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With four different type of neutrino-induced interactions, we investigate and reanalyze the Koba-
Nielsen-Olesen scaling in modified multiplicity distributions from a different perspective. In a first of its
kind attempt, we propose alternate fitting function to parametrize the distribution than the most widely
adopted Slattery’s function and compare it with yet another form. We propose the shifted Gompertz and
Weibull functions as the fitting functions and compare their potency for the most conventional form of
Slattery’s function. In addition, the analysis of the data by evaluating the central moments and factorial
moments, we show the dependence of moments on the target size.
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I. INTRODUCTION

The study of multiplicity distributions of charged
hadrons produced in lepton-induced and hadron-induced
interactions in different targets has remained in focus ever
since the advent of high energy and cosmic ray physics.
It has been extensively studied in fixed-target and collider
experiments as well as in cosmic ray experiments. The
results of such studies are utilized in modeling of inter-
action dynamics. In contrast to the vast information
available from experiments using leptons and hadrons as
probes, accessibility of such information from neutrino-
induced experiments has remained very limited. Earliest
studies on the charged hadronic multiplicities in charged-
current (CC) and neutral-current (NC) interactions mea-
sured in experiments performed with 15-foot bubble
chamber during 1970s to the latest results from the
OPERA experiment using CERN CNGS neutrino beams,
and the CHORUS experiment have provided results in

different center-of-mass (cms) energies and in different
phase space regions [1–5]. The mean charged-hadron
multiplicities in the muon-neutrino and muon-antineutrino
charged-current reactions on hydrogen and deuterium
have been measured in the Fermilab experiments E31 [6,7],
E45 [8,9] and E-545 [10,11] with the 15-foot Bubble
Chamber and in the CERN experiments WA21 [12,13] and
WA25 [14,15] with the Big European Bubble Chamber
(BEBC). The data obtained with the FNAL and BNL
hydrogen bubble chambers before 1976 are gathered in
Ref. [16]. The motivation for the present study stems from
the fact that there is one common investigation which has
been performed on the data from all these experiments.
It relates to the study of Koba-Nielsen-Olesen (KNO)
scaling [17,18], a study which provides understanding of
improving models of particle production which are used
in Monte Carlo (MC) event generators. There are many
neutrino-nucleon and neutrino-nucleus event generators
such as, NEUGEN [19,20], FLUKA [21], GENIE [22],
NuWro [23], GiBUU [24], and NUANCE [25] etc. The
next generation detectors like the DUNE [26] and Super-
Kamiokande [27] which aim at understanding the role of
neutrinos in the universe, are primarily focused on collect-
ing the neutrino interaction data in the not too far future,
rely on the MC event generators. The region of interaction
kinematics proposed for study in these experiments have
neutrino energies in the few GeV range. The investigation
presented in this paper have average neutrino energies
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in>10–50 GeV. Hence the study is relevant for comparison
with the data from these future experiments. The major
challenge with any event generator which remains, is to tune
it’s model parameters to the recorded experimental data. The
event multiplicity data mimic the underlying event mecha-
nism and are extensively used to tune the model parameters.
The neutrino experiments have large errors associated with
them due to small sample sizes. A precise analysis of the
existing data can contribute to MC development.
KNO scaling derived from Feynman scaling showed

that total multiplicity undergoes asymptotic scaling at high
energies as the average charged multiplicity, hnchi ∝ ln

ffiffiffi
s

p
.

The KNO formalism is described in detail in Sec. II. In
almost all the results on KNO distributions, different
experiments using neutrino beams have used the Slattery’s
function in different forms, to fit the KNO distributions
[1,5,11]. However, the multiplicity data on neutrino inter-
actions are very rare. Only recently, two emulsion based
neutrino experiments OPERA and CHORUS [1,5] pub-
lished multiplicity distributions and also tested KNO
scaling with a reliable statistics. The multiplicity distribu-
tion for each data follows a negative binomial distribution
exhibiting approximate KNO scaling. The KNO scaled
distribution has been described with the Slattery’s function.
The aim of the present work is to show that the KNO
distribution can be defined in terms of different functions
with improved precision than the Slattery’s function.
A comparison of two different distributions, namely the
shifted Gompertz and the Weibull distributions with the
Slattery’s distribution is presented. In addition we also
evaluate central and factorial moments of the multiplicity
distributions, both from the data and the best fitted
proposed distribution. With four type of neutrino inter-
actions considered, we set out to study the effect of KNO
scaling in their multiplicity distributions. Two new fitting
functions are proposed and their potency for all the above
cases is studied.
One of the consequences of the KNO scaling is that the

dispersion over mean multiplicity is rendered independent
of kinematic quantities. The probability distribution of
n-particle events is also well represented by the moments
of the distribution and its generating function. The analysis
of multiplicity moments is a powerful tool which helps to
unfold the characteristics of the multiplicity distribution.
Calculated as derivatives of the generating function, the
particle correlations can be studied through the normalized
central moments. Dependence of moments on energy can
be used to validate the KNO scaling [28,29] or to check for
violation. Several analyses of multiplicity moments have
been done at various energies, using different probability
distribution functions [30–34]. However, these analyses
mostly are done for eþe−, pp and p̄p collisions. Such
studies in neutrino-induced interactions are missing. The
presented work is the first analysis using new distributions
for the case of ν-X and ν̄-X interactions, where X is a target.

II. METHODOLOGY

The multiplicity distribution is expressed in terms of the
probability of producing n number of particles in the final
state of a collision. The shape of such a distribution varies
with system size and collision energy and can be incorpo-
rated into the study of its higher moments. The multiplicity
distribution of charged hadrons produced in the neutrino
interactions reflects the characteristics of hadronic final
states in hard scattering. These type of data assist to
improve models of particle production which are used in
Monte Carlo (MC) event generators. The shape of the
multiplicity distribution is often studied in terms of func-
tional dependence of the probability on the number of
particles n, produced in a collision. The following sections
describe various forms most commonly used and the new
proposed functions.

A. KNO formalism

Koba, Nielsen, and Olesen showed that when the
multiplicity distributions were scaled by average multiplic-
ity hnchi, they became asymptotically independent of the
energy of interaction. The KNO hypothesis shows that at
very high center-of-mass (CMS) energy

ffiffiffi
s

p
, the probability

Pn of producing n charged particles in a collision process
having the mean number of charged particles hni, should
follow the following scaling relation:

PnðsÞ¼
1

hniψðz;sÞ¼ lim
s→∞

1

hniψðzÞ; where z¼ n
hni ; ð1Þ

Thus, the data points PnðsÞ measured at different energiesffiffiffi
s

p
, should fall on a single curve defined by the function ψ .

This curve can then be parametrized by fitting a function.

B. Parametrization of KNO distributions

Parametrization of the KNO scaled distributions was
first introduced by Slattery (SL) [35] in the form

ψðzÞ ¼ ðA1z3 þ B1z4Þe−C1z ð2Þ

Various experiments [1,5,11] used this form to fit the KNO
distributions. The data from the experiments involving
neutrino interactions show that approximate KNO scaling
as a function of an appropriate multiplicity variable z0 is
valid for the charged hadrons multiplicity. However, the
interaction energies are typically low, with W2 of the order
of 35 GeV2. For νμ charged-current (CC) interactions,

W2 ¼ 2mNEhad þm2
N −Q2

ν; ð3Þ

where Q2
ν is the squared four-momentum transfer, and mN

is the nucleon mass. W2 is the square of the invariant mass
of the hadronic system. The first observation of the KNO
violation came from pp interactions at the Intersecting
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Storage Ring (ISR). The violation was soon discovered
at other energies and in other interactions involving eþe−,
pp̄ etc. KNO scaling violation led to the application of
negative binomial distribution (NBD), introduced by P.
Carruthers et al. [36,37].
With a low priority of using KNO scaled distributions,

different experiments usedNBD tounwind themechanismof
particle production. The success of NBDwas phenomenal in
providing a description in a most consistent way. Over a
period of time, some more statistical distributions were
introduced and used for interpreting the data. These include
gamma distribution [38], lognormal distribution [39], Tsallis
distribution [40,41], and themore recentWeibull distribution
(Wei) [42,43]. Nevertheless, at very high energies, typically
in the TeV range, NBD was also seen to deviate.
In the present work we introduce a yet novel way to

parametrize the KNO distribution and show that its agree-
ment is far improved in comparison to the Slattery’s
function. We choose shifted Gompertz distribution (SGD)
to fit the KNO scaled distributions and compare it with
Slattery’s function and the Weibull distribution. A descrip-
tion of this new distribution follows in the next section.

C. The shifted Gompertz distribution (SGD)

In one of our earlier works, we put in place the use of
shifted Gompertz distribution [44], first introduced by [45],
to investigate the multiplicities in leptonic and hadronic
collisions for different collision energies. The distribution
interpreted the experimental data from high-energy
particle collisions involving leptons and hadrons as probes,
very well.
The SGD distribution uses two non-negative parameters;

one of them is known as the scale parameter and the other a
shape parameter. Taking these parameters as b > 0 and
t > 0, the probability density function of a variable n is
then defined as

Pn ¼ be−bne−ðte−bnÞ½1þ tð1 − e−bnÞ�n > 0; ð4Þ

Maximum of two independent random variables with
Gompertz distribution (parameters b > 0 and t > 0) and
an exponential distribution (parameter b > 0), characterize
the distribution. We used SGD in describing multiplicity
data in eþe−, eþp, pp, p̄p data at different energies and
showed that SGD provides a good description [44,46–48].

D. The Weibull distribution (Wei)

A highly versatile probability density function (pdf), the
Weibull distribution [49] can fit a wide range continuous
data. It has been used to study the data from different
regimes such as medicine, quality control, engineering etc.
and can also be used to model the skewed data quite well.
The probability density function of this distribution is
expressed in three different forms; 3-parameter Weibull,
2-parameter Weibull, and 1-parameter Weibull.

The 3-parameter Weibull probability density function is
given by

Pn ¼
β

η

�
n − γ

η

�
β−1

e−ð
n−γ
η Þβ ð5Þ

where Pn ≥ 0, n > γ, where γ is the location parameter and
−∞ < γ < þ∞. The shape parameter β > 0 and the scale
parameter η > 0. By setting γ ¼ 0, one gets the 2-parameter
Weibull pdf

Pn ¼
β

η

�
n
η

�
β−1

e−ð
n
ηÞβ ð6Þ

The 1-parameter Weibull assumes the only unknown as the
scale parameter η, the shape parameter β is known a priori
and hence a constant, with Eq. (6) is used and compared
with results from SGD.

E. Moments of multiplicity distribution

The moments are calculated as derivatives of the gen-
erating function and the particle correlations can be studied
through the normalized moments (Cq) and normalized
factorial moments (Fq) which are defined as [50];

Cq ¼
hnqi
hniq ¼

P
nn

qPn

ðPnnPnÞq
ð7Þ

Fq ¼
Pnmax

n¼q nðn − 1Þ……:ðn − qþ 1ÞPn

ðPnmax
n¼1 nPnÞq

ð8Þ

F. Trends in mean multiplicity dependence on W2

In order to compare the dependency of average charged
hadron multiplicity on the invariant mass of hadronic
system, the data from different experiments are studied.
The invariant hadronic mass is expressed as in Eq. (3). The
mean charged hadron multiplicity is found to vary linearly
as a function of logarithm of the square of the invariant
mass of the hadronic system W, in various ranges of W2,

hnchi ¼ aþ bðlnW2Þ ð9Þ
This linear variation was found to be true for all energies.

G. Dispersion trends

Dispersion D
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2chi − hnchi2

q �
of multiplicity dis-

tribution of n particles is interesting from theoretical point
of view. It is understood that for independent particle
emission, the dispersion versus average multiplicity should
follow a Poisson distribution. However, it is observed that
in hadronic interactions the variation of dispersion follows
an empirical relation with multiplicity as;

D ¼ Aþ Bhnchi ð10Þ
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For data from different experiments, we study this depend-
ence. The interpolation of the fit from Eq. (10) gives an
unexpected intercept at the hnchi axis. The value of the
intercept is used to modify the KNO distribution for
improving fitting with different functions.

III. DATA ANALYZED

Data from the four major experiments have been
analyzed with details as given below.

A. Data from the OPERA experiment

The OPERA experiment was designed to observe and
study the neutrino oscillations in the νμ → ντ oscillations in
appearance mode in the CNGS (CERN Neutrinos to Gran
Sasso) neutrino beam [51,52]. The experiment established
neutrino oscillations with the discovery of ντ appearance
with a significance of 5.1σ [1]. The OPERA detector was
a hybrid setup consisting of electronic detectors and a
massive lead-emulsion target. The nuclear emulsions were
used as very precise tracking devices and electronic
detectors to locate the neutrino interaction events in the
emulsions. It was exposed to the CNGS νμ beam with
mean energy of 17 GeV. A data sample corresponding to
1.8 × 1020 protons on target (p. o.t.) collected during the
period 2008 to 2012 as published in [52]), the electronic
detectors recorded 19505 neutrino interactions in the target
fiducial volume. A subsample of 818 events occurring in
the lead with a negatively charged muon was selected in
order to measure the track and vertex parameters in the
target including a detailed check of the nuclear breakup and
evaporation processes. Imposing an additional requirement
of selecting events with W2 > 1 GeV2 to eliminate qua-
sielastic events, a total of 795 events were selected.
Description of the OPERA detector and selection proce-
dures can be found in [52].
In the present analysis, we have used the charged hadron

multiplicities obtained from 795 νμ-Pb events in different
W2 ranges and corrected for efficiencies from the papers
by N. Agafonova et al. [1–3]. In Ref. [1], the charged
hadron multiplicity as a function of W2 from Table III and
the efficiency corrections from Table II have been used to
reproduce the multiplicity distribution being used in the
present analysis.

B. Data from the CHORUS experiment

The CHORUS experiment was designed to search for
νμ → ντ oscillations. The CHORUS hybrid detector was
exposed to the wide band neutrino beam of the CERN SPS
during the years 1994–1997, with an integrated flux of
5.06 × 1019 protons on nuclear emulsion target. The West
Area Neutrino Facility (WANF) of the CERN SPS provided
an intense beam of neutrinos with an average energy
of 27 GeV. More than 106 neutrino interactions were

accumulated in the emulsion target. A requirement on
the square of the invariant mass of the hadronic system,
W2 > 1 GeV2 along with other selection criteria to remove
the background, was imposed. A sample of 496 νμ-A and
369 ν̄μ-A events, where A represents the target, was finally
selected for analysis. Details of the data as number of
events for every W2 range can be obtained from Ref. [5].
Investigation into the KNO scaling [17] behavior of the
charged hadron multiplicity in different kinematical regions
has been done. Using the multiplicity distributions thus
obtained for both ν-A and ν̄-A are analyzed to validate the
mean multiplicity values cited in Tables 5 and 6 of Ref. [5]
and used for further analysis in the present work.

C. νn and νp charged-current interactions
from Fermilab Bubble Chamber

Charged-hadron multiplicity distributions in νn and νp
charged-current (CC) interactions were measured in an
exposure of the Fermilab deuterium-filled 15-foot bubble
chamber to a wide-band neutrino beam produced by
350-GeV protons. Charged-hadron multiplicities initiated
in charged-current neutrino interactions on deuteron tar-
gets, from which νn and νp collisions from an identical
neutrino flux were separated. The data sample corresponds
to a flux of 4.57 × 1018 protons on target. The average
neutrino energy was 50 GeV.

νμ þ n → μ− þ Xþ; Xþ → hadrons

νμ þ p → μ− þ Xþþ; Xþþ → hadrons ð11Þ

Charged hadron multiplicity distributions published in [11]
measured for (a) 9237 neutrino-neutron CC interactions
and (b) 6033 neutrino-proton CC interactions, distributed
over differentW2 ranges between 1-225 GeV2 are used for
the present analysis. The paper by D. Zieminska et al. [11],
contains details of the data and selection procedure used.

D. νp charged current interactions
from Fermilab Bubble Chamber

The multiplicity distributions of the hadrons produced
in antineutrino-proton interactions in a sample consisting
of 2055� 206 charged-current events with antineutrino
energy greater than 5 GeVare analyzed using the data from
reference [7]. The data comes from exposures of the
15-foot hydrogen bubble chamber to the broad-band
antineutrino beam at Fermilab. The distribution in hadronic
mass W has an average value of 3.7 GeV but extends up
to 10 GeV. The data samples were obtained from three
separate exposures of the Fermilab 15-foot hydrogen
bubble chamber. The events were obtained with a
400 GeV proton beam incident on an aluminium target.
Two horns were used to focus the produced negative
particles which in turn decayed to generate the ν̄μ beam.
The ν̄p charged-current (CC) events were extracted from
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the sample that included contributions from both CC and
NC reactions.

ν̄p → μþH0;

νp → μ−Hþþ;

ν̄p → ν̄Hþ;

νp → νHþ

The bulk of the charged-current data are in the W range,
2 < W < 6 GeV with a median W value of 3.7 GeV. The
details of the data for every W range can be obtained
from Ref. [7].
The data samples discussed above have different neu-

trino energies and different target size (A). The target size is
related to the mean number of inelastic collisions and
hence the hnchi. In the production process, the main
interest is to study the inelastic interactions. However,
not all events are deep inelastic, some have very low Q2

and the multiplicity dependence is not linear with respect
to the target size as discussed in Ref. [53] for the case of
hadron-nucleon and hadron-nucleus case. In the present
analysis, all data samples under study have Q2 ≥ 5 GeV2

and the hEνi > 10 GeV.

IV. RESULTS

Figure 1 shows the dependence of hnchi on lnW2 for
each specified data being analyzed. Most of the earlier
studies made a linear fit, hnchi ¼ aþ b lnW2 to each
dataset. Accordingly a linear fit has been made to validate
the data used, and the values of parameters a and b
as shown in Table I are found to be very close to the
earlier results.

Figure 2 shows the dependence of dispersion D on the
average multiplicity hnchi for data on νμ-Pb interactions,
from the OPERA experiment. A straight line fit equa-
tion (10) to the data confirms a linear dependence. The
interpolation of the straight line fit on the hnchi axis is
measured as a parameter, α ¼ −A=B. Similar linear
dependencies are studied for all the datasets and the value
of α obtained for each of the datasets. To avoid multiple
similar figures, only one of these, is presented here. The fit
coefficients A and B and the α values are shown in the
Table II for all the datasets being analyzed. For all the
distributions, the χ2 minimization has been performed by
using CERN software, the ROOT6.12.

A. Effect of α

KNO scaling as discussed in Sec. II was derived from
Feynman scaling, observing that at high energy the KNO
leads to an asymptotic scaling of the total multiplicity as
hnchi ∝ ln

ffiffiffi
s

p
. Thus, KNO scaling implies that the intercept

A in Eq. (10) be compatible with 0, which is not the case at
low to medium energies for all kinds of interactions. Alpha
is calculated from Eq. (10) as α ¼ −A=B, a variable which
is reaction independent but energy dependent. Using α,
Buras et al. [54] provided an extension of the KNO scaling
to low energies by introducing a new variable z0 defined as:

z0 ¼ nch − α

hnch − αi ð12Þ
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FIG. 1. Average charged hadron multiplicity hnchi as a function
of lnW2. The data on interactions (i) νμ-Pb collected by the
OPERA experiment using CERN-CNGS [1] (ii) νμ-Em and ν̄μ-
Em by the CHORUS experiment [5] (iii) ν̄-p using FNAL-Bubble
Chamber [7] (iv) ν-n and ν-p obtained from FNAL-Bubble
Chamber [11].

TABLE I. Linear fit parameters for hnchi versus lnW2 depend-
ence.

Interaction A B χ2=ndf Reference

νμ-Pb −0.27� 0.06 0.81� 0.03 22.55=7 [1]
νμ-Em 0.69� 0.18 0.87� 0.06 11.8=8 [5]
ν̄μ-Em 0.48� 0.18 0.84� 0.07 5.03=5 [5]
ν̄ p −0.40� 0.12 1.43� 0.05 12.6=6 [7]
ν n −0.19� 0.06 1.42� 0.02 14.4=9 [11]
ν p 0.49� 0.13 1.43� 0.05 2.26=9 [11]
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ch
 n

0.6
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1
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 D
 

FIG. 2. Dispersion as a function of hnchi for νμ-Pb interactions
obtained by the OPERA experiment [1].
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A possible explanation of α has been proposed in terms
of a leading particle effect in interactions using
hadrons, and neutrinos as well as resulting from the
heavy nuclear targets in experiments using nuclear
emulsions [5,54,55]. Figure 3 shows two KNO distribu-
tions for ψðz ¼ nch

hnchiÞ and ψðz0 ¼ nch−α
hnch−αiÞ for the data from

the OPERA experiment.
From the D versus hnchi linear fit, we get α ¼ −1.41.

The distribution is fitted with the Slattery’s function,
Eq. (2), for two cases: (i) by including the α, and (ii) by
taking α ¼ 0, to calculate z0. For both these cases, the
distribution is also fitted with the shifted Gompertz
function, Eq. (4) and the Weibull function, Eq. (6).
For the same data from the OPERA experiment, figure 3

shows the KNO distributions fitted with the Slattery’s
function, Eq. (2) for the two cases: (i) by including the
α and (ii) by taking α ¼ 0, to calculate z0. The SGD and the
Weibull distributions are also fitted.
From Table III it may be observed that χ2=ndf falls by a

large factor when including α to calculate z0. This shows a
much improved performance of the fit functions in the
description of the data, hence the justification to modify the
variable z to z0. The same trend is observed for all the data
under study.

B. Different probability distribution functions

The KNO distribution has been studied by almost all the
high energy physics experiments. For the case of neutrino
interactions various forms of the Slattery’s function [35]
introduced in 1973, have been used to fit the distribution.
Analysis of the data from the OPERA and the CHORUS
experiments, used the function in the forms;

ψðz0Þ ¼ ðAz03 þ Bz04Þe−Cz0 ð13Þ

ψðz0Þ ¼ ðAz0 þ Bz03 − Cz05 þDz07Þe−Ez0 ð14Þ

where A, B, C, D, E are the fit parameters.
In Sec. II (B–D) we discussed the Slattery’s function

for KNO distribution, shifted Gompertz distribution and
Weibull distributions. Details of the distributions are also
provided. In the present work, we apply these distributions
to investigate the KNO distributions with respect to the
earlier used Slattery’s function.
Figure 4 shows the KNO distribution for the νμ-Pb

interactions in three W (GeV) ranges with 1 < W2 < 9,
9 < W2 < 19 and W2 > 19 GeV2 from the data obtained
by the OPERA experiment [1].
Figures 5 and 6 show the KNO distributions for the

νμ-Emulsion and ν̄μ-Emulsion interactions in twoW (GeV)
ranges with 1<W2<3 and 3 < W2 < 5 GeV2 for the data
from the CHORUS experiment [5].
Figures 7 and 8 show the KNO distributions for

the ν-n and ν-p interactions in five WðGeVÞ ranges with

TABLE II. Dispersion D versus hnchi variation. Values of slope
A, intercept B of the linear fit and the ratio α ¼ −A=B are shown.

Interaction A B χ2=ndf α Reference

νμ-Pb 0.59� 0.05 0.42� 0.02 3.67=7 −1.410 [1]
νμ-Em 1.37� 0.23 0.14� 0.07 8.11=8 −6.468 [5]
ν̄μ-Em 1.14� 0.23 0.25� 0.09 1.51=5 −4.532 [5]
ν̄ p 0.54� 0.07 0.31� 0.03 2.39=8 −1.723 [7]
ν n 0.29� 0.04 0.36� 0.01 4.89=11 −0.928 [11]
ν p 0.09� 0.09 0.34� 0.02 2.26=9 −0.299 [11]
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FIG. 3. KNO distributions for different W2 (GeV2) fitted with
the Slattery’s function (i) with α ¼ 0 (blue solid line) and (ii) with
α included in the function (red solid line) for the data from the
OPERA experiment [1].

TABLE III. KNO distribution fitted with different functions,
with α, and with α ¼ 0 for the OPERA data [1].

Interaction Distribution ðχ2α=ndfÞ ðχ2α¼0=ndfÞ
νμ-Pb SL 1.87 155.3

SGD 0.39 33.41
Wei 1.30 80.34
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FIG. 4. KNO distributions of νμ-Pb data from the OPERA
experiment [1], in different W (GeV) ranges, fitted with three
different functions.

RASHI SHARMA, R. AGGARWAL, and M. KAUR PHYS. REV. D 108, 113011 (2023)

113011-6



1 < W2 < 3, 3 < W2 < 5 and 5 < W2 < 7, 7 < W2 < 10

and 10 < W2 < 15 GeV2 for the data from Ref. [11].
The KNO distributed data in Figs. 4–9 are fitted with

three distributions: (i) Slattery’s function, Eq. (13)
(ii) shifted Gompertz function, Eq. (4), and (iii) the
Weibull function, Eq. (6). Table IV shows the χ2=ndf
values for each of the fits and for each dataset. It is observed
that the Slattery’s function gives the maximum χ2=ndf for
every data, thereby showing it to be a bad fit. In Fig. 4 for
the νμ − Pb data, SGD gives the best fit, closely followed
by the Slattery’s function. Weibull distribution however
underestimates the data below z0 < 1 and overestimates the
data beyond z0 > 1. Similar trend is found in the νμ − Em
and ν̄ − n interactions in Figs. 5 and 7. For the data
presented in Figs. 6, 8, and 9, although the Weibull
distribution behaves in the similar manner, the distribution
due to Slattery’s function in these cases, shows the worst
fits, underestimates the data around the peak region and
overestimate in the tail region. In all the cases peak value
for Weibull distributions for all types of interaction, occurs
at higher z0, i.e., shifted to the right of the peak with respect

to both SGD and Slattery. The performance of the SGD
turns out to be the best.

C. Central and factorial moments

Moment analysis is a powerful tool used for unfolding the
characteristics of multiplicity distribution. The moments are
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FIG. 5. KNO distributions of νμ-Emulsion data from the
CHORUS experiment [5], in different WðGeVÞ ranges, fitted
with three different functions.
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FIG. 6. KNO distributions of ν̄μ-Emulsion data from the
CHORUS experiment [5], in different WðGeVÞ ranges, fitted
with three different functions.
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FIG. 7. KNO distributions of ν-n data from Ref. [11], in
different WðGeVÞ ranges, fitted with three different functions.
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FIG. 8. KNO distributions of ν-p data from Ref. [11], in
different WðGeVÞ ranges, fitted with three different functions.
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calculated as derivatives of the generating function of the
probability distribution. Higher factorial moments from
which all other kinds of moments, factorial moments can
also be calculated and the particle correlations can be studied
through them. The second central moment represents the
variance of a random variable. It captures how spread out a
distribution is. Higher variance means a wider distribution.
The third moment called skewness, quantifies the relative
size of the two tails of the distribution. Skewness is negative
for longer left tails and positive for longer right tails. The
third central moment is important because skewness is both
location-and-scale-invariant. The fourth central moment
represents kurtosis which is a measure of the combined
size of the tails relative to whole distribution. In a logical
manner higher moments, odd-powered central moments

quantify relative tailedness and even-powered moments
quantify total peakedness. Several analyses of moments
have been done at different cms, using different probability
distribution functions and variety of particles used as
probes [30,32,34,56]. The higher moments also can identify
the correlations among particles produced in collisions.
Another study [57] on evolution of the multiplicity distri-
bution in a fireball that cools down after chemical freeze-out
focused on to obtain different apparent temperatures from
different moments.
The values of central moments Cq and factorial moments

Fq calculated for the experimental data and the SGD
distributions which are the best fits of the data, are given
in the Tables V and VI. Central moments are computed in
terms of deviations from the mean, because then the higher-
order central moments relate only to the spread and shape
of the distribution. It may be observed that the normalized
central moments as well as normalized factorial moments
obtained from the shifted Gompertz distribution are in good
agreement with the experimental values. This serves as a
good test of the validity of the proposed SGD distribution.
Additionally, it is also observed from the ν̄ðνÞ-Emulsion
interactions and ν̄ðνÞ-proton interactions that all moments
have higher values for the case of ν̄ interactions than the
corresponding ν interactions with the same target. It is also
observed that the values of both the central and factorial
moments depend upon the target size A. Figures 10 and 11
and show the variation of C2, C3, C4 moments derived
from the experimental and SGD distributions. Similarly
Figs. 12 and 13 show the variation of F2, F3, F4 moments
derived from the experimental and SGD distributions.

TABLE IV. Comparison of χ2 values for the three functions:
SL(Slattery’s), SGD(shifted Gompertz), Wei(Weibull’s) fitted to
the data.

hW2i SL SGD Wei

Interaction GeV2 χ2=ndf χ2=ndf χ2=ndf Reference

νμ-Pb 16.9� 0.6 1.87 0.40 1.30 [1]
νμ-Em 17.7� 0.8 0.85 0.52 2.72 [5]
ν̄μ-Em 26.2� 1.3 2.07 0.42 0.76 [5]
ν̄ p 28.62a 2.49 0.26 2.00 [7]
ν n 28.03b 0.71 0.93 0.27 [11]
ν p 29.41b 2.65 1.11 0.62 [11]

aSquare of the quoted hWi.
bThe uncertainty in the determination of W due to ν-energy

uncertainty is estimated to be 20% FWHM.

TABLE V. Normalized central moments Cq of experimental and shifted Gompertz distributions.

Experimental SGD

Reaction C2 C3 C4 C5 C2 C3 C4 C5 Reference

νμ-Pb 0.96� 0.06 1.17� 0.17 4.60� 0.61 14.21� 2.35 1.03� 0.05 1.50� 0.15 6.05� 0.61 21.04� 2.61 [1]
ν̄-Em 0.61� 0.23 0.31� 0.39 1.02� 0.83 1.31� 1.77 0.68� 0.07 0.48� 0.13 1.48� 0.31 2.45� 0.74 [5]
ν-Em 0.46� 0.15 0.21� 0.25 0.67� 0.51 0.85� 1.06 0.48� 0.04 0.31� 0.07 0.90� 0.15 1.40� 0.34 [5]
ν̄-p 0.40� 0.15 0.18� 0.26 0.58� 0.50 0.71� 1.05 0.42� 0.02 0.25� 0.03 0.74� 0.06 1.08� 0.13 [7]
ν-n 0.36� 0.09 0.17� 0.16 0.47� 0.28 0.64� 0.58 0.36� 0.01 0.21� 0.01 0.55� 0.03 0.83� 0.06 [11]
ν-p 0.24� 0.08 0.11� 0.13 0.23� 0.19 0.30� 0.35 0.24� 0.01 0.12� 0.01 0.25� 0.02 0.33� 0.03 [11]

TABLE VI. Normalized factorial moments Fq of experimental and shifted Gompertz distributions.

Experimental SGD

Reaction F2 F3 F4 F5 F2 F3 F4 F5 Reference

νμ-Pb 1.35� 0.09 2.19� 0.20 4.17� 0.46 8.37� 1.09 1.42� 0.07 2.62� 0.18 5.70� 0.48 13.36� 1.33 [1]
ν̄-Em 1.23� 0.48 1.59� 0.84 1.99� 1.35 2.28� 1.92 1.31� 0.13 1.84� 0.25 2.64� 0.44 3.57� 0.71 [5]
ν-Em 1.14� 0.38 1.40� 0.66 1.78� 1.10 2.25� 1.75 1.15� 0.09 1.54� 0.16 2.21� 0.29 3.20� 0.51 [5]
ν̄-p 1.06� 0.44 1.20� 0.67 1.43� 1.02 1.71� 1.50 1.08� 0.04 1.29� 0.07 1.71� 0.11 2.27� 0.17 [7]
ν-n 1.10� 0.29 1.32� 0.47 1.71� 0.79 2.32� 1.32 1.10� 0.02 1.35� 0.04 1.84� 0.07 2.69� 0.12 [11]
ν-p 1.02� 0.32 1.11� 0.48 1.30� 0.74 1.63� 1.16 1.02� 0.03 1.13� 0.04 1.37� 0.06 1.76� 0.09 [11]
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From these figures and the Tables V and VI it is found that
the moments rise very fast for neutrino interactions with the
target size; proton/neutron (A ¼ 1) to Emulsion (A ¼ 94)
to Lead (A ¼ 207).

V. CONCLUSION

A detailed analysis of the neutrino interactions has been
done using data from four different experiments. This is the
first study in which the KNO distribution is studied by
using different functions than the conventional Slattery’s
function. The shifted Gompertz distribution and the
Weibull distributions are studied. Both these distributions
show a better agreement with the data in comparison to the
Slattery’s function. While the peak value of Slattery’s
function occurs around the same z0 value as SGD, the
peak for Weibull distribution is right-shifted. Both these
distributions underestimate the hadron multiplicities below
z0 < 1 and overestimate beyond z0 > 1, Slattery shows the
worst fit, out of the two. However, the shifted Gompertz
distribution shows the best agreement out of the three and
hence SGD can serve as an estimator of hadron multiplic-
ities while tuning the MC event generators for the future
neutrino experiments.
The average multiplicity hnchi varies nearly linearly as

a function of lnW2, although at very low W2 it slightly
departs. The dependence of the charged hadrons multi-
plicity on dispersion D also follows a linear relation
equation (10).
It is interesting to observe that the values of both the

central and factorial moments depend upon the target
size A. Higher the atomic weight of the target, faster is
the growth of the moments. Additionally, it is also observed
from the ν̄ðνÞ-Emulsion interactions and ν̄ðνÞ-proton inter-
actions that all moments have higher values for the case of ν
interactions than the corresponding ν̄ interactions with the
same target. A conclusive regularity in A-dependence can
be studied if more number of data points with larger
variation of target sizes becomes available. The information
dissemination from such an analysis, particularly using the
higher moments, is often useful to study the patterns and
correlations.
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FIG. 10. Normalized central moments Cq as a function of the
target mass A in ν-p (A ¼ 1), ν-n (A ¼ 1), νμ-Em (A ¼ 94) and
νμ-Pb(A ¼ 207) interactions, obtained from the data [1,5,11].
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FIG. 11. Normalized central moments Cq as a function of the
target mass A in ν-p (A ¼ 1), ν-n (A ¼ 1), νμ-Em (A ¼ 94) and
νμ-Pb(A ¼ 207) interactions, obtained from the SGD fit to the
data [1,5,11].

0 50 100 150 200 250
A

0

1

2

3

4

5

qF

F2
F3
F4

FIG. 12. Normalized factorial moments Fq as a function of the
target mass A in ν-p (A ¼ 1), ν-n (A ¼ 1), νμ-Em (A ¼ 94) and
νμ-Pb(A ¼ 207) interactions, obtained from the data [1,5,11].
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FIG. 13. Normalized factorial moments Fq as a function of the
target mass A in ν-p (A ¼ 1), ν-n (A ¼ 1), νμ-Em (A ¼ 94) and
νμ-Pb(A ¼ 207) interactions, obtained from the SGD fit to the
data [1,5,11].
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