact parts of the
wave function, while Γint is an interference term (not
necessarily positive: despite the notation, it is not a decay
width per se). In the second line, we have taken into
account that the decay amplitude intoDDπ andDDγ scales
as 1=Q3=2 and 1=M3=2

C [74], where Q ∼ γ2 is the wave
number of the Tcc as a D�D two-body system (about
45 MeV in the isospin symmetric limit) and MC is the
expected natural momentum scale at which the structure of
the compact tetraquark component is resolved. The naive
expectation is for MC to be considerably larger than the
wave number of the molecular part of the wave function,
i.e., MC ≫ γ2. As a consequence, in a first approximation
we can ignore the compact components of the wave
function for calculating the decay width of the Tcc: from
the previous scaling, we expect Γint=Γmol ∝ ðQ=MCÞ3=2
and Γcc=Γmol ∝ ðQ=MCÞ3. That is, if the molecular pre-
diction for Γmol overshoots ΓðTccÞ we will be able to
estimate the degree of molecularness of the Tcc. Provided
we calculate the decays of the Tcc within pionless effective
field theory (EFT), the second line of Eq. (33) will be valid
up to next-to-leading order (NLO), as explained in [74].
Within the EFT formulation of [74] the NLO calculation

of Γmol depends on the Tþ
cc D�D binding energy, the D�D

effective range, and the scattering length of the final DD
two-body system. The value of the scattering length and the
effective range of a two-hadron system in our model is
given by

1

a0
¼ μmol

2πCsat
mol

þ 2

π

Z
∞

0

dpf2
�
p
Λ

�
; ð34Þ

r0 ¼ −
4

π

Z
∞

0

dp
p2

�
f2
�
p
Λ

�
− fð0Þ

�

þ 1

a0

d2

dp2

�
f2
�
p
Λ

������
p¼0

; ð35Þ

where we remind the reader that fðxÞ refers to the regulator
function. The values for a0ðDDÞ and r0ðD�D; I ¼ 0Þ can,
in turn, be used as input for the formulas in [74] to predict
Γmol. In regard to this comparison, we find the following:
(7) If the Xð3872Þ is used as input, the DD scattering

length is predicted to be a0 ¼ −0.26þ0.15
−0.32 fm, which

translates into a molecular decay width of

ΓNLO
mol ¼ 63.8þ10.0

−7.3 KeV; ð36Þ

where the uncertainties have been calculated as in
[74] (i.e., from the following sources: pion axial
coupling, magnetic moments of the charmed mes-
ons, binding energy of the Tcc as obtained in the
unitarized Breit-Wigner parametrization δmU, and
the EFT truncation error), except for the addition in

2While the JP ¼ 1þ ccū d̄ compact tetraquark is often pre-
dicted above the D�D threshold [33,34,60,61] and thus decays
into this channel, this is not the case if the tetraquark is below the
D�D threshold, which is what happens if the Tþ

ccð3875Þ is a
mixture of compact and molecular components.
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quadrature of the errors coming from the DD
scattering length. This is to be compared with the
decay width as extracted from the unitarized Breit-
Wigner parametrization, ΓU ¼ 48þ2

−12 KeV [24],
leading to

ΓU

ΓNLO
mol

¼ cos2θC ¼ 0.75þ0.10
−0.21 ; ð37Þ

that is, this will imply that the Tcc is about 75%
molecular. This is consistent with the fact that its
location would not be reproduced from the molecu-
lar degrees of freedom alone, thus requiring con-
tributions from other components of the wave
function.

(8) In contrast, if the Tþ
cc is used as input, its decay width

happens to be too large owing to a larger DD
scattering length (a0 ¼ −1.15þ0.66

−1.65 fm). By repeat-
ing the steps in the previous comparison, we find

ΓNLO
mol ¼ 85.7þ49.5

−18.6 KeV; ð38Þ

which in turn leads to

ΓU

ΓNLO
mol

¼ cos2θC ¼ 0.55þ0.15
−0.24 ; ð39Þ

or about 55% molecular. This implies a degree of
nonmolecularness that is probably not compatible
with the initial assumption that the Tþ

cc is bound by
the molecular components alone.

Thus, this comparison favors the use of theXð3872Þ as input
and a Tþ

cc state for which binding results as a combination of
the interplay betweenmesonic and quark degrees of freedom,
as in [37]. Yet, as with the previous comparisons, caution is
advised: there is a sizable level of uncertainty associatedwith
all the comparisons we have made.

F. Choice of the reference state

All in all, from a comparison of the (partially known)
spectrum of two charmed meson systems, the expected
interference from nonmolecular degrees of freedom, and
the decays of the Tþ

cc, it seems that using the Xð3872Þ as
input is the better choice.
This is not to say that the Xð3872Þ is purely molecular,

only that the assumption that its binding can be purely
explained in terms of its molecular components is more
congruent with the previous information than the analo-
gous assumption for the Tþ

cc. Additionally, there are
certain aspects of the Xð3872Þ that are better described
by assuming the existence of short-range compact
components [75–77]. Also, it has been argued that the
effective range for the D�D̄ pair within the Xð3872Þ is
negative [78], which might require contributions from
degrees of freedom different than D�D̄ to the scattering

amplitude. Nonetheless, we consider the Xð3872Þ to be the
best choice for the reference state and compute the
molecular spectrum from it. Yet, for the particular case
of the Dð�ÞDð�Þ two-body system, we will consider too the
predictions when the Tþ

cc is used as the reference state. This
will yield a different set of molecular states that, if
eventually observed, could be used to decide between
the Xð3872Þ and Tþ

cc as the most molecular of the two.

IV. PREDICTIONS

For the predictions of the molecular spectrum of two
charmed mesons, we will use the Xð3872Þ as the reference
state, as previously explained. This leads to Csat

ref ¼
−0.79 fm2 for the coupling of the reference state.
We will also include a modification to our model when

strange-charmed mesons are included. This modification is
as follows: instead of using our original formulation in
Eq. (19), which implicitly assumes the same cutoff for the
two hadrons within a molecular state, we will consider the
possibility that each of the hadrons is better described by a
different cutoff

VC ¼ Csatf

�
p0

Λ1

�
f

�
p
Λ2

�
: ð40Þ

In particular, we will distinguish between the nonstrange
and strange sectors: for the D and D� charmed mesons we
will use Λ ¼ 1.0 GeV, just as before, but forDs andD�

s we
will use Λ ¼ 1.2 GeV instead. The reasons for this change
are that it takes into account the more compact nature of the
strange-charmed mesons and that it helps us reproduce the
location of the virtual state interpretation of the Xð3960Þ:
with Λ ¼ 1.2 GeV, we obtain 3927.2 MeV, which is
compatible with the 3928� 3 MeV pole mass of [6].
With the previous choices, in the hidden-charm sector

we obtain the spectrum we show in Table II. Only two
systems clearly bind below threshold, the 1þþ D�D̄ and
2þþD�D̄� configurations, yet there are a few other systems
that are very close to binding: 0þþ DD̄, 1þþ D�

sD̄s, and
2þþ D�

sD̄�
s .

For the doubly charmed sector, we have made two sets of
predictions, depending on whether we use the Xð3872Þ or
the Tþ

cc as input, Tables III and IV, respectively. The doubly
charmed molecules are constrained by (extended) Bose-
Einstein symmetry, i.e., not all combinations of spin and
isospin are allowed. For DD and D�D� this translates into
the condition that (I þ J) must be an odd number, while for
DsDs and D�

sD�
s the condition is that J must be even. For

the Dð�Þ
s Dð�Þ there are two configurations, antitriplet and

sextet, given by

j3̄i ¼ 1ffiffiffi
2

p
�
jDð�Þ

s Dð�Þi − jDð�ÞDð�Þ
s i

�
; ð41Þ
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j6i ¼ 1ffiffiffi
2

p
�
jDð�Þ

s Dð�Þi þ jDð�ÞDð�Þ
s i

�
: ð42Þ

The antitriplet and sextet configurations correspond to
the SU(3)-flavor generalizations of the I ¼ 0 and I ¼ 1

TABLE II. Predictions for the Dð�ÞD̄ð�Þ systems when the Xð3872Þ is used as the reference state. The meaning of system, IðJPðCÞÞ,
Rmol, Bmol, Mmol, candidate, and Mcandidate is the same as in Table I. The cutoff for the Ds and D�

s charmed-strange mesons is set to
Λs ¼ 1.2 GeV (instead of Λ ¼ 1.0 GeV as in Table I). All binding energies and masses are in units of MeV.

System IðJPðCÞ) Rmol Bmol Mmol Candidate Mcandidate

DD̄ 0 (0þþ) 0.70 ð1.5ÞV 3733.0þ1.2
−1.9 � � � 3730.5þ3.7

−5.0 [43]
D�D̄ 0 (1þþ) 1.00 4.1 Input Xð3872Þ 3871.7
D�D̄ 0 (1þ−) 0.46 ð22.3ÞV 3854þ16

−22 � � � � � �
D�D̄� 0 (0þþ) 0.20 � � � � � � � � � � � �
D�D̄� 0 (1þ−) 0.48 ð18.9ÞV 3998þ14

−20 � � � � � �
D�D̄� 0 (2þþ) 1.04 5.5 4011.6� 0.7 � � � 4014.3� 4.0� 1.5 [54]

DD̄ 1 (0þþ) 0.42 ð30.2ÞV 3704þ21
−28 � � � � � �

D�D̄ 1 (1þ�) 0.44 ð26.2ÞV 3850þ19
−26 � � � ð3831 − 3844ÞV [55]

D�D̄� 1 (0þþ,1−þ,2þþ) 0.46 ð22.5ÞV 3995þ16
−24 � � � � � �

DD̄s
1
2
(0þ) 0.43 ð24.7ÞV 3811þ19

−28 � � � � � �
D�D̄s

1
2
(1þ) 0.45 ð21.0ÞV 3957þ17

−26 � � � ð3971 − 3974ÞV [56]
D�D̄�

s
1
2
(0þ,1þ,2þ) 0.47 ð17.5ÞV 4103þ14

−24 � � � � � �
DsD̄s 0 (0þþ) 0.51 ð8.2ÞV 3928.5þ7.7

−15.3 � � � 3930þ3.8
−2.0 [43], ð3928� 3ÞV=B [6]

D�
sD̄s 0 (1þþ) 0.64 ð0.3ÞV 4080.2þ0.3ðBÞ

−3.2
� � � � � �

D�
sD̄s 0 (1þ−) 0.42 ð21.9ÞV 4059þ20

−36 � � � � � �
D�

sD̄�
s 0 (0þþ) 0.32 ð48.1ÞV 4176þ40

−127 � � � � � �
D�

sD̄�
s 0 (1þ−) 0.44 ð18.2ÞV 4206þ17

−34 � � � � � �
D�

sD̄�
s 0 (2þþ) 0.66 ð0.0ÞV 4224.4þ0.0ðBÞ

−2.2
� � � � � �

TABLE III. Predictions for the Dð�ÞDð�Þ systems when the
Xð3872Þ is used as the reference state. The meaning of system,
IðRÞðJPÞ, Rmol, Bmol, andMmol is the same as in Table I, where the
only difference is that now, after isospin, we include (R) in
parentheses to indicate the SU(3)-flavor representation to which

a Dð�Þ
s Dð�Þ state belongs (the reason being that they are not

distinguishable by isospin alone in this case). We do not include
candidate states and theirmasses as there is onlyone: theTþ

ccð3875Þ
with amass of 3875.7MeV. The cutoff for theDs andD�

s charmed-
strangemesons is set toΛs ¼ 1.2 GeV (instead ofΛ ¼ 1.0 GeVas
in Table I). All binding energies and masses are in units of MeV.

System IðRÞ (JP) Rmol Bmol Mmol

DD 1 (0þ) 0.28 � � � � � �
D�D 0 (1þ) 0.45 ð24.2ÞV 3852þ17

−24
D�D 1 (1þ) 0.16 � � � � � �
D�D� 1 (0þ) 0.58 ð7.7ÞV 4009.4þ5.8

−8.6
D�D� 0 (1þ) 0.47 ð20.7ÞV 3997þ15

−22
D�D� 1 (2þ) 0.16 � � � � � �
DsD 1

2
ð6Þ (0þ) 0.34 ð49.8ÞV 3786þ40

−63
D�

sD −DsD� 1
2
ð3̄Þ (1þ) 0.43 ð25.0ÞV 3953þ20

−31
D�

sD −DsD� 1
2
ð6Þ (1þ) 0.23 � � � � � �

D�
sD� 1

2
ð6Þ (0þ) 0.59 ð4.4ÞV 4116.3þ4.0

−7.1
D�

sD� 1
2
ð3̄Þ (1þ) 0.43 ð24.1ÞV 4097þ19

−30
D�

sD� 1
2
ð6Þ (2þ) 0.23 � � � � � �

DsDs 0 (0þ) 0.38 ð32.7ÞV 3804þ28
−50

D�
sDs 0 (1þ) 0.28 � � � � � �

D�
sD�

s 0 (0þ) 0.63 ð0.4ÞV 4224.0þ0.4ðBÞ
−4.0

D�
sD�

s 0 (2þ) 0.29 � � � � � �

TABLE IV. Predictions for the Dð�ÞDð�Þ systems when the Tþ
cc

is used as the reference state. The conventions used are identical
to those of Table III.

System IðRÞ (JP) Rmol Bmol Mmol

DD 1 (0þ) 0.63 ð9.9ÞV 3724.6þ7.9
−24.8

D�D 0 (1þ) 1.0 1.065 3874.7
D�D 1 (1þ) 0.35 � � � � � �
D�D� 1 (0þ) 1.30 12.2 4004.9þ5.6

−8.5
D�D� 0 (1þ) 1.04 1.8 4015.3� 0.1
D�D� 1 (2þ) 0.36 � � � � � �
DsD 1

2
ð6Þ (0þ) 0.75 ð0.8ÞV 3834.8þ0.8ðBÞ

−6.1
D�

sD −DsD� 1
2
ð3̄Þ (1þ) 0.95 2.1 3976.1þ1.1

−1.0
D�

sD −DsD� 1
2
ð6Þ (1þ) 0.51 ð19.2ÞV 3959þ18

−90
D�

sD� 1
2
ð6Þ (0þ) 1.32 23.1 4098þ11

−15
D�

sD� 1
2
ð3̄Þ (1þ) 0.95 2.0 4188.7� 1.0

D�
sD� 1

2
ð6Þ (2þ) 0.51 ð18.5ÞV 4102þ17

−87
DsDs 0 (0þ) 0.85 2.0 3934.7þ1.9

−3.2
D�

sDs 0 (1þ) 0.63 ð2.8ÞV 4077.8þ2.8ðBÞ
−31.0

D�
sD�

s 0 (0þ) 1.41 52.8 4172þ28
−32

D�
sD�

s 0 (2þ) 0.66 ð1.6ÞV 4222.8þ1.6ðBÞ
−27.4
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configurations inDð�ÞDð�Þ. Indeed, it can be readily noticed
in Tables III and IV that the binding or virtual state energies

of the I ¼ 0 (I ¼ 1) Dð�ÞDð�Þ and 3̄ (6) Dð�Þ
s Dð�Þ molecules

are predicted to be similar. This consequence of SU(3)-
flavor symmetry was previously exploited in [79] to predict
the DsD� −D�

sD molecular partners of the Tcc.
When we use the Xð3872Þ as input, Table III, it is

apparent that the D�D� HQSS partner of the Tcc, i.e., the
T�
cc, does not bind and it is a virtual state not close to

threshold instead. This is in contrast with the prediction of a
bound T�

cc when the Tþ
cc is used as input, Table IV. This

difference in the predictions could be used to better
understand the nature of the Tþ

cc: the eventual discovery
of the T�

cc at about (1–2) MeV below the D�D� threshold
would be a strong indication that the Tþ

cc is mostly
molecular. If it were not and the binding of the Tþ

cc required
the interplay between the mesonic and quark degrees of
freedom, we would not expect the T�

cc to bind: if the pole of
the compact component once we remove the coupling with
the D�D channel were to be between the D�D and D�D�
threshold, this component will favor binding for D�D and
disfavor the formation of a D�D� molecule. However, this
is not necessarily the only possibility: were this isolated
compact component to be somewhat above the D�D�
threshold, the HQSS expectation that the J ¼ 1 D�D
and D�D� states have the same binding energy would be
strongly violated. Yet, this later possibility seems less
plausible as it would require a really strong coupling
between the compact and molecular components for
providing strong enough attraction in the D�D channel.
Be it as it may, this is not the only difference between the

two spectra. The doubly charmed spectrum derived from the
Xð3872Þ contains very few configurations close to binding,
basically the sextet JP ¼ 0þ configurations containing two
excited charmed mesons, i.e., the I ¼ 1 JP ¼ 0þ D�D�, the
sextet 0þ D�D�

s , and the 0þ D�
sD�

s molecules. In contrast, if
theTþ

ccwere to bemostlymolecular, the spectrumof possible
molecular states would be much richer. For instance, all the
antitriplet JP ¼ 1þ configurations will bind, including the
Tcc and T�

cc as well as their strange and hidden-strange
counterparts. Again, the eventual detection of these mole-
cules will imply a molecular Tþ

cc. Alternatively, lattice

calculations of the Dð�Þ
s Dð�Þ and Dð�Þ

s Dð�Þ
s systems will shed

light on this issue, though for themoment only calculations in
the D�D case exist (indicating either a virtual [43,80] or
bound state [81] solution for theTþ

cc). Yet, independent of the
input state, the most attractive configuration turns out to be
the I ¼ 0 or sextet JP ¼ 0þD�D� and 0þD�D�

s molecules, a
conclusion that is in agreement with [82] for the nonstrange
sector.

V. CONCLUSIONS

To summarize, we have considered the molecular spec-
trum of systems containing two S-wave charmed mesons

within a contact-range theory in which the couplings are
saturated by light-meson exchanges (σ, ρ, ω). The question
we wanted to address was whether the Xð3872Þ, Xð3960Þ,
and Tþ

ccð3875Þ can all be described with the same set of
parameters. It turns out that this is not the case and that
there is a tension between the molecular description of the
Xð3872Þ and Tþ

ccð3875Þ within the saturation model we
use. Basically, if the Xð3872Þ is molecular it would be
difficult to explain the Tþ

ccð3875Þ in purely molecular terms
and vice versa.
Intuitively this can be understood in terms of vector

meson exchange alone, as the attraction provided by this
effect is twice as big in the isoscalarD�D̄ system than in the
D�D one,

VVðD�D̄;I¼ 0Þ¼−4
�

g2V
m2

V þ q⃗2
þ f2V
6M2

m2
V

m2
V þ q⃗2

σ⃗L1 · σ⃗L2

�
;

ð43Þ

VVðD�D;I ¼ 0Þ ¼−2
�

g2V
m2

V þ q⃗2
þ f2V
6M2

m2
V

m2
V þ q⃗2

σ⃗L1 · σ⃗L2

�
;

ð44Þ

as derived from Eq. (11) once we include isospin factors or
as in Eqs. (12) and (13) once we use the contact-range
approximation. Thus, in the absence of other attractive
effects, we expect a molecular Xð3872Þ to be considerably
more bound than a molecular Tþ

ccð3875Þ. The inclusion of
the scalar meson, which provides the same degree of
attraction in both systems, somewhat softens the previous
conclusion but not necessarily as much as to avoid the
tension (unless scalar meson exchange is much stronger
than expected here).
From a comparison of the hidden- and open-charm two-

meson molecules with known molecular candidates and the
decays of the Tþ

ccð3875Þ, we consider that it is more
probable for the Xð3872Þ to be mostly molecular than
for the Tþ

ccð3875Þ. Hence, to make predictions of the two
charmed meson molecular spectrum we use the Xð3872Þ as
a reference or input state within our RG-saturation model.
For the hidden-charm sector, this choice generates only a
second molecular state that is clearly below threshold: the
JPC ¼ 2þþ partner of the Xð3872Þ. Yet, there are a few
virtual states that are extremely close to threshold and can
bind within the uncertainties of our model. These include
the 0þþ DD̄ andDsD̄s molecules, the first one correspond-
ing with the state found in the lattice [43] and the second
one with the Xð3960Þ.
For the open-charm sector, the most attractive configu-

rations are the I ¼ 1, J ¼ 0þ D�D�, sextet J ¼ 0þ D�
sD�,

and J ¼ 0þ D�
sD�

s molecules, which are predicted as virtual
states really close to threshold. However, the interesting
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feature of the open-charm molecules is that their spectrum
will allow us to distinguish whether the Tþ

ccð3875Þ is only
partly or predominantly molecular. In the second case—a
Tþ
ccð3875Þ whose binding can be explained purely in

molecular terms—there will be a I ¼ 0, J ¼ 1þ D�D�

partner state at 4015 MeV, a T�þ
cc ð4015Þ. The existence of

this state has been consistently predicted in models assum-
ing that the Tþ

ccð3875Þ is predominantly molecular in the
first place [83–85]. Finding the T�þ

cc ð4015Þ will thus
represent a very strong hint that the Tþ

ccð3875Þ binding
comes almost exclusively from its molecular components.
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