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The baryon-number violation (BV) happens in the standard electroweak model. According to the Bloch-
wave picture, the BV event rate shall be significantly enhanced when the proton-proton collision center
of mass (COM) energy goes beyond the sphaleron barrier height Esph ≃ 9.0 TeV. Here we compare the
BV event rates at different COM energies, using the Bloch-wave band structure and the CT18 parton
distribution function data, with the phase space suppression factor included. As an example, the BV cross
section at 25 TeV is 4 orders of magnitude bigger than its cross section at 13 TeV. The probability of
detection is further enhanced at higher energies since an event at higher energy will produce on average
more same sign charged leptons.
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I. INTRODUCTION

Matter-antimatter asymmetry is an important mystery in
our Universe. The baryon-number violation (BV) via the
instanton [1] in the standard electroweak model observed
by ’t Hooft [2,3] provides a crucial avenue to understanding
baryogenesis. Therefore, observing (confirming) such BV
in the laboratory will be immensely valuable.
The underlying physics of the BV process can be reduced

to a simple quantum mechanical system. With the Chern-
Simons (CS) number Q (or n ¼ mWQ=π) as the coordinate,
one obtains the one-dimensional time-independent
Schrödinger equation, with mass m ≃ 17 TeV [4]:

�
−

1

2m
∂
2

∂Q2
þ VðQÞ

�
ΨðQÞ ¼ EΨðQÞ; ð1Þ

where the sphaleron potential VðQÞ is periodic, with minima
at integer values of n and maxima at nþ 1=2, with barrier
height Esph ¼ 9.0 TeV [5–7]. Although this Schrödinger
equation is well accepted, it is the interpretation of the
underlying physics of VðQÞ’s periodicity that needs

clarification: whether the solution of this equation has a
Bloch wave band structure or not.
Let us first consider the SUð2Þ gauge theory without the

fermions: in this case, all integer n states are physically
identical; that is, n → n� 1 simply goes back to itself
(though in a different gauge). So there is no band structure,
as is the case in the QCD theory. This is analogous to a rigid
pendulum rotating by 2π via tunneling [8].
Once left-handed fermions couple to the electroweak

SUð2Þ gauge theory, different n state has different baryon
(and lepton) numbers, so they are physically different:
as we go from the n to the nþ Δn state, baryon number
changes by 3Δn. As Q runs from −∞ to þ∞, a band
structure emerges. Changing Q is no longer exponentially
suppressed within each band. For energies below the height
of the sphaleron potential of 9.0 TeV, band gaps dominate
over the bandwidths, so the BV cross section σBV is still
small. As E increases, the bandwidths grow while the gaps
between bands decrease. Once the energy goes above
9.0 TeV, bands take over, and the BV cross section is no
longer exponentially suppressed. This is in contrast to the
QCD theory which has no bands.
The Large Hadron Collider (LHC) at CERN ran at

proton-proton collision energy Epp ¼ 13 TeV and is pres-
ently running at Epp ¼ 13.6 TeV. Since the quarks and
gluons inside a proton share its energy, the quark-quark
energy Eqq is only a fraction of the total Epp. It is important
to see how σBV grows as Epp increases. This is a simple
kinematic issue. Reference [9] has estimated the growth of
σBV as a function of Epp. Here we like to dwell into the
estimate in more detail by taking the band structure fully
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into account as well as an additional phase space factor:
even if Eqq > 9.0 TeV, not all energy goes to the BV
process. That is, Eqq has to be shared between baryon-
number conserving (BC) scattering and BV scattering. In
this note, we present for Epp above 13 TeV, the ratio

ηðEppÞ ¼
σBVðEppÞ

σBVð13 TeVÞ : ð2Þ

A rough estimate assumes a cutoff model, which
states that σBV is totally suppressed for Eqq < 9.0 TeV
and completely unsuppressed for Eqq ≥ 9.0 TeV. As an
exercise, we first present an analytical evaluation of
ηðEppÞ. However, as we shall see, this estimate is not
accurate enough. Using the parton distribution function
(PDF) for the valence quarks from the CTEQ program
[10], the estimate for ηðEppÞ agrees with that in Ref. [9].
Next, we take the band structure into account: σBV is
completely unsuppressed for Eqq inside a Bloch band
and totally suppressed for Eqq in a band gap. It turns out
this result is close to the above simple estimate if we
choose the critical Eqq ¼ 9.1 TeV instead of 9.0 TeV.
However, even inside a Bloch band, not all Eqq goes to
BV scatterings; some energies flow to the baryon-
conserving (BC) channel.
We also perform estimates on the BV cross section

including this phase space suppression factor, again using
parton distribution functions (PDFs) from the CTEQ
program [10]. Our representative final result is presented
in Fig. 1. We see that σBVð25 TeVÞ is 4 orders-of-
magnitude bigger than σBVð13 TeVÞ. Including gluon þ
quark scattering has little effect on the result as gluon PDF
is rather soft, as shown in Fig. 2.
There is another important effect that should come

into play. Here ηðEppÞ (2) only compares σBV at different
energies. Based on the analysis of Ref. [11], we expect
that σBVð25 TeVÞ will involve events with larger Δn
than σBVð13 TeVÞ. Although it is hard to estimate the
enhancement of Δn as one increases the energy, it is
likely that the average hΔni at 25 TeV is an order-of-
magnitude bigger than the average hΔni at 13 TeV. Since
a single jΔnj event can produce up to 3jΔnj same sign
charged leptons, the probability of BV detection will be
substantially enhanced beyond that coming only from an
increase in ηðEppÞ.

II. ESTIMATE OF ηðEppÞ
Consider proton-proton (pp) collisions. In the center

of mass (COM) frame, the proton momenta are P1 ¼
ðE; 0; 0; EÞ and P2 ¼ ðE; 0; 0;−EÞ. where s ¼ 4E2. So the
quark-quark momentum is

v ¼ x1P1 þ x2P2 ¼ ððx1 þ x2ÞE; 0; 0; ðx1 − x2ÞEÞ; ð3Þ

FIG. 1. Solid curve is ηðEppÞ ¼ σBVðEppÞ=σBVð13 TeVÞ with
the θ phase space suppression (PSS) as a function of Epp.
θ stands for the parameter describing the energy budget for the
BV process in total Eqq as explained in Sec. II B. The dashed
curve is the ηðEppÞ without the PSS, whose η is normalized to
the phase-space-suppressed σBVð13 TeVÞ for comparison.
Two different parametrizations of Sphaleron potential named
Manton and AKY potentials give similar band structures (see
Table I). They give almost identical (up to 2 significant digits)
enhancement ηðEppÞ here.

FIG. 2. The solid curve is ηðEppÞ without gluon contribution.
The dashed curve is ηðEppÞ with gluon þ quark scattering
included for 50–100 TeV. Here they are calculated under the
cutoff model with the effective cutoff at Êsph ¼ 9.1 TeV and θ
phase space suppression.
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where xj is the fraction of momentum carried by quark qj.
The invariant energy carried by the quark-quark system
is v, where

v2 ¼ x1x2s; ð4Þ

Let fq=pðxj; Q2Þ be the PDF of quark qj inside a proton at
the scale Q. So the BV cross section σBVðEppÞ is given by,
before the inclusion of the phase space factor,

σBVðEppÞ ¼
X
qq0

Z
dx1fq=pðx1; sÞ

×
Z

dx2fq0=pðx2; sÞσ̂BVðvÞ; ð5Þ

where Epp ≡ ffiffiffi
s

p
, and v ¼ ffiffiffiffiffiffiffiffiffi

x1x2
p

Epp.

A. Crude estimate

We can make a rough analytical estimate to get some
idea, even though the resulting numerical values need
improvement. This subsection estimates ηðEppÞ using an
unrealistic PDF and without consideration of band structure
and phase space suppression. The analytical calculations
below give us a general sense of what ηðEppÞ looks like.
As a start, we consider a simple (toy) PDF for valence
quarks q in a proton which is scale-independent,

fq=pðxÞ ¼ Aqx2ð1 − xÞ3; ð6Þ

where
R
1
0 dxfu=pðxÞ ¼ 2 and

R
1
0 dxfd=pðxÞ ¼ 1. This

PDF (6) allows an analytic discussion, but is only quali-
tatively valid.
If we do not care about species, we shall chooseR

1
0 dxfq=pðxÞ ¼ 3, so Aq ¼ 180. The Bloch-wave picture
indicates that the σ̂BVðvÞ is exponentially enhanced when
v≳ Esph due to the overlap of high energy Bloch bands.
Thus, for the purpose of estimating, we here simply take a
cutoff model,

σ̂BVðvÞ ¼
�
σ0; x1x2 > c

0; otherwise
; ð7Þ

where c ¼ ðEsph=EppÞ2. σ0 is an overall normalization.
We may assume that, for v ≫ 10 TeV, σ0 ≲ σtotalðppÞ,
where σtotalðppÞ does not vary much. Since we are
comparing the BV event rate between different Epp (2),
the value of σ0 is not important here. With this approxi-
mation, we could write

σBVðEppÞ ≈ A2
qσ0

Z
1

c
dx1ð1 − x1Þ3

Z
1

c=x1

dx2ð1 − x2Þ3

¼ A2
qσ0GðcÞ; ð8Þ

where

GðcÞ ¼ 1

3600
þ 10

9
c3 þ 27

16
c4 −

54

25
c5 −

23

36
c6

þ
�
1

3
þ 9

4
cþ 9

5
c2 þ 1

6
c3
�
c3 ln c:

As a check, we have σBVðc ¼ 1Þ ¼ 0.
As a reasonable approximation, we take Esph ¼ 9 TeV

as a benchmark. For Epp ¼ 13 TeV, c ¼ ð9=13Þ2 ¼ 0.479,
while c ¼ 0.413 for Epp ¼ 14 TeV, etc.
So we have ηð13.6 TeVÞ ¼ 1.80 and ηð14 TeVÞ ¼ 2.51.

This indicates that only a factor of 2.5 gains in going from
13 TeV to 14 TeV. Compared to higher energies, we now
have ηð20 TeVÞ ¼ 23.2 and ηð25 TeVÞ ¼ 39.6. About a
factor of 20 gain from 13 to 20 TeV. For even higher
energies, ηð50 TeVÞ ¼ 61.1 and ηð100 TeVÞ ¼ 62.8. One
improves a little (1.03 gain) going from 50 TeV to 100 TeV,
which is much less efficient compared to the improvement
from 13 TeV to 25 TeV. This is due to the behavior at x → 0

which comes from x2 suppression. That is, the enhance-
ment is saturated.

B. Numerical estimate with θ phase
space suppression

Equation (7) is an oversimplification of the Bloch-wave
solution. According to the Bloch-wave picture [4,12], we
have σ̂BVðvÞ ¼ σ0 if v falls inside a Bloch wave band and
σ̂BVðvÞ ¼ 0 otherwise. The center energies of Bloch bands
and their widths are shown in Table I. “Manton” [5,6] and
“AKY” [7] refer to two different parametrizations of the
Sphaleron potential. Here for those bands with energies

TABLE I. Bloch wave bands from Ref. [4]. Here Ei is the band
center energy and Δi is the band width. Those bands with a width
smaller than 10−9 TeV are neglected for they are essential zeros
in our calculation precision, as explained in Sec. II B.

Manton AKY

Ei=TeV Δi=TeV Ei=TeV Δi=TeV

9.113 0.01555 9.110 0.01134
9.081 7.192 × 10−3 9.084 4.957 × 10−3

9.047 2.621 × 10−3 9.056 1.718 × 10−3

9.010 8.255 × 10−4 9.026 5.186 × 10−4

8.971 2.382 × 10−4 8.994 1.438 × 10−4

8.931 6.460 × 10−5 8.961 3.747 × 10−5

8.890 1.666 × 10−5 8.927 9.279 × 10−6

8.847 4.114 × 10−6 8.892 2.198 × 10−6

8.804 9.779 × 10−7 8.857 5.008 × 10−7

8.759 2.245 × 10−7 8.802 1.101 × 10−7

8.714 4.993 × 10−8 8.783 2.341 × 10−8

8.668 1.078 × 10−8 8.745 4.828 × 10−9

8.621 2.262 × 10−9
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above the first row in Table I, we consider them to be
continuous due to the overlaps. So, for example, σ̂BVðv >
9.113 TeVÞ ¼ σ0 for Manton potential. We neglect those
bands with widths smaller than 10−9 TeV.
The PDF Eq. (6) used in the last subsection is also

too crude. Here we use realistic PDFs from the CTEQ
program. According to CT18 [10], the PDFs at the initial
scale Q0 ¼ 1.3 GeV could be parametrized as

fq=pðx;Q2
0Þ ¼ a0xa1−1ð1 − xÞa2Pqðyq;a3; a4; � � �Þ;

where Pqðyq; a3; a4; � � �Þ and yqðxÞ are the polynomial
functions that have different forms for each species. For
PDFs at a higher energy scale, one could compute them by
using renormalization equations. Details for those param-
eter values, polynomial forms, and higher scale evolution
are included in Ref. [10]. Here we take the results from
Ref. [10] to estimate the ηðEppÞ. We extract PDFs from the
CT18NNLO dataset using LHAPDF. To have a consistent
precision, we take discrete values of PDFs with the step
δx ¼ 10−4. Thus, for all numerical results, we take only
4 significant digits below.
The PDFs morph for higher scale. fðx → 0; Q2Þ will

usually becomes larger for higher Q for every species.
Also, the contribution from sea quarks and valance quarks
shall be comparable for small x. One should include more
bands as collision energy goes higher, and the integration
region in x1–x2 phase space grows to include the smaller
x region. This leads to the enhancement of the ηðEppÞ for
higher energies.
So far we have neglected the baryon-number conserving

(BC) direction. Recall that different n states have different
numbers of baryons and leptons and so their ground states
have slightly different energies. The resulting effective
sphaleron potential is a slightly tilted periodic potential.
In quantum mechanics, this alone will suppress the BV
process, i.e., Δn ¼ 0. It is the presence of the BC direction
that allows finite Δn BV process to happen [11]. For our
purpose here, we do not consider the tilted potential and
take that including the BC direction in the phase space will
further suppress the BV cross section.
Here we consider a simple scenario, named θ phase

space suppression (PSS). There are two orthogonal
momentum directions in the phase space: the BC p⃗C
and BV p⃗V directions. One can write down

p⃗qq ¼ p⃗C þ p⃗V; p⃗C · p⃗V ¼ 0: ð9Þ

In the relativistic limit, it could be converted to E2
qq ≡ v2 ¼

E2
C þ E2

V, where ECðVÞ stands for the energy that goes into
the baryon-number conserving (violating) direction. By
introducing a parameter θ, which is a random number that
differs for every collision, one could conclude that only
EV ¼ v sin θ shall participate in the BV process. Thus, the
cross section is given by

σ̃BVðEpp; θÞ ¼
X
q;q0

Z
dx1fq=pðx1; sÞ

×
Z

dx2fq0=pðx2; sÞσ̂BVðv sin θÞ

¼ σ0
X
q;q0

Iqq0 ðs; θÞ; ð10Þ

where

Iqq0 ðs; θÞ ¼
Z
DðθÞ

dx1dx2fq=pðx1; sÞfq0=pðx2; sÞ: ð11Þ

Since we are considering Bloch bands here, such integra-
tion is performed over discontinuous bands as illustrated
in Fig. 3. Here DðθÞ is the shaded region,

Ei −
Δi

2
≤

ffiffiffiffiffiffiffiffiffi
x1x2

p
Epp sin θ ≤ Ei þ

Δi

2
ð12Þ

where Ei is the center energy of ith Bloch band andΔi is its
width. For fixed Epp, one could see that smaller θ indicates
that one has to integrate over lower bands region in the
phase space, where the band gaps are relatively huge and
widths are exponentially smaller. Thus an extra suppression
factor appears. Note that setting θ ¼ π=2 is equivalent to no
suppression scenario. As shown in Fig. 4, smaller θ shall
lead to huge suppression on the integration.
The cross section σ̃BV depends on θ for every event. We

average out θ according to its probability density PðθÞ, to
compare the efficiency for different Epp in observing BV
events. Thus, we have

σBVðEppÞ ¼
Z

σ̃BVðEpp; θÞPðθÞdθ

¼ 2

π
σ0
X
q;q0

Z
π=2

0

dθIqq0 ðs; θÞ: ð13Þ

FIG. 3. A sketch of phase space for x1–x2. When considering
the Bloch bands structure [4] in Eq. (5), the integration over x1–x2
space should only include those satisfying Eq. (12), which has a
pattern as the gray shaded region shown here.
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It is natural to assume that θ is sampled from a uniform
distribution for every collision. Here we choose PðθÞ¼2=π
for θ∈ ½0; π=2� in the second line above.
The summation runs over all quark species that partici-

pate in the BV process. For simplicity, we consider only the
dominating contribution from

q; q0 ∈ fu; d; s; ū; d̄; s̄g: ð14Þ

The gluons do not participate in weak interactions and
so contribute to the BV process only indirectly. So their
contributions are not included here.
As a comparison between the simple cutoff [Eq. (7)] and

band structure model of σ̂BVðvÞ, in Table II we show the
numerical result of σBVðEppÞ=σ0 with various Esph chosen
for cutoff model together with the band structure. Numbers
in Table II are all obtained under θ PSS for the sake of
comparison. As one can see, the ηðEppÞ result with the
band structure is equivalent to a simple cutoff with an
effective Êsph ≃ 9.1 TeV, slightly higher than the actual
Esph ¼ 9.0 TeV. Also, one sees that the differences
between Manton and AKY potentials are minor.

Figure 1 shows the enhancement on σBVðEppÞ in
Manton potential. For comparison, in AKY potential, one
finds ηð14 TeVÞ ≃ 6.508, ηð20 TeVÞ ≃ 1.842 × 103 and
ηð25 TeVÞ ≃ 1.550 × 104; that is a 4 orders of magnitude
enhancement going from 13 TeV to 25 TeV. However, going
from 50 TeV to 100 TeV will only give us roughly 1 order-
of-magnitude improvement in the event rate. Note that the
size of phase space suppression from the random θ is about 1
order of magnitude at the beginning, Epp ∼ 13 TeV, and
decreases to only roughly 0.5 at Epp ∼ 100 TeV.

C. Numerical estimate with K phase space suppression

We consider another scenario, which simply introduces a
suppression factor to the cross-section integral, named K
phase space suppression. This is

σBVðEppÞ ¼ σ0
X
q;q0

Z
D
dx1dx2KðvÞfq=pðx1; sÞfq0=pðx2; sÞ;

ð15Þ

where the integration D ¼ Dðπ=2Þ is the band structure
consideration without θ suppression.
Naturally, the phase space suppression factor KðvÞ shall

interpolate from 0 to 1. This is because when the energy is
small, one shall expect little budget for BV. Meanwhile,
when the energy is high enough, sphaleron potential could
be neglected, and then the phase space suppression should
vanish. Also, KðvÞ should be significantly enhanced when
v ∼ Esph because the distinct scale in the BV process is
Esph. Thus, we assume that

Kð0Þ¼0; Kð∞Þ¼1; KðEsphÞ∼Oð0.1Þ: ð16Þ

Here we take a monotonically increasing function

KðvÞ ¼
�
2

π
arctan

��
v

Esph

�
α
��

β

; ð17Þ

FIG. 4. Iuu as a function of θ for Epp ¼ 13 TeV. Here Manton
and AKY potentials lead to very similar results. Other Iqq0 also
gives a similar suppression behavior.

TABLE II. σðEppÞ with band structure and simple cutoff [Eq. (7)]. Here θ phase space suppression is applied. The
first three columns are cutoff models and the last two are band models.

σðEppÞ=σ0
Epp=TeV Esph ¼ 8.5 TeV Esph ¼ 9.0 TeV Esph ¼ 9.1 TeV Manton AKY

13 8.106 × 10−7 1.904 × 10−7 1.398 × 10−7 1.429 × 10−7 1.414 × 10−7

13.6 2.174 × 10−6 6.013 × 10−7 4.584 × 10−7 4.670 × 10−7 4.630 × 10−7

14 3.881 × 10−6 1.173 × 10−6 9.119 × 10−7 9.276 × 10−7 9.203 × 10−7

20 5.433 × 10−4 2.940 × 10−4 2.259 × 10−4 2.615 × 10−4 2.605 × 10−4

25 0.003763 0.002394 0.002185 0.002197 0.002192
27 0.006527 0.004323 0.003978 0.003998 0.003989
50 0.1479 0.1175 0.1123 0.1126 0.1124
75 0.5807 0.4870 0.4704 0.4714 0.4709
100 1.264 1.085 1.053 1.055 1.054

BARYON NUMBER VIOLATING RATE AS A FUNCTION … PHYS. REV. D 108, 113004 (2023)

113004-5



which is parametrized by α > 0 and β > 0. Note that β ¼ 0
corresponds to no suppression.
Adopting CT18 PDFs [10] and considering quark

content Eq. (14) in the Bloch band picture, we numeri-
cally calculate σBVðEppÞ in unit of σ0 with various
choice of α and β in Tables III and IV. Minor
differences between Manton and AKY potentials are
observed and order-of-magnitude behavior is the same.
K factor suppression is strong at low Epp and becomes
weak when Epp go higher as anticipated. Figures 5
and 6 show the enhancement factor ηðEppÞ in the
Manton potential, which is similar to the AKY poten-
tial. As shown in Fig. 6, varying α has little impact on
ηðEppÞ. For larger β > 3.4, one essentially changes the
behavior of KðEsphÞ, which shall lead to a significant
change on ηðEppÞ and against our assumption in
Eq. (16). For reasonable choices of α and β, one shall
have ∼4 order enhancement on BV event rate going
from Epp ¼ 13 TeV to 25 TeV, and only about 1 order
gain from Epp ¼ 50 TeV to 100 TeV.

TABLE III. σðEppÞ with K phase space suppression factor in band model of Manton potential. Here
Esph ¼ 9 TeV.

σðEppÞ=σ0
β ¼ 0 α ¼ 1 α ¼ 1 α ¼ 1 α ¼ 0.1 α ¼ 10

Epp=TeV (No PSS) β ¼ 0.1 β ¼ 1 β ¼ 3.4 β ¼ 1 β ¼ 1

13 9.738 × 10−7 9.111 × 10−7 5.004 × 10−7 1.014 × 10−7 4.883 × 10−7 6.122 × 10−7

13.6 2.987 × 10−6 2.796 × 10−6 1.540 × 10−6 3.142 × 10−7 1.498 × 10−6 1.912 × 10−6

14 5.716 × 10−6 5.350 × 10−6 2.951 × 10−6 6.052 × 10−7 2.867 × 10−6 3.699 × 10−6

20 0.001149 0.001078 6.081 × 10−4 1.331 × 10−4 5.779 × 10−4 8.329 × 10−4

25 0.008322 0.007821 0.004481 0.001028 0.004193 0.006363
27 0.01448 0.01362 0.007846 0.001831 0.007302 0.01125
50 0.3106 0.2936 0.1773 0.04803 0.1576 0.2637
75 1.153 1.093 0.6807 0.2034 0.5874 1.012
100 2.424 2.303 1.461 0.4647 1.239 2.159

TABLE IV. σðEppÞ with K phase space suppression factor in band model of AKY potential. Here Esph ¼ 9 TeV.

σðEppÞ=σ0
β ¼ 0 α ¼ 1 α ¼ 1 α ¼ 1 α ¼ 0.1 α ¼ 10

Epp=TeV (No PSS) β ¼ 0.1 β ¼ 1 β ¼ 3.4 β ¼ 1 β ¼ 1

13 9.648 × 10−7 9.027 × 10−7 4.959 × 10−7 1.005 × 10−7 4.838 × 10−7 6.076 × 10−7

13.6 2.963 × 10−6 2.773 × 10−6 1.527 × 10−6 3.119 × 10−7 1.486 × 10−6 1.900 × 10−6

14 5.673 × 10−6 5.310 × 10−6 2.930 × 10−6 6.011 × 10−7 2.846 × 10−6 3.677 × 10−6

20 0.001145 0.001074 6.061 × 10−4 1.327 × 10−4 5.759 × 10−4 8.309 × 10−4

25 0.008302 0.007802 0.004471 0.001026 0.004183 0.006353
27 0.01445 0.01359 0.007830 0.001828 0.007286 0.01123
50 0.3102 0.2932 0.1772 0.04800 0.1574 0.2635
75 1.152 1.092 0.6802 0.2033 0.5870 1.011
100 2.422 2.301 1.460 0.4645 1.238 2.158

FIG. 5. ηðEppÞ with K phase space suppression. Here we
choose Esph ¼ 9.0 TeV and α ¼ 1.
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III. AVERAGE SAME SIGN CHARGED
LEPTONS PER EVENT

Here η (2) only compares σBV at different energies. In
reality, the initial EV is reduced as the CS number Q (1)
moves jΔnj steps, due to the production of 3jΔnj baryons
and leptons. This lowering in energy will reduce the
value of jΔnj a BV scattering can reach. In the analysis
of Ref. [11], we treat this effect as a tilt in the
periodic sphaleron potential VðQÞ (1). So we expect that
σBVð25 TeVÞ will involve events with larger jΔnj than
σBVð13 TeVÞ. In a single Δn event, there are on average
3jΔnj=2 same-sign charged leptons (and up to 3jΔnj same-
sign charged leptons). A crude estimate suggests that the
average hΔni at 25 TeV is easily an order of magnitude
bigger than the average hΔni at 13 TeV. That is, the
probability of BV detection can be 105 higher at 25 TeV
than at 13 TeV.

IV. SUMMARY AND DISCUSSION

In this short note, we demonstrate the enhancement of
the baryon-number violating event rate when the COM
energy for the pp collider is increased. The estimate
includes the Bloch band structure for unsuppressed BV
scatterings and the phase space suppression from the

baryon-number conserving direction. The Bloch band
structure yields an effective cutoff of Eqq ≃ 9.1 TeV, a
little above the simple cutoff of Eqq ≃ 9.0 TeV.1 The phase
space suppression factor is formulated in two ways, θ and
K phase space suppression. θ PSS scenario introduces a
random parameter θ for every collision describing the
energy budget of participating in the BV and BC process.
We compare the event rate for different COM energy
by integrating out θ, which is sampled from a uniform
distribution. K PSS scenario introduces a monotonic
function that describes the suppression from phase space.
For reasonable choices of parameters in K, we have similar
results as that in the θ PSS case. The precise values of
ηðEppÞ depend on the specific model (choice of the
sphaleron potential and the phase space suppression factor).
They are in general agreement with each other. Here, we
treat these variations as uncertainties in ηðEppÞ.
In summary, combining all scenarios considered above

(except crude estimate in Sec. II A), we now have
(ηð13 TeVÞ ¼ 1 by definition), up to two significant digits,

ηð13.6 TeVÞ ≃ 3.1–3.3;

ηð14 TeVÞ ≃ 5.9–6.5;

ηð20 TeVÞ ≃ 1.2–1.8 × 103;

ηð25 TeVÞ ≃ 0.86–1.6 × 104: ð18Þ

For even higher energies, we have

ηð50 TeVÞ ≃ 3.2–7.9 × 105;

ηð100 TeVÞ ≃ 2.5–7.5 × 106: ð19Þ

The results indicate that increasing the COM pp energy
from 13 TeV to 25 TeV will yield a huge enhancement to
the event rate. Together with the enhancement of hΔni per
event, the probability of BV detection can be 105 higher at
25 TeV than at 13 TeV. Although the enhancement in σBV is
more modest going from 50 TeV to 100 TeV, the enhance-
ment in hΔni should be substantial.
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FIG. 6. ηðEppÞ with K phase space suppression. Here we
choose Esph ¼ 9.0 TeV and β ¼ 1.

1Before turning on UYð1Þ, Esph ¼ 9.1 TeV. Turning on UYð1Þ
lowers it to Esph ¼ 9.0 TeV.
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