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The quasielastic cross section of charged-current neutrino and antineutrino scattering on 12C is calculated
using an improved superscaling model with relativistic effective mass. Our model encompasses two-
particle emission induced by neutrinos, which we distinguish into two contributions. The first contribution
arises from meson-exchange currents, and its calculation is performed at a microscopic level. The second
contribution is phenomenological and extracted from the high-energy tail of the scaling function, assumed
to be produced by 2p2h mechanisms where the one-body current plays a role, such as short-range
correlations and interferences with MEC, final-state interaction, etc. The model explicitly includes the
modification of the relativistic effective mass of the nucleon within the relativistic mean field model of
nuclear matter. The meson exchange currents are also consistently calculated within the same model. With
this model, we present predictions for the neutrino and antineutrino cross sections of 12C that have been
measured in accelerator experiments.
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I. INTRODUCTION

Neutrino interactions with nuclei are of vital importance
for a series of experiments ongoing and planned in the near
future [1]. In recent years, a large experimental program
focused on accelerator-based neutrino oscillation experi-
ments has been developed. The primary objective of this
program is to enhance our understanding of neutrino
properties by accurately measuring the oscillation param-
eters and investigating the weak CP-violating phase. These
measurements are crucial for elucidating the enigmatic
phenomena surrounding neutrino oscillations and their
fundamental role in the realm of particle physics. The
majority of long-baseline neutrino experiments employ
complex nuclear targets, making it crucial to have excellent
control over medium effects in neutrino-nucleus scattering
to achieve precise measurements of neutrino oscillation
parameters [2–4].
The cross section of neutrino-nucleus scattering for the

energies of interest, which are essential for these experi-
ments [5,6], is made up of various channels, including
quasielastic interactions but the nuclear models present
uncertainties [7,8] related to the presence of processes, such
as final-state interactions, multinucleon emission, pion
emission and other inelasticities that limit the accuracy
of oscillation experiments [9–13]. Efforts to reduce

uncertainties in neutrino-nucleus scattering models include
measuring the proton or neutron multiplicity of final states
[11,14–16].
The inclusive ðe; e0Þ cross sections of nuclei provide a

useful starting point for modeling neutrino-nucleus inter-
actions. The isovector component of the electromagnetic
nuclear responses can be related to the vector component
of the weak charged-current responses that contribute to
the neutrino cross sections. Therefore, the systematic
differences observed between theoretical predictions of
neutrino cross sections should be closely associated with
differences in the description of ðe; e0Þ data [17–22].
In this work, we present predictions for neutrino quasie-

lastic cross sections based on an extended superscaling
model that has been tuned from inclusive electron scattering
data. It is based on the superscaling analysis with relativistic
effective mass (SuSAM*) model of Refs. [23,24], modified
to accommodate the possibility of a contribution that
partially violates scaling. This modification acknowledges
that the inclusive quasielastic (QE) cross section data exhibit
deviations from strict scaling behavior.
The original SuSAM* model differs from the super-

scaling analysis (SuSA) model [25–28] in that it is based on
the relativistic mean-field model (RMF) of nuclear matter
and thus contains, by construction, nucleon medium effects
encoded in a relativistic effective mass for the nucleon.
Our modified SuSAM � þ2p2h model is made up of

three contributions: (i) the purely quasielastic cross section
(1p1h); (ii) the two-particle two-hole (2p2h) emission
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channel from a theoretical model of meson-exchange
currents (MEC); and (iii) an additional phenomenological
2p2h tail contribution attributed to short-range correlations
(SRC), interference with MEC, final-state interactions
(FSI) and other processes partially contributing to the
scaling function, exhibiting slight deviations from scaling
behavior and mainly influencing the high-energy tail of the
scaling function.
The 2p2h-MEC responses are calculated consistently

with the mean field model in nuclear matter by introducing
effective mass and vector energy for the nucleon, so they
explicitly contain the same medium corrections as the
quasielastic responses [29,30]. The contribution of the
2p2h tail has been obtained phenomenologically from
ðe; e0Þ data through a pure phase-space model [31] similar
to the one implemented in the GiBUU event generator [32],
by a parameterization involving the phase-space function of
the 2p2h process and the single-nucleon responses multi-
plied by a q-dependent 2p2h parameter. An additional
improvement is that the single nucleon responses that are
factorized in the scaling approach consist in an average
with respect to a modified momentum distribution instead
of extrapolations from the relativistic Fermi gas (RFG)
model [31,33,34].
The SuSAM � þ2p2h model was fitted to quasielastic

electron data in Ref. [31] and therefore reproduces a large
part of them (excluding inelastic and pion emission data).
Here we intend to apply it to calculate the neutrino cross
section to see what is achieved, as was done with the
original SuSA model [35,36]. The SuSAM*model is based
on the relativistic mean field model [37,38], and it provides
an interesting alternative to the traditional SuSA model
[20,39]. Indeed, the relativistic mean field is an optimal
starting point for modeling the nuclear response, as it
already adequately reproduces the position and width of the
quasielastic peak with only two parameters; the Fermi
momentum and the effective mass [37]. Besides it is
relativistic, gauge invariant, and implicitly contains
dynamical enhancement of lower Dirac components of
the nucleon in the medium.
The structure of this work is as follows. In Sec. II we

briefly describe the theoretical SuSAM � þ2p2h model. In
Sec. III we provide the results for the neutrino and
antineutrino cross sections and compare with data. In
Sec. IV we give our summary and conclusions.

II. FORMALISM

A. Response functions

In this work, our primary focus lies on studying inclusive
charged-current quasielastic scattering (CCQE) of muon
neutrinos from nuclei. In this section, we provide a concise
overview of the formalism, which is elaborated in more
detail in Refs. [31,40]. In the case of ðνμ; μ−Þ reaction the
initial neutrino energy is denoted as ϵ ¼ Eν, and the final

detected muon energy is represented as ϵ0 ¼ mμ þ Tμ,
where mμ denotes the mass and Tμ is the kinetic energy
of the muon.. The four-momentum transfer is defined as
Qμ ¼ kμ − k0μ ¼ ðω;qÞ, with Q2 ¼ ω2 − q2 < 0, and the
initial and final lepton momenta are kμ and k0μ. The
scattering angle θ is given by k · k0 ¼ kk0 cos θ.
In this paper, our interest lies in the inclusive cross

section, where only the final muon is detected. The cross
section is expressed as follows:

d2σ
d cos θdEμ

¼ G2
Fcos

2θc
2π

k0

ϵ
LμνWμν; ð1Þ

where GF is the Fermi constant, θc is the Cabibbo angle,
and Lμν and Wμν represent the leptonic and hadronic
tensors, respectively. The leptonic tensor for neutrino
scattering is given by

Lμν ¼ kμk0ν þ k0μkν − gμνk · k0 � iϵμναβkαk0β; ð2Þ

where the signþð−Þ is for neutrino (antineutrino) scattering.
The inclusive hadronic tensor is constructed from the matrix
elements of the current operator JμðQÞ between the initial
and final hadronic states, summing over all the possible final
nuclear states with excitation energy ω ¼ Ef − Ei, and
averaging over the initial spin components.

Wμν ¼
X
f

X
i

hfjJμðQÞjii�hfjJνðQÞjiiδðEiþω−EfÞ: ð3Þ

To express the cross section in a simple form in terms of
response functions, we utilize the q-reference system where
the momentum transfer q aligns with the z-axis, and the
x-axis corresponds to the component perpendicular to q of
the incident neutrino momentum. In this q-system, only the
following five components of the hadronic tensor or response
functions are involved:

RCC ¼ W00 ð4Þ

RCL ¼ −
1

2
ðW03 þW30Þ ð5Þ

RLL ¼ W33 ð6Þ

RT ¼ W11 þW22 ð7Þ

RT 0 ¼ −
i
2
ðW12 −W21Þ: ð8Þ

B. Relativistic mean field

The SuSAM � þ2p2h model considered in this work is
based on the relativistic mean field model of nuclear matter,
as initially proposed in Refs. [37,38,41,42]. In this model,
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nucleons interact with a relativistic field characterized by
scalar and vector potentials. The single-particle wave
functions are described by plane waves with momentum
p, and their on shell energy is given by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

NÞ2 þ p2

q
; ð9Þ

where m�
N represents the relativistic effective mass of the

nucleon, defined as m�
N ¼ mN − gsϕ0 ¼ M�mN . Here, mN

denotes the bare nucleon mass, and gsϕ0 represents the
scalar potential energy of the RMF [38]. Additionally, due
to the repulsion by the relativistic vector potential, the
nucleon acquires a positive energy given by Ev ¼ gvV0.
Hence, the total nucleon energy in the RMF model is the
sum of the on-shell energy and the vector potential energy,
ERMF ¼ Eþ Ev. According to Ref. [29] we use the values
M� ¼ 0.8 and Ev ¼ 141 MeV for 12C in our results.
In the RMF framework, the generic quasielastic

responses with a one-body current operator can be
expressed as follows:

RK
QEðq;ωÞ ¼

ϵF − 1

m�
Nη

3
Fκ

N ŪKðq;ωÞf�ðψ�Þ; ð10Þ

where N ¼ Z, N for protons or neutrons responses, κ ¼
q=2m�

N and ηF ¼ kF=m�
N are the Fermi energy and

momentum, respectively, in units of the effective mass,
with EF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm�2

N

p
. The scaling variable ψ� ¼

ψ�ðq;ωÞ is related to the minimum energy of an on shell
nucleon absorbing momentum q and energy ω,

ψ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0 − 1

ϵF − 1

s
sgnðλ − τÞ; ð11Þ

where ϵF ¼ EF=m�
N and

ϵ0 ¼ Max

�
κ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

τ

r
− λ; ϵF − 2λ

�
; ð12Þ

use the usual dimensionless variables normalized with m�
N

λ ¼ ω=2m�
N; τ ¼ κ2 − λ2: ð13Þ

Finally, the single nucleon functions ŪK represent the
responses of a single nucleon averaged in the Fermi
gas [40].
In the RMF the scaling function is

f�ðψ�Þ ¼ 3

4
ð1 − ψ�2Þθð1 − ψ�2Þ; ð14Þ

and therefore is zero outside the Fermi gas region
−1 < ψ� < 1. This is a consequence of the fact that
nucleons have a maximum momentum kF, which implies

that, for a fixed q, there exists a maximum and minimum
energy transfer where the response is nonzero.

C. Extended superscaling

In a finite nuclear system like an actual nucleus, the
quasielastic response extends beyond the region
−1 < ψ� < 1. In the SuSAM* approach, the factorization,
Eq. (10), remains intact, but using a phenomenological
scaling function that is obtained from experimental data. As
a result, the SuSAM* model can account for the complex-
ities arising from finite nuclear systems and better describe
the cross section. This extension also necessitates broad-
ening the definition of the averaged single-nucleon
responses beyond the RFG region, which can be achieved
through a smearing of the Fermi surface, as implemented in
[33,34]. In this context, we perform an averaging of the
single-nucleon using the momentum distribution that is
deduced from the scaling function. This procedure is
elaborated upon in Appendix B of Ref. [31].
The first step in the scaling analysis involves subtracting

the contribution of 2p2h MEC responses from the ðe; e0Þ
data. The MEC responses are calculated in the RMF model
of Ref. [29]. The experimental data of the scaling function,
f�exp, are then obtained by dividing by the averaged single-
nucleon cross section.

f�exp ¼

�
dσ

dΩdω

�
exp

−
�

dσ
dΩdω

�
MEC

σMðvLrL þ vTrTÞ
; ð15Þ

where σM is the Mott cross section, and the single nucleon
dividing responses are such that the cancel with the factor
multiplying the scaling function in Eq. (10)

rK ¼ ϵF − 1

m�
Nη

3
Fκ

ðZŪp
K þ NŪn

KÞ: ð16Þ

In this way the contamination arising from 2p2h-MEC
response has been minimized to the greatest extent possible
within the scaling data.
The process of selecting the QE-like data is essential for

the SuSAM* approach, and it involves representing the
f�exp data as a function of the scaling variable ψ�. The data
points belonging to the QE peak are expected to exhibit
approximate scaling when plotted against ψ�. While they
may not align perfectly with the scaling function of the
RFG, they predominantly cluster around a thick band near
the RFG. On the other hand, data points corresponding to
nonquasielastic processes like pion production clearly
deviate from this band, scattering them in disparate points.
This distinction enables the selection of QE-like data and
the elimination of nonscaling inelastic data (approximately
half of the 12C dataset). The data selection process is
formalized using a density algorithm; a data point is
selected if it is surrounded by more than 25 points within
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a radius r ¼ 0.1. The density algorithm automatically
identifies points that collapse into a dense region (scaling)
and removes dispersed data points that do not collapse
(nonscaling).
The selected QE-like data were used in Ref. [29] to

construct a phenomenological SuSAM* scaling function,
f�ðψ�Þ, which is parametrized as the sum of two Gaussians
and exhibits a clear asymmetry around the origin ψ� ¼ 0,
with a tail for ψ� > 0. In Ref. [31], it was noticed that this
tail is consistent with a contribution from 2p2h processes
involving the one-body (OB) current. A significant portion
of these effects could potentially originate from SRC that
generate high-momentum nucleons in the ground state.
Therefore, in the extended SuSAM* approach (ESuSAM*)
an alternative parametrization of the phenomenological
scaling function is proposed in the form

f�Eðq;ωÞ ¼ f�1p1hðψ�Þ þ f�SRCðq;ωÞ; ð17Þ

where f�1p1hðψ�Þ is a symmetric function that can be
parametrized with a Gaussian

f�1p1hðψ�Þ ¼ be−ðψ�Þ2=a2 ; ð18Þ

with the coefficients a ¼ 0.744 and b ¼ 0.682. The func-
tion f�SRCðq;ωÞ characterizes the tail behavior of the scaling
data for ψ� > 0. It is formulated as a pure phase-space
model (as shown below) because it is assumed to represent
2p2h contributions involving the OB current. This pri-
marily includes SRC, interferences with MEC, and pos-
sibly other processes such as FSI. In other words, it cannot
be solely attributed to SRC effects, even though we label it
as such to differentiate it from the pure 2p2h MEC
contribution.
In Fig. 1, we present the experimental QE scaling

function data after subtracting the contribution of the tail,

f�SRCðq;ωÞ. It is evident that the data now conforms to a
band that aligns with a symmetric distribution, fitting well
with a Gaussian centered at ψ� ¼ 0. This observation
implies that the kinematic dependence of the tail, as
modeled by the pure phase-space approach, is suitable
for describing the high-energy tail accurately. The width of
the band provides an indication of the extent to which the
scaling hypothesis is violated.
Inserting the extended scaling function f�Eðq;ωÞ in

Eq. (10), the QE responses are the sum of two contributions

RK
QEðq;ωÞ ¼ RK

1p1hðq;ωÞ þ RK
SRCðq;ωÞ; ð19Þ

where RK
1p1h is proportional to f�1p1hðψ�Þ and RK

SRC is
proportional to f�SRCðq;ωÞ using Eq. (10). Thus, the former
scales and the latter does not. However, in this model, both
responses are proportional to the averaged single-nucleon
response. The cross sections obtained using this ESuSAM*
approach closely resemble those obtained with the original
SuSAM* model, as both models have been fitted to the
same dataset. However, the advantage of the extended
model lies in its explicit ability to separate the contribution
of the high-energy tail from the symmetric part of the
scaling function, which lacks a tail. This feature becomes
particularly useful in applications such as neutrino event
generators, where distinguishing between different types of
final states is essential. In the case of the R1p1h response, the
final states would be genuine 1p1h excitations, while for
the RSRC response, these states correspond to 2p2h
excitations.
Finally the total responses in the ESuSAM � þMEC

model are written as the sum of three contributions

RK ¼ RK
1p1h þ RK

SRC þ RK
MEC: ð20Þ

The MEC contributions need to be added back because
they were previously subtracted from the data to obtain the
phenomenological scaling function f�ðq;ωÞ. Note that
pion emission and other inelastic channels are not included
in this model.

D. Phase-space model

Next, we proceed to describe the pure phase space model
for the SRC responses that contribute to the tail of the
scaling function. The equations were derived in Ref. [31]
from a factorized model for the emission of two correlated
nucleons within the framework of the independent pair
approximation. Subsequently, this factorized approxima-
tion was fitted to describe the tail of the phenomenological
scaling function. The corresponding response functions for
symmetric nuclei (N ¼ Z) are the following:

FIG. 1. The phenomenological scaling function used in this
article compared to experimental data after subtracting the
theoretical contribution of 2p2h.
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RK
SRC ¼ VFðq;ωÞ

ð2πÞ9
Z þ αðZ − 1Þ

2Z − 1

cpnðqÞ
m2

Nm
4
π
ŪK; ð21Þ

where V=ð2πÞ3 ¼ Z=ð8
3
πk3FÞ.

In Eq. (21) the function Fðq;ωÞ is the phase space
function for the 2p2h excitations in the RMF model of
nuclear matter

Fðq;ωÞ ¼
Z

d3p0
1d

3p0
2d

3h1d3h2
ðm�

NÞ4
E1E2E0

1E
0
2

× θðp0
1 − kFÞθðkF − h1Þθðp0

2 − kFÞθðkF − h2Þ
× δðE0

1 þ E0
2 − E1 − E2 − ωÞ

× δðp0
1 þ p0

2 − q − h1 − h2Þ: ð22Þ

In Eq. (21) the parameter α ¼ 1=18 take into account the
dominance of np pairs over pp pairs in the high-momentum
distribution, while the factor ½Z þ αðZ − 1Þ�=ð2Z − 1Þ takes
into account the percent contribution of pn, pp and nn pairs.
Finally, the coefficients cpnðqÞ are the 2p2h parameters.

The dividing factor m2
Nm

4
π is introduced for convenience so

that the cpn coefficients are adimensional. In the factorized
independent-pair approximation the cpn coefficients are
proportional to the average value of the high-momentum
distribution of a pn pair in the 2p2h excitation. In Ref. [31]
the 2p2h parameters were fitted to describe the tail of the
scaling function for each value of q. The q-dependence is
well described by the approximate formula

cpnðqÞ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�

N þ q
q

s
m�

N

q
ð23Þ

with a0 ¼ 345.
The SRC response functions, Eq. (21) can be analytically

evaluated using the frozen nucleon approximation in the
phase-space function that can be approximated by a simple
formula [43],

Fðq;ωÞ≃4π

�
4

3
πk3F

�
2m�2

N

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m�2
N

ð2m�
N þωÞ2−q2

s
; ð24Þ

This formula was utilized in Ref. [31] in the fit of the 2p2h
coefficients. From this equation we obtain the minimum ω
to excite a 2p2h state for fixed q, in frozen approximation,
corresponding to the solution of Fðq;ωÞ ¼ 0

ωmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m�2

N þ q2
q

− 2m�
N ð25Þ

The phase-space function is set to zero below this value.
Note that this is the kinetic energy of a particle with mass
2m�

N and momentum q.

The factorization of Eq. (21) is similar to the pure phase-
space model proposed in Ref. [44], with the distinction that
our model incorporates an additional q-dependence in the
2p2h parameters. This extra q-dependence is necessary to
accurately depict the tail of the scaling data in the
quasielastic region [31].

E. Meson-exchange currents

The relativisticMECmodel is adopted fromRefs. [29,45],
which builds upon the weak pion production model of
Ref. [46]. This model encompasses the Feynman diagrams
depicted in Fig. 2, categorized as seagull (a, b), pion-in-
flight (c), pion-pole (d, e), andΔ (f–i) currents.Notably, theΔ
current contribution proves to be the most significant within
the momentum range of q ¼ 500–1000 MeV=c, which
holds utmost relevance for neutrino scattering.
The matrix elements of the MEC operator between

the ground state and 2p2h excitations in the Fermi gas
are given by

hp0
1p

0
2h

−1
1 h−12 jJμðQÞjFi

¼ ð2πÞ3
V2

ðm�
NÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1E2E0
1E

0
2

p
× δðp0

1 þ p0
2 − q − h1 − h2Þjμðp0

1; p
0
2; h1; h2Þ; ð26Þ

where the function jμðp0
1; p

0
2; h1; h2Þ incorporates the spin

and isospin indices of the Dirac spinors in the 2p2h
excitation. The explicit expressions for these functions can
be found in Ref. [29]. The 2p2h MEC responses are
computed here within the framework of the RMF theory
for nuclear matter. Consequently, the Dirac spinors are

FIG. 2. Feynman diagrams for the electroweak MEC model
used in this work.
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associated with a relativistic effective mass m�
N . The corre-

sponding 2p2h hadronic tensor is computed as

Wμν
MEC ¼ V

ð2πÞ9
Z

d3p0
1d

3p0
2d

3h1d3h2
ðm�

NÞ4
E1E2E0

1E
0
2

× wμνðp0
1;p

0
2;h1;h2ÞδðE0

1 þ E0
2 − E1 − E2 − ωÞ

× θðp0
1 − kFÞθðkF − h1Þθðp0

2 − kFÞθðkF − h2Þ
× δðp0

1 þ p0
2 − q − h1 − h2Þ; ð27Þ

where V=ð2πÞ3 ¼ Z=ð8
3
πk3FÞ for symmetric nuclear matter.

The integral (26) in the nuclear hadronic tensor can be
reduced to seven dimensions when calculating the response
functions. The function wμνðp0

1;p
0
2;h1;h2Þ represents the

hadron tensor for single 2p2h transitions, summed up over
spin and isospin,

wμν ¼ 1

4

X
s1s2s01s

0
2

X
t1t2t01t

0
2

jμðp0
1; p

0
2; h1; h2Þ�Ajνðp0

1; p
0
2; h1; h2ÞA;

ð28Þ

where the two-body current matrix elements is conveniently
antisymmetrized

jμðp0
1; p

0
2; h1; h2ÞA ≡ jμðp0

1; p
0
2; h1; h2Þ − jμðp0

1; p
0
2; h2; h1Þ

ð29Þ

and the factor 1=4 in Eq. (28) accounts for the antisymmetry
of the two-body wave function with respect to exchange of
momenta, spin and isospin quantum numbers.
Due to the intricate nature of spin operators in the MEC,

the summation over spin in Eq. (28) is numerically
evaluated. Note that the single-nucleon tensor can be
expanded as a sum of direct-direct, exchange-exchange,
and direct-exchange interference terms. While in other
models [18], the direct-exchange interference is not taken
into account, the full contribution is included in our
calculation.

III. RESULTS

In this section we present predictions of the ESuSAM �
þMEC model for neutrino and antineutrino CCQE. Our
analysis involves a comparison with experimental data
from MiniBooNE, T2K, and MINERvA collaborations. A
novel aspect of our model is the inclusion, for the first time,
of MEC two-nucleon emission computed within the frame-
work of the RMF theory for nuclear matter. This approach
accounts for dynamical effects in the MEC responses
through the relativistic effective mass and vector energy
of the nucleon.
While our approach shares similarities with the

SuSAv2þMEC model, which is widely used to study

these reactions [20,47], it introduces significant differences
in both the treatment of scaling and the handling of MEC.
The primary difference lies in the utilization of a unified

analytical scaling function, derived from ðe; e0Þ data, and
the inclusion of an averaged single-nucleon prefactor in our
model. Additionally, the scaling variable in SuSAM* incor-
porates the effectivemass of the nucleon. Another distinction
is the decomposition of the scaling function into two parts; a
symmetric function, f�1p1hðψ�Þ, which represents the con-
tribution of 1p1h processes, and a slightly scaling-violating
function f�SRCðq;ωÞ, responsible for describing the tail of the
scaling data. This latter function phenomenologically can
account for 2p2h processes generated by interplay between
one-body currents and correlated nucleon pairs, and inter-
ferenceswithMEC.Furthermore, in ourmodel, the treatment
of MEC involves the complete propagator of the Δ reso-
nance,whereas theSuSAv2þMECmodel only includes the
real part of the Δ propagator.
The parameters of the SuSAM* model (Fermi momen-

tum kF ¼ 225 MeV=c, relativistic effective massM� ¼ 0.8
and nucleon vector energy Ev ¼ 141 MeV) are taken from
Ref. [29]. The other input of the model is the phenom-
enological scaling function f�Eðq;ωÞ, extracted from ðe; e0Þ
data as described in the previous section, and in more detail
in Ref. [31].

A. MEC uncertainty

Before presenting the results for the neutrino cross
sections, it is important to address the treatment of the
Δ current in the MEC calculation. The Δ current introduces
numerous uncertainties due to its model-dependent nature.
Apart from the handling of the propagator, issues regarding
form factors and the nuclear medium effect also arise. In
this article, we do not delve deeply into all these complex-
ities, as they are beyond the scope of this work. However,
we will briefly discuss some of them.
One primary concern pertains to the axial form factor

value for the excitation of the Δ at zero-momentum transfer
which is commonly denoted as CA

5 ð0Þ. A frequently
accepted value that has been used in many calculations
is CA

5 ð0Þ ¼ 1.2, which we employed in our previous works.
However, in Ref. [46], this value was revisited through a
more detailed analysis of weak pion emission by the
nucleon, and it was revised downwards to CA

5 ð0Þ ¼ 0.89.
This revised value is utilized in this work. We made this
choice because, otherwise, the MEC response would be
overly enhanced when compared with the data, as this value
enters the calculations squared. The new value yields more
reasonable results, as will be evident in the subsequent
subsections. In Fig. 3, we contrast the computed transverse
response using the two values CA

5 ð0Þ ¼ 0.89 and 1.2. It is
evident that the response significantly increases with a
larger axial form factor. Henceforth, all results presented
utilize the smaller value 0.89.
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In this study, we do not account for modifications of the
Δ within the nuclear medium; that is, we employ the Δ
current in vacuum. Nonetheless, we can speculate about the
implications of considering interactions between the Δ and
the RMF. We suppose that, similar to the nucleon, the Δ
may acquire an effective mass and vector energy due to
these interactions. This topic was also addressed in
Ref. [30], where an estimate of M�

Δ ¼ 1042 MeV=c was
proposed under the assumption of universal coupling,
implying the same vector energy as the nucleon. This
value is not firmly determined. Figure 2 presents an
illustrative example of the transverse response when such
Δ-medium interactions are taken into account. It is evident

that the response experiences a reduction compared to the
case of Δ in the vacuum.
Therefore, by examining the comparison of the trans-

verse response in Fig. 2, which incorporates modifications
to the axial form factor and interactions with the Δ in the
medium, we can gauge the inherent uncertainty in the
subsequent results regarding the MEC effects. This insight
would suggest an uncertainty band for the 2p2h response
on the order of �20% at most due to these effects.

B. MiniBooNE

Here we present results for the kinematics of the ðνμ; μ−Þ
reaction on 12C as conducted in the MiniBooNE experi-
ment, depicted in Fig. 4. In this experiment, the flux-
averaged cross section was measured as a function of the
muon energy for fixed values of cos θμ. The kinematics in
terms of Tμ (muon kinetic energy) and cos θμ (angle with
respect to the incoming neutrino direction) are averaged
over bins. The flux-averaged double differential cross
section is computed as

d2σ
dTμd cos θμ

¼
R
dEνΦðEνÞ d2σ

dTμd cos θμ
ðEνÞR

dEνΦðEνÞ
; ð30Þ

where ΦðEνÞ is the neutrino flux and d2σ
dTμd cos θμ

ðEνÞ is the
cross section for fixed neutrino energy Eν.
In Fig. 4, we show the individual contributions of the

1p1h responses ðR1p1hÞ, the tail responses ðRSRCÞ, and the
2p2h-MEC responses ðRMECÞ, as well as the total con-
tribution obtained by summing these three components.
The computation of MEC responses entails intricate

calculations, involving seven-dimensional integrals of the
2p2h responses. Additionally, there are integrations over
neutrino energy for the flux-averaged cross section and
possibly an additional averaging over bins in cos θμ. To
expedite these computations, a parametrization of the MEC
responses was proposed in Ref. [30]. This parametrization
introduces semiempirical formulas that factorize coupling
coefficients, form factors, phase space, and the averaged Δ
propagator. The semiempirical MEC formulas incorporate
adjustable coefficients dependent on q, which are tabulated
in [30]. This semiempirical approach proves highly advan-
tageous, particularly due to its flexibility, enabling the
modification of numerous model parameters without neces-
sitating a readjustment of the coefficients. This flexibility
may facilitate the study of systematic errors associated with
the model parameters. In the case of the 1p1h and SRC
responses, no such challenges are encountered, as they are
represented by analytical functions.
The results presented in Fig. 4 are displayed in panels

representing different bins of cos θμ, where the flux-
averaged cross section per neutron is plotted as a function
of the muon kinetic energy Tμ. The width of the exper-
imental bin is Δ cos θμ ¼ 0.1. The results are shown as an

FIG. 3. Transverse MEC response employing three distinct
prescriptions for the Δ current: (a) CA

5 ð0Þ ¼ 1.2, (b) CA
5 ¼ 0.89,

and (c) m�
Δ ¼ 1042 MeV.
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average over the bin, taking five equidistant points within
each bin.
For extremely small angles, particularly cos θμ ¼ 0.95,

our model clearly overestimates the data. In these cases, the
transferred momentum ðqÞ is also very small for the

neutrinos that dominate the flux. For q < 200 MeV=c,
the scaling model is not suitable due to the breakdown of
the conditions required for the factorization approximation.
At such small momenta, finite-size effects are important
and the description of nuclear final states as plane waves is

FIG. 4. Flux-integrated double-differential cross section for neutrino scattering on 12C corresponding to the MiniBooNE experiment.
The experimental data are from Ref. [48].
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not valid. For larger scattering angles, the description of
the data improves and is generally in agreement within the
bounds of experimental error. However, a small shift of the
data is observed compared to the theoretical distribution.
The impact of the MEC is nearly identical to that of the

SRC, except once again for very small angles where the
SRC effects are more pronounced. The peaks of the MEC
and SRC responses almost coincide, with the maximum
being shifted to lower energies compared to the peak of the
1p1h response. It is evident that the inclusion of both 2p2h
contributions plays a significant role in accurately describ-
ing the observed data. The total effect of 2p2h contribution
with respect to the total cross section is approximately 30%.
The antineutrino scattering case, as compared with

MiniBooNE data, exhibits similar trends to the neutrino
case, as shown in Fig. 5. In this case, the cross section
averaged over flux is divided by the number of protons and
plotted as a function of the muon’s kinetic energy. For very
small angles, the data are overestimated, as expected, and
for larger angles, the description is reasonable, although
generally, the data are underestimated. The effects of MEC
and SRC correlations are comparable, except at very small

angles where SRC dominates over MEC. However, this is
again a regime where the model’s validity is questionable.
The overall impact of the 2p2h contribution amounts to
approximately 30% of the total cross section.
We should clarify that the combined contributions

referred to as 1p1h and SRC approximately coincide with
the non-extended SuSAM* model employed in Ref. [50]
for studying the same reaction. In that model, the scaling
function was not decomposed into its symmetric and tail
components. Given that both models were fitted to electron
data, it is reasonable that they yield similar results by
design. Our extended SuSAM* model holds the advantage
of enabling the separation of the high-energy tail contri-
bution from the scaling function, which is presumed to
originate from the distribution of high momenta.
Meanwhile, the 1p1h contribution corresponds to nucleons
with moderate momenta.
On the other hand, the contribution of the MEC in the

our approach is typically of a similar magnitude, to what
was obtained in the SuSAv2þMEC model [20,47]. The
latter model neglected the imaginary part of the Δ propa-
gator. In our current results, the complete propagator is

FIG. 5. MiniBooNE experiment flux-integrated double-differential cross section for antineutrino scattering on 12C.The experimental
data are from Ref. [49].
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employed, which tends to increase and shift the response to
higher energies. However, the nucleons are described
within the RMF framework, with effective mass and vector
energy, leading to a reduction in the response. As a result,
the combined effect yields responses of comparable mag-
nitudes in both models. The quantitative differences
between the two models were studied in Ref. [29].
In Fig. 6, a more comprehensive perspective of the

previous results can be gained by integrating over cos θμ or
Tμ to obtain the single-differential cross section with
respect to Tμ or cos θμ.
For neutrino scattering, the distribution in cos θμ is well-

reproduced except at very forward angles, while the
experimental Tμ distribution is accurately reproduced
across all values. A similar conclusion can be drawn for
antineutrino scattering, except that the Tμ distribution is
slightly underestimated at high energies. In both cases, the
contribution of 2p2h interactions proves essential to rep-
licate the data.
Apart from the issues with very forward angles that have

been previously mentioned, Fig. 6 highlights that the SRC
response tends to increase significantly for cos θμ ∼ 1.

FIG. 6. MiniBooNE flux-averaged CCQE single-differential
cross section as a function of cos θμ and Tμ for neutrino (top
panels) and antineutrino scattering (bottom panels) from 12C. The
experimental data are from Refs. [48,49].

FIG. 7. MiniBooNE CCQE total neutrino (top panel) and
atineutrino (bottom panel) cross section on 12C. The experimental
data are from [48,49].
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This effect is attributed to the extrapolation of the 2p2h
parameter cpnðqÞ to q → 0, while the coefficients were
fitted from q ¼ 100 MeV=c onwards. These results can be
improved by excluding the contributions from the SRC tail
for q values less than 100 MeV=c, as their q-dependence
becomes questionable in this region.
In Fig. 7, we present the MiniBooNE unfolded total

cross section per neutron (proton) as a function of neutrino
(antineutrino) energy The predictions from our compre-
hensive model align well with the data, although in the case
of neutrino interaction, the prediction slightly exceeds the
data, considering the error bars. The contributions from
MEC and SRC are of comparable magnitude, each
accounting for more than 20% of the total cross section.
Overall, our results do not significantly deviate from

those of the SuSAv2þMEC model. Therefore, the
ESuSAM* model provides an alternative scaling plus
2p2h framework to describe the neutrino cross section. It
is remarkable that the agreement of our results with the

MiniBooNE data is similar to that obtained with more
sophisticated models [19,51–54]. This is so because our
model incorporates dynamic effects in the nucleon
due to the RMF, like enhancement of transverse response
due to lower components of nucleon spinors and other
nuclear effects hidden into the phenomenological scaling
function.

C. T2K

In Fig. 8, we depict the flux-folded CC double-differential
cross-section for νμ-12C scattering from the T2K experiment
[55] in comparison with the predictions derived from the
ESuSAM � þMEC model. In this experiment, the bins in
cos θμ possess a variable size. For larger angles, the bins are
wider, while they become significantly smaller for smaller
angles. This means that, for larger angles, we are averaging
over a broader angular interval, thereby encompassing
numerous values of q, which are generally large. This aligns

FIG. 8. T2K flux-folded double differential CCQE cross section per nucleon for νμ scattering on 12C in the extended SuSAM � þMEC
model. Experimental data are from Ref. [55].
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with the model’s presumption of performing optimally at
higher-q values.
It’s important to note that the neutrino fluxes for T2K and

MiniBooNE experiments are different, making the direct
comparison of their results challenging. The T2K experi-
ment utilizes a narrower neutrino flux centered around an
energy of about 500 MeV, with an elongated tail. In
contrast, the MiniBooNE experiment employs a broader
and more uniform flux extending to energies of around
1.5 GeV. Consequently, different energy averages are being
considered in these two experiments.
In general, our model reasonably reproduces the data,

although it tends to slightly overestimate them as the cos θμ
bin size increases. An exceptional case is observed in the
bin 0.98 < cos θμ < 1, which corresponds to very forward
angles. In this case, the model doubles the experimental

cross section at the maximum, which corresponds to the
lowest q region where the model’s validity is questionable.
However at this kinematics the tail of the cross section for
high values of the muon momentum is well-reproduced.
Furthermore, the impact of the MEC is not as pronounced

as observed in the MiniBooNE case, and its peak occurs at
lower energies than the 1p1h response. This behavior is
attributed to the emphasis of different regions in the flux
average, where the MEC has less significance. The effect
arising from the tail of the scaling function is similar to that of
the MEC for larger angles but becomes more prominent
as the angle decreases. It can be stated that for forward angles,
the tail effect is increasingly emphasized. This emphasis
reaches its zenith in the last bin, where the forward scattering
is most significant. In this scenario, the SRC response is of
similar magnitude as the 1p1h response. However, this

FIG. 9. MINERvA flux-folded double-differential cross section for muon neutrino scattering on hydrocarbon. The QE-like
experimental data are from Ref. [7].
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finding should be interpreted cautiously due to the intricate
kinematic considerations involved in this regime.

D. MINERvA

The experimental data from MINERvA are provided as a
function of the measured muon longitudinal and transverse
momenta [7,8,56–59]. The double-differential cross section
is expressed in terms of the longitudinal and transverse
momenta of the scattered muon, denoted as pk and p⊥,
respectively

pk ¼ pμ cos θμ; p⊥ ¼ pμ sin θμ:

These expressions establish the connection between the
kinematic quantities in the context of the MINERvA exper-
imental data, and there is the following relation between the
cross sections in terms of both sets of variables:

d2σ
dpkdp⊥

¼ sin θμ
Eμ

d2σ
dEμd cos θμ

: ð31Þ

In Figs. 9 and 10 our results are comparedwith theQE-like
data collected using a hydrocarbon target [7,8] for neutrino
and antineutrino scattering, respectively. The computed flux-
averaged cross sections and the MINERvA collaboration’s
data are in good agreement. Thanks to the high-energy
neutrino flux,which can extend beyond 10GeV, the involved
momentum transfers are generally substantial, around
1 GeV=c, creating favorable kinematic conditions for the
scaling model to describe the data.
Both the 2p2h contributions, including MEC and SRC,

are of comparable magnitude, around 20% or more, and are
crucial for capturing the data trends. The peaks of the 1p1h
and 2p2h distributions practically coincide at the same
value of p⊥. The region where the extended SuSAM �
þMEC model appears to struggle more is the first pk bin,

FIG. 10. MINERvA flux-folded double-differential cross section for antineutrino scattering on hydrocarbon. In antineutrino
scattering, The single-nucleon contribution for the proton in H is also shown. The QE-like experimental data are from Ref. [8].
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which corresponds to the lowest momentum transfer
values, where the data are slightly overestimated for
neutrino scattering on the left side of the curve.
However, across the rest of the kinematics, the model
aligns with the data within the error bars.
The strong agreement between the current model and the

cross section data from the MINERvA experiment serves as
a paradigmatic example. It demonstrates how a scaling
model with 1p1h and 2p2h contributions derived from
electron data can reproduce the neutrino cross section with
only the modification of the current operator. This suggests
that the more intricate aspects of nuclear structure relevant
to the reaction are effectively incorporated implicitly within
both the 1p1h and SRC scaling functions for the experi-
ment’s kinematics.
This outcome also represents a positive validation for the

2p2h MEC model based on the RMF framework, which
encompasses dynamic components of nucleons within the
nuclear medium. The successful agreement further rein-
forces the model’s capability to describe neutrino inter-
actions within these experimental conditions.

IV. CONCLUSIONS

In this study, we have employed an extended super-
scaling analysis with a relativistic effective mass to com-
pute neutrino and antineutrino cross sections. Given that a
significant source of systematic error in neutrino oscillation
experiments arises from the lack of a complete theoretical
description of neutrino-nucleus interactions, scaling-based
models can offer valuable, alternative insights for such
analyses. The scaling transformation can be regarded as an
approximate symmetry of the nuclear response, yielding a
universal function that solely depends on a scaling variable
in the quasielastic regime. Changes in kinematics that keep
the scaling variable invariant yield the same scaling
function. In other words, different probes with distinct
initial and final momentum transfers, ki and kf, expanding
the same scaling variable, but exploring different ðq;ωÞ
spectral values, have the same scaled response.
The superscaling approach leverages the experimental

scaling information obtained from quasielastic electron
scattering to predict neutrino cross sections, assuming that
the scaling function remains relatively insensitive to the
specific type of lepton-nucleus interaction. This assumption
allows for the extrapolation of the scaling function from
electron scattering to neutrino interactions, providing a
consistent framework to analyze and interpret neutrino-
nucleus cross section data. By utilizing this approach, the
theory-driven scaling function helps bridge the gap
between different experimental measurements, providing
a useful tool for understanding neutrino interactions across
various experiments and energy ranges.
The extended SuSAM* approach employed in this study

for (anti)neutrino scattering introduces several novel

features and modifications. The scaling function is directly
extracted from ðe; e0Þ data by subtracting the contribution
of the 2p2h-MEC response and selecting quasielastic data
points that collapse, while removing those that don’t.
Additionally, the phenomenological scaling function is
decomposed into a sum of a symmetric function and the
tail contribution, which is parametrized using a factorized
2p2h-like model.
The ESuSAM � þMEC model relies on the RMF model

of nuclear matter, a key feature that brings in dynamic
relativistic ingredients. This sets it apart from the traditional
approaches that often use the RFG model. The dynamic
relativistic ingredients of the RMF, when applied to both
the scaling function and the MEC, capture aspects of
nucleon interactions that are crucial for understanding
neutrino-nucleus interactions in a broader energy and
momentum range.
The model includes three contributions: the 1p1h

response, the 2p2h-MEC response and the 2p2h-SRC
response. As a cautionary note, while SRC certainly
contribute to the emission of two particles, the contribu-
tion referred to here as “2p2h-SRC” cannot be exclusively
attributed to correlations alone. This is because correla-
tions cannot be disentangled from other effects that also
contribute to the tail of the scaling function, such as
interference with MEC, final-state interactions, and other
ingredients that violate scaling. At best, it can be said that
this contribution serves as an upper limit for the effects of
SRC on the nuclear response. In any case, it is useful to
decompose the results into the genuine contribution from
1p1h emission and the contribution from the tail, which is
compatible with 2p2h events. By distinguishing between
these contributions, the model provides a more nuanced
understanding of the underlying nuclear dynamics and the
various factors that contribute to the observed responses in
neutrino scattering.
By utilizing this framework, we have successfully

reproduced a wide range of experimental data from
MiniBooNE, T2K, and MINERvA Collaborations. The
fact that the model performs well, especially at higher-
momentum transfers, indicates that it captures the under-
lying physics of neutrino-nucleus interactions in those
regimes. The challenges arise when dealing with very
low-momentum transfers, where the model’s predictions
deviate from the data. This is not uncommon, as the
theoretical description of very low momentum transfers
can be complex due to effects like nuclear-shell structure
and the limitations of the model assumptions. Using a shell-
model approach for low q is more reasonable, as shell
models are better suited for describing the behavior of
nucleons in those energy regimes.
The significant contribution of the 2p2h response to the

overall response, particularly for experiments with higher
momentum transfers like MINERvA, underscores the
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importance of considering multinucleon emission in neu-
trino-nucleus interactions. The comparable impact of MEC
and SRC effects further emphasizes their significant roles
in the response, which is consistent with the complexity of
these interactions.
This extension of the SuSAM* model, along with its

successful comparison to data, not only provides valuable
insights into neutrino interactions but also underlines the
significance of considering dynamic nucleon effects within
the nuclear medium. These findings emphasize the poten-
tial of scaling-based models to contribute to a deeper

understanding of neutrino-nucleus interactions and their
implications for neutrino oscillation experiments.
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